1 //===- ControlFlowInterfaces.cpp - ControlFlow Interfaces -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include <utility>
10 
11 #include "mlir/IR/BuiltinTypes.h"
12 #include "mlir/Interfaces/ControlFlowInterfaces.h"
13 #include "llvm/ADT/SmallPtrSet.h"
14 
15 using namespace mlir;
16 
17 //===----------------------------------------------------------------------===//
18 // ControlFlowInterfaces
19 //===----------------------------------------------------------------------===//
20 
21 #include "mlir/Interfaces/ControlFlowInterfaces.cpp.inc"
22 
SuccessorOperands(MutableOperandRange forwardedOperands)23 SuccessorOperands::SuccessorOperands(MutableOperandRange forwardedOperands)
24     : producedOperandCount(0), forwardedOperands(std::move(forwardedOperands)) {
25 }
26 
SuccessorOperands(unsigned int producedOperandCount,MutableOperandRange forwardedOperands)27 SuccessorOperands::SuccessorOperands(unsigned int producedOperandCount,
28                                      MutableOperandRange forwardedOperands)
29     : producedOperandCount(producedOperandCount),
30       forwardedOperands(std::move(forwardedOperands)) {}
31 
32 //===----------------------------------------------------------------------===//
33 // BranchOpInterface
34 //===----------------------------------------------------------------------===//
35 
36 /// Returns the `BlockArgument` corresponding to operand `operandIndex` in some
37 /// successor if 'operandIndex' is within the range of 'operands', or None if
38 /// `operandIndex` isn't a successor operand index.
39 Optional<BlockArgument>
getBranchSuccessorArgument(const SuccessorOperands & operands,unsigned operandIndex,Block * successor)40 detail::getBranchSuccessorArgument(const SuccessorOperands &operands,
41                                    unsigned operandIndex, Block *successor) {
42   OperandRange forwardedOperands = operands.getForwardedOperands();
43   // Check that the operands are valid.
44   if (forwardedOperands.empty())
45     return llvm::None;
46 
47   // Check to ensure that this operand is within the range.
48   unsigned operandsStart = forwardedOperands.getBeginOperandIndex();
49   if (operandIndex < operandsStart ||
50       operandIndex >= (operandsStart + forwardedOperands.size()))
51     return llvm::None;
52 
53   // Index the successor.
54   unsigned argIndex =
55       operands.getProducedOperandCount() + operandIndex - operandsStart;
56   return successor->getArgument(argIndex);
57 }
58 
59 /// Verify that the given operands match those of the given successor block.
60 LogicalResult
verifyBranchSuccessorOperands(Operation * op,unsigned succNo,const SuccessorOperands & operands)61 detail::verifyBranchSuccessorOperands(Operation *op, unsigned succNo,
62                                       const SuccessorOperands &operands) {
63   // Check the count.
64   unsigned operandCount = operands.size();
65   Block *destBB = op->getSuccessor(succNo);
66   if (operandCount != destBB->getNumArguments())
67     return op->emitError() << "branch has " << operandCount
68                            << " operands for successor #" << succNo
69                            << ", but target block has "
70                            << destBB->getNumArguments();
71 
72   // Check the types.
73   for (unsigned i = operands.getProducedOperandCount(); i != operandCount;
74        ++i) {
75     if (!cast<BranchOpInterface>(op).areTypesCompatible(
76             operands[i].getType(), destBB->getArgument(i).getType()))
77       return op->emitError() << "type mismatch for bb argument #" << i
78                              << " of successor #" << succNo;
79   }
80   return success();
81 }
82 
83 //===----------------------------------------------------------------------===//
84 // RegionBranchOpInterface
85 //===----------------------------------------------------------------------===//
86 
87 /// Verify that types match along all region control flow edges originating from
88 /// `sourceNo` (region # if source is a region, llvm::None if source is parent
89 /// op). `getInputsTypesForRegion` is a function that returns the types of the
90 /// inputs that flow from `sourceIndex' to the given region, or llvm::None if
91 /// the exact type match verification is not necessary (e.g., if the Op verifies
92 /// the match itself).
93 static LogicalResult
verifyTypesAlongAllEdges(Operation * op,Optional<unsigned> sourceNo,function_ref<Optional<TypeRange> (Optional<unsigned>)> getInputsTypesForRegion)94 verifyTypesAlongAllEdges(Operation *op, Optional<unsigned> sourceNo,
95                          function_ref<Optional<TypeRange>(Optional<unsigned>)>
96                              getInputsTypesForRegion) {
97   auto regionInterface = cast<RegionBranchOpInterface>(op);
98 
99   SmallVector<RegionSuccessor, 2> successors;
100   regionInterface.getSuccessorRegions(sourceNo, successors);
101 
102   for (RegionSuccessor &succ : successors) {
103     Optional<unsigned> succRegionNo;
104     if (!succ.isParent())
105       succRegionNo = succ.getSuccessor()->getRegionNumber();
106 
107     auto printEdgeName = [&](InFlightDiagnostic &diag) -> InFlightDiagnostic & {
108       diag << "from ";
109       if (sourceNo)
110         diag << "Region #" << sourceNo.value();
111       else
112         diag << "parent operands";
113 
114       diag << " to ";
115       if (succRegionNo)
116         diag << "Region #" << succRegionNo.value();
117       else
118         diag << "parent results";
119       return diag;
120     };
121 
122     Optional<TypeRange> sourceTypes = getInputsTypesForRegion(succRegionNo);
123     if (!sourceTypes.has_value())
124       continue;
125 
126     TypeRange succInputsTypes = succ.getSuccessorInputs().getTypes();
127     if (sourceTypes->size() != succInputsTypes.size()) {
128       InFlightDiagnostic diag = op->emitOpError(" region control flow edge ");
129       return printEdgeName(diag) << ": source has " << sourceTypes->size()
130                                  << " operands, but target successor needs "
131                                  << succInputsTypes.size();
132     }
133 
134     for (const auto &typesIdx :
135          llvm::enumerate(llvm::zip(*sourceTypes, succInputsTypes))) {
136       Type sourceType = std::get<0>(typesIdx.value());
137       Type inputType = std::get<1>(typesIdx.value());
138       if (!regionInterface.areTypesCompatible(sourceType, inputType)) {
139         InFlightDiagnostic diag = op->emitOpError(" along control flow edge ");
140         return printEdgeName(diag)
141                << ": source type #" << typesIdx.index() << " " << sourceType
142                << " should match input type #" << typesIdx.index() << " "
143                << inputType;
144       }
145     }
146   }
147   return success();
148 }
149 
150 /// Verify that types match along control flow edges described the given op.
verifyTypesAlongControlFlowEdges(Operation * op)151 LogicalResult detail::verifyTypesAlongControlFlowEdges(Operation *op) {
152   auto regionInterface = cast<RegionBranchOpInterface>(op);
153 
154   auto inputTypesFromParent = [&](Optional<unsigned> regionNo) -> TypeRange {
155     return regionInterface.getSuccessorEntryOperands(regionNo).getTypes();
156   };
157 
158   // Verify types along control flow edges originating from the parent.
159   if (failed(verifyTypesAlongAllEdges(op, llvm::None, inputTypesFromParent)))
160     return failure();
161 
162   // RegionBranchOpInterface should not be implemented by Ops that do not have
163   // attached regions.
164   assert(op->getNumRegions() != 0);
165 
166   auto areTypesCompatible = [&](TypeRange lhs, TypeRange rhs) {
167     if (lhs.size() != rhs.size())
168       return false;
169     for (auto types : llvm::zip(lhs, rhs)) {
170       if (!regionInterface.areTypesCompatible(std::get<0>(types),
171                                               std::get<1>(types))) {
172         return false;
173       }
174     }
175     return true;
176   };
177 
178   // Verify types along control flow edges originating from each region.
179   for (unsigned regionNo : llvm::seq(0U, op->getNumRegions())) {
180     Region &region = op->getRegion(regionNo);
181 
182     // Since there can be multiple `ReturnLike` terminators or others
183     // implementing the `RegionBranchTerminatorOpInterface`, all should have the
184     // same operand types when passing them to the same region.
185 
186     Optional<OperandRange> regionReturnOperands;
187     for (Block &block : region) {
188       Operation *terminator = block.getTerminator();
189       auto terminatorOperands =
190           getRegionBranchSuccessorOperands(terminator, regionNo);
191       if (!terminatorOperands)
192         continue;
193 
194       if (!regionReturnOperands) {
195         regionReturnOperands = terminatorOperands;
196         continue;
197       }
198 
199       // Found more than one ReturnLike terminator. Make sure the operand types
200       // match with the first one.
201       if (!areTypesCompatible(regionReturnOperands->getTypes(),
202                               terminatorOperands->getTypes()))
203         return op->emitOpError("Region #")
204                << regionNo
205                << " operands mismatch between return-like terminators";
206     }
207 
208     auto inputTypesFromRegion =
209         [&](Optional<unsigned> regionNo) -> Optional<TypeRange> {
210       // If there is no return-like terminator, the op itself should verify
211       // type consistency.
212       if (!regionReturnOperands)
213         return llvm::None;
214 
215       // All successors get the same set of operand types.
216       return TypeRange(regionReturnOperands->getTypes());
217     };
218 
219     if (failed(verifyTypesAlongAllEdges(op, regionNo, inputTypesFromRegion)))
220       return failure();
221   }
222 
223   return success();
224 }
225 
226 /// Return `true` if region `r` is reachable from region `begin` according to
227 /// the RegionBranchOpInterface (by taking a branch).
isRegionReachable(Region * begin,Region * r)228 static bool isRegionReachable(Region *begin, Region *r) {
229   assert(begin->getParentOp() == r->getParentOp() &&
230          "expected that both regions belong to the same op");
231   auto op = cast<RegionBranchOpInterface>(begin->getParentOp());
232   SmallVector<bool> visited(op->getNumRegions(), false);
233   visited[begin->getRegionNumber()] = true;
234 
235   // Retrieve all successors of the region and enqueue them in the worklist.
236   SmallVector<unsigned> worklist;
237   auto enqueueAllSuccessors = [&](unsigned index) {
238     SmallVector<RegionSuccessor> successors;
239     op.getSuccessorRegions(index, successors);
240     for (RegionSuccessor successor : successors)
241       if (!successor.isParent())
242         worklist.push_back(successor.getSuccessor()->getRegionNumber());
243   };
244   enqueueAllSuccessors(begin->getRegionNumber());
245 
246   // Process all regions in the worklist via DFS.
247   while (!worklist.empty()) {
248     unsigned nextRegion = worklist.pop_back_val();
249     if (nextRegion == r->getRegionNumber())
250       return true;
251     if (visited[nextRegion])
252       continue;
253     visited[nextRegion] = true;
254     enqueueAllSuccessors(nextRegion);
255   }
256 
257   return false;
258 }
259 
260 /// Return `true` if `a` and `b` are in mutually exclusive regions.
261 ///
262 /// 1. Find the first common of `a` and `b` (ancestor) that implements
263 ///    RegionBranchOpInterface.
264 /// 2. Determine the regions `regionA` and `regionB` in which `a` and `b` are
265 ///    contained.
266 /// 3. Check if `regionA` and `regionB` are mutually exclusive. They are
267 ///    mutually exclusive if they are not reachable from each other as per
268 ///    RegionBranchOpInterface::getSuccessorRegions.
insideMutuallyExclusiveRegions(Operation * a,Operation * b)269 bool mlir::insideMutuallyExclusiveRegions(Operation *a, Operation *b) {
270   assert(a && "expected non-empty operation");
271   assert(b && "expected non-empty operation");
272 
273   auto branchOp = a->getParentOfType<RegionBranchOpInterface>();
274   while (branchOp) {
275     // Check if b is inside branchOp. (We already know that a is.)
276     if (!branchOp->isProperAncestor(b)) {
277       // Check next enclosing RegionBranchOpInterface.
278       branchOp = branchOp->getParentOfType<RegionBranchOpInterface>();
279       continue;
280     }
281 
282     // b is contained in branchOp. Retrieve the regions in which `a` and `b`
283     // are contained.
284     Region *regionA = nullptr, *regionB = nullptr;
285     for (Region &r : branchOp->getRegions()) {
286       if (r.findAncestorOpInRegion(*a)) {
287         assert(!regionA && "already found a region for a");
288         regionA = &r;
289       }
290       if (r.findAncestorOpInRegion(*b)) {
291         assert(!regionB && "already found a region for b");
292         regionB = &r;
293       }
294     }
295     assert(regionA && regionB && "could not find region of op");
296 
297     // `a` and `b` are in mutually exclusive regions if both regions are
298     // distinct and neither region is reachable from the other region.
299     return regionA != regionB && !isRegionReachable(regionA, regionB) &&
300            !isRegionReachable(regionB, regionA);
301   }
302 
303   // Could not find a common RegionBranchOpInterface among a's and b's
304   // ancestors.
305   return false;
306 }
307 
isRepetitiveRegion(unsigned index)308 bool RegionBranchOpInterface::isRepetitiveRegion(unsigned index) {
309   Region *region = &getOperation()->getRegion(index);
310   return isRegionReachable(region, region);
311 }
312 
getSuccessorRegions(Optional<unsigned> index,SmallVectorImpl<RegionSuccessor> & regions)313 void RegionBranchOpInterface::getSuccessorRegions(
314     Optional<unsigned> index, SmallVectorImpl<RegionSuccessor> &regions) {
315   unsigned numInputs = 0;
316   if (index) {
317     // If the predecessor is a region, get the number of operands from an
318     // exiting terminator in the region.
319     for (Block &block : getOperation()->getRegion(*index)) {
320       Operation *terminator = block.getTerminator();
321       if (getRegionBranchSuccessorOperands(terminator, *index)) {
322         numInputs = terminator->getNumOperands();
323         break;
324       }
325     }
326   } else {
327     // Otherwise, use the number of parent operation operands.
328     numInputs = getOperation()->getNumOperands();
329   }
330   SmallVector<Attribute, 2> operands(numInputs, nullptr);
331   getSuccessorRegions(index, operands, regions);
332 }
333 
getEnclosingRepetitiveRegion(Operation * op)334 Region *mlir::getEnclosingRepetitiveRegion(Operation *op) {
335   while (Region *region = op->getParentRegion()) {
336     op = region->getParentOp();
337     if (auto branchOp = dyn_cast<RegionBranchOpInterface>(op))
338       if (branchOp.isRepetitiveRegion(region->getRegionNumber()))
339         return region;
340   }
341   return nullptr;
342 }
343 
getEnclosingRepetitiveRegion(Value value)344 Region *mlir::getEnclosingRepetitiveRegion(Value value) {
345   Region *region = value.getParentRegion();
346   while (region) {
347     Operation *op = region->getParentOp();
348     if (auto branchOp = dyn_cast<RegionBranchOpInterface>(op))
349       if (branchOp.isRepetitiveRegion(region->getRegionNumber()))
350         return region;
351     region = op->getParentRegion();
352   }
353   return nullptr;
354 }
355 
356 //===----------------------------------------------------------------------===//
357 // RegionBranchTerminatorOpInterface
358 //===----------------------------------------------------------------------===//
359 
360 /// Returns true if the given operation is either annotated with the
361 /// `ReturnLike` trait or implements the `RegionBranchTerminatorOpInterface`.
isRegionReturnLike(Operation * operation)362 bool mlir::isRegionReturnLike(Operation *operation) {
363   return dyn_cast<RegionBranchTerminatorOpInterface>(operation) ||
364          operation->hasTrait<OpTrait::ReturnLike>();
365 }
366 
367 /// Returns the mutable operands that are passed to the region with the given
368 /// `regionIndex`. If the operation does not implement the
369 /// `RegionBranchTerminatorOpInterface` and is not marked as `ReturnLike`, the
370 /// result will be `llvm::None`. In all other cases, the resulting
371 /// `OperandRange` represents all operands that are passed to the specified
372 /// successor region. If `regionIndex` is `llvm::None`, all operands that are
373 /// passed to the parent operation will be returned.
374 Optional<MutableOperandRange>
getMutableRegionBranchSuccessorOperands(Operation * operation,Optional<unsigned> regionIndex)375 mlir::getMutableRegionBranchSuccessorOperands(Operation *operation,
376                                               Optional<unsigned> regionIndex) {
377   // Try to query a RegionBranchTerminatorOpInterface to determine
378   // all successor operands that will be passed to the successor
379   // input arguments.
380   if (auto regionTerminatorInterface =
381           dyn_cast<RegionBranchTerminatorOpInterface>(operation))
382     return regionTerminatorInterface.getMutableSuccessorOperands(regionIndex);
383 
384   // TODO: The ReturnLike trait should imply a default implementation of the
385   // RegionBranchTerminatorOpInterface. This would make this code significantly
386   // easier. Furthermore, this may even make this function obsolete.
387   if (operation->hasTrait<OpTrait::ReturnLike>())
388     return MutableOperandRange(operation);
389   return llvm::None;
390 }
391 
392 /// Returns the read only operands that are passed to the region with the given
393 /// `regionIndex`. See `getMutableRegionBranchSuccessorOperands` for more
394 /// information.
395 Optional<OperandRange>
getRegionBranchSuccessorOperands(Operation * operation,Optional<unsigned> regionIndex)396 mlir::getRegionBranchSuccessorOperands(Operation *operation,
397                                        Optional<unsigned> regionIndex) {
398   auto range = getMutableRegionBranchSuccessorOperands(operation, regionIndex);
399   return range ? Optional<OperandRange>(*range) : llvm::None;
400 }
401