1 //===- ControlFlowInterfaces.cpp - ControlFlow Interfaces -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include <utility>
10
11 #include "mlir/IR/BuiltinTypes.h"
12 #include "mlir/Interfaces/ControlFlowInterfaces.h"
13 #include "llvm/ADT/SmallPtrSet.h"
14
15 using namespace mlir;
16
17 //===----------------------------------------------------------------------===//
18 // ControlFlowInterfaces
19 //===----------------------------------------------------------------------===//
20
21 #include "mlir/Interfaces/ControlFlowInterfaces.cpp.inc"
22
SuccessorOperands(MutableOperandRange forwardedOperands)23 SuccessorOperands::SuccessorOperands(MutableOperandRange forwardedOperands)
24 : producedOperandCount(0), forwardedOperands(std::move(forwardedOperands)) {
25 }
26
SuccessorOperands(unsigned int producedOperandCount,MutableOperandRange forwardedOperands)27 SuccessorOperands::SuccessorOperands(unsigned int producedOperandCount,
28 MutableOperandRange forwardedOperands)
29 : producedOperandCount(producedOperandCount),
30 forwardedOperands(std::move(forwardedOperands)) {}
31
32 //===----------------------------------------------------------------------===//
33 // BranchOpInterface
34 //===----------------------------------------------------------------------===//
35
36 /// Returns the `BlockArgument` corresponding to operand `operandIndex` in some
37 /// successor if 'operandIndex' is within the range of 'operands', or None if
38 /// `operandIndex` isn't a successor operand index.
39 Optional<BlockArgument>
getBranchSuccessorArgument(const SuccessorOperands & operands,unsigned operandIndex,Block * successor)40 detail::getBranchSuccessorArgument(const SuccessorOperands &operands,
41 unsigned operandIndex, Block *successor) {
42 OperandRange forwardedOperands = operands.getForwardedOperands();
43 // Check that the operands are valid.
44 if (forwardedOperands.empty())
45 return llvm::None;
46
47 // Check to ensure that this operand is within the range.
48 unsigned operandsStart = forwardedOperands.getBeginOperandIndex();
49 if (operandIndex < operandsStart ||
50 operandIndex >= (operandsStart + forwardedOperands.size()))
51 return llvm::None;
52
53 // Index the successor.
54 unsigned argIndex =
55 operands.getProducedOperandCount() + operandIndex - operandsStart;
56 return successor->getArgument(argIndex);
57 }
58
59 /// Verify that the given operands match those of the given successor block.
60 LogicalResult
verifyBranchSuccessorOperands(Operation * op,unsigned succNo,const SuccessorOperands & operands)61 detail::verifyBranchSuccessorOperands(Operation *op, unsigned succNo,
62 const SuccessorOperands &operands) {
63 // Check the count.
64 unsigned operandCount = operands.size();
65 Block *destBB = op->getSuccessor(succNo);
66 if (operandCount != destBB->getNumArguments())
67 return op->emitError() << "branch has " << operandCount
68 << " operands for successor #" << succNo
69 << ", but target block has "
70 << destBB->getNumArguments();
71
72 // Check the types.
73 for (unsigned i = operands.getProducedOperandCount(); i != operandCount;
74 ++i) {
75 if (!cast<BranchOpInterface>(op).areTypesCompatible(
76 operands[i].getType(), destBB->getArgument(i).getType()))
77 return op->emitError() << "type mismatch for bb argument #" << i
78 << " of successor #" << succNo;
79 }
80 return success();
81 }
82
83 //===----------------------------------------------------------------------===//
84 // RegionBranchOpInterface
85 //===----------------------------------------------------------------------===//
86
87 /// Verify that types match along all region control flow edges originating from
88 /// `sourceNo` (region # if source is a region, llvm::None if source is parent
89 /// op). `getInputsTypesForRegion` is a function that returns the types of the
90 /// inputs that flow from `sourceIndex' to the given region, or llvm::None if
91 /// the exact type match verification is not necessary (e.g., if the Op verifies
92 /// the match itself).
93 static LogicalResult
verifyTypesAlongAllEdges(Operation * op,Optional<unsigned> sourceNo,function_ref<Optional<TypeRange> (Optional<unsigned>)> getInputsTypesForRegion)94 verifyTypesAlongAllEdges(Operation *op, Optional<unsigned> sourceNo,
95 function_ref<Optional<TypeRange>(Optional<unsigned>)>
96 getInputsTypesForRegion) {
97 auto regionInterface = cast<RegionBranchOpInterface>(op);
98
99 SmallVector<RegionSuccessor, 2> successors;
100 regionInterface.getSuccessorRegions(sourceNo, successors);
101
102 for (RegionSuccessor &succ : successors) {
103 Optional<unsigned> succRegionNo;
104 if (!succ.isParent())
105 succRegionNo = succ.getSuccessor()->getRegionNumber();
106
107 auto printEdgeName = [&](InFlightDiagnostic &diag) -> InFlightDiagnostic & {
108 diag << "from ";
109 if (sourceNo)
110 diag << "Region #" << sourceNo.value();
111 else
112 diag << "parent operands";
113
114 diag << " to ";
115 if (succRegionNo)
116 diag << "Region #" << succRegionNo.value();
117 else
118 diag << "parent results";
119 return diag;
120 };
121
122 Optional<TypeRange> sourceTypes = getInputsTypesForRegion(succRegionNo);
123 if (!sourceTypes.has_value())
124 continue;
125
126 TypeRange succInputsTypes = succ.getSuccessorInputs().getTypes();
127 if (sourceTypes->size() != succInputsTypes.size()) {
128 InFlightDiagnostic diag = op->emitOpError(" region control flow edge ");
129 return printEdgeName(diag) << ": source has " << sourceTypes->size()
130 << " operands, but target successor needs "
131 << succInputsTypes.size();
132 }
133
134 for (const auto &typesIdx :
135 llvm::enumerate(llvm::zip(*sourceTypes, succInputsTypes))) {
136 Type sourceType = std::get<0>(typesIdx.value());
137 Type inputType = std::get<1>(typesIdx.value());
138 if (!regionInterface.areTypesCompatible(sourceType, inputType)) {
139 InFlightDiagnostic diag = op->emitOpError(" along control flow edge ");
140 return printEdgeName(diag)
141 << ": source type #" << typesIdx.index() << " " << sourceType
142 << " should match input type #" << typesIdx.index() << " "
143 << inputType;
144 }
145 }
146 }
147 return success();
148 }
149
150 /// Verify that types match along control flow edges described the given op.
verifyTypesAlongControlFlowEdges(Operation * op)151 LogicalResult detail::verifyTypesAlongControlFlowEdges(Operation *op) {
152 auto regionInterface = cast<RegionBranchOpInterface>(op);
153
154 auto inputTypesFromParent = [&](Optional<unsigned> regionNo) -> TypeRange {
155 return regionInterface.getSuccessorEntryOperands(regionNo).getTypes();
156 };
157
158 // Verify types along control flow edges originating from the parent.
159 if (failed(verifyTypesAlongAllEdges(op, llvm::None, inputTypesFromParent)))
160 return failure();
161
162 // RegionBranchOpInterface should not be implemented by Ops that do not have
163 // attached regions.
164 assert(op->getNumRegions() != 0);
165
166 auto areTypesCompatible = [&](TypeRange lhs, TypeRange rhs) {
167 if (lhs.size() != rhs.size())
168 return false;
169 for (auto types : llvm::zip(lhs, rhs)) {
170 if (!regionInterface.areTypesCompatible(std::get<0>(types),
171 std::get<1>(types))) {
172 return false;
173 }
174 }
175 return true;
176 };
177
178 // Verify types along control flow edges originating from each region.
179 for (unsigned regionNo : llvm::seq(0U, op->getNumRegions())) {
180 Region ®ion = op->getRegion(regionNo);
181
182 // Since there can be multiple `ReturnLike` terminators or others
183 // implementing the `RegionBranchTerminatorOpInterface`, all should have the
184 // same operand types when passing them to the same region.
185
186 Optional<OperandRange> regionReturnOperands;
187 for (Block &block : region) {
188 Operation *terminator = block.getTerminator();
189 auto terminatorOperands =
190 getRegionBranchSuccessorOperands(terminator, regionNo);
191 if (!terminatorOperands)
192 continue;
193
194 if (!regionReturnOperands) {
195 regionReturnOperands = terminatorOperands;
196 continue;
197 }
198
199 // Found more than one ReturnLike terminator. Make sure the operand types
200 // match with the first one.
201 if (!areTypesCompatible(regionReturnOperands->getTypes(),
202 terminatorOperands->getTypes()))
203 return op->emitOpError("Region #")
204 << regionNo
205 << " operands mismatch between return-like terminators";
206 }
207
208 auto inputTypesFromRegion =
209 [&](Optional<unsigned> regionNo) -> Optional<TypeRange> {
210 // If there is no return-like terminator, the op itself should verify
211 // type consistency.
212 if (!regionReturnOperands)
213 return llvm::None;
214
215 // All successors get the same set of operand types.
216 return TypeRange(regionReturnOperands->getTypes());
217 };
218
219 if (failed(verifyTypesAlongAllEdges(op, regionNo, inputTypesFromRegion)))
220 return failure();
221 }
222
223 return success();
224 }
225
226 /// Return `true` if region `r` is reachable from region `begin` according to
227 /// the RegionBranchOpInterface (by taking a branch).
isRegionReachable(Region * begin,Region * r)228 static bool isRegionReachable(Region *begin, Region *r) {
229 assert(begin->getParentOp() == r->getParentOp() &&
230 "expected that both regions belong to the same op");
231 auto op = cast<RegionBranchOpInterface>(begin->getParentOp());
232 SmallVector<bool> visited(op->getNumRegions(), false);
233 visited[begin->getRegionNumber()] = true;
234
235 // Retrieve all successors of the region and enqueue them in the worklist.
236 SmallVector<unsigned> worklist;
237 auto enqueueAllSuccessors = [&](unsigned index) {
238 SmallVector<RegionSuccessor> successors;
239 op.getSuccessorRegions(index, successors);
240 for (RegionSuccessor successor : successors)
241 if (!successor.isParent())
242 worklist.push_back(successor.getSuccessor()->getRegionNumber());
243 };
244 enqueueAllSuccessors(begin->getRegionNumber());
245
246 // Process all regions in the worklist via DFS.
247 while (!worklist.empty()) {
248 unsigned nextRegion = worklist.pop_back_val();
249 if (nextRegion == r->getRegionNumber())
250 return true;
251 if (visited[nextRegion])
252 continue;
253 visited[nextRegion] = true;
254 enqueueAllSuccessors(nextRegion);
255 }
256
257 return false;
258 }
259
260 /// Return `true` if `a` and `b` are in mutually exclusive regions.
261 ///
262 /// 1. Find the first common of `a` and `b` (ancestor) that implements
263 /// RegionBranchOpInterface.
264 /// 2. Determine the regions `regionA` and `regionB` in which `a` and `b` are
265 /// contained.
266 /// 3. Check if `regionA` and `regionB` are mutually exclusive. They are
267 /// mutually exclusive if they are not reachable from each other as per
268 /// RegionBranchOpInterface::getSuccessorRegions.
insideMutuallyExclusiveRegions(Operation * a,Operation * b)269 bool mlir::insideMutuallyExclusiveRegions(Operation *a, Operation *b) {
270 assert(a && "expected non-empty operation");
271 assert(b && "expected non-empty operation");
272
273 auto branchOp = a->getParentOfType<RegionBranchOpInterface>();
274 while (branchOp) {
275 // Check if b is inside branchOp. (We already know that a is.)
276 if (!branchOp->isProperAncestor(b)) {
277 // Check next enclosing RegionBranchOpInterface.
278 branchOp = branchOp->getParentOfType<RegionBranchOpInterface>();
279 continue;
280 }
281
282 // b is contained in branchOp. Retrieve the regions in which `a` and `b`
283 // are contained.
284 Region *regionA = nullptr, *regionB = nullptr;
285 for (Region &r : branchOp->getRegions()) {
286 if (r.findAncestorOpInRegion(*a)) {
287 assert(!regionA && "already found a region for a");
288 regionA = &r;
289 }
290 if (r.findAncestorOpInRegion(*b)) {
291 assert(!regionB && "already found a region for b");
292 regionB = &r;
293 }
294 }
295 assert(regionA && regionB && "could not find region of op");
296
297 // `a` and `b` are in mutually exclusive regions if both regions are
298 // distinct and neither region is reachable from the other region.
299 return regionA != regionB && !isRegionReachable(regionA, regionB) &&
300 !isRegionReachable(regionB, regionA);
301 }
302
303 // Could not find a common RegionBranchOpInterface among a's and b's
304 // ancestors.
305 return false;
306 }
307
isRepetitiveRegion(unsigned index)308 bool RegionBranchOpInterface::isRepetitiveRegion(unsigned index) {
309 Region *region = &getOperation()->getRegion(index);
310 return isRegionReachable(region, region);
311 }
312
getSuccessorRegions(Optional<unsigned> index,SmallVectorImpl<RegionSuccessor> & regions)313 void RegionBranchOpInterface::getSuccessorRegions(
314 Optional<unsigned> index, SmallVectorImpl<RegionSuccessor> ®ions) {
315 unsigned numInputs = 0;
316 if (index) {
317 // If the predecessor is a region, get the number of operands from an
318 // exiting terminator in the region.
319 for (Block &block : getOperation()->getRegion(*index)) {
320 Operation *terminator = block.getTerminator();
321 if (getRegionBranchSuccessorOperands(terminator, *index)) {
322 numInputs = terminator->getNumOperands();
323 break;
324 }
325 }
326 } else {
327 // Otherwise, use the number of parent operation operands.
328 numInputs = getOperation()->getNumOperands();
329 }
330 SmallVector<Attribute, 2> operands(numInputs, nullptr);
331 getSuccessorRegions(index, operands, regions);
332 }
333
getEnclosingRepetitiveRegion(Operation * op)334 Region *mlir::getEnclosingRepetitiveRegion(Operation *op) {
335 while (Region *region = op->getParentRegion()) {
336 op = region->getParentOp();
337 if (auto branchOp = dyn_cast<RegionBranchOpInterface>(op))
338 if (branchOp.isRepetitiveRegion(region->getRegionNumber()))
339 return region;
340 }
341 return nullptr;
342 }
343
getEnclosingRepetitiveRegion(Value value)344 Region *mlir::getEnclosingRepetitiveRegion(Value value) {
345 Region *region = value.getParentRegion();
346 while (region) {
347 Operation *op = region->getParentOp();
348 if (auto branchOp = dyn_cast<RegionBranchOpInterface>(op))
349 if (branchOp.isRepetitiveRegion(region->getRegionNumber()))
350 return region;
351 region = op->getParentRegion();
352 }
353 return nullptr;
354 }
355
356 //===----------------------------------------------------------------------===//
357 // RegionBranchTerminatorOpInterface
358 //===----------------------------------------------------------------------===//
359
360 /// Returns true if the given operation is either annotated with the
361 /// `ReturnLike` trait or implements the `RegionBranchTerminatorOpInterface`.
isRegionReturnLike(Operation * operation)362 bool mlir::isRegionReturnLike(Operation *operation) {
363 return dyn_cast<RegionBranchTerminatorOpInterface>(operation) ||
364 operation->hasTrait<OpTrait::ReturnLike>();
365 }
366
367 /// Returns the mutable operands that are passed to the region with the given
368 /// `regionIndex`. If the operation does not implement the
369 /// `RegionBranchTerminatorOpInterface` and is not marked as `ReturnLike`, the
370 /// result will be `llvm::None`. In all other cases, the resulting
371 /// `OperandRange` represents all operands that are passed to the specified
372 /// successor region. If `regionIndex` is `llvm::None`, all operands that are
373 /// passed to the parent operation will be returned.
374 Optional<MutableOperandRange>
getMutableRegionBranchSuccessorOperands(Operation * operation,Optional<unsigned> regionIndex)375 mlir::getMutableRegionBranchSuccessorOperands(Operation *operation,
376 Optional<unsigned> regionIndex) {
377 // Try to query a RegionBranchTerminatorOpInterface to determine
378 // all successor operands that will be passed to the successor
379 // input arguments.
380 if (auto regionTerminatorInterface =
381 dyn_cast<RegionBranchTerminatorOpInterface>(operation))
382 return regionTerminatorInterface.getMutableSuccessorOperands(regionIndex);
383
384 // TODO: The ReturnLike trait should imply a default implementation of the
385 // RegionBranchTerminatorOpInterface. This would make this code significantly
386 // easier. Furthermore, this may even make this function obsolete.
387 if (operation->hasTrait<OpTrait::ReturnLike>())
388 return MutableOperandRange(operation);
389 return llvm::None;
390 }
391
392 /// Returns the read only operands that are passed to the region with the given
393 /// `regionIndex`. See `getMutableRegionBranchSuccessorOperands` for more
394 /// information.
395 Optional<OperandRange>
getRegionBranchSuccessorOperands(Operation * operation,Optional<unsigned> regionIndex)396 mlir::getRegionBranchSuccessorOperands(Operation *operation,
397 Optional<unsigned> regionIndex) {
398 auto range = getMutableRegionBranchSuccessorOperands(operation, regionIndex);
399 return range ? Optional<OperandRange>(*range) : llvm::None;
400 }
401