1 //===- SymbolTable.cpp - MLIR Symbol Table Class --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/IR/SymbolTable.h"
10 #include "llvm/ADT/SetVector.h"
11 #include "llvm/ADT/SmallPtrSet.h"
12 #include "llvm/ADT/SmallString.h"
13 #include "llvm/ADT/StringSwitch.h"
14 
15 using namespace mlir;
16 
17 /// Return true if the given operation is unknown and may potentially define a
18 /// symbol table.
19 static bool isPotentiallyUnknownSymbolTable(Operation *op) {
20   return !op->getDialect() && op->getNumRegions() == 1;
21 }
22 
23 /// Returns the string name of the given symbol, or None if this is not a
24 /// symbol.
25 static Optional<StringRef> getNameIfSymbol(Operation *symbol) {
26   auto nameAttr =
27       symbol->getAttrOfType<StringAttr>(SymbolTable::getSymbolAttrName());
28   return nameAttr ? nameAttr.getValue() : Optional<StringRef>();
29 }
30 
31 /// Computes the nested symbol reference attribute for the symbol 'symbolName'
32 /// that are usable within the symbol table operations from 'symbol' as far up
33 /// to the given operation 'within', where 'within' is an ancestor of 'symbol'.
34 /// Returns success if all references up to 'within' could be computed.
35 static LogicalResult
36 collectValidReferencesFor(Operation *symbol, StringRef symbolName,
37                           Operation *within,
38                           SmallVectorImpl<SymbolRefAttr> &results) {
39   assert(within->isAncestor(symbol) && "expected 'within' to be an ancestor");
40   MLIRContext *ctx = symbol->getContext();
41 
42   auto leafRef = FlatSymbolRefAttr::get(symbolName, ctx);
43   results.push_back(leafRef);
44 
45   // Early exit for when 'within' is the parent of 'symbol'.
46   Operation *symbolTableOp = symbol->getParentOp();
47   if (within == symbolTableOp)
48     return success();
49 
50   // Collect references until 'symbolTableOp' reaches 'within'.
51   SmallVector<FlatSymbolRefAttr, 1> nestedRefs(1, leafRef);
52   do {
53     // Each parent of 'symbol' should define a symbol table.
54     if (!symbolTableOp->hasTrait<OpTrait::SymbolTable>())
55       return failure();
56     // Each parent of 'symbol' should also be a symbol.
57     Optional<StringRef> symbolTableName = getNameIfSymbol(symbolTableOp);
58     if (!symbolTableName)
59       return failure();
60     results.push_back(SymbolRefAttr::get(*symbolTableName, nestedRefs, ctx));
61 
62     symbolTableOp = symbolTableOp->getParentOp();
63     if (symbolTableOp == within)
64       break;
65     nestedRefs.insert(nestedRefs.begin(),
66                       FlatSymbolRefAttr::get(*symbolTableName, ctx));
67   } while (true);
68   return success();
69 }
70 
71 /// Walk all of the operations within the given set of regions, without
72 /// traversing into any nested symbol tables. Stops walking if the result of the
73 /// callback is anything other than `WalkResult::advance`.
74 static Optional<WalkResult>
75 walkSymbolTable(MutableArrayRef<Region> regions,
76                 function_ref<Optional<WalkResult>(Operation *)> callback) {
77   SmallVector<Region *, 1> worklist(llvm::make_pointer_range(regions));
78   while (!worklist.empty()) {
79     for (Operation &op : worklist.pop_back_val()->getOps()) {
80       Optional<WalkResult> result = callback(&op);
81       if (result != WalkResult::advance())
82         return result;
83 
84       // If this op defines a new symbol table scope, we can't traverse. Any
85       // symbol references nested within 'op' are different semantically.
86       if (!op.hasTrait<OpTrait::SymbolTable>()) {
87         for (Region &region : op.getRegions())
88           worklist.push_back(&region);
89       }
90     }
91   }
92   return WalkResult::advance();
93 }
94 
95 //===----------------------------------------------------------------------===//
96 // SymbolTable
97 //===----------------------------------------------------------------------===//
98 
99 /// Build a symbol table with the symbols within the given operation.
100 SymbolTable::SymbolTable(Operation *symbolTableOp)
101     : symbolTableOp(symbolTableOp) {
102   assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>() &&
103          "expected operation to have SymbolTable trait");
104   assert(symbolTableOp->getNumRegions() == 1 &&
105          "expected operation to have a single region");
106   assert(llvm::hasSingleElement(symbolTableOp->getRegion(0)) &&
107          "expected operation to have a single block");
108 
109   for (auto &op : symbolTableOp->getRegion(0).front()) {
110     Optional<StringRef> name = getNameIfSymbol(&op);
111     if (!name)
112       continue;
113 
114     auto inserted = symbolTable.insert({*name, &op});
115     (void)inserted;
116     assert(inserted.second &&
117            "expected region to contain uniquely named symbol operations");
118   }
119 }
120 
121 /// Look up a symbol with the specified name, returning null if no such name
122 /// exists. Names never include the @ on them.
123 Operation *SymbolTable::lookup(StringRef name) const {
124   return symbolTable.lookup(name);
125 }
126 
127 /// Erase the given symbol from the table.
128 void SymbolTable::erase(Operation *symbol) {
129   Optional<StringRef> name = getNameIfSymbol(symbol);
130   assert(name && "expected valid 'name' attribute");
131   assert(symbol->getParentOp() == symbolTableOp &&
132          "expected this operation to be inside of the operation with this "
133          "SymbolTable");
134 
135   auto it = symbolTable.find(*name);
136   if (it != symbolTable.end() && it->second == symbol) {
137     symbolTable.erase(it);
138     symbol->erase();
139   }
140 }
141 
142 /// Insert a new symbol into the table and associated operation, and rename it
143 /// as necessary to avoid collisions.
144 void SymbolTable::insert(Operation *symbol, Block::iterator insertPt) {
145   auto &body = symbolTableOp->getRegion(0).front();
146   if (insertPt == Block::iterator() || insertPt == body.end())
147     insertPt = Block::iterator(body.getTerminator());
148 
149   assert(insertPt->getParentOp() == symbolTableOp &&
150          "expected insertPt to be in the associated module operation");
151 
152   body.getOperations().insert(insertPt, symbol);
153 
154   // Add this symbol to the symbol table, uniquing the name if a conflict is
155   // detected.
156   StringRef name = getSymbolName(symbol);
157   if (symbolTable.insert({name, symbol}).second)
158     return;
159   // If a conflict was detected, then the symbol will not have been added to
160   // the symbol table. Try suffixes until we get to a unique name that works.
161   SmallString<128> nameBuffer(name);
162   unsigned originalLength = nameBuffer.size();
163 
164   // Iteratively try suffixes until we find one that isn't used.
165   do {
166     nameBuffer.resize(originalLength);
167     nameBuffer += '_';
168     nameBuffer += std::to_string(uniquingCounter++);
169   } while (!symbolTable.insert({nameBuffer, symbol}).second);
170   setSymbolName(symbol, nameBuffer);
171 }
172 
173 /// Returns the name of the given symbol operation.
174 StringRef SymbolTable::getSymbolName(Operation *symbol) {
175   Optional<StringRef> name = getNameIfSymbol(symbol);
176   assert(name && "expected valid symbol name");
177   return *name;
178 }
179 /// Sets the name of the given symbol operation.
180 void SymbolTable::setSymbolName(Operation *symbol, StringRef name) {
181   symbol->setAttr(getSymbolAttrName(),
182                   StringAttr::get(name, symbol->getContext()));
183 }
184 
185 /// Returns the visibility of the given symbol operation.
186 SymbolTable::Visibility SymbolTable::getSymbolVisibility(Operation *symbol) {
187   // If the attribute doesn't exist, assume public.
188   StringAttr vis = symbol->getAttrOfType<StringAttr>(getVisibilityAttrName());
189   if (!vis)
190     return Visibility::Public;
191 
192   // Otherwise, switch on the string value.
193   return StringSwitch<Visibility>(vis.getValue())
194       .Case("private", Visibility::Private)
195       .Case("nested", Visibility::Nested)
196       .Case("public", Visibility::Public);
197 }
198 /// Sets the visibility of the given symbol operation.
199 void SymbolTable::setSymbolVisibility(Operation *symbol, Visibility vis) {
200   MLIRContext *ctx = symbol->getContext();
201 
202   // If the visibility is public, just drop the attribute as this is the
203   // default.
204   if (vis == Visibility::Public) {
205     symbol->removeAttr(Identifier::get(getVisibilityAttrName(), ctx));
206     return;
207   }
208 
209   // Otherwise, update the attribute.
210   assert((vis == Visibility::Private || vis == Visibility::Nested) &&
211          "unknown symbol visibility kind");
212 
213   StringRef visName = vis == Visibility::Private ? "private" : "nested";
214   symbol->setAttr(getVisibilityAttrName(), StringAttr::get(visName, ctx));
215 }
216 
217 /// Returns the nearest symbol table from a given operation `from`. Returns
218 /// nullptr if no valid parent symbol table could be found.
219 Operation *SymbolTable::getNearestSymbolTable(Operation *from) {
220   assert(from && "expected valid operation");
221   if (isPotentiallyUnknownSymbolTable(from))
222     return nullptr;
223 
224   while (!from->hasTrait<OpTrait::SymbolTable>()) {
225     from = from->getParentOp();
226 
227     // Check that this is a valid op and isn't an unknown symbol table.
228     if (!from || isPotentiallyUnknownSymbolTable(from))
229       return nullptr;
230   }
231   return from;
232 }
233 
234 /// Walks all symbol table operations nested within, and including, `op`. For
235 /// each symbol table operation, the provided callback is invoked with the op
236 /// and a boolean signifying if the symbols within that symbol table can be
237 /// treated as if all uses are visible. `allSymUsesVisible` identifies whether
238 /// all of the symbol uses of symbols within `op` are visible.
239 void SymbolTable::walkSymbolTables(
240     Operation *op, bool allSymUsesVisible,
241     function_ref<void(Operation *, bool)> callback) {
242   bool isSymbolTable = op->hasTrait<OpTrait::SymbolTable>();
243   if (isSymbolTable) {
244     SymbolOpInterface symbol = dyn_cast<SymbolOpInterface>(op);
245     allSymUsesVisible |= !symbol || symbol.isPrivate();
246   } else {
247     // Otherwise if 'op' is not a symbol table, any nested symbols are
248     // guaranteed to be hidden.
249     allSymUsesVisible = true;
250   }
251 
252   for (Region &region : op->getRegions())
253     for (Block &block : region)
254       for (Operation &nestedOp : block)
255         walkSymbolTables(&nestedOp, allSymUsesVisible, callback);
256 
257   // If 'op' had the symbol table trait, visit it after any nested symbol
258   // tables.
259   if (isSymbolTable)
260     callback(op, allSymUsesVisible);
261 }
262 
263 /// Returns the operation registered with the given symbol name with the
264 /// regions of 'symbolTableOp'. 'symbolTableOp' is required to be an operation
265 /// with the 'OpTrait::SymbolTable' trait. Returns nullptr if no valid symbol
266 /// was found.
267 Operation *SymbolTable::lookupSymbolIn(Operation *symbolTableOp,
268                                        StringRef symbol) {
269   assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>());
270 
271   // Look for a symbol with the given name.
272   for (auto &op : symbolTableOp->getRegion(0).front().without_terminator())
273     if (getNameIfSymbol(&op) == symbol)
274       return &op;
275   return nullptr;
276 }
277 Operation *SymbolTable::lookupSymbolIn(Operation *symbolTableOp,
278                                        SymbolRefAttr symbol) {
279   SmallVector<Operation *, 4> resolvedSymbols;
280   if (failed(lookupSymbolIn(symbolTableOp, symbol, resolvedSymbols)))
281     return nullptr;
282   return resolvedSymbols.back();
283 }
284 
285 /// Internal implementation of `lookupSymbolIn` that allows for specialized
286 /// implementations of the lookup function.
287 static LogicalResult lookupSymbolInImpl(
288     Operation *symbolTableOp, SymbolRefAttr symbol,
289     SmallVectorImpl<Operation *> &symbols,
290     function_ref<Operation *(Operation *, StringRef)> lookupSymbolFn) {
291   assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>());
292 
293   // Lookup the root reference for this symbol.
294   symbolTableOp = lookupSymbolFn(symbolTableOp, symbol.getRootReference());
295   if (!symbolTableOp)
296     return failure();
297   symbols.push_back(symbolTableOp);
298 
299   // If there are no nested references, just return the root symbol directly.
300   ArrayRef<FlatSymbolRefAttr> nestedRefs = symbol.getNestedReferences();
301   if (nestedRefs.empty())
302     return success();
303 
304   // Verify that the root is also a symbol table.
305   if (!symbolTableOp->hasTrait<OpTrait::SymbolTable>())
306     return failure();
307 
308   // Otherwise, lookup each of the nested non-leaf references and ensure that
309   // each corresponds to a valid symbol table.
310   for (FlatSymbolRefAttr ref : nestedRefs.drop_back()) {
311     symbolTableOp = lookupSymbolFn(symbolTableOp, ref.getValue());
312     if (!symbolTableOp || !symbolTableOp->hasTrait<OpTrait::SymbolTable>())
313       return failure();
314     symbols.push_back(symbolTableOp);
315   }
316   symbols.push_back(lookupSymbolFn(symbolTableOp, symbol.getLeafReference()));
317   return success(symbols.back());
318 }
319 
320 LogicalResult
321 SymbolTable::lookupSymbolIn(Operation *symbolTableOp, SymbolRefAttr symbol,
322                             SmallVectorImpl<Operation *> &symbols) {
323   auto lookupFn = [](Operation *symbolTableOp, StringRef symbol) {
324     return lookupSymbolIn(symbolTableOp, symbol);
325   };
326   return lookupSymbolInImpl(symbolTableOp, symbol, symbols, lookupFn);
327 }
328 
329 /// Returns the operation registered with the given symbol name within the
330 /// closes parent operation with the 'OpTrait::SymbolTable' trait. Returns
331 /// nullptr if no valid symbol was found.
332 Operation *SymbolTable::lookupNearestSymbolFrom(Operation *from,
333                                                 StringRef symbol) {
334   Operation *symbolTableOp = getNearestSymbolTable(from);
335   return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr;
336 }
337 Operation *SymbolTable::lookupNearestSymbolFrom(Operation *from,
338                                                 SymbolRefAttr symbol) {
339   Operation *symbolTableOp = getNearestSymbolTable(from);
340   return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr;
341 }
342 
343 //===----------------------------------------------------------------------===//
344 // SymbolTable Trait Types
345 //===----------------------------------------------------------------------===//
346 
347 LogicalResult detail::verifySymbolTable(Operation *op) {
348   if (op->getNumRegions() != 1)
349     return op->emitOpError()
350            << "Operations with a 'SymbolTable' must have exactly one region";
351   if (!llvm::hasSingleElement(op->getRegion(0)))
352     return op->emitOpError()
353            << "Operations with a 'SymbolTable' must have exactly one block";
354 
355   // Check that all symbols are uniquely named within child regions.
356   DenseMap<Attribute, Location> nameToOrigLoc;
357   for (auto &block : op->getRegion(0)) {
358     for (auto &op : block) {
359       // Check for a symbol name attribute.
360       auto nameAttr =
361           op.getAttrOfType<StringAttr>(mlir::SymbolTable::getSymbolAttrName());
362       if (!nameAttr)
363         continue;
364 
365       // Try to insert this symbol into the table.
366       auto it = nameToOrigLoc.try_emplace(nameAttr, op.getLoc());
367       if (!it.second)
368         return op.emitError()
369             .append("redefinition of symbol named '", nameAttr.getValue(), "'")
370             .attachNote(it.first->second)
371             .append("see existing symbol definition here");
372     }
373   }
374 
375   // Verify any nested symbol user operations.
376   SymbolTableCollection symbolTable;
377   auto verifySymbolUserFn = [&](Operation *op) -> Optional<WalkResult> {
378     if (SymbolUserOpInterface user = dyn_cast<SymbolUserOpInterface>(op))
379       return WalkResult(user.verifySymbolUses(symbolTable));
380     return WalkResult::advance();
381   };
382 
383   Optional<WalkResult> result =
384       walkSymbolTable(op->getRegions(), verifySymbolUserFn);
385   return success(result && !result->wasInterrupted());
386 }
387 
388 LogicalResult detail::verifySymbol(Operation *op) {
389   // Verify the name attribute.
390   if (!op->getAttrOfType<StringAttr>(mlir::SymbolTable::getSymbolAttrName()))
391     return op->emitOpError() << "requires string attribute '"
392                              << mlir::SymbolTable::getSymbolAttrName() << "'";
393 
394   // Verify the visibility attribute.
395   if (Attribute vis = op->getAttr(mlir::SymbolTable::getVisibilityAttrName())) {
396     StringAttr visStrAttr = vis.dyn_cast<StringAttr>();
397     if (!visStrAttr)
398       return op->emitOpError() << "requires visibility attribute '"
399                                << mlir::SymbolTable::getVisibilityAttrName()
400                                << "' to be a string attribute, but got " << vis;
401 
402     if (!llvm::is_contained(ArrayRef<StringRef>{"public", "private", "nested"},
403                             visStrAttr.getValue()))
404       return op->emitOpError()
405              << "visibility expected to be one of [\"public\", \"private\", "
406                 "\"nested\"], but got "
407              << visStrAttr;
408   }
409   return success();
410 }
411 
412 //===----------------------------------------------------------------------===//
413 // Symbol Use Lists
414 //===----------------------------------------------------------------------===//
415 
416 /// Walk all of the symbol references within the given operation, invoking the
417 /// provided callback for each found use. The callbacks takes as arguments: the
418 /// use of the symbol, and the nested access chain to the attribute within the
419 /// operation dictionary. An access chain is a set of indices into nested
420 /// container attributes. For example, a symbol use in an attribute dictionary
421 /// that looks like the following:
422 ///
423 ///    {use = [{other_attr, @symbol}]}
424 ///
425 /// May have the following access chain:
426 ///
427 ///     [0, 0, 1]
428 ///
429 static WalkResult walkSymbolRefs(
430     Operation *op,
431     function_ref<WalkResult(SymbolTable::SymbolUse, ArrayRef<int>)> callback) {
432   // Check to see if the operation has any attributes.
433   if (op->getMutableAttrDict().empty())
434     return WalkResult::advance();
435   DictionaryAttr attrDict = op->getAttrDictionary();
436 
437   // A worklist of a container attribute and the current index into the held
438   // attribute list.
439   SmallVector<Attribute, 1> attrWorklist(1, attrDict);
440   SmallVector<int, 1> curAccessChain(1, /*Value=*/-1);
441 
442   // Process the symbol references within the given nested attribute range.
443   auto processAttrs = [&](int &index, auto attrRange) -> WalkResult {
444     for (Attribute attr : llvm::drop_begin(attrRange, index)) {
445       /// Check for a nested container attribute, these will also need to be
446       /// walked.
447       if (attr.isa<ArrayAttr, DictionaryAttr>()) {
448         attrWorklist.push_back(attr);
449         curAccessChain.push_back(-1);
450         return WalkResult::advance();
451       }
452 
453       // Invoke the provided callback if we find a symbol use and check for a
454       // requested interrupt.
455       if (auto symbolRef = attr.dyn_cast<SymbolRefAttr>())
456         if (callback({op, symbolRef}, curAccessChain).wasInterrupted())
457           return WalkResult::interrupt();
458 
459       // Make sure to keep the index counter in sync.
460       ++index;
461     }
462 
463     // Pop this container attribute from the worklist.
464     attrWorklist.pop_back();
465     curAccessChain.pop_back();
466     return WalkResult::advance();
467   };
468 
469   WalkResult result = WalkResult::advance();
470   do {
471     Attribute attr = attrWorklist.back();
472     int &index = curAccessChain.back();
473     ++index;
474 
475     // Process the given attribute, which is guaranteed to be a container.
476     if (auto dict = attr.dyn_cast<DictionaryAttr>())
477       result = processAttrs(index, make_second_range(dict.getValue()));
478     else
479       result = processAttrs(index, attr.cast<ArrayAttr>().getValue());
480   } while (!attrWorklist.empty() && !result.wasInterrupted());
481   return result;
482 }
483 
484 /// Walk all of the uses, for any symbol, that are nested within the given
485 /// regions, invoking the provided callback for each. This does not traverse
486 /// into any nested symbol tables.
487 static Optional<WalkResult> walkSymbolUses(
488     MutableArrayRef<Region> regions,
489     function_ref<WalkResult(SymbolTable::SymbolUse, ArrayRef<int>)> callback) {
490   return walkSymbolTable(regions, [&](Operation *op) -> Optional<WalkResult> {
491     // Check that this isn't a potentially unknown symbol table.
492     if (isPotentiallyUnknownSymbolTable(op))
493       return llvm::None;
494 
495     return walkSymbolRefs(op, callback);
496   });
497 }
498 /// Walk all of the uses, for any symbol, that are nested within the given
499 /// operation 'from', invoking the provided callback for each. This does not
500 /// traverse into any nested symbol tables.
501 static Optional<WalkResult> walkSymbolUses(
502     Operation *from,
503     function_ref<WalkResult(SymbolTable::SymbolUse, ArrayRef<int>)> callback) {
504   // If this operation has regions, and it, as well as its dialect, isn't
505   // registered then conservatively fail. The operation may define a
506   // symbol table, so we can't opaquely know if we should traverse to find
507   // nested uses.
508   if (isPotentiallyUnknownSymbolTable(from))
509     return llvm::None;
510 
511   // Walk the uses on this operation.
512   if (walkSymbolRefs(from, callback).wasInterrupted())
513     return WalkResult::interrupt();
514 
515   // Only recurse if this operation is not a symbol table. A symbol table
516   // defines a new scope, so we can't walk the attributes from within the symbol
517   // table op.
518   if (!from->hasTrait<OpTrait::SymbolTable>())
519     return walkSymbolUses(from->getRegions(), callback);
520   return WalkResult::advance();
521 }
522 
523 namespace {
524 /// This class represents a single symbol scope. A symbol scope represents the
525 /// set of operations nested within a symbol table that may reference symbols
526 /// within that table. A symbol scope does not contain the symbol table
527 /// operation itself, just its contained operations. A scope ends at leaf
528 /// operations or another symbol table operation.
529 struct SymbolScope {
530   /// Walk the symbol uses within this scope, invoking the given callback.
531   /// This variant is used when the callback type matches that expected by
532   /// 'walkSymbolUses'.
533   template <typename CallbackT,
534             typename std::enable_if_t<!std::is_same<
535                 typename llvm::function_traits<CallbackT>::result_t,
536                 void>::value> * = nullptr>
537   Optional<WalkResult> walk(CallbackT cback) {
538     if (Region *region = limit.dyn_cast<Region *>())
539       return walkSymbolUses(*region, cback);
540     return walkSymbolUses(limit.get<Operation *>(), cback);
541   }
542   /// This variant is used when the callback type matches a stripped down type:
543   /// void(SymbolTable::SymbolUse use)
544   template <typename CallbackT,
545             typename std::enable_if_t<std::is_same<
546                 typename llvm::function_traits<CallbackT>::result_t,
547                 void>::value> * = nullptr>
548   Optional<WalkResult> walk(CallbackT cback) {
549     return walk([=](SymbolTable::SymbolUse use, ArrayRef<int>) {
550       return cback(use), WalkResult::advance();
551     });
552   }
553 
554   /// The representation of the symbol within this scope.
555   SymbolRefAttr symbol;
556 
557   /// The IR unit representing this scope.
558   llvm::PointerUnion<Operation *, Region *> limit;
559 };
560 } // end anonymous namespace
561 
562 /// Collect all of the symbol scopes from 'symbol' to (inclusive) 'limit'.
563 static SmallVector<SymbolScope, 2> collectSymbolScopes(Operation *symbol,
564                                                        Operation *limit) {
565   StringRef symName = SymbolTable::getSymbolName(symbol);
566   assert(!symbol->hasTrait<OpTrait::SymbolTable>() || symbol != limit);
567 
568   // Compute the ancestors of 'limit'.
569   llvm::SetVector<Operation *, SmallVector<Operation *, 4>,
570                   SmallPtrSet<Operation *, 4>>
571       limitAncestors;
572   Operation *limitAncestor = limit;
573   do {
574     // Check to see if 'symbol' is an ancestor of 'limit'.
575     if (limitAncestor == symbol) {
576       // Check that the nearest symbol table is 'symbol's parent. SymbolRefAttr
577       // doesn't support parent references.
578       if (SymbolTable::getNearestSymbolTable(limit->getParentOp()) ==
579           symbol->getParentOp())
580         return {{SymbolRefAttr::get(symName, symbol->getContext()), limit}};
581       return {};
582     }
583 
584     limitAncestors.insert(limitAncestor);
585   } while ((limitAncestor = limitAncestor->getParentOp()));
586 
587   // Try to find the first ancestor of 'symbol' that is an ancestor of 'limit'.
588   Operation *commonAncestor = symbol->getParentOp();
589   do {
590     if (limitAncestors.count(commonAncestor))
591       break;
592   } while ((commonAncestor = commonAncestor->getParentOp()));
593   assert(commonAncestor && "'limit' and 'symbol' have no common ancestor");
594 
595   // Compute the set of valid nested references for 'symbol' as far up to the
596   // common ancestor as possible.
597   SmallVector<SymbolRefAttr, 2> references;
598   bool collectedAllReferences = succeeded(
599       collectValidReferencesFor(symbol, symName, commonAncestor, references));
600 
601   // Handle the case where the common ancestor is 'limit'.
602   if (commonAncestor == limit) {
603     SmallVector<SymbolScope, 2> scopes;
604 
605     // Walk each of the ancestors of 'symbol', calling the compute function for
606     // each one.
607     Operation *limitIt = symbol->getParentOp();
608     for (size_t i = 0, e = references.size(); i != e;
609          ++i, limitIt = limitIt->getParentOp()) {
610       assert(limitIt->hasTrait<OpTrait::SymbolTable>());
611       scopes.push_back({references[i], &limitIt->getRegion(0)});
612     }
613     return scopes;
614   }
615 
616   // Otherwise, we just need the symbol reference for 'symbol' that will be
617   // used within 'limit'. This is the last reference in the list we computed
618   // above if we were able to collect all references.
619   if (!collectedAllReferences)
620     return {};
621   return {{references.back(), limit}};
622 }
623 static SmallVector<SymbolScope, 2> collectSymbolScopes(Operation *symbol,
624                                                        Region *limit) {
625   auto scopes = collectSymbolScopes(symbol, limit->getParentOp());
626 
627   // If we collected some scopes to walk, make sure to constrain the one for
628   // limit to the specific region requested.
629   if (!scopes.empty())
630     scopes.back().limit = limit;
631   return scopes;
632 }
633 template <typename IRUnit>
634 static SmallVector<SymbolScope, 1> collectSymbolScopes(StringRef symbol,
635                                                        IRUnit *limit) {
636   return {{SymbolRefAttr::get(symbol, limit->getContext()), limit}};
637 }
638 
639 /// Returns true if the given reference 'SubRef' is a sub reference of the
640 /// reference 'ref', i.e. 'ref' is a further qualified reference.
641 static bool isReferencePrefixOf(SymbolRefAttr subRef, SymbolRefAttr ref) {
642   if (ref == subRef)
643     return true;
644 
645   // If the references are not pointer equal, check to see if `subRef` is a
646   // prefix of `ref`.
647   if (ref.isa<FlatSymbolRefAttr>() ||
648       ref.getRootReference() != subRef.getRootReference())
649     return false;
650 
651   auto refLeafs = ref.getNestedReferences();
652   auto subRefLeafs = subRef.getNestedReferences();
653   return subRefLeafs.size() < refLeafs.size() &&
654          subRefLeafs == refLeafs.take_front(subRefLeafs.size());
655 }
656 
657 //===----------------------------------------------------------------------===//
658 // SymbolTable::getSymbolUses
659 
660 /// The implementation of SymbolTable::getSymbolUses below.
661 template <typename FromT>
662 static Optional<SymbolTable::UseRange> getSymbolUsesImpl(FromT from) {
663   std::vector<SymbolTable::SymbolUse> uses;
664   auto walkFn = [&](SymbolTable::SymbolUse symbolUse, ArrayRef<int>) {
665     uses.push_back(symbolUse);
666     return WalkResult::advance();
667   };
668   auto result = walkSymbolUses(from, walkFn);
669   return result ? Optional<SymbolTable::UseRange>(std::move(uses)) : llvm::None;
670 }
671 
672 /// Get an iterator range for all of the uses, for any symbol, that are nested
673 /// within the given operation 'from'. This does not traverse into any nested
674 /// symbol tables, and will also only return uses on 'from' if it does not
675 /// also define a symbol table. This is because we treat the region as the
676 /// boundary of the symbol table, and not the op itself. This function returns
677 /// None if there are any unknown operations that may potentially be symbol
678 /// tables.
679 auto SymbolTable::getSymbolUses(Operation *from) -> Optional<UseRange> {
680   return getSymbolUsesImpl(from);
681 }
682 auto SymbolTable::getSymbolUses(Region *from) -> Optional<UseRange> {
683   return getSymbolUsesImpl(MutableArrayRef<Region>(*from));
684 }
685 
686 //===----------------------------------------------------------------------===//
687 // SymbolTable::getSymbolUses
688 
689 /// The implementation of SymbolTable::getSymbolUses below.
690 template <typename SymbolT, typename IRUnitT>
691 static Optional<SymbolTable::UseRange> getSymbolUsesImpl(SymbolT symbol,
692                                                          IRUnitT *limit) {
693   std::vector<SymbolTable::SymbolUse> uses;
694   for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) {
695     if (!scope.walk([&](SymbolTable::SymbolUse symbolUse) {
696           if (isReferencePrefixOf(scope.symbol, symbolUse.getSymbolRef()))
697             uses.push_back(symbolUse);
698         }))
699       return llvm::None;
700   }
701   return SymbolTable::UseRange(std::move(uses));
702 }
703 
704 /// Get all of the uses of the given symbol that are nested within the given
705 /// operation 'from', invoking the provided callback for each. This does not
706 /// traverse into any nested symbol tables. This function returns None if there
707 /// are any unknown operations that may potentially be symbol tables.
708 auto SymbolTable::getSymbolUses(StringRef symbol, Operation *from)
709     -> Optional<UseRange> {
710   return getSymbolUsesImpl(symbol, from);
711 }
712 auto SymbolTable::getSymbolUses(Operation *symbol, Operation *from)
713     -> Optional<UseRange> {
714   return getSymbolUsesImpl(symbol, from);
715 }
716 auto SymbolTable::getSymbolUses(StringRef symbol, Region *from)
717     -> Optional<UseRange> {
718   return getSymbolUsesImpl(symbol, from);
719 }
720 auto SymbolTable::getSymbolUses(Operation *symbol, Region *from)
721     -> Optional<UseRange> {
722   return getSymbolUsesImpl(symbol, from);
723 }
724 
725 //===----------------------------------------------------------------------===//
726 // SymbolTable::symbolKnownUseEmpty
727 
728 /// The implementation of SymbolTable::symbolKnownUseEmpty below.
729 template <typename SymbolT, typename IRUnitT>
730 static bool symbolKnownUseEmptyImpl(SymbolT symbol, IRUnitT *limit) {
731   for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) {
732     // Walk all of the symbol uses looking for a reference to 'symbol'.
733     if (scope.walk([&](SymbolTable::SymbolUse symbolUse, ArrayRef<int>) {
734           return isReferencePrefixOf(scope.symbol, symbolUse.getSymbolRef())
735                      ? WalkResult::interrupt()
736                      : WalkResult::advance();
737         }) != WalkResult::advance())
738       return false;
739   }
740   return true;
741 }
742 
743 /// Return if the given symbol is known to have no uses that are nested within
744 /// the given operation 'from'. This does not traverse into any nested symbol
745 /// tables. This function will also return false if there are any unknown
746 /// operations that may potentially be symbol tables.
747 bool SymbolTable::symbolKnownUseEmpty(StringRef symbol, Operation *from) {
748   return symbolKnownUseEmptyImpl(symbol, from);
749 }
750 bool SymbolTable::symbolKnownUseEmpty(Operation *symbol, Operation *from) {
751   return symbolKnownUseEmptyImpl(symbol, from);
752 }
753 bool SymbolTable::symbolKnownUseEmpty(StringRef symbol, Region *from) {
754   return symbolKnownUseEmptyImpl(symbol, from);
755 }
756 bool SymbolTable::symbolKnownUseEmpty(Operation *symbol, Region *from) {
757   return symbolKnownUseEmptyImpl(symbol, from);
758 }
759 
760 //===----------------------------------------------------------------------===//
761 // SymbolTable::replaceAllSymbolUses
762 
763 /// Rebuild the given attribute container after replacing all references to a
764 /// symbol with the updated attribute in 'accesses'.
765 static Attribute rebuildAttrAfterRAUW(
766     Attribute container,
767     ArrayRef<std::pair<SmallVector<int, 1>, SymbolRefAttr>> accesses,
768     unsigned depth) {
769   // Given a range of Attributes, update the ones referred to by the given
770   // access chains to point to the new symbol attribute.
771   auto updateAttrs = [&](auto &&attrRange) {
772     auto attrBegin = std::begin(attrRange);
773     for (unsigned i = 0, e = accesses.size(); i != e;) {
774       ArrayRef<int> access = accesses[i].first;
775       Attribute &attr = *std::next(attrBegin, access[depth]);
776 
777       // Check to see if this is a leaf access, i.e. a SymbolRef.
778       if (access.size() == depth + 1) {
779         attr = accesses[i].second;
780         ++i;
781         continue;
782       }
783 
784       // Otherwise, this is a container. Collect all of the accesses for this
785       // index and recurse. The recursion here is bounded by the size of the
786       // largest access array.
787       auto nestedAccesses = accesses.drop_front(i).take_while([&](auto &it) {
788         ArrayRef<int> nextAccess = it.first;
789         return nextAccess.size() > depth + 1 &&
790                nextAccess[depth] == access[depth];
791       });
792       attr = rebuildAttrAfterRAUW(attr, nestedAccesses, depth + 1);
793 
794       // Skip over all of the accesses that refer to the nested container.
795       i += nestedAccesses.size();
796     }
797   };
798 
799   if (auto dictAttr = container.dyn_cast<DictionaryAttr>()) {
800     auto newAttrs = llvm::to_vector<4>(dictAttr.getValue());
801     updateAttrs(make_second_range(newAttrs));
802     return DictionaryAttr::get(newAttrs, dictAttr.getContext());
803   }
804   auto newAttrs = llvm::to_vector<4>(container.cast<ArrayAttr>().getValue());
805   updateAttrs(newAttrs);
806   return ArrayAttr::get(newAttrs, container.getContext());
807 }
808 
809 /// Generates a new symbol reference attribute with a new leaf reference.
810 static SymbolRefAttr generateNewRefAttr(SymbolRefAttr oldAttr,
811                                         FlatSymbolRefAttr newLeafAttr) {
812   if (oldAttr.isa<FlatSymbolRefAttr>())
813     return newLeafAttr;
814   auto nestedRefs = llvm::to_vector<2>(oldAttr.getNestedReferences());
815   nestedRefs.back() = newLeafAttr;
816   return SymbolRefAttr::get(oldAttr.getRootReference(), nestedRefs,
817                             oldAttr.getContext());
818 }
819 
820 /// The implementation of SymbolTable::replaceAllSymbolUses below.
821 template <typename SymbolT, typename IRUnitT>
822 static LogicalResult
823 replaceAllSymbolUsesImpl(SymbolT symbol, StringRef newSymbol, IRUnitT *limit) {
824   // A collection of operations along with their new attribute dictionary.
825   std::vector<std::pair<Operation *, DictionaryAttr>> updatedAttrDicts;
826 
827   // The current operation being processed.
828   Operation *curOp = nullptr;
829 
830   // The set of access chains into the attribute dictionary of the current
831   // operation, as well as the replacement attribute to use.
832   SmallVector<std::pair<SmallVector<int, 1>, SymbolRefAttr>, 1> accessChains;
833 
834   // Generate a new attribute dictionary for the current operation by replacing
835   // references to the old symbol.
836   auto generateNewAttrDict = [&] {
837     auto oldDict = curOp->getAttrDictionary();
838     auto newDict = rebuildAttrAfterRAUW(oldDict, accessChains, /*depth=*/0);
839     return newDict.cast<DictionaryAttr>();
840   };
841 
842   // Generate a new attribute to replace the given attribute.
843   MLIRContext *ctx = limit->getContext();
844   FlatSymbolRefAttr newLeafAttr = FlatSymbolRefAttr::get(newSymbol, ctx);
845   for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) {
846     SymbolRefAttr newAttr = generateNewRefAttr(scope.symbol, newLeafAttr);
847     auto walkFn = [&](SymbolTable::SymbolUse symbolUse,
848                       ArrayRef<int> accessChain) {
849       SymbolRefAttr useRef = symbolUse.getSymbolRef();
850       if (!isReferencePrefixOf(scope.symbol, useRef))
851         return WalkResult::advance();
852 
853       // If we have a valid match, check to see if this is a proper
854       // subreference. If it is, then we will need to generate a different new
855       // attribute specifically for this use.
856       SymbolRefAttr replacementRef = newAttr;
857       if (useRef != scope.symbol) {
858         if (scope.symbol.isa<FlatSymbolRefAttr>()) {
859           replacementRef =
860               SymbolRefAttr::get(newSymbol, useRef.getNestedReferences(), ctx);
861         } else {
862           auto nestedRefs = llvm::to_vector<4>(useRef.getNestedReferences());
863           nestedRefs[scope.symbol.getNestedReferences().size() - 1] =
864               newLeafAttr;
865           replacementRef =
866               SymbolRefAttr::get(useRef.getRootReference(), nestedRefs, ctx);
867         }
868       }
869 
870       // If there was a previous operation, generate a new attribute dict
871       // for it. This means that we've finished processing the current
872       // operation, so generate a new dictionary for it.
873       if (curOp && symbolUse.getUser() != curOp) {
874         updatedAttrDicts.push_back({curOp, generateNewAttrDict()});
875         accessChains.clear();
876       }
877 
878       // Record this access.
879       curOp = symbolUse.getUser();
880       accessChains.push_back({llvm::to_vector<1>(accessChain), replacementRef});
881       return WalkResult::advance();
882     };
883     if (!scope.walk(walkFn))
884       return failure();
885 
886     // Check to see if we have a dangling op that needs to be processed.
887     if (curOp) {
888       updatedAttrDicts.push_back({curOp, generateNewAttrDict()});
889       curOp = nullptr;
890     }
891   }
892 
893   // Update the attribute dictionaries as necessary.
894   for (auto &it : updatedAttrDicts)
895     it.first->setAttrs(it.second);
896   return success();
897 }
898 
899 /// Attempt to replace all uses of the given symbol 'oldSymbol' with the
900 /// provided symbol 'newSymbol' that are nested within the given operation
901 /// 'from'. This does not traverse into any nested symbol tables. If there are
902 /// any unknown operations that may potentially be symbol tables, no uses are
903 /// replaced and failure is returned.
904 LogicalResult SymbolTable::replaceAllSymbolUses(StringRef oldSymbol,
905                                                 StringRef newSymbol,
906                                                 Operation *from) {
907   return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from);
908 }
909 LogicalResult SymbolTable::replaceAllSymbolUses(Operation *oldSymbol,
910                                                 StringRef newSymbol,
911                                                 Operation *from) {
912   return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from);
913 }
914 LogicalResult SymbolTable::replaceAllSymbolUses(StringRef oldSymbol,
915                                                 StringRef newSymbol,
916                                                 Region *from) {
917   return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from);
918 }
919 LogicalResult SymbolTable::replaceAllSymbolUses(Operation *oldSymbol,
920                                                 StringRef newSymbol,
921                                                 Region *from) {
922   return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from);
923 }
924 
925 //===----------------------------------------------------------------------===//
926 // SymbolTableCollection
927 //===----------------------------------------------------------------------===//
928 
929 Operation *SymbolTableCollection::lookupSymbolIn(Operation *symbolTableOp,
930                                                  StringRef symbol) {
931   return getSymbolTable(symbolTableOp).lookup(symbol);
932 }
933 Operation *SymbolTableCollection::lookupSymbolIn(Operation *symbolTableOp,
934                                                  SymbolRefAttr name) {
935   SmallVector<Operation *, 4> symbols;
936   if (failed(lookupSymbolIn(symbolTableOp, name, symbols)))
937     return nullptr;
938   return symbols.back();
939 }
940 /// A variant of 'lookupSymbolIn' that returns all of the symbols referenced by
941 /// a given SymbolRefAttr. Returns failure if any of the nested references could
942 /// not be resolved.
943 LogicalResult
944 SymbolTableCollection::lookupSymbolIn(Operation *symbolTableOp,
945                                       SymbolRefAttr name,
946                                       SmallVectorImpl<Operation *> &symbols) {
947   auto lookupFn = [this](Operation *symbolTableOp, StringRef symbol) {
948     return lookupSymbolIn(symbolTableOp, symbol);
949   };
950   return lookupSymbolInImpl(symbolTableOp, name, symbols, lookupFn);
951 }
952 
953 /// Returns the operation registered with the given symbol name within the
954 /// closest parent operation of, or including, 'from' with the
955 /// 'OpTrait::SymbolTable' trait. Returns nullptr if no valid symbol was
956 /// found.
957 Operation *SymbolTableCollection::lookupNearestSymbolFrom(Operation *from,
958                                                           StringRef symbol) {
959   Operation *symbolTableOp = SymbolTable::getNearestSymbolTable(from);
960   return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr;
961 }
962 Operation *
963 SymbolTableCollection::lookupNearestSymbolFrom(Operation *from,
964                                                SymbolRefAttr symbol) {
965   Operation *symbolTableOp = SymbolTable::getNearestSymbolTable(from);
966   return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr;
967 }
968 
969 /// Lookup, or create, a symbol table for an operation.
970 SymbolTable &SymbolTableCollection::getSymbolTable(Operation *op) {
971   auto it = symbolTables.try_emplace(op, nullptr);
972   if (it.second)
973     it.first->second = std::make_unique<SymbolTable>(op);
974   return *it.first->second;
975 }
976 
977 //===----------------------------------------------------------------------===//
978 // Symbol Interfaces
979 //===----------------------------------------------------------------------===//
980 
981 /// Include the generated symbol interfaces.
982 #include "mlir/IR/SymbolInterfaces.cpp.inc"
983