1 //===- SymbolTable.cpp - MLIR Symbol Table Class --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "mlir/IR/SymbolTable.h"
10 #include "mlir/IR/Builders.h"
11 #include "mlir/IR/OpImplementation.h"
12 #include "llvm/ADT/SetVector.h"
13 #include "llvm/ADT/SmallPtrSet.h"
14 #include "llvm/ADT/SmallString.h"
15 #include "llvm/ADT/StringSwitch.h"
16
17 using namespace mlir;
18
19 /// Return true if the given operation is unknown and may potentially define a
20 /// symbol table.
isPotentiallyUnknownSymbolTable(Operation * op)21 static bool isPotentiallyUnknownSymbolTable(Operation *op) {
22 return op->getNumRegions() == 1 && !op->getDialect();
23 }
24
25 /// Returns the string name of the given symbol, or null if this is not a
26 /// symbol.
getNameIfSymbol(Operation * op)27 static StringAttr getNameIfSymbol(Operation *op) {
28 return op->getAttrOfType<StringAttr>(SymbolTable::getSymbolAttrName());
29 }
getNameIfSymbol(Operation * op,StringAttr symbolAttrNameId)30 static StringAttr getNameIfSymbol(Operation *op, StringAttr symbolAttrNameId) {
31 return op->getAttrOfType<StringAttr>(symbolAttrNameId);
32 }
33
34 /// Computes the nested symbol reference attribute for the symbol 'symbolName'
35 /// that are usable within the symbol table operations from 'symbol' as far up
36 /// to the given operation 'within', where 'within' is an ancestor of 'symbol'.
37 /// Returns success if all references up to 'within' could be computed.
38 static LogicalResult
collectValidReferencesFor(Operation * symbol,StringAttr symbolName,Operation * within,SmallVectorImpl<SymbolRefAttr> & results)39 collectValidReferencesFor(Operation *symbol, StringAttr symbolName,
40 Operation *within,
41 SmallVectorImpl<SymbolRefAttr> &results) {
42 assert(within->isAncestor(symbol) && "expected 'within' to be an ancestor");
43 MLIRContext *ctx = symbol->getContext();
44
45 auto leafRef = FlatSymbolRefAttr::get(symbolName);
46 results.push_back(leafRef);
47
48 // Early exit for when 'within' is the parent of 'symbol'.
49 Operation *symbolTableOp = symbol->getParentOp();
50 if (within == symbolTableOp)
51 return success();
52
53 // Collect references until 'symbolTableOp' reaches 'within'.
54 SmallVector<FlatSymbolRefAttr, 1> nestedRefs(1, leafRef);
55 StringAttr symbolNameId =
56 StringAttr::get(ctx, SymbolTable::getSymbolAttrName());
57 do {
58 // Each parent of 'symbol' should define a symbol table.
59 if (!symbolTableOp->hasTrait<OpTrait::SymbolTable>())
60 return failure();
61 // Each parent of 'symbol' should also be a symbol.
62 StringAttr symbolTableName = getNameIfSymbol(symbolTableOp, symbolNameId);
63 if (!symbolTableName)
64 return failure();
65 results.push_back(SymbolRefAttr::get(symbolTableName, nestedRefs));
66
67 symbolTableOp = symbolTableOp->getParentOp();
68 if (symbolTableOp == within)
69 break;
70 nestedRefs.insert(nestedRefs.begin(),
71 FlatSymbolRefAttr::get(symbolTableName));
72 } while (true);
73 return success();
74 }
75
76 /// Walk all of the operations within the given set of regions, without
77 /// traversing into any nested symbol tables. Stops walking if the result of the
78 /// callback is anything other than `WalkResult::advance`.
79 static Optional<WalkResult>
walkSymbolTable(MutableArrayRef<Region> regions,function_ref<Optional<WalkResult> (Operation *)> callback)80 walkSymbolTable(MutableArrayRef<Region> regions,
81 function_ref<Optional<WalkResult>(Operation *)> callback) {
82 SmallVector<Region *, 1> worklist(llvm::make_pointer_range(regions));
83 while (!worklist.empty()) {
84 for (Operation &op : worklist.pop_back_val()->getOps()) {
85 Optional<WalkResult> result = callback(&op);
86 if (result != WalkResult::advance())
87 return result;
88
89 // If this op defines a new symbol table scope, we can't traverse. Any
90 // symbol references nested within 'op' are different semantically.
91 if (!op.hasTrait<OpTrait::SymbolTable>()) {
92 for (Region ®ion : op.getRegions())
93 worklist.push_back(®ion);
94 }
95 }
96 }
97 return WalkResult::advance();
98 }
99
100 /// Walk all of the operations nested under, and including, the given operation,
101 /// without traversing into any nested symbol tables. Stops walking if the
102 /// result of the callback is anything other than `WalkResult::advance`.
103 static Optional<WalkResult>
walkSymbolTable(Operation * op,function_ref<Optional<WalkResult> (Operation *)> callback)104 walkSymbolTable(Operation *op,
105 function_ref<Optional<WalkResult>(Operation *)> callback) {
106 Optional<WalkResult> result = callback(op);
107 if (result != WalkResult::advance() || op->hasTrait<OpTrait::SymbolTable>())
108 return result;
109 return walkSymbolTable(op->getRegions(), callback);
110 }
111
112 //===----------------------------------------------------------------------===//
113 // SymbolTable
114 //===----------------------------------------------------------------------===//
115
116 /// Build a symbol table with the symbols within the given operation.
SymbolTable(Operation * symbolTableOp)117 SymbolTable::SymbolTable(Operation *symbolTableOp)
118 : symbolTableOp(symbolTableOp) {
119 assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>() &&
120 "expected operation to have SymbolTable trait");
121 assert(symbolTableOp->getNumRegions() == 1 &&
122 "expected operation to have a single region");
123 assert(llvm::hasSingleElement(symbolTableOp->getRegion(0)) &&
124 "expected operation to have a single block");
125
126 StringAttr symbolNameId = StringAttr::get(symbolTableOp->getContext(),
127 SymbolTable::getSymbolAttrName());
128 for (auto &op : symbolTableOp->getRegion(0).front()) {
129 StringAttr name = getNameIfSymbol(&op, symbolNameId);
130 if (!name)
131 continue;
132
133 auto inserted = symbolTable.insert({name, &op});
134 (void)inserted;
135 assert(inserted.second &&
136 "expected region to contain uniquely named symbol operations");
137 }
138 }
139
140 /// Look up a symbol with the specified name, returning null if no such name
141 /// exists. Names never include the @ on them.
lookup(StringRef name) const142 Operation *SymbolTable::lookup(StringRef name) const {
143 return lookup(StringAttr::get(symbolTableOp->getContext(), name));
144 }
lookup(StringAttr name) const145 Operation *SymbolTable::lookup(StringAttr name) const {
146 return symbolTable.lookup(name);
147 }
148
149 /// Erase the given symbol from the table.
erase(Operation * symbol)150 void SymbolTable::erase(Operation *symbol) {
151 StringAttr name = getNameIfSymbol(symbol);
152 assert(name && "expected valid 'name' attribute");
153 assert(symbol->getParentOp() == symbolTableOp &&
154 "expected this operation to be inside of the operation with this "
155 "SymbolTable");
156
157 auto it = symbolTable.find(name);
158 if (it != symbolTable.end() && it->second == symbol) {
159 symbolTable.erase(it);
160 symbol->erase();
161 }
162 }
163
164 // TODO: Consider if this should be renamed to something like insertOrUpdate
165 /// Insert a new symbol into the table and associated operation if not already
166 /// there and rename it as necessary to avoid collisions. Return the name of
167 /// the symbol after insertion as attribute.
insert(Operation * symbol,Block::iterator insertPt)168 StringAttr SymbolTable::insert(Operation *symbol, Block::iterator insertPt) {
169 // The symbol cannot be the child of another op and must be the child of the
170 // symbolTableOp after this.
171 //
172 // TODO: consider if SymbolTable's constructor should behave the same.
173 if (!symbol->getParentOp()) {
174 auto &body = symbolTableOp->getRegion(0).front();
175 if (insertPt == Block::iterator()) {
176 insertPt = Block::iterator(body.end());
177 } else {
178 assert((insertPt == body.end() ||
179 insertPt->getParentOp() == symbolTableOp) &&
180 "expected insertPt to be in the associated module operation");
181 }
182 // Insert before the terminator, if any.
183 if (insertPt == Block::iterator(body.end()) && !body.empty() &&
184 std::prev(body.end())->hasTrait<OpTrait::IsTerminator>())
185 insertPt = std::prev(body.end());
186
187 body.getOperations().insert(insertPt, symbol);
188 }
189 assert(symbol->getParentOp() == symbolTableOp &&
190 "symbol is already inserted in another op");
191
192 // Add this symbol to the symbol table, uniquing the name if a conflict is
193 // detected.
194 StringAttr name = getSymbolName(symbol);
195 if (symbolTable.insert({name, symbol}).second)
196 return name;
197 // If the symbol was already in the table, also return.
198 if (symbolTable.lookup(name) == symbol)
199 return name;
200 // If a conflict was detected, then the symbol will not have been added to
201 // the symbol table. Try suffixes until we get to a unique name that works.
202 SmallString<128> nameBuffer(name.getValue());
203 unsigned originalLength = nameBuffer.size();
204
205 MLIRContext *context = symbol->getContext();
206
207 // Iteratively try suffixes until we find one that isn't used.
208 do {
209 nameBuffer.resize(originalLength);
210 nameBuffer += '_';
211 nameBuffer += std::to_string(uniquingCounter++);
212 } while (!symbolTable.insert({StringAttr::get(context, nameBuffer), symbol})
213 .second);
214 setSymbolName(symbol, nameBuffer);
215 return getSymbolName(symbol);
216 }
217
218 /// Returns the name of the given symbol operation.
getSymbolName(Operation * symbol)219 StringAttr SymbolTable::getSymbolName(Operation *symbol) {
220 StringAttr name = getNameIfSymbol(symbol);
221 assert(name && "expected valid symbol name");
222 return name;
223 }
224
225 /// Sets the name of the given symbol operation.
setSymbolName(Operation * symbol,StringAttr name)226 void SymbolTable::setSymbolName(Operation *symbol, StringAttr name) {
227 symbol->setAttr(getSymbolAttrName(), name);
228 }
229
230 /// Returns the visibility of the given symbol operation.
getSymbolVisibility(Operation * symbol)231 SymbolTable::Visibility SymbolTable::getSymbolVisibility(Operation *symbol) {
232 // If the attribute doesn't exist, assume public.
233 StringAttr vis = symbol->getAttrOfType<StringAttr>(getVisibilityAttrName());
234 if (!vis)
235 return Visibility::Public;
236
237 // Otherwise, switch on the string value.
238 return StringSwitch<Visibility>(vis.getValue())
239 .Case("private", Visibility::Private)
240 .Case("nested", Visibility::Nested)
241 .Case("public", Visibility::Public);
242 }
243 /// Sets the visibility of the given symbol operation.
setSymbolVisibility(Operation * symbol,Visibility vis)244 void SymbolTable::setSymbolVisibility(Operation *symbol, Visibility vis) {
245 MLIRContext *ctx = symbol->getContext();
246
247 // If the visibility is public, just drop the attribute as this is the
248 // default.
249 if (vis == Visibility::Public) {
250 symbol->removeAttr(StringAttr::get(ctx, getVisibilityAttrName()));
251 return;
252 }
253
254 // Otherwise, update the attribute.
255 assert((vis == Visibility::Private || vis == Visibility::Nested) &&
256 "unknown symbol visibility kind");
257
258 StringRef visName = vis == Visibility::Private ? "private" : "nested";
259 symbol->setAttr(getVisibilityAttrName(), StringAttr::get(ctx, visName));
260 }
261
262 /// Returns the nearest symbol table from a given operation `from`. Returns
263 /// nullptr if no valid parent symbol table could be found.
getNearestSymbolTable(Operation * from)264 Operation *SymbolTable::getNearestSymbolTable(Operation *from) {
265 assert(from && "expected valid operation");
266 if (isPotentiallyUnknownSymbolTable(from))
267 return nullptr;
268
269 while (!from->hasTrait<OpTrait::SymbolTable>()) {
270 from = from->getParentOp();
271
272 // Check that this is a valid op and isn't an unknown symbol table.
273 if (!from || isPotentiallyUnknownSymbolTable(from))
274 return nullptr;
275 }
276 return from;
277 }
278
279 /// Walks all symbol table operations nested within, and including, `op`. For
280 /// each symbol table operation, the provided callback is invoked with the op
281 /// and a boolean signifying if the symbols within that symbol table can be
282 /// treated as if all uses are visible. `allSymUsesVisible` identifies whether
283 /// all of the symbol uses of symbols within `op` are visible.
walkSymbolTables(Operation * op,bool allSymUsesVisible,function_ref<void (Operation *,bool)> callback)284 void SymbolTable::walkSymbolTables(
285 Operation *op, bool allSymUsesVisible,
286 function_ref<void(Operation *, bool)> callback) {
287 bool isSymbolTable = op->hasTrait<OpTrait::SymbolTable>();
288 if (isSymbolTable) {
289 SymbolOpInterface symbol = dyn_cast<SymbolOpInterface>(op);
290 allSymUsesVisible |= !symbol || symbol.isPrivate();
291 } else {
292 // Otherwise if 'op' is not a symbol table, any nested symbols are
293 // guaranteed to be hidden.
294 allSymUsesVisible = true;
295 }
296
297 for (Region ®ion : op->getRegions())
298 for (Block &block : region)
299 for (Operation &nestedOp : block)
300 walkSymbolTables(&nestedOp, allSymUsesVisible, callback);
301
302 // If 'op' had the symbol table trait, visit it after any nested symbol
303 // tables.
304 if (isSymbolTable)
305 callback(op, allSymUsesVisible);
306 }
307
308 /// Returns the operation registered with the given symbol name with the
309 /// regions of 'symbolTableOp'. 'symbolTableOp' is required to be an operation
310 /// with the 'OpTrait::SymbolTable' trait. Returns nullptr if no valid symbol
311 /// was found.
lookupSymbolIn(Operation * symbolTableOp,StringAttr symbol)312 Operation *SymbolTable::lookupSymbolIn(Operation *symbolTableOp,
313 StringAttr symbol) {
314 assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>());
315 Region ®ion = symbolTableOp->getRegion(0);
316 if (region.empty())
317 return nullptr;
318
319 // Look for a symbol with the given name.
320 StringAttr symbolNameId = StringAttr::get(symbolTableOp->getContext(),
321 SymbolTable::getSymbolAttrName());
322 for (auto &op : region.front())
323 if (getNameIfSymbol(&op, symbolNameId) == symbol)
324 return &op;
325 return nullptr;
326 }
lookupSymbolIn(Operation * symbolTableOp,SymbolRefAttr symbol)327 Operation *SymbolTable::lookupSymbolIn(Operation *symbolTableOp,
328 SymbolRefAttr symbol) {
329 SmallVector<Operation *, 4> resolvedSymbols;
330 if (failed(lookupSymbolIn(symbolTableOp, symbol, resolvedSymbols)))
331 return nullptr;
332 return resolvedSymbols.back();
333 }
334
335 /// Internal implementation of `lookupSymbolIn` that allows for specialized
336 /// implementations of the lookup function.
lookupSymbolInImpl(Operation * symbolTableOp,SymbolRefAttr symbol,SmallVectorImpl<Operation * > & symbols,function_ref<Operation * (Operation *,StringAttr)> lookupSymbolFn)337 static LogicalResult lookupSymbolInImpl(
338 Operation *symbolTableOp, SymbolRefAttr symbol,
339 SmallVectorImpl<Operation *> &symbols,
340 function_ref<Operation *(Operation *, StringAttr)> lookupSymbolFn) {
341 assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>());
342
343 // Lookup the root reference for this symbol.
344 symbolTableOp = lookupSymbolFn(symbolTableOp, symbol.getRootReference());
345 if (!symbolTableOp)
346 return failure();
347 symbols.push_back(symbolTableOp);
348
349 // If there are no nested references, just return the root symbol directly.
350 ArrayRef<FlatSymbolRefAttr> nestedRefs = symbol.getNestedReferences();
351 if (nestedRefs.empty())
352 return success();
353
354 // Verify that the root is also a symbol table.
355 if (!symbolTableOp->hasTrait<OpTrait::SymbolTable>())
356 return failure();
357
358 // Otherwise, lookup each of the nested non-leaf references and ensure that
359 // each corresponds to a valid symbol table.
360 for (FlatSymbolRefAttr ref : nestedRefs.drop_back()) {
361 symbolTableOp = lookupSymbolFn(symbolTableOp, ref.getAttr());
362 if (!symbolTableOp || !symbolTableOp->hasTrait<OpTrait::SymbolTable>())
363 return failure();
364 symbols.push_back(symbolTableOp);
365 }
366 symbols.push_back(lookupSymbolFn(symbolTableOp, symbol.getLeafReference()));
367 return success(symbols.back());
368 }
369
370 LogicalResult
lookupSymbolIn(Operation * symbolTableOp,SymbolRefAttr symbol,SmallVectorImpl<Operation * > & symbols)371 SymbolTable::lookupSymbolIn(Operation *symbolTableOp, SymbolRefAttr symbol,
372 SmallVectorImpl<Operation *> &symbols) {
373 auto lookupFn = [](Operation *symbolTableOp, StringAttr symbol) {
374 return lookupSymbolIn(symbolTableOp, symbol);
375 };
376 return lookupSymbolInImpl(symbolTableOp, symbol, symbols, lookupFn);
377 }
378
379 /// Returns the operation registered with the given symbol name within the
380 /// closes parent operation with the 'OpTrait::SymbolTable' trait. Returns
381 /// nullptr if no valid symbol was found.
lookupNearestSymbolFrom(Operation * from,StringAttr symbol)382 Operation *SymbolTable::lookupNearestSymbolFrom(Operation *from,
383 StringAttr symbol) {
384 Operation *symbolTableOp = getNearestSymbolTable(from);
385 return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr;
386 }
lookupNearestSymbolFrom(Operation * from,SymbolRefAttr symbol)387 Operation *SymbolTable::lookupNearestSymbolFrom(Operation *from,
388 SymbolRefAttr symbol) {
389 Operation *symbolTableOp = getNearestSymbolTable(from);
390 return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr;
391 }
392
operator <<(raw_ostream & os,SymbolTable::Visibility visibility)393 raw_ostream &mlir::operator<<(raw_ostream &os,
394 SymbolTable::Visibility visibility) {
395 switch (visibility) {
396 case SymbolTable::Visibility::Public:
397 return os << "public";
398 case SymbolTable::Visibility::Private:
399 return os << "private";
400 case SymbolTable::Visibility::Nested:
401 return os << "nested";
402 }
403 llvm_unreachable("Unexpected visibility");
404 }
405
406 //===----------------------------------------------------------------------===//
407 // SymbolTable Trait Types
408 //===----------------------------------------------------------------------===//
409
verifySymbolTable(Operation * op)410 LogicalResult detail::verifySymbolTable(Operation *op) {
411 if (op->getNumRegions() != 1)
412 return op->emitOpError()
413 << "Operations with a 'SymbolTable' must have exactly one region";
414 if (!llvm::hasSingleElement(op->getRegion(0)))
415 return op->emitOpError()
416 << "Operations with a 'SymbolTable' must have exactly one block";
417
418 // Check that all symbols are uniquely named within child regions.
419 DenseMap<Attribute, Location> nameToOrigLoc;
420 for (auto &block : op->getRegion(0)) {
421 for (auto &op : block) {
422 // Check for a symbol name attribute.
423 auto nameAttr =
424 op.getAttrOfType<StringAttr>(mlir::SymbolTable::getSymbolAttrName());
425 if (!nameAttr)
426 continue;
427
428 // Try to insert this symbol into the table.
429 auto it = nameToOrigLoc.try_emplace(nameAttr, op.getLoc());
430 if (!it.second)
431 return op.emitError()
432 .append("redefinition of symbol named '", nameAttr.getValue(), "'")
433 .attachNote(it.first->second)
434 .append("see existing symbol definition here");
435 }
436 }
437
438 // Verify any nested symbol user operations.
439 SymbolTableCollection symbolTable;
440 auto verifySymbolUserFn = [&](Operation *op) -> Optional<WalkResult> {
441 if (SymbolUserOpInterface user = dyn_cast<SymbolUserOpInterface>(op))
442 return WalkResult(user.verifySymbolUses(symbolTable));
443 return WalkResult::advance();
444 };
445
446 Optional<WalkResult> result =
447 walkSymbolTable(op->getRegions(), verifySymbolUserFn);
448 return success(result && !result->wasInterrupted());
449 }
450
verifySymbol(Operation * op)451 LogicalResult detail::verifySymbol(Operation *op) {
452 // Verify the name attribute.
453 if (!op->getAttrOfType<StringAttr>(mlir::SymbolTable::getSymbolAttrName()))
454 return op->emitOpError() << "requires string attribute '"
455 << mlir::SymbolTable::getSymbolAttrName() << "'";
456
457 // Verify the visibility attribute.
458 if (Attribute vis = op->getAttr(mlir::SymbolTable::getVisibilityAttrName())) {
459 StringAttr visStrAttr = vis.dyn_cast<StringAttr>();
460 if (!visStrAttr)
461 return op->emitOpError() << "requires visibility attribute '"
462 << mlir::SymbolTable::getVisibilityAttrName()
463 << "' to be a string attribute, but got " << vis;
464
465 if (!llvm::is_contained(ArrayRef<StringRef>{"public", "private", "nested"},
466 visStrAttr.getValue()))
467 return op->emitOpError()
468 << "visibility expected to be one of [\"public\", \"private\", "
469 "\"nested\"], but got "
470 << visStrAttr;
471 }
472 return success();
473 }
474
475 //===----------------------------------------------------------------------===//
476 // Symbol Use Lists
477 //===----------------------------------------------------------------------===//
478
479 /// Walk all of the symbol references within the given operation, invoking the
480 /// provided callback for each found use. The callbacks takes the use of the
481 /// symbol.
482 static WalkResult
walkSymbolRefs(Operation * op,function_ref<WalkResult (SymbolTable::SymbolUse)> callback)483 walkSymbolRefs(Operation *op,
484 function_ref<WalkResult(SymbolTable::SymbolUse)> callback) {
485 // Check to see if the operation has any attributes.
486 DictionaryAttr attrDict = op->getAttrDictionary();
487 if (attrDict.empty())
488 return WalkResult::advance();
489
490 // A worklist of a container attribute and the current index into the held
491 // attribute list.
492 struct WorklistItem {
493 SubElementAttrInterface container;
494 SmallVector<Attribute> immediateSubElements;
495
496 explicit WorklistItem(SubElementAttrInterface container) {
497 SmallVector<Attribute> subElements;
498 container.walkImmediateSubElements(
499 [&](Attribute attr) { subElements.push_back(attr); }, [](Type) {});
500 immediateSubElements = std::move(subElements);
501 }
502 };
503
504 SmallVector<WorklistItem, 1> attrWorklist(1, WorklistItem(attrDict));
505 SmallVector<int, 1> curAccessChain(1, /*Value=*/-1);
506
507 // Process the symbol references within the given nested attribute range.
508 auto processAttrs = [&](int &index,
509 WorklistItem &worklistItem) -> WalkResult {
510 for (Attribute attr :
511 llvm::drop_begin(worklistItem.immediateSubElements, index)) {
512 // Invoke the provided callback if we find a symbol use and check for a
513 // requested interrupt.
514 if (auto symbolRef = attr.dyn_cast<SymbolRefAttr>()) {
515 if (callback({op, symbolRef}).wasInterrupted())
516 return WalkResult::interrupt();
517
518 /// Check for a nested container attribute, these will also need to be
519 /// walked.
520 } else if (auto interface = attr.dyn_cast<SubElementAttrInterface>()) {
521 attrWorklist.emplace_back(interface);
522 curAccessChain.push_back(-1);
523 return WalkResult::advance();
524 }
525 // Make sure to keep the index counter in sync.
526 ++index;
527 }
528
529 // Pop this container attribute from the worklist.
530 attrWorklist.pop_back();
531 curAccessChain.pop_back();
532 return WalkResult::advance();
533 };
534
535 WalkResult result = WalkResult::advance();
536 do {
537 WorklistItem &item = attrWorklist.back();
538 int &index = curAccessChain.back();
539 ++index;
540
541 // Process the given attribute, which is guaranteed to be a container.
542 result = processAttrs(index, item);
543 } while (!attrWorklist.empty() && !result.wasInterrupted());
544 return result;
545 }
546
547 /// Walk all of the uses, for any symbol, that are nested within the given
548 /// regions, invoking the provided callback for each. This does not traverse
549 /// into any nested symbol tables.
550 static Optional<WalkResult>
walkSymbolUses(MutableArrayRef<Region> regions,function_ref<WalkResult (SymbolTable::SymbolUse)> callback)551 walkSymbolUses(MutableArrayRef<Region> regions,
552 function_ref<WalkResult(SymbolTable::SymbolUse)> callback) {
553 return walkSymbolTable(regions, [&](Operation *op) -> Optional<WalkResult> {
554 // Check that this isn't a potentially unknown symbol table.
555 if (isPotentiallyUnknownSymbolTable(op))
556 return llvm::None;
557
558 return walkSymbolRefs(op, callback);
559 });
560 }
561 /// Walk all of the uses, for any symbol, that are nested within the given
562 /// operation 'from', invoking the provided callback for each. This does not
563 /// traverse into any nested symbol tables.
564 static Optional<WalkResult>
walkSymbolUses(Operation * from,function_ref<WalkResult (SymbolTable::SymbolUse)> callback)565 walkSymbolUses(Operation *from,
566 function_ref<WalkResult(SymbolTable::SymbolUse)> callback) {
567 // If this operation has regions, and it, as well as its dialect, isn't
568 // registered then conservatively fail. The operation may define a
569 // symbol table, so we can't opaquely know if we should traverse to find
570 // nested uses.
571 if (isPotentiallyUnknownSymbolTable(from))
572 return llvm::None;
573
574 // Walk the uses on this operation.
575 if (walkSymbolRefs(from, callback).wasInterrupted())
576 return WalkResult::interrupt();
577
578 // Only recurse if this operation is not a symbol table. A symbol table
579 // defines a new scope, so we can't walk the attributes from within the symbol
580 // table op.
581 if (!from->hasTrait<OpTrait::SymbolTable>())
582 return walkSymbolUses(from->getRegions(), callback);
583 return WalkResult::advance();
584 }
585
586 namespace {
587 /// This class represents a single symbol scope. A symbol scope represents the
588 /// set of operations nested within a symbol table that may reference symbols
589 /// within that table. A symbol scope does not contain the symbol table
590 /// operation itself, just its contained operations. A scope ends at leaf
591 /// operations or another symbol table operation.
592 struct SymbolScope {
593 /// Walk the symbol uses within this scope, invoking the given callback.
594 /// This variant is used when the callback type matches that expected by
595 /// 'walkSymbolUses'.
596 template <typename CallbackT,
597 typename std::enable_if_t<!std::is_same<
598 typename llvm::function_traits<CallbackT>::result_t,
599 void>::value> * = nullptr>
walk__anonb7b65d210711::SymbolScope600 Optional<WalkResult> walk(CallbackT cback) {
601 if (Region *region = limit.dyn_cast<Region *>())
602 return walkSymbolUses(*region, cback);
603 return walkSymbolUses(limit.get<Operation *>(), cback);
604 }
605 /// This variant is used when the callback type matches a stripped down type:
606 /// void(SymbolTable::SymbolUse use)
607 template <typename CallbackT,
608 typename std::enable_if_t<std::is_same<
609 typename llvm::function_traits<CallbackT>::result_t,
610 void>::value> * = nullptr>
walk__anonb7b65d210711::SymbolScope611 Optional<WalkResult> walk(CallbackT cback) {
612 return walk([=](SymbolTable::SymbolUse use) {
613 return cback(use), WalkResult::advance();
614 });
615 }
616
617 /// Walk all of the operations nested under the current scope without
618 /// traversing into any nested symbol tables.
619 template <typename CallbackT>
walkSymbolTable__anonb7b65d210711::SymbolScope620 Optional<WalkResult> walkSymbolTable(CallbackT &&cback) {
621 if (Region *region = limit.dyn_cast<Region *>())
622 return ::walkSymbolTable(*region, cback);
623 return ::walkSymbolTable(limit.get<Operation *>(), cback);
624 }
625
626 /// The representation of the symbol within this scope.
627 SymbolRefAttr symbol;
628
629 /// The IR unit representing this scope.
630 llvm::PointerUnion<Operation *, Region *> limit;
631 };
632 } // namespace
633
634 /// Collect all of the symbol scopes from 'symbol' to (inclusive) 'limit'.
collectSymbolScopes(Operation * symbol,Operation * limit)635 static SmallVector<SymbolScope, 2> collectSymbolScopes(Operation *symbol,
636 Operation *limit) {
637 StringAttr symName = SymbolTable::getSymbolName(symbol);
638 assert(!symbol->hasTrait<OpTrait::SymbolTable>() || symbol != limit);
639
640 // Compute the ancestors of 'limit'.
641 SetVector<Operation *, SmallVector<Operation *, 4>,
642 SmallPtrSet<Operation *, 4>>
643 limitAncestors;
644 Operation *limitAncestor = limit;
645 do {
646 // Check to see if 'symbol' is an ancestor of 'limit'.
647 if (limitAncestor == symbol) {
648 // Check that the nearest symbol table is 'symbol's parent. SymbolRefAttr
649 // doesn't support parent references.
650 if (SymbolTable::getNearestSymbolTable(limit->getParentOp()) ==
651 symbol->getParentOp())
652 return {{SymbolRefAttr::get(symName), limit}};
653 return {};
654 }
655
656 limitAncestors.insert(limitAncestor);
657 } while ((limitAncestor = limitAncestor->getParentOp()));
658
659 // Try to find the first ancestor of 'symbol' that is an ancestor of 'limit'.
660 Operation *commonAncestor = symbol->getParentOp();
661 do {
662 if (limitAncestors.count(commonAncestor))
663 break;
664 } while ((commonAncestor = commonAncestor->getParentOp()));
665 assert(commonAncestor && "'limit' and 'symbol' have no common ancestor");
666
667 // Compute the set of valid nested references for 'symbol' as far up to the
668 // common ancestor as possible.
669 SmallVector<SymbolRefAttr, 2> references;
670 bool collectedAllReferences = succeeded(
671 collectValidReferencesFor(symbol, symName, commonAncestor, references));
672
673 // Handle the case where the common ancestor is 'limit'.
674 if (commonAncestor == limit) {
675 SmallVector<SymbolScope, 2> scopes;
676
677 // Walk each of the ancestors of 'symbol', calling the compute function for
678 // each one.
679 Operation *limitIt = symbol->getParentOp();
680 for (size_t i = 0, e = references.size(); i != e;
681 ++i, limitIt = limitIt->getParentOp()) {
682 assert(limitIt->hasTrait<OpTrait::SymbolTable>());
683 scopes.push_back({references[i], &limitIt->getRegion(0)});
684 }
685 return scopes;
686 }
687
688 // Otherwise, we just need the symbol reference for 'symbol' that will be
689 // used within 'limit'. This is the last reference in the list we computed
690 // above if we were able to collect all references.
691 if (!collectedAllReferences)
692 return {};
693 return {{references.back(), limit}};
694 }
collectSymbolScopes(Operation * symbol,Region * limit)695 static SmallVector<SymbolScope, 2> collectSymbolScopes(Operation *symbol,
696 Region *limit) {
697 auto scopes = collectSymbolScopes(symbol, limit->getParentOp());
698
699 // If we collected some scopes to walk, make sure to constrain the one for
700 // limit to the specific region requested.
701 if (!scopes.empty())
702 scopes.back().limit = limit;
703 return scopes;
704 }
705 template <typename IRUnit>
collectSymbolScopes(StringAttr symbol,IRUnit * limit)706 static SmallVector<SymbolScope, 1> collectSymbolScopes(StringAttr symbol,
707 IRUnit *limit) {
708 return {{SymbolRefAttr::get(symbol), limit}};
709 }
710
711 /// Returns true if the given reference 'SubRef' is a sub reference of the
712 /// reference 'ref', i.e. 'ref' is a further qualified reference.
isReferencePrefixOf(SymbolRefAttr subRef,SymbolRefAttr ref)713 static bool isReferencePrefixOf(SymbolRefAttr subRef, SymbolRefAttr ref) {
714 if (ref == subRef)
715 return true;
716
717 // If the references are not pointer equal, check to see if `subRef` is a
718 // prefix of `ref`.
719 if (ref.isa<FlatSymbolRefAttr>() ||
720 ref.getRootReference() != subRef.getRootReference())
721 return false;
722
723 auto refLeafs = ref.getNestedReferences();
724 auto subRefLeafs = subRef.getNestedReferences();
725 return subRefLeafs.size() < refLeafs.size() &&
726 subRefLeafs == refLeafs.take_front(subRefLeafs.size());
727 }
728
729 //===----------------------------------------------------------------------===//
730 // SymbolTable::getSymbolUses
731
732 /// The implementation of SymbolTable::getSymbolUses below.
733 template <typename FromT>
getSymbolUsesImpl(FromT from)734 static Optional<SymbolTable::UseRange> getSymbolUsesImpl(FromT from) {
735 std::vector<SymbolTable::SymbolUse> uses;
736 auto walkFn = [&](SymbolTable::SymbolUse symbolUse) {
737 uses.push_back(symbolUse);
738 return WalkResult::advance();
739 };
740 auto result = walkSymbolUses(from, walkFn);
741 return result ? Optional<SymbolTable::UseRange>(std::move(uses)) : llvm::None;
742 }
743
744 /// Get an iterator range for all of the uses, for any symbol, that are nested
745 /// within the given operation 'from'. This does not traverse into any nested
746 /// symbol tables, and will also only return uses on 'from' if it does not
747 /// also define a symbol table. This is because we treat the region as the
748 /// boundary of the symbol table, and not the op itself. This function returns
749 /// None if there are any unknown operations that may potentially be symbol
750 /// tables.
getSymbolUses(Operation * from)751 auto SymbolTable::getSymbolUses(Operation *from) -> Optional<UseRange> {
752 return getSymbolUsesImpl(from);
753 }
getSymbolUses(Region * from)754 auto SymbolTable::getSymbolUses(Region *from) -> Optional<UseRange> {
755 return getSymbolUsesImpl(MutableArrayRef<Region>(*from));
756 }
757
758 //===----------------------------------------------------------------------===//
759 // SymbolTable::getSymbolUses
760
761 /// The implementation of SymbolTable::getSymbolUses below.
762 template <typename SymbolT, typename IRUnitT>
getSymbolUsesImpl(SymbolT symbol,IRUnitT * limit)763 static Optional<SymbolTable::UseRange> getSymbolUsesImpl(SymbolT symbol,
764 IRUnitT *limit) {
765 std::vector<SymbolTable::SymbolUse> uses;
766 for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) {
767 if (!scope.walk([&](SymbolTable::SymbolUse symbolUse) {
768 if (isReferencePrefixOf(scope.symbol, symbolUse.getSymbolRef()))
769 uses.push_back(symbolUse);
770 }))
771 return llvm::None;
772 }
773 return SymbolTable::UseRange(std::move(uses));
774 }
775
776 /// Get all of the uses of the given symbol that are nested within the given
777 /// operation 'from', invoking the provided callback for each. This does not
778 /// traverse into any nested symbol tables. This function returns None if there
779 /// are any unknown operations that may potentially be symbol tables.
getSymbolUses(StringAttr symbol,Operation * from)780 auto SymbolTable::getSymbolUses(StringAttr symbol, Operation *from)
781 -> Optional<UseRange> {
782 return getSymbolUsesImpl(symbol, from);
783 }
getSymbolUses(Operation * symbol,Operation * from)784 auto SymbolTable::getSymbolUses(Operation *symbol, Operation *from)
785 -> Optional<UseRange> {
786 return getSymbolUsesImpl(symbol, from);
787 }
getSymbolUses(StringAttr symbol,Region * from)788 auto SymbolTable::getSymbolUses(StringAttr symbol, Region *from)
789 -> Optional<UseRange> {
790 return getSymbolUsesImpl(symbol, from);
791 }
getSymbolUses(Operation * symbol,Region * from)792 auto SymbolTable::getSymbolUses(Operation *symbol, Region *from)
793 -> Optional<UseRange> {
794 return getSymbolUsesImpl(symbol, from);
795 }
796
797 //===----------------------------------------------------------------------===//
798 // SymbolTable::symbolKnownUseEmpty
799
800 /// The implementation of SymbolTable::symbolKnownUseEmpty below.
801 template <typename SymbolT, typename IRUnitT>
symbolKnownUseEmptyImpl(SymbolT symbol,IRUnitT * limit)802 static bool symbolKnownUseEmptyImpl(SymbolT symbol, IRUnitT *limit) {
803 for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) {
804 // Walk all of the symbol uses looking for a reference to 'symbol'.
805 if (scope.walk([&](SymbolTable::SymbolUse symbolUse) {
806 return isReferencePrefixOf(scope.symbol, symbolUse.getSymbolRef())
807 ? WalkResult::interrupt()
808 : WalkResult::advance();
809 }) != WalkResult::advance())
810 return false;
811 }
812 return true;
813 }
814
815 /// Return if the given symbol is known to have no uses that are nested within
816 /// the given operation 'from'. This does not traverse into any nested symbol
817 /// tables. This function will also return false if there are any unknown
818 /// operations that may potentially be symbol tables.
symbolKnownUseEmpty(StringAttr symbol,Operation * from)819 bool SymbolTable::symbolKnownUseEmpty(StringAttr symbol, Operation *from) {
820 return symbolKnownUseEmptyImpl(symbol, from);
821 }
symbolKnownUseEmpty(Operation * symbol,Operation * from)822 bool SymbolTable::symbolKnownUseEmpty(Operation *symbol, Operation *from) {
823 return symbolKnownUseEmptyImpl(symbol, from);
824 }
symbolKnownUseEmpty(StringAttr symbol,Region * from)825 bool SymbolTable::symbolKnownUseEmpty(StringAttr symbol, Region *from) {
826 return symbolKnownUseEmptyImpl(symbol, from);
827 }
symbolKnownUseEmpty(Operation * symbol,Region * from)828 bool SymbolTable::symbolKnownUseEmpty(Operation *symbol, Region *from) {
829 return symbolKnownUseEmptyImpl(symbol, from);
830 }
831
832 //===----------------------------------------------------------------------===//
833 // SymbolTable::replaceAllSymbolUses
834
835 /// Generates a new symbol reference attribute with a new leaf reference.
generateNewRefAttr(SymbolRefAttr oldAttr,FlatSymbolRefAttr newLeafAttr)836 static SymbolRefAttr generateNewRefAttr(SymbolRefAttr oldAttr,
837 FlatSymbolRefAttr newLeafAttr) {
838 if (oldAttr.isa<FlatSymbolRefAttr>())
839 return newLeafAttr;
840 auto nestedRefs = llvm::to_vector<2>(oldAttr.getNestedReferences());
841 nestedRefs.back() = newLeafAttr;
842 return SymbolRefAttr::get(oldAttr.getRootReference(), nestedRefs);
843 }
844
845 /// The implementation of SymbolTable::replaceAllSymbolUses below.
846 template <typename SymbolT, typename IRUnitT>
847 static LogicalResult
replaceAllSymbolUsesImpl(SymbolT symbol,StringAttr newSymbol,IRUnitT * limit)848 replaceAllSymbolUsesImpl(SymbolT symbol, StringAttr newSymbol, IRUnitT *limit) {
849 // Generate a new attribute to replace the given attribute.
850 FlatSymbolRefAttr newLeafAttr = FlatSymbolRefAttr::get(newSymbol);
851 for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) {
852 SymbolRefAttr oldAttr = scope.symbol;
853 SymbolRefAttr newAttr = generateNewRefAttr(scope.symbol, newLeafAttr);
854
855 auto walkFn = [&](Operation *op) -> Optional<WalkResult> {
856 auto remapAttrFn = [&](Attribute attr) -> Attribute {
857 if (attr == oldAttr)
858 return newAttr;
859 // Handle prefix matches.
860 if (SymbolRefAttr symRef = attr.dyn_cast<SymbolRefAttr>()) {
861 if (isReferencePrefixOf(oldAttr, symRef)) {
862 auto oldNestedRefs = oldAttr.getNestedReferences();
863 auto nestedRefs = symRef.getNestedReferences();
864 if (oldNestedRefs.empty())
865 return SymbolRefAttr::get(newSymbol, nestedRefs);
866
867 auto newNestedRefs = llvm::to_vector<4>(nestedRefs);
868 newNestedRefs[oldNestedRefs.size() - 1] = newLeafAttr;
869 return SymbolRefAttr::get(symRef.getRootReference(), newNestedRefs);
870 }
871 }
872 return attr;
873 };
874 // Generate a new attribute dictionary by replacing references to the old
875 // symbol.
876 auto newDict = op->getAttrDictionary().replaceSubElements(remapAttrFn);
877 if (!newDict)
878 return WalkResult::interrupt();
879
880 op->setAttrs(newDict.template cast<DictionaryAttr>());
881 return WalkResult::advance();
882 };
883 if (!scope.walkSymbolTable(walkFn))
884 return failure();
885 }
886 return success();
887 }
888
889 /// Attempt to replace all uses of the given symbol 'oldSymbol' with the
890 /// provided symbol 'newSymbol' that are nested within the given operation
891 /// 'from'. This does not traverse into any nested symbol tables. If there are
892 /// any unknown operations that may potentially be symbol tables, no uses are
893 /// replaced and failure is returned.
replaceAllSymbolUses(StringAttr oldSymbol,StringAttr newSymbol,Operation * from)894 LogicalResult SymbolTable::replaceAllSymbolUses(StringAttr oldSymbol,
895 StringAttr newSymbol,
896 Operation *from) {
897 return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from);
898 }
replaceAllSymbolUses(Operation * oldSymbol,StringAttr newSymbol,Operation * from)899 LogicalResult SymbolTable::replaceAllSymbolUses(Operation *oldSymbol,
900 StringAttr newSymbol,
901 Operation *from) {
902 return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from);
903 }
replaceAllSymbolUses(StringAttr oldSymbol,StringAttr newSymbol,Region * from)904 LogicalResult SymbolTable::replaceAllSymbolUses(StringAttr oldSymbol,
905 StringAttr newSymbol,
906 Region *from) {
907 return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from);
908 }
replaceAllSymbolUses(Operation * oldSymbol,StringAttr newSymbol,Region * from)909 LogicalResult SymbolTable::replaceAllSymbolUses(Operation *oldSymbol,
910 StringAttr newSymbol,
911 Region *from) {
912 return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from);
913 }
914
915 //===----------------------------------------------------------------------===//
916 // SymbolTableCollection
917 //===----------------------------------------------------------------------===//
918
lookupSymbolIn(Operation * symbolTableOp,StringAttr symbol)919 Operation *SymbolTableCollection::lookupSymbolIn(Operation *symbolTableOp,
920 StringAttr symbol) {
921 return getSymbolTable(symbolTableOp).lookup(symbol);
922 }
lookupSymbolIn(Operation * symbolTableOp,SymbolRefAttr name)923 Operation *SymbolTableCollection::lookupSymbolIn(Operation *symbolTableOp,
924 SymbolRefAttr name) {
925 SmallVector<Operation *, 4> symbols;
926 if (failed(lookupSymbolIn(symbolTableOp, name, symbols)))
927 return nullptr;
928 return symbols.back();
929 }
930 /// A variant of 'lookupSymbolIn' that returns all of the symbols referenced by
931 /// a given SymbolRefAttr. Returns failure if any of the nested references could
932 /// not be resolved.
933 LogicalResult
lookupSymbolIn(Operation * symbolTableOp,SymbolRefAttr name,SmallVectorImpl<Operation * > & symbols)934 SymbolTableCollection::lookupSymbolIn(Operation *symbolTableOp,
935 SymbolRefAttr name,
936 SmallVectorImpl<Operation *> &symbols) {
937 auto lookupFn = [this](Operation *symbolTableOp, StringAttr symbol) {
938 return lookupSymbolIn(symbolTableOp, symbol);
939 };
940 return lookupSymbolInImpl(symbolTableOp, name, symbols, lookupFn);
941 }
942
943 /// Returns the operation registered with the given symbol name within the
944 /// closest parent operation of, or including, 'from' with the
945 /// 'OpTrait::SymbolTable' trait. Returns nullptr if no valid symbol was
946 /// found.
lookupNearestSymbolFrom(Operation * from,StringAttr symbol)947 Operation *SymbolTableCollection::lookupNearestSymbolFrom(Operation *from,
948 StringAttr symbol) {
949 Operation *symbolTableOp = SymbolTable::getNearestSymbolTable(from);
950 return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr;
951 }
952 Operation *
lookupNearestSymbolFrom(Operation * from,SymbolRefAttr symbol)953 SymbolTableCollection::lookupNearestSymbolFrom(Operation *from,
954 SymbolRefAttr symbol) {
955 Operation *symbolTableOp = SymbolTable::getNearestSymbolTable(from);
956 return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr;
957 }
958
959 /// Lookup, or create, a symbol table for an operation.
getSymbolTable(Operation * op)960 SymbolTable &SymbolTableCollection::getSymbolTable(Operation *op) {
961 auto it = symbolTables.try_emplace(op, nullptr);
962 if (it.second)
963 it.first->second = std::make_unique<SymbolTable>(op);
964 return *it.first->second;
965 }
966
967 //===----------------------------------------------------------------------===//
968 // SymbolUserMap
969 //===----------------------------------------------------------------------===//
970
SymbolUserMap(SymbolTableCollection & symbolTable,Operation * symbolTableOp)971 SymbolUserMap::SymbolUserMap(SymbolTableCollection &symbolTable,
972 Operation *symbolTableOp)
973 : symbolTable(symbolTable) {
974 // Walk each of the symbol tables looking for discardable callgraph nodes.
975 SmallVector<Operation *> symbols;
976 auto walkFn = [&](Operation *symbolTableOp, bool allUsesVisible) {
977 for (Operation &nestedOp : symbolTableOp->getRegion(0).getOps()) {
978 auto symbolUses = SymbolTable::getSymbolUses(&nestedOp);
979 assert(symbolUses && "expected uses to be valid");
980
981 for (const SymbolTable::SymbolUse &use : *symbolUses) {
982 symbols.clear();
983 (void)symbolTable.lookupSymbolIn(symbolTableOp, use.getSymbolRef(),
984 symbols);
985 for (Operation *symbolOp : symbols)
986 symbolToUsers[symbolOp].insert(use.getUser());
987 }
988 }
989 };
990 // We just set `allSymUsesVisible` to false here because it isn't necessary
991 // for building the user map.
992 SymbolTable::walkSymbolTables(symbolTableOp, /*allSymUsesVisible=*/false,
993 walkFn);
994 }
995
replaceAllUsesWith(Operation * symbol,StringAttr newSymbolName)996 void SymbolUserMap::replaceAllUsesWith(Operation *symbol,
997 StringAttr newSymbolName) {
998 auto it = symbolToUsers.find(symbol);
999 if (it == symbolToUsers.end())
1000 return;
1001
1002 // Replace the uses within the users of `symbol`.
1003 for (Operation *user : it->second)
1004 (void)SymbolTable::replaceAllSymbolUses(symbol, newSymbolName, user);
1005
1006 // Move the current users of `symbol` to the new symbol if it is in the
1007 // symbol table.
1008 Operation *newSymbol =
1009 symbolTable.lookupSymbolIn(symbol->getParentOp(), newSymbolName);
1010 if (newSymbol != symbol) {
1011 // Transfer over the users to the new symbol. The reference to the old one
1012 // is fetched again as the iterator is invalidated during the insertion.
1013 auto newIt = symbolToUsers.try_emplace(newSymbol, SetVector<Operation *>{});
1014 auto oldIt = symbolToUsers.find(symbol);
1015 assert(oldIt != symbolToUsers.end() && "missing old users list");
1016 if (newIt.second)
1017 newIt.first->second = std::move(oldIt->second);
1018 else
1019 newIt.first->second.set_union(oldIt->second);
1020 symbolToUsers.erase(oldIt);
1021 }
1022 }
1023
1024 //===----------------------------------------------------------------------===//
1025 // Visibility parsing implementation.
1026 //===----------------------------------------------------------------------===//
1027
parseOptionalVisibilityKeyword(OpAsmParser & parser,NamedAttrList & attrs)1028 ParseResult impl::parseOptionalVisibilityKeyword(OpAsmParser &parser,
1029 NamedAttrList &attrs) {
1030 StringRef visibility;
1031 if (parser.parseOptionalKeyword(&visibility, {"public", "private", "nested"}))
1032 return failure();
1033
1034 StringAttr visibilityAttr = parser.getBuilder().getStringAttr(visibility);
1035 attrs.push_back(parser.getBuilder().getNamedAttr(
1036 SymbolTable::getVisibilityAttrName(), visibilityAttr));
1037 return success();
1038 }
1039
1040 //===----------------------------------------------------------------------===//
1041 // Symbol Interfaces
1042 //===----------------------------------------------------------------------===//
1043
1044 /// Include the generated symbol interfaces.
1045 #include "mlir/IR/SymbolInterfaces.cpp.inc"
1046