1 //===- SymbolTable.cpp - MLIR Symbol Table Class --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/IR/SymbolTable.h" 10 #include "mlir/IR/Builders.h" 11 #include "mlir/IR/OpImplementation.h" 12 #include "llvm/ADT/SetVector.h" 13 #include "llvm/ADT/SmallPtrSet.h" 14 #include "llvm/ADT/SmallString.h" 15 #include "llvm/ADT/StringSwitch.h" 16 17 using namespace mlir; 18 19 /// Return true if the given operation is unknown and may potentially define a 20 /// symbol table. 21 static bool isPotentiallyUnknownSymbolTable(Operation *op) { 22 return op->getNumRegions() == 1 && !op->getDialect(); 23 } 24 25 /// Returns the string name of the given symbol, or None if this is not a 26 /// symbol. 27 static Optional<StringRef> getNameIfSymbol(Operation *symbol) { 28 auto nameAttr = 29 symbol->getAttrOfType<StringAttr>(SymbolTable::getSymbolAttrName()); 30 return nameAttr ? nameAttr.getValue() : Optional<StringRef>(); 31 } 32 static Optional<StringRef> getNameIfSymbol(Operation *symbol, 33 Identifier symbolAttrNameId) { 34 auto nameAttr = symbol->getAttrOfType<StringAttr>(symbolAttrNameId); 35 return nameAttr ? nameAttr.getValue() : Optional<StringRef>(); 36 } 37 38 /// Computes the nested symbol reference attribute for the symbol 'symbolName' 39 /// that are usable within the symbol table operations from 'symbol' as far up 40 /// to the given operation 'within', where 'within' is an ancestor of 'symbol'. 41 /// Returns success if all references up to 'within' could be computed. 42 static LogicalResult 43 collectValidReferencesFor(Operation *symbol, StringRef symbolName, 44 Operation *within, 45 SmallVectorImpl<SymbolRefAttr> &results) { 46 assert(within->isAncestor(symbol) && "expected 'within' to be an ancestor"); 47 MLIRContext *ctx = symbol->getContext(); 48 49 auto leafRef = FlatSymbolRefAttr::get(ctx, symbolName); 50 results.push_back(leafRef); 51 52 // Early exit for when 'within' is the parent of 'symbol'. 53 Operation *symbolTableOp = symbol->getParentOp(); 54 if (within == symbolTableOp) 55 return success(); 56 57 // Collect references until 'symbolTableOp' reaches 'within'. 58 SmallVector<FlatSymbolRefAttr, 1> nestedRefs(1, leafRef); 59 Identifier symbolNameId = 60 Identifier::get(SymbolTable::getSymbolAttrName(), ctx); 61 do { 62 // Each parent of 'symbol' should define a symbol table. 63 if (!symbolTableOp->hasTrait<OpTrait::SymbolTable>()) 64 return failure(); 65 // Each parent of 'symbol' should also be a symbol. 66 Optional<StringRef> symbolTableName = 67 getNameIfSymbol(symbolTableOp, symbolNameId); 68 if (!symbolTableName) 69 return failure(); 70 results.push_back(SymbolRefAttr::get(ctx, *symbolTableName, nestedRefs)); 71 72 symbolTableOp = symbolTableOp->getParentOp(); 73 if (symbolTableOp == within) 74 break; 75 nestedRefs.insert(nestedRefs.begin(), 76 FlatSymbolRefAttr::get(ctx, *symbolTableName)); 77 } while (true); 78 return success(); 79 } 80 81 /// Walk all of the operations within the given set of regions, without 82 /// traversing into any nested symbol tables. Stops walking if the result of the 83 /// callback is anything other than `WalkResult::advance`. 84 static Optional<WalkResult> 85 walkSymbolTable(MutableArrayRef<Region> regions, 86 function_ref<Optional<WalkResult>(Operation *)> callback) { 87 SmallVector<Region *, 1> worklist(llvm::make_pointer_range(regions)); 88 while (!worklist.empty()) { 89 for (Operation &op : worklist.pop_back_val()->getOps()) { 90 Optional<WalkResult> result = callback(&op); 91 if (result != WalkResult::advance()) 92 return result; 93 94 // If this op defines a new symbol table scope, we can't traverse. Any 95 // symbol references nested within 'op' are different semantically. 96 if (!op.hasTrait<OpTrait::SymbolTable>()) { 97 for (Region ®ion : op.getRegions()) 98 worklist.push_back(®ion); 99 } 100 } 101 } 102 return WalkResult::advance(); 103 } 104 105 //===----------------------------------------------------------------------===// 106 // SymbolTable 107 //===----------------------------------------------------------------------===// 108 109 /// Build a symbol table with the symbols within the given operation. 110 SymbolTable::SymbolTable(Operation *symbolTableOp) 111 : symbolTableOp(symbolTableOp) { 112 assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>() && 113 "expected operation to have SymbolTable trait"); 114 assert(symbolTableOp->getNumRegions() == 1 && 115 "expected operation to have a single region"); 116 assert(llvm::hasSingleElement(symbolTableOp->getRegion(0)) && 117 "expected operation to have a single block"); 118 119 Identifier symbolNameId = Identifier::get(SymbolTable::getSymbolAttrName(), 120 symbolTableOp->getContext()); 121 for (auto &op : symbolTableOp->getRegion(0).front()) { 122 Optional<StringRef> name = getNameIfSymbol(&op, symbolNameId); 123 if (!name) 124 continue; 125 126 auto inserted = symbolTable.insert({*name, &op}); 127 (void)inserted; 128 assert(inserted.second && 129 "expected region to contain uniquely named symbol operations"); 130 } 131 } 132 133 /// Look up a symbol with the specified name, returning null if no such name 134 /// exists. Names never include the @ on them. 135 Operation *SymbolTable::lookup(StringRef name) const { 136 return symbolTable.lookup(name); 137 } 138 139 /// Erase the given symbol from the table. 140 void SymbolTable::erase(Operation *symbol) { 141 Optional<StringRef> name = getNameIfSymbol(symbol); 142 assert(name && "expected valid 'name' attribute"); 143 assert(symbol->getParentOp() == symbolTableOp && 144 "expected this operation to be inside of the operation with this " 145 "SymbolTable"); 146 147 auto it = symbolTable.find(*name); 148 if (it != symbolTable.end() && it->second == symbol) { 149 symbolTable.erase(it); 150 symbol->erase(); 151 } 152 } 153 154 // TODO: Consider if this should be renamed to something like insertOrUpdate 155 /// Insert a new symbol into the table and associated operation if not already 156 /// there and rename it as necessary to avoid collisions. 157 void SymbolTable::insert(Operation *symbol, Block::iterator insertPt) { 158 // The symbol cannot be the child of another op and must be the child of the 159 // symbolTableOp after this. 160 // 161 // TODO: consider if SymbolTable's constructor should behave the same. 162 if (!symbol->getParentOp()) { 163 auto &body = symbolTableOp->getRegion(0).front(); 164 if (insertPt == Block::iterator()) { 165 insertPt = Block::iterator(body.end()); 166 } else { 167 assert((insertPt == body.end() || 168 insertPt->getParentOp() == symbolTableOp) && 169 "expected insertPt to be in the associated module operation"); 170 } 171 // Insert before the terminator, if any. 172 if (insertPt == Block::iterator(body.end()) && !body.empty() && 173 std::prev(body.end())->hasTrait<OpTrait::IsTerminator>()) 174 insertPt = std::prev(body.end()); 175 176 body.getOperations().insert(insertPt, symbol); 177 } 178 assert(symbol->getParentOp() == symbolTableOp && 179 "symbol is already inserted in another op"); 180 181 // Add this symbol to the symbol table, uniquing the name if a conflict is 182 // detected. 183 StringRef name = getSymbolName(symbol); 184 if (symbolTable.insert({name, symbol}).second) 185 return; 186 // If the symbol was already in the table, also return. 187 if (symbolTable.lookup(name) == symbol) 188 return; 189 // If a conflict was detected, then the symbol will not have been added to 190 // the symbol table. Try suffixes until we get to a unique name that works. 191 SmallString<128> nameBuffer(name); 192 unsigned originalLength = nameBuffer.size(); 193 194 // Iteratively try suffixes until we find one that isn't used. 195 do { 196 nameBuffer.resize(originalLength); 197 nameBuffer += '_'; 198 nameBuffer += std::to_string(uniquingCounter++); 199 } while (!symbolTable.insert({nameBuffer, symbol}).second); 200 setSymbolName(symbol, nameBuffer); 201 } 202 203 /// Returns the name of the given symbol operation. 204 StringRef SymbolTable::getSymbolName(Operation *symbol) { 205 Optional<StringRef> name = getNameIfSymbol(symbol); 206 assert(name && "expected valid symbol name"); 207 return *name; 208 } 209 /// Sets the name of the given symbol operation. 210 void SymbolTable::setSymbolName(Operation *symbol, StringRef name) { 211 symbol->setAttr(getSymbolAttrName(), 212 StringAttr::get(symbol->getContext(), name)); 213 } 214 215 /// Returns the visibility of the given symbol operation. 216 SymbolTable::Visibility SymbolTable::getSymbolVisibility(Operation *symbol) { 217 // If the attribute doesn't exist, assume public. 218 StringAttr vis = symbol->getAttrOfType<StringAttr>(getVisibilityAttrName()); 219 if (!vis) 220 return Visibility::Public; 221 222 // Otherwise, switch on the string value. 223 return StringSwitch<Visibility>(vis.getValue()) 224 .Case("private", Visibility::Private) 225 .Case("nested", Visibility::Nested) 226 .Case("public", Visibility::Public); 227 } 228 /// Sets the visibility of the given symbol operation. 229 void SymbolTable::setSymbolVisibility(Operation *symbol, Visibility vis) { 230 MLIRContext *ctx = symbol->getContext(); 231 232 // If the visibility is public, just drop the attribute as this is the 233 // default. 234 if (vis == Visibility::Public) { 235 symbol->removeAttr(Identifier::get(getVisibilityAttrName(), ctx)); 236 return; 237 } 238 239 // Otherwise, update the attribute. 240 assert((vis == Visibility::Private || vis == Visibility::Nested) && 241 "unknown symbol visibility kind"); 242 243 StringRef visName = vis == Visibility::Private ? "private" : "nested"; 244 symbol->setAttr(getVisibilityAttrName(), StringAttr::get(ctx, visName)); 245 } 246 247 /// Returns the nearest symbol table from a given operation `from`. Returns 248 /// nullptr if no valid parent symbol table could be found. 249 Operation *SymbolTable::getNearestSymbolTable(Operation *from) { 250 assert(from && "expected valid operation"); 251 if (isPotentiallyUnknownSymbolTable(from)) 252 return nullptr; 253 254 while (!from->hasTrait<OpTrait::SymbolTable>()) { 255 from = from->getParentOp(); 256 257 // Check that this is a valid op and isn't an unknown symbol table. 258 if (!from || isPotentiallyUnknownSymbolTable(from)) 259 return nullptr; 260 } 261 return from; 262 } 263 264 /// Walks all symbol table operations nested within, and including, `op`. For 265 /// each symbol table operation, the provided callback is invoked with the op 266 /// and a boolean signifying if the symbols within that symbol table can be 267 /// treated as if all uses are visible. `allSymUsesVisible` identifies whether 268 /// all of the symbol uses of symbols within `op` are visible. 269 void SymbolTable::walkSymbolTables( 270 Operation *op, bool allSymUsesVisible, 271 function_ref<void(Operation *, bool)> callback) { 272 bool isSymbolTable = op->hasTrait<OpTrait::SymbolTable>(); 273 if (isSymbolTable) { 274 SymbolOpInterface symbol = dyn_cast<SymbolOpInterface>(op); 275 allSymUsesVisible |= !symbol || symbol.isPrivate(); 276 } else { 277 // Otherwise if 'op' is not a symbol table, any nested symbols are 278 // guaranteed to be hidden. 279 allSymUsesVisible = true; 280 } 281 282 for (Region ®ion : op->getRegions()) 283 for (Block &block : region) 284 for (Operation &nestedOp : block) 285 walkSymbolTables(&nestedOp, allSymUsesVisible, callback); 286 287 // If 'op' had the symbol table trait, visit it after any nested symbol 288 // tables. 289 if (isSymbolTable) 290 callback(op, allSymUsesVisible); 291 } 292 293 /// Returns the operation registered with the given symbol name with the 294 /// regions of 'symbolTableOp'. 'symbolTableOp' is required to be an operation 295 /// with the 'OpTrait::SymbolTable' trait. Returns nullptr if no valid symbol 296 /// was found. 297 Operation *SymbolTable::lookupSymbolIn(Operation *symbolTableOp, 298 StringRef symbol) { 299 assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>()); 300 Region ®ion = symbolTableOp->getRegion(0); 301 if (region.empty()) 302 return nullptr; 303 304 // Look for a symbol with the given name. 305 Identifier symbolNameId = Identifier::get(SymbolTable::getSymbolAttrName(), 306 symbolTableOp->getContext()); 307 for (auto &op : region.front()) 308 if (getNameIfSymbol(&op, symbolNameId) == symbol) 309 return &op; 310 return nullptr; 311 } 312 Operation *SymbolTable::lookupSymbolIn(Operation *symbolTableOp, 313 SymbolRefAttr symbol) { 314 SmallVector<Operation *, 4> resolvedSymbols; 315 if (failed(lookupSymbolIn(symbolTableOp, symbol, resolvedSymbols))) 316 return nullptr; 317 return resolvedSymbols.back(); 318 } 319 320 /// Internal implementation of `lookupSymbolIn` that allows for specialized 321 /// implementations of the lookup function. 322 static LogicalResult lookupSymbolInImpl( 323 Operation *symbolTableOp, SymbolRefAttr symbol, 324 SmallVectorImpl<Operation *> &symbols, 325 function_ref<Operation *(Operation *, StringRef)> lookupSymbolFn) { 326 assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>()); 327 328 // Lookup the root reference for this symbol. 329 symbolTableOp = lookupSymbolFn(symbolTableOp, symbol.getRootReference()); 330 if (!symbolTableOp) 331 return failure(); 332 symbols.push_back(symbolTableOp); 333 334 // If there are no nested references, just return the root symbol directly. 335 ArrayRef<FlatSymbolRefAttr> nestedRefs = symbol.getNestedReferences(); 336 if (nestedRefs.empty()) 337 return success(); 338 339 // Verify that the root is also a symbol table. 340 if (!symbolTableOp->hasTrait<OpTrait::SymbolTable>()) 341 return failure(); 342 343 // Otherwise, lookup each of the nested non-leaf references and ensure that 344 // each corresponds to a valid symbol table. 345 for (FlatSymbolRefAttr ref : nestedRefs.drop_back()) { 346 symbolTableOp = lookupSymbolFn(symbolTableOp, ref.getValue()); 347 if (!symbolTableOp || !symbolTableOp->hasTrait<OpTrait::SymbolTable>()) 348 return failure(); 349 symbols.push_back(symbolTableOp); 350 } 351 symbols.push_back(lookupSymbolFn(symbolTableOp, symbol.getLeafReference())); 352 return success(symbols.back()); 353 } 354 355 LogicalResult 356 SymbolTable::lookupSymbolIn(Operation *symbolTableOp, SymbolRefAttr symbol, 357 SmallVectorImpl<Operation *> &symbols) { 358 auto lookupFn = [](Operation *symbolTableOp, StringRef symbol) { 359 return lookupSymbolIn(symbolTableOp, symbol); 360 }; 361 return lookupSymbolInImpl(symbolTableOp, symbol, symbols, lookupFn); 362 } 363 364 /// Returns the operation registered with the given symbol name within the 365 /// closes parent operation with the 'OpTrait::SymbolTable' trait. Returns 366 /// nullptr if no valid symbol was found. 367 Operation *SymbolTable::lookupNearestSymbolFrom(Operation *from, 368 StringRef symbol) { 369 Operation *symbolTableOp = getNearestSymbolTable(from); 370 return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr; 371 } 372 Operation *SymbolTable::lookupNearestSymbolFrom(Operation *from, 373 SymbolRefAttr symbol) { 374 Operation *symbolTableOp = getNearestSymbolTable(from); 375 return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr; 376 } 377 378 raw_ostream &mlir::operator<<(raw_ostream &os, 379 SymbolTable::Visibility visibility) { 380 switch (visibility) { 381 case SymbolTable::Visibility::Public: 382 return os << "public"; 383 case SymbolTable::Visibility::Private: 384 return os << "private"; 385 case SymbolTable::Visibility::Nested: 386 return os << "nested"; 387 } 388 llvm_unreachable("Unexpected visibility"); 389 } 390 391 //===----------------------------------------------------------------------===// 392 // SymbolTable Trait Types 393 //===----------------------------------------------------------------------===// 394 395 LogicalResult detail::verifySymbolTable(Operation *op) { 396 if (op->getNumRegions() != 1) 397 return op->emitOpError() 398 << "Operations with a 'SymbolTable' must have exactly one region"; 399 if (!llvm::hasSingleElement(op->getRegion(0))) 400 return op->emitOpError() 401 << "Operations with a 'SymbolTable' must have exactly one block"; 402 403 // Check that all symbols are uniquely named within child regions. 404 DenseMap<Attribute, Location> nameToOrigLoc; 405 for (auto &block : op->getRegion(0)) { 406 for (auto &op : block) { 407 // Check for a symbol name attribute. 408 auto nameAttr = 409 op.getAttrOfType<StringAttr>(mlir::SymbolTable::getSymbolAttrName()); 410 if (!nameAttr) 411 continue; 412 413 // Try to insert this symbol into the table. 414 auto it = nameToOrigLoc.try_emplace(nameAttr, op.getLoc()); 415 if (!it.second) 416 return op.emitError() 417 .append("redefinition of symbol named '", nameAttr.getValue(), "'") 418 .attachNote(it.first->second) 419 .append("see existing symbol definition here"); 420 } 421 } 422 423 // Verify any nested symbol user operations. 424 SymbolTableCollection symbolTable; 425 auto verifySymbolUserFn = [&](Operation *op) -> Optional<WalkResult> { 426 if (SymbolUserOpInterface user = dyn_cast<SymbolUserOpInterface>(op)) 427 return WalkResult(user.verifySymbolUses(symbolTable)); 428 return WalkResult::advance(); 429 }; 430 431 Optional<WalkResult> result = 432 walkSymbolTable(op->getRegions(), verifySymbolUserFn); 433 return success(result && !result->wasInterrupted()); 434 } 435 436 LogicalResult detail::verifySymbol(Operation *op) { 437 // Verify the name attribute. 438 if (!op->getAttrOfType<StringAttr>(mlir::SymbolTable::getSymbolAttrName())) 439 return op->emitOpError() << "requires string attribute '" 440 << mlir::SymbolTable::getSymbolAttrName() << "'"; 441 442 // Verify the visibility attribute. 443 if (Attribute vis = op->getAttr(mlir::SymbolTable::getVisibilityAttrName())) { 444 StringAttr visStrAttr = vis.dyn_cast<StringAttr>(); 445 if (!visStrAttr) 446 return op->emitOpError() << "requires visibility attribute '" 447 << mlir::SymbolTable::getVisibilityAttrName() 448 << "' to be a string attribute, but got " << vis; 449 450 if (!llvm::is_contained(ArrayRef<StringRef>{"public", "private", "nested"}, 451 visStrAttr.getValue())) 452 return op->emitOpError() 453 << "visibility expected to be one of [\"public\", \"private\", " 454 "\"nested\"], but got " 455 << visStrAttr; 456 } 457 return success(); 458 } 459 460 //===----------------------------------------------------------------------===// 461 // Symbol Use Lists 462 //===----------------------------------------------------------------------===// 463 464 /// Walk all of the symbol references within the given operation, invoking the 465 /// provided callback for each found use. The callbacks takes as arguments: the 466 /// use of the symbol, and the nested access chain to the attribute within the 467 /// operation dictionary. An access chain is a set of indices into nested 468 /// container attributes. For example, a symbol use in an attribute dictionary 469 /// that looks like the following: 470 /// 471 /// {use = [{other_attr, @symbol}]} 472 /// 473 /// May have the following access chain: 474 /// 475 /// [0, 0, 1] 476 /// 477 static WalkResult walkSymbolRefs( 478 Operation *op, 479 function_ref<WalkResult(SymbolTable::SymbolUse, ArrayRef<int>)> callback) { 480 // Check to see if the operation has any attributes. 481 DictionaryAttr attrDict = op->getAttrDictionary(); 482 if (attrDict.empty()) 483 return WalkResult::advance(); 484 485 // A worklist of a container attribute and the current index into the held 486 // attribute list. 487 SmallVector<Attribute, 1> attrWorklist(1, attrDict); 488 SmallVector<int, 1> curAccessChain(1, /*Value=*/-1); 489 490 // Process the symbol references within the given nested attribute range. 491 auto processAttrs = [&](int &index, auto attrRange) -> WalkResult { 492 for (Attribute attr : llvm::drop_begin(attrRange, index)) { 493 /// Check for a nested container attribute, these will also need to be 494 /// walked. 495 if (attr.isa<ArrayAttr, DictionaryAttr>()) { 496 attrWorklist.push_back(attr); 497 curAccessChain.push_back(-1); 498 return WalkResult::advance(); 499 } 500 501 // Invoke the provided callback if we find a symbol use and check for a 502 // requested interrupt. 503 if (auto symbolRef = attr.dyn_cast<SymbolRefAttr>()) 504 if (callback({op, symbolRef}, curAccessChain).wasInterrupted()) 505 return WalkResult::interrupt(); 506 507 // Make sure to keep the index counter in sync. 508 ++index; 509 } 510 511 // Pop this container attribute from the worklist. 512 attrWorklist.pop_back(); 513 curAccessChain.pop_back(); 514 return WalkResult::advance(); 515 }; 516 517 WalkResult result = WalkResult::advance(); 518 do { 519 Attribute attr = attrWorklist.back(); 520 int &index = curAccessChain.back(); 521 ++index; 522 523 // Process the given attribute, which is guaranteed to be a container. 524 if (auto dict = attr.dyn_cast<DictionaryAttr>()) 525 result = processAttrs(index, make_second_range(dict.getValue())); 526 else 527 result = processAttrs(index, attr.cast<ArrayAttr>().getValue()); 528 } while (!attrWorklist.empty() && !result.wasInterrupted()); 529 return result; 530 } 531 532 /// Walk all of the uses, for any symbol, that are nested within the given 533 /// regions, invoking the provided callback for each. This does not traverse 534 /// into any nested symbol tables. 535 static Optional<WalkResult> walkSymbolUses( 536 MutableArrayRef<Region> regions, 537 function_ref<WalkResult(SymbolTable::SymbolUse, ArrayRef<int>)> callback) { 538 return walkSymbolTable(regions, [&](Operation *op) -> Optional<WalkResult> { 539 // Check that this isn't a potentially unknown symbol table. 540 if (isPotentiallyUnknownSymbolTable(op)) 541 return llvm::None; 542 543 return walkSymbolRefs(op, callback); 544 }); 545 } 546 /// Walk all of the uses, for any symbol, that are nested within the given 547 /// operation 'from', invoking the provided callback for each. This does not 548 /// traverse into any nested symbol tables. 549 static Optional<WalkResult> walkSymbolUses( 550 Operation *from, 551 function_ref<WalkResult(SymbolTable::SymbolUse, ArrayRef<int>)> callback) { 552 // If this operation has regions, and it, as well as its dialect, isn't 553 // registered then conservatively fail. The operation may define a 554 // symbol table, so we can't opaquely know if we should traverse to find 555 // nested uses. 556 if (isPotentiallyUnknownSymbolTable(from)) 557 return llvm::None; 558 559 // Walk the uses on this operation. 560 if (walkSymbolRefs(from, callback).wasInterrupted()) 561 return WalkResult::interrupt(); 562 563 // Only recurse if this operation is not a symbol table. A symbol table 564 // defines a new scope, so we can't walk the attributes from within the symbol 565 // table op. 566 if (!from->hasTrait<OpTrait::SymbolTable>()) 567 return walkSymbolUses(from->getRegions(), callback); 568 return WalkResult::advance(); 569 } 570 571 namespace { 572 /// This class represents a single symbol scope. A symbol scope represents the 573 /// set of operations nested within a symbol table that may reference symbols 574 /// within that table. A symbol scope does not contain the symbol table 575 /// operation itself, just its contained operations. A scope ends at leaf 576 /// operations or another symbol table operation. 577 struct SymbolScope { 578 /// Walk the symbol uses within this scope, invoking the given callback. 579 /// This variant is used when the callback type matches that expected by 580 /// 'walkSymbolUses'. 581 template <typename CallbackT, 582 typename std::enable_if_t<!std::is_same< 583 typename llvm::function_traits<CallbackT>::result_t, 584 void>::value> * = nullptr> 585 Optional<WalkResult> walk(CallbackT cback) { 586 if (Region *region = limit.dyn_cast<Region *>()) 587 return walkSymbolUses(*region, cback); 588 return walkSymbolUses(limit.get<Operation *>(), cback); 589 } 590 /// This variant is used when the callback type matches a stripped down type: 591 /// void(SymbolTable::SymbolUse use) 592 template <typename CallbackT, 593 typename std::enable_if_t<std::is_same< 594 typename llvm::function_traits<CallbackT>::result_t, 595 void>::value> * = nullptr> 596 Optional<WalkResult> walk(CallbackT cback) { 597 return walk([=](SymbolTable::SymbolUse use, ArrayRef<int>) { 598 return cback(use), WalkResult::advance(); 599 }); 600 } 601 602 /// The representation of the symbol within this scope. 603 SymbolRefAttr symbol; 604 605 /// The IR unit representing this scope. 606 llvm::PointerUnion<Operation *, Region *> limit; 607 }; 608 } // end anonymous namespace 609 610 /// Collect all of the symbol scopes from 'symbol' to (inclusive) 'limit'. 611 static SmallVector<SymbolScope, 2> collectSymbolScopes(Operation *symbol, 612 Operation *limit) { 613 StringRef symName = SymbolTable::getSymbolName(symbol); 614 assert(!symbol->hasTrait<OpTrait::SymbolTable>() || symbol != limit); 615 616 // Compute the ancestors of 'limit'. 617 SetVector<Operation *, SmallVector<Operation *, 4>, 618 SmallPtrSet<Operation *, 4>> 619 limitAncestors; 620 Operation *limitAncestor = limit; 621 do { 622 // Check to see if 'symbol' is an ancestor of 'limit'. 623 if (limitAncestor == symbol) { 624 // Check that the nearest symbol table is 'symbol's parent. SymbolRefAttr 625 // doesn't support parent references. 626 if (SymbolTable::getNearestSymbolTable(limit->getParentOp()) == 627 symbol->getParentOp()) 628 return {{SymbolRefAttr::get(symbol->getContext(), symName), limit}}; 629 return {}; 630 } 631 632 limitAncestors.insert(limitAncestor); 633 } while ((limitAncestor = limitAncestor->getParentOp())); 634 635 // Try to find the first ancestor of 'symbol' that is an ancestor of 'limit'. 636 Operation *commonAncestor = symbol->getParentOp(); 637 do { 638 if (limitAncestors.count(commonAncestor)) 639 break; 640 } while ((commonAncestor = commonAncestor->getParentOp())); 641 assert(commonAncestor && "'limit' and 'symbol' have no common ancestor"); 642 643 // Compute the set of valid nested references for 'symbol' as far up to the 644 // common ancestor as possible. 645 SmallVector<SymbolRefAttr, 2> references; 646 bool collectedAllReferences = succeeded( 647 collectValidReferencesFor(symbol, symName, commonAncestor, references)); 648 649 // Handle the case where the common ancestor is 'limit'. 650 if (commonAncestor == limit) { 651 SmallVector<SymbolScope, 2> scopes; 652 653 // Walk each of the ancestors of 'symbol', calling the compute function for 654 // each one. 655 Operation *limitIt = symbol->getParentOp(); 656 for (size_t i = 0, e = references.size(); i != e; 657 ++i, limitIt = limitIt->getParentOp()) { 658 assert(limitIt->hasTrait<OpTrait::SymbolTable>()); 659 scopes.push_back({references[i], &limitIt->getRegion(0)}); 660 } 661 return scopes; 662 } 663 664 // Otherwise, we just need the symbol reference for 'symbol' that will be 665 // used within 'limit'. This is the last reference in the list we computed 666 // above if we were able to collect all references. 667 if (!collectedAllReferences) 668 return {}; 669 return {{references.back(), limit}}; 670 } 671 static SmallVector<SymbolScope, 2> collectSymbolScopes(Operation *symbol, 672 Region *limit) { 673 auto scopes = collectSymbolScopes(symbol, limit->getParentOp()); 674 675 // If we collected some scopes to walk, make sure to constrain the one for 676 // limit to the specific region requested. 677 if (!scopes.empty()) 678 scopes.back().limit = limit; 679 return scopes; 680 } 681 template <typename IRUnit> 682 static SmallVector<SymbolScope, 1> collectSymbolScopes(StringRef symbol, 683 IRUnit *limit) { 684 return {{SymbolRefAttr::get(limit->getContext(), symbol), limit}}; 685 } 686 687 /// Returns true if the given reference 'SubRef' is a sub reference of the 688 /// reference 'ref', i.e. 'ref' is a further qualified reference. 689 static bool isReferencePrefixOf(SymbolRefAttr subRef, SymbolRefAttr ref) { 690 if (ref == subRef) 691 return true; 692 693 // If the references are not pointer equal, check to see if `subRef` is a 694 // prefix of `ref`. 695 if (ref.isa<FlatSymbolRefAttr>() || 696 ref.getRootReference() != subRef.getRootReference()) 697 return false; 698 699 auto refLeafs = ref.getNestedReferences(); 700 auto subRefLeafs = subRef.getNestedReferences(); 701 return subRefLeafs.size() < refLeafs.size() && 702 subRefLeafs == refLeafs.take_front(subRefLeafs.size()); 703 } 704 705 //===----------------------------------------------------------------------===// 706 // SymbolTable::getSymbolUses 707 708 /// The implementation of SymbolTable::getSymbolUses below. 709 template <typename FromT> 710 static Optional<SymbolTable::UseRange> getSymbolUsesImpl(FromT from) { 711 std::vector<SymbolTable::SymbolUse> uses; 712 auto walkFn = [&](SymbolTable::SymbolUse symbolUse, ArrayRef<int>) { 713 uses.push_back(symbolUse); 714 return WalkResult::advance(); 715 }; 716 auto result = walkSymbolUses(from, walkFn); 717 return result ? Optional<SymbolTable::UseRange>(std::move(uses)) : llvm::None; 718 } 719 720 /// Get an iterator range for all of the uses, for any symbol, that are nested 721 /// within the given operation 'from'. This does not traverse into any nested 722 /// symbol tables, and will also only return uses on 'from' if it does not 723 /// also define a symbol table. This is because we treat the region as the 724 /// boundary of the symbol table, and not the op itself. This function returns 725 /// None if there are any unknown operations that may potentially be symbol 726 /// tables. 727 auto SymbolTable::getSymbolUses(Operation *from) -> Optional<UseRange> { 728 return getSymbolUsesImpl(from); 729 } 730 auto SymbolTable::getSymbolUses(Region *from) -> Optional<UseRange> { 731 return getSymbolUsesImpl(MutableArrayRef<Region>(*from)); 732 } 733 734 //===----------------------------------------------------------------------===// 735 // SymbolTable::getSymbolUses 736 737 /// The implementation of SymbolTable::getSymbolUses below. 738 template <typename SymbolT, typename IRUnitT> 739 static Optional<SymbolTable::UseRange> getSymbolUsesImpl(SymbolT symbol, 740 IRUnitT *limit) { 741 std::vector<SymbolTable::SymbolUse> uses; 742 for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) { 743 if (!scope.walk([&](SymbolTable::SymbolUse symbolUse) { 744 if (isReferencePrefixOf(scope.symbol, symbolUse.getSymbolRef())) 745 uses.push_back(symbolUse); 746 })) 747 return llvm::None; 748 } 749 return SymbolTable::UseRange(std::move(uses)); 750 } 751 752 /// Get all of the uses of the given symbol that are nested within the given 753 /// operation 'from', invoking the provided callback for each. This does not 754 /// traverse into any nested symbol tables. This function returns None if there 755 /// are any unknown operations that may potentially be symbol tables. 756 auto SymbolTable::getSymbolUses(StringRef symbol, Operation *from) 757 -> Optional<UseRange> { 758 return getSymbolUsesImpl(symbol, from); 759 } 760 auto SymbolTable::getSymbolUses(Operation *symbol, Operation *from) 761 -> Optional<UseRange> { 762 return getSymbolUsesImpl(symbol, from); 763 } 764 auto SymbolTable::getSymbolUses(StringRef symbol, Region *from) 765 -> Optional<UseRange> { 766 return getSymbolUsesImpl(symbol, from); 767 } 768 auto SymbolTable::getSymbolUses(Operation *symbol, Region *from) 769 -> Optional<UseRange> { 770 return getSymbolUsesImpl(symbol, from); 771 } 772 773 //===----------------------------------------------------------------------===// 774 // SymbolTable::symbolKnownUseEmpty 775 776 /// The implementation of SymbolTable::symbolKnownUseEmpty below. 777 template <typename SymbolT, typename IRUnitT> 778 static bool symbolKnownUseEmptyImpl(SymbolT symbol, IRUnitT *limit) { 779 for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) { 780 // Walk all of the symbol uses looking for a reference to 'symbol'. 781 if (scope.walk([&](SymbolTable::SymbolUse symbolUse, ArrayRef<int>) { 782 return isReferencePrefixOf(scope.symbol, symbolUse.getSymbolRef()) 783 ? WalkResult::interrupt() 784 : WalkResult::advance(); 785 }) != WalkResult::advance()) 786 return false; 787 } 788 return true; 789 } 790 791 /// Return if the given symbol is known to have no uses that are nested within 792 /// the given operation 'from'. This does not traverse into any nested symbol 793 /// tables. This function will also return false if there are any unknown 794 /// operations that may potentially be symbol tables. 795 bool SymbolTable::symbolKnownUseEmpty(StringRef symbol, Operation *from) { 796 return symbolKnownUseEmptyImpl(symbol, from); 797 } 798 bool SymbolTable::symbolKnownUseEmpty(Operation *symbol, Operation *from) { 799 return symbolKnownUseEmptyImpl(symbol, from); 800 } 801 bool SymbolTable::symbolKnownUseEmpty(StringRef symbol, Region *from) { 802 return symbolKnownUseEmptyImpl(symbol, from); 803 } 804 bool SymbolTable::symbolKnownUseEmpty(Operation *symbol, Region *from) { 805 return symbolKnownUseEmptyImpl(symbol, from); 806 } 807 808 //===----------------------------------------------------------------------===// 809 // SymbolTable::replaceAllSymbolUses 810 811 /// Rebuild the given attribute container after replacing all references to a 812 /// symbol with the updated attribute in 'accesses'. 813 static Attribute rebuildAttrAfterRAUW( 814 Attribute container, 815 ArrayRef<std::pair<SmallVector<int, 1>, SymbolRefAttr>> accesses, 816 unsigned depth) { 817 // Given a range of Attributes, update the ones referred to by the given 818 // access chains to point to the new symbol attribute. 819 auto updateAttrs = [&](auto &&attrRange) { 820 auto attrBegin = std::begin(attrRange); 821 for (unsigned i = 0, e = accesses.size(); i != e;) { 822 ArrayRef<int> access = accesses[i].first; 823 Attribute &attr = *std::next(attrBegin, access[depth]); 824 825 // Check to see if this is a leaf access, i.e. a SymbolRef. 826 if (access.size() == depth + 1) { 827 attr = accesses[i].second; 828 ++i; 829 continue; 830 } 831 832 // Otherwise, this is a container. Collect all of the accesses for this 833 // index and recurse. The recursion here is bounded by the size of the 834 // largest access array. 835 auto nestedAccesses = accesses.drop_front(i).take_while([&](auto &it) { 836 ArrayRef<int> nextAccess = it.first; 837 return nextAccess.size() > depth + 1 && 838 nextAccess[depth] == access[depth]; 839 }); 840 attr = rebuildAttrAfterRAUW(attr, nestedAccesses, depth + 1); 841 842 // Skip over all of the accesses that refer to the nested container. 843 i += nestedAccesses.size(); 844 } 845 }; 846 847 if (auto dictAttr = container.dyn_cast<DictionaryAttr>()) { 848 auto newAttrs = llvm::to_vector<4>(dictAttr.getValue()); 849 updateAttrs(make_second_range(newAttrs)); 850 return DictionaryAttr::get(dictAttr.getContext(), newAttrs); 851 } 852 auto newAttrs = llvm::to_vector<4>(container.cast<ArrayAttr>().getValue()); 853 updateAttrs(newAttrs); 854 return ArrayAttr::get(container.getContext(), newAttrs); 855 } 856 857 /// Generates a new symbol reference attribute with a new leaf reference. 858 static SymbolRefAttr generateNewRefAttr(SymbolRefAttr oldAttr, 859 FlatSymbolRefAttr newLeafAttr) { 860 if (oldAttr.isa<FlatSymbolRefAttr>()) 861 return newLeafAttr; 862 auto nestedRefs = llvm::to_vector<2>(oldAttr.getNestedReferences()); 863 nestedRefs.back() = newLeafAttr; 864 return SymbolRefAttr::get(oldAttr.getContext(), oldAttr.getRootReference(), 865 nestedRefs); 866 } 867 868 /// The implementation of SymbolTable::replaceAllSymbolUses below. 869 template <typename SymbolT, typename IRUnitT> 870 static LogicalResult 871 replaceAllSymbolUsesImpl(SymbolT symbol, StringRef newSymbol, IRUnitT *limit) { 872 // A collection of operations along with their new attribute dictionary. 873 std::vector<std::pair<Operation *, DictionaryAttr>> updatedAttrDicts; 874 875 // The current operation being processed. 876 Operation *curOp = nullptr; 877 878 // The set of access chains into the attribute dictionary of the current 879 // operation, as well as the replacement attribute to use. 880 SmallVector<std::pair<SmallVector<int, 1>, SymbolRefAttr>, 1> accessChains; 881 882 // Generate a new attribute dictionary for the current operation by replacing 883 // references to the old symbol. 884 auto generateNewAttrDict = [&] { 885 auto oldDict = curOp->getAttrDictionary(); 886 auto newDict = rebuildAttrAfterRAUW(oldDict, accessChains, /*depth=*/0); 887 return newDict.cast<DictionaryAttr>(); 888 }; 889 890 // Generate a new attribute to replace the given attribute. 891 MLIRContext *ctx = limit->getContext(); 892 FlatSymbolRefAttr newLeafAttr = FlatSymbolRefAttr::get(ctx, newSymbol); 893 for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) { 894 SymbolRefAttr newAttr = generateNewRefAttr(scope.symbol, newLeafAttr); 895 auto walkFn = [&](SymbolTable::SymbolUse symbolUse, 896 ArrayRef<int> accessChain) { 897 SymbolRefAttr useRef = symbolUse.getSymbolRef(); 898 if (!isReferencePrefixOf(scope.symbol, useRef)) 899 return WalkResult::advance(); 900 901 // If we have a valid match, check to see if this is a proper 902 // subreference. If it is, then we will need to generate a different new 903 // attribute specifically for this use. 904 SymbolRefAttr replacementRef = newAttr; 905 if (useRef != scope.symbol) { 906 if (scope.symbol.isa<FlatSymbolRefAttr>()) { 907 replacementRef = 908 SymbolRefAttr::get(ctx, newSymbol, useRef.getNestedReferences()); 909 } else { 910 auto nestedRefs = llvm::to_vector<4>(useRef.getNestedReferences()); 911 nestedRefs[scope.symbol.getNestedReferences().size() - 1] = 912 newLeafAttr; 913 replacementRef = 914 SymbolRefAttr::get(ctx, useRef.getRootReference(), nestedRefs); 915 } 916 } 917 918 // If there was a previous operation, generate a new attribute dict 919 // for it. This means that we've finished processing the current 920 // operation, so generate a new dictionary for it. 921 if (curOp && symbolUse.getUser() != curOp) { 922 updatedAttrDicts.push_back({curOp, generateNewAttrDict()}); 923 accessChains.clear(); 924 } 925 926 // Record this access. 927 curOp = symbolUse.getUser(); 928 accessChains.push_back({llvm::to_vector<1>(accessChain), replacementRef}); 929 return WalkResult::advance(); 930 }; 931 if (!scope.walk(walkFn)) 932 return failure(); 933 934 // Check to see if we have a dangling op that needs to be processed. 935 if (curOp) { 936 updatedAttrDicts.push_back({curOp, generateNewAttrDict()}); 937 curOp = nullptr; 938 } 939 } 940 941 // Update the attribute dictionaries as necessary. 942 for (auto &it : updatedAttrDicts) 943 it.first->setAttrs(it.second); 944 return success(); 945 } 946 947 /// Attempt to replace all uses of the given symbol 'oldSymbol' with the 948 /// provided symbol 'newSymbol' that are nested within the given operation 949 /// 'from'. This does not traverse into any nested symbol tables. If there are 950 /// any unknown operations that may potentially be symbol tables, no uses are 951 /// replaced and failure is returned. 952 LogicalResult SymbolTable::replaceAllSymbolUses(StringRef oldSymbol, 953 StringRef newSymbol, 954 Operation *from) { 955 return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from); 956 } 957 LogicalResult SymbolTable::replaceAllSymbolUses(Operation *oldSymbol, 958 StringRef newSymbol, 959 Operation *from) { 960 return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from); 961 } 962 LogicalResult SymbolTable::replaceAllSymbolUses(StringRef oldSymbol, 963 StringRef newSymbol, 964 Region *from) { 965 return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from); 966 } 967 LogicalResult SymbolTable::replaceAllSymbolUses(Operation *oldSymbol, 968 StringRef newSymbol, 969 Region *from) { 970 return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from); 971 } 972 973 //===----------------------------------------------------------------------===// 974 // SymbolTableCollection 975 //===----------------------------------------------------------------------===// 976 977 Operation *SymbolTableCollection::lookupSymbolIn(Operation *symbolTableOp, 978 StringRef symbol) { 979 return getSymbolTable(symbolTableOp).lookup(symbol); 980 } 981 Operation *SymbolTableCollection::lookupSymbolIn(Operation *symbolTableOp, 982 SymbolRefAttr name) { 983 SmallVector<Operation *, 4> symbols; 984 if (failed(lookupSymbolIn(symbolTableOp, name, symbols))) 985 return nullptr; 986 return symbols.back(); 987 } 988 /// A variant of 'lookupSymbolIn' that returns all of the symbols referenced by 989 /// a given SymbolRefAttr. Returns failure if any of the nested references could 990 /// not be resolved. 991 LogicalResult 992 SymbolTableCollection::lookupSymbolIn(Operation *symbolTableOp, 993 SymbolRefAttr name, 994 SmallVectorImpl<Operation *> &symbols) { 995 auto lookupFn = [this](Operation *symbolTableOp, StringRef symbol) { 996 return lookupSymbolIn(symbolTableOp, symbol); 997 }; 998 return lookupSymbolInImpl(symbolTableOp, name, symbols, lookupFn); 999 } 1000 1001 /// Returns the operation registered with the given symbol name within the 1002 /// closest parent operation of, or including, 'from' with the 1003 /// 'OpTrait::SymbolTable' trait. Returns nullptr if no valid symbol was 1004 /// found. 1005 Operation *SymbolTableCollection::lookupNearestSymbolFrom(Operation *from, 1006 StringRef symbol) { 1007 Operation *symbolTableOp = SymbolTable::getNearestSymbolTable(from); 1008 return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr; 1009 } 1010 Operation * 1011 SymbolTableCollection::lookupNearestSymbolFrom(Operation *from, 1012 SymbolRefAttr symbol) { 1013 Operation *symbolTableOp = SymbolTable::getNearestSymbolTable(from); 1014 return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr; 1015 } 1016 1017 /// Lookup, or create, a symbol table for an operation. 1018 SymbolTable &SymbolTableCollection::getSymbolTable(Operation *op) { 1019 auto it = symbolTables.try_emplace(op, nullptr); 1020 if (it.second) 1021 it.first->second = std::make_unique<SymbolTable>(op); 1022 return *it.first->second; 1023 } 1024 1025 //===----------------------------------------------------------------------===// 1026 // SymbolUserMap 1027 //===----------------------------------------------------------------------===// 1028 1029 SymbolUserMap::SymbolUserMap(SymbolTableCollection &symbolTable, 1030 Operation *symbolTableOp) 1031 : symbolTable(symbolTable) { 1032 // Walk each of the symbol tables looking for discardable callgraph nodes. 1033 SmallVector<Operation *> symbols; 1034 auto walkFn = [&](Operation *symbolTableOp, bool allUsesVisible) { 1035 for (Operation &nestedOp : symbolTableOp->getRegion(0).getOps()) { 1036 auto symbolUses = SymbolTable::getSymbolUses(&nestedOp); 1037 assert(symbolUses && "expected uses to be valid"); 1038 1039 for (const SymbolTable::SymbolUse &use : *symbolUses) { 1040 symbols.clear(); 1041 (void)symbolTable.lookupSymbolIn(symbolTableOp, use.getSymbolRef(), 1042 symbols); 1043 for (Operation *symbolOp : symbols) 1044 symbolToUsers[symbolOp].insert(use.getUser()); 1045 } 1046 } 1047 }; 1048 // We just set `allSymUsesVisible` to false here because it isn't necessary 1049 // for building the user map. 1050 SymbolTable::walkSymbolTables(symbolTableOp, /*allSymUsesVisible=*/false, 1051 walkFn); 1052 } 1053 1054 void SymbolUserMap::replaceAllUsesWith(Operation *symbol, 1055 StringRef newSymbolName) { 1056 auto it = symbolToUsers.find(symbol); 1057 if (it == symbolToUsers.end()) 1058 return; 1059 SetVector<Operation *> &users = it->second; 1060 1061 // Replace the uses within the users of `symbol`. 1062 for (Operation *user : users) 1063 (void)SymbolTable::replaceAllSymbolUses(symbol, newSymbolName, user); 1064 1065 // Move the current users of `symbol` to the new symbol if it is in the 1066 // symbol table. 1067 Operation *newSymbol = 1068 symbolTable.lookupSymbolIn(symbol->getParentOp(), newSymbolName); 1069 if (newSymbol != symbol) { 1070 // Transfer over the users to the new symbol. 1071 auto newIt = symbolToUsers.find(newSymbol); 1072 if (newIt == symbolToUsers.end()) 1073 symbolToUsers.try_emplace(newSymbol, std::move(users)); 1074 else 1075 newIt->second.set_union(users); 1076 symbolToUsers.erase(symbol); 1077 } 1078 } 1079 1080 //===----------------------------------------------------------------------===// 1081 // Visibility parsing implementation. 1082 //===----------------------------------------------------------------------===// 1083 1084 ParseResult impl::parseOptionalVisibilityKeyword(OpAsmParser &parser, 1085 NamedAttrList &attrs) { 1086 StringRef visibility; 1087 if (parser.parseOptionalKeyword(&visibility, {"public", "private", "nested"})) 1088 return failure(); 1089 1090 StringAttr visibilityAttr = parser.getBuilder().getStringAttr(visibility); 1091 attrs.push_back(parser.getBuilder().getNamedAttr( 1092 SymbolTable::getVisibilityAttrName(), visibilityAttr)); 1093 return success(); 1094 } 1095 1096 //===----------------------------------------------------------------------===// 1097 // Symbol Interfaces 1098 //===----------------------------------------------------------------------===// 1099 1100 /// Include the generated symbol interfaces. 1101 #include "mlir/IR/SymbolInterfaces.cpp.inc" 1102