1 //===- SymbolTable.cpp - MLIR Symbol Table Class --------------------------===//
2 //
3 // Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/IR/SymbolTable.h"
10 #include "llvm/ADT/SetVector.h"
11 #include "llvm/ADT/SmallPtrSet.h"
12 #include "llvm/ADT/SmallString.h"
13 #include "llvm/ADT/StringSwitch.h"
14 
15 using namespace mlir;
16 
17 /// Return true if the given operation is unknown and may potentially define a
18 /// symbol table.
19 static bool isPotentiallyUnknownSymbolTable(Operation *op) {
20   return !op->getDialect() && op->getNumRegions() == 1;
21 }
22 
23 /// Returns the nearest symbol table from a given operation `from`. Returns
24 /// nullptr if no valid parent symbol table could be found.
25 static Operation *getNearestSymbolTable(Operation *from) {
26   assert(from && "expected valid operation");
27   if (isPotentiallyUnknownSymbolTable(from))
28     return nullptr;
29 
30   while (!from->hasTrait<OpTrait::SymbolTable>()) {
31     from = from->getParentOp();
32 
33     // Check that this is a valid op and isn't an unknown symbol table.
34     if (!from || isPotentiallyUnknownSymbolTable(from))
35       return nullptr;
36   }
37   return from;
38 }
39 
40 /// Returns the string name of the given symbol, or None if this is not a
41 /// symbol.
42 static Optional<StringRef> getNameIfSymbol(Operation *symbol) {
43   auto nameAttr =
44       symbol->getAttrOfType<StringAttr>(SymbolTable::getSymbolAttrName());
45   return nameAttr ? nameAttr.getValue() : Optional<StringRef>();
46 }
47 
48 /// Computes the nested symbol reference attribute for the symbol 'symbolName'
49 /// that are usable within the symbol table operations from 'symbol' as far up
50 /// to the given operation 'within', where 'within' is an ancestor of 'symbol'.
51 /// Returns success if all references up to 'within' could be computed.
52 static LogicalResult
53 collectValidReferencesFor(Operation *symbol, StringRef symbolName,
54                           Operation *within,
55                           SmallVectorImpl<SymbolRefAttr> &results) {
56   assert(within->isAncestor(symbol) && "expected 'within' to be an ancestor");
57   MLIRContext *ctx = symbol->getContext();
58 
59   auto leafRef = FlatSymbolRefAttr::get(symbolName, ctx);
60   results.push_back(leafRef);
61 
62   // Early exit for when 'within' is the parent of 'symbol'.
63   Operation *symbolTableOp = symbol->getParentOp();
64   if (within == symbolTableOp)
65     return success();
66 
67   // Collect references until 'symbolTableOp' reaches 'within'.
68   SmallVector<FlatSymbolRefAttr, 1> nestedRefs(1, leafRef);
69   do {
70     // Each parent of 'symbol' should define a symbol table.
71     if (!symbolTableOp->hasTrait<OpTrait::SymbolTable>())
72       return failure();
73     // Each parent of 'symbol' should also be a symbol.
74     Optional<StringRef> symbolTableName = getNameIfSymbol(symbolTableOp);
75     if (!symbolTableName)
76       return failure();
77     results.push_back(SymbolRefAttr::get(*symbolTableName, nestedRefs, ctx));
78 
79     symbolTableOp = symbolTableOp->getParentOp();
80     if (symbolTableOp == within)
81       break;
82     nestedRefs.insert(nestedRefs.begin(),
83                       FlatSymbolRefAttr::get(*symbolTableName, ctx));
84   } while (true);
85   return success();
86 }
87 
88 //===----------------------------------------------------------------------===//
89 // SymbolTable
90 //===----------------------------------------------------------------------===//
91 
92 /// Build a symbol table with the symbols within the given operation.
93 SymbolTable::SymbolTable(Operation *symbolTableOp)
94     : symbolTableOp(symbolTableOp) {
95   assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>() &&
96          "expected operation to have SymbolTable trait");
97   assert(symbolTableOp->getNumRegions() == 1 &&
98          "expected operation to have a single region");
99   assert(has_single_element(symbolTableOp->getRegion(0)) &&
100          "expected operation to have a single block");
101 
102   for (auto &op : symbolTableOp->getRegion(0).front()) {
103     Optional<StringRef> name = getNameIfSymbol(&op);
104     if (!name)
105       continue;
106 
107     auto inserted = symbolTable.insert({*name, &op});
108     (void)inserted;
109     assert(inserted.second &&
110            "expected region to contain uniquely named symbol operations");
111   }
112 }
113 
114 /// Look up a symbol with the specified name, returning null if no such name
115 /// exists. Names never include the @ on them.
116 Operation *SymbolTable::lookup(StringRef name) const {
117   return symbolTable.lookup(name);
118 }
119 
120 /// Erase the given symbol from the table.
121 void SymbolTable::erase(Operation *symbol) {
122   Optional<StringRef> name = getNameIfSymbol(symbol);
123   assert(name && "expected valid 'name' attribute");
124   assert(symbol->getParentOp() == symbolTableOp &&
125          "expected this operation to be inside of the operation with this "
126          "SymbolTable");
127 
128   auto it = symbolTable.find(*name);
129   if (it != symbolTable.end() && it->second == symbol) {
130     symbolTable.erase(it);
131     symbol->erase();
132   }
133 }
134 
135 /// Insert a new symbol into the table and associated operation, and rename it
136 /// as necessary to avoid collisions.
137 void SymbolTable::insert(Operation *symbol, Block::iterator insertPt) {
138   auto &body = symbolTableOp->getRegion(0).front();
139   if (insertPt == Block::iterator() || insertPt == body.end())
140     insertPt = Block::iterator(body.getTerminator());
141 
142   assert(insertPt->getParentOp() == symbolTableOp &&
143          "expected insertPt to be in the associated module operation");
144 
145   body.getOperations().insert(insertPt, symbol);
146 
147   // Add this symbol to the symbol table, uniquing the name if a conflict is
148   // detected.
149   StringRef name = getSymbolName(symbol);
150   if (symbolTable.insert({name, symbol}).second)
151     return;
152   // If a conflict was detected, then the symbol will not have been added to
153   // the symbol table. Try suffixes until we get to a unique name that works.
154   SmallString<128> nameBuffer(name);
155   unsigned originalLength = nameBuffer.size();
156 
157   // Iteratively try suffixes until we find one that isn't used.
158   do {
159     nameBuffer.resize(originalLength);
160     nameBuffer += '_';
161     nameBuffer += std::to_string(uniquingCounter++);
162   } while (!symbolTable.insert({nameBuffer, symbol}).second);
163   setSymbolName(symbol, nameBuffer);
164 }
165 
166 /// Returns true if the given operation defines a symbol.
167 bool SymbolTable::isSymbol(Operation *op) {
168   return op->hasTrait<OpTrait::Symbol>() || getNameIfSymbol(op).hasValue();
169 }
170 
171 /// Returns the name of the given symbol operation.
172 StringRef SymbolTable::getSymbolName(Operation *symbol) {
173   Optional<StringRef> name = getNameIfSymbol(symbol);
174   assert(name && "expected valid symbol name");
175   return *name;
176 }
177 /// Sets the name of the given symbol operation.
178 void SymbolTable::setSymbolName(Operation *symbol, StringRef name) {
179   symbol->setAttr(getSymbolAttrName(),
180                   StringAttr::get(name, symbol->getContext()));
181 }
182 
183 /// Returns the visibility of the given symbol operation.
184 SymbolTable::Visibility SymbolTable::getSymbolVisibility(Operation *symbol) {
185   // If the attribute doesn't exist, assume public.
186   StringAttr vis = symbol->getAttrOfType<StringAttr>(getVisibilityAttrName());
187   if (!vis)
188     return Visibility::Public;
189 
190   // Otherwise, switch on the string value.
191   return llvm::StringSwitch<Visibility>(vis.getValue())
192       .Case("private", Visibility::Private)
193       .Case("nested", Visibility::Nested)
194       .Case("public", Visibility::Public);
195 }
196 /// Sets the visibility of the given symbol operation.
197 void SymbolTable::setSymbolVisibility(Operation *symbol, Visibility vis) {
198   MLIRContext *ctx = symbol->getContext();
199 
200   // If the visibility is public, just drop the attribute as this is the
201   // default.
202   if (vis == Visibility::Public) {
203     symbol->removeAttr(Identifier::get(getVisibilityAttrName(), ctx));
204     return;
205   }
206 
207   // Otherwise, update the attribute.
208   assert((vis == Visibility::Private || vis == Visibility::Nested) &&
209          "unknown symbol visibility kind");
210 
211   StringRef visName = vis == Visibility::Private ? "private" : "nested";
212   symbol->setAttr(getVisibilityAttrName(), StringAttr::get(visName, ctx));
213 }
214 
215 /// Returns the operation registered with the given symbol name with the
216 /// regions of 'symbolTableOp'. 'symbolTableOp' is required to be an operation
217 /// with the 'OpTrait::SymbolTable' trait. Returns nullptr if no valid symbol
218 /// was found.
219 Operation *SymbolTable::lookupSymbolIn(Operation *symbolTableOp,
220                                        StringRef symbol) {
221   assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>());
222 
223   // Look for a symbol with the given name.
224   for (auto &block : symbolTableOp->getRegion(0)) {
225     for (auto &op : block)
226       if (getNameIfSymbol(&op) == symbol)
227         return &op;
228   }
229   return nullptr;
230 }
231 Operation *SymbolTable::lookupSymbolIn(Operation *symbolTableOp,
232                                        SymbolRefAttr symbol) {
233   assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>());
234 
235   // Lookup the root reference for this symbol.
236   symbolTableOp = lookupSymbolIn(symbolTableOp, symbol.getRootReference());
237   if (!symbolTableOp)
238     return nullptr;
239 
240   // If there are no nested references, just return the root symbol directly.
241   ArrayRef<FlatSymbolRefAttr> nestedRefs = symbol.getNestedReferences();
242   if (nestedRefs.empty())
243     return symbolTableOp;
244 
245   // Verify that the root is also a symbol table.
246   if (!symbolTableOp->hasTrait<OpTrait::SymbolTable>())
247     return nullptr;
248 
249   // Otherwise, lookup each of the nested non-leaf references and ensure that
250   // each corresponds to a valid symbol table.
251   for (FlatSymbolRefAttr ref : nestedRefs.drop_back()) {
252     symbolTableOp = lookupSymbolIn(symbolTableOp, ref.getValue());
253     if (!symbolTableOp || !symbolTableOp->hasTrait<OpTrait::SymbolTable>())
254       return nullptr;
255   }
256   return lookupSymbolIn(symbolTableOp, symbol.getLeafReference());
257 }
258 
259 /// Returns the operation registered with the given symbol name within the
260 /// closes parent operation with the 'OpTrait::SymbolTable' trait. Returns
261 /// nullptr if no valid symbol was found.
262 Operation *SymbolTable::lookupNearestSymbolFrom(Operation *from,
263                                                 StringRef symbol) {
264   Operation *symbolTableOp = getNearestSymbolTable(from);
265   return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr;
266 }
267 Operation *SymbolTable::lookupNearestSymbolFrom(Operation *from,
268                                                 SymbolRefAttr symbol) {
269   Operation *symbolTableOp = getNearestSymbolTable(from);
270   return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr;
271 }
272 
273 //===----------------------------------------------------------------------===//
274 // SymbolTable Trait Types
275 //===----------------------------------------------------------------------===//
276 
277 LogicalResult OpTrait::impl::verifySymbolTable(Operation *op) {
278   if (op->getNumRegions() != 1)
279     return op->emitOpError()
280            << "Operations with a 'SymbolTable' must have exactly one region";
281   if (!has_single_element(op->getRegion(0)))
282     return op->emitOpError()
283            << "Operations with a 'SymbolTable' must have exactly one block";
284 
285   // Check that all symbols are uniquely named within child regions.
286   DenseMap<Attribute, Location> nameToOrigLoc;
287   for (auto &block : op->getRegion(0)) {
288     for (auto &op : block) {
289       // Check for a symbol name attribute.
290       auto nameAttr =
291           op.getAttrOfType<StringAttr>(mlir::SymbolTable::getSymbolAttrName());
292       if (!nameAttr)
293         continue;
294 
295       // Try to insert this symbol into the table.
296       auto it = nameToOrigLoc.try_emplace(nameAttr, op.getLoc());
297       if (!it.second)
298         return op.emitError()
299             .append("redefinition of symbol named '", nameAttr.getValue(), "'")
300             .attachNote(it.first->second)
301             .append("see existing symbol definition here");
302     }
303   }
304   return success();
305 }
306 
307 LogicalResult OpTrait::impl::verifySymbol(Operation *op) {
308   // Verify the name attribute.
309   if (!op->getAttrOfType<StringAttr>(mlir::SymbolTable::getSymbolAttrName()))
310     return op->emitOpError() << "requires string attribute '"
311                              << mlir::SymbolTable::getSymbolAttrName() << "'";
312 
313   // Verify the visibility attribute.
314   if (Attribute vis = op->getAttr(mlir::SymbolTable::getVisibilityAttrName())) {
315     StringAttr visStrAttr = vis.dyn_cast<StringAttr>();
316     if (!visStrAttr)
317       return op->emitOpError() << "requires visibility attribute '"
318                                << mlir::SymbolTable::getVisibilityAttrName()
319                                << "' to be a string attribute, but got " << vis;
320 
321     if (!llvm::is_contained(ArrayRef<StringRef>{"public", "private", "nested"},
322                             visStrAttr.getValue()))
323       return op->emitOpError()
324              << "visibility expected to be one of [\"public\", \"private\", "
325                 "\"nested\"], but got "
326              << visStrAttr;
327   }
328   return success();
329 }
330 
331 //===----------------------------------------------------------------------===//
332 // Symbol Use Lists
333 //===----------------------------------------------------------------------===//
334 
335 /// Walk all of the symbol references within the given operation, invoking the
336 /// provided callback for each found use. The callbacks takes as arguments: the
337 /// use of the symbol, and the nested access chain to the attribute within the
338 /// operation dictionary. An access chain is a set of indices into nested
339 /// container attributes. For example, a symbol use in an attribute dictionary
340 /// that looks like the following:
341 ///
342 ///    {use = [{other_attr, @symbol}]}
343 ///
344 /// May have the following access chain:
345 ///
346 ///     [0, 0, 1]
347 ///
348 static WalkResult walkSymbolRefs(
349     Operation *op,
350     function_ref<WalkResult(SymbolTable::SymbolUse, ArrayRef<int>)> callback) {
351   // Check to see if the operation has any attributes.
352   DictionaryAttr attrDict = op->getAttrList().getDictionary();
353   if (!attrDict)
354     return WalkResult::advance();
355 
356   // A worklist of a container attribute and the current index into the held
357   // attribute list.
358   SmallVector<Attribute, 1> attrWorklist(1, attrDict);
359   SmallVector<int, 1> curAccessChain(1, /*Value=*/-1);
360 
361   // Process the symbol references within the given nested attribute range.
362   auto processAttrs = [&](int &index, auto attrRange) -> WalkResult {
363     for (Attribute attr : llvm::drop_begin(attrRange, index)) {
364       /// Check for a nested container attribute, these will also need to be
365       /// walked.
366       if (attr.isa<ArrayAttr>() || attr.isa<DictionaryAttr>()) {
367         attrWorklist.push_back(attr);
368         curAccessChain.push_back(-1);
369         return WalkResult::advance();
370       }
371 
372       // Invoke the provided callback if we find a symbol use and check for a
373       // requested interrupt.
374       if (auto symbolRef = attr.dyn_cast<SymbolRefAttr>())
375         if (callback({op, symbolRef}, curAccessChain).wasInterrupted())
376           return WalkResult::interrupt();
377 
378       // Make sure to keep the index counter in sync.
379       ++index;
380     }
381 
382     // Pop this container attribute from the worklist.
383     attrWorklist.pop_back();
384     curAccessChain.pop_back();
385     return WalkResult::advance();
386   };
387 
388   WalkResult result = WalkResult::advance();
389   do {
390     Attribute attr = attrWorklist.back();
391     int &index = curAccessChain.back();
392     ++index;
393 
394     // Process the given attribute, which is guaranteed to be a container.
395     if (auto dict = attr.dyn_cast<DictionaryAttr>())
396       result = processAttrs(index, make_second_range(dict.getValue()));
397     else
398       result = processAttrs(index, attr.cast<ArrayAttr>().getValue());
399   } while (!attrWorklist.empty() && !result.wasInterrupted());
400   return result;
401 }
402 
403 /// Walk all of the uses, for any symbol, that are nested within the given
404 /// operation 'from', invoking the provided callback for each. This does not
405 /// traverse into any nested symbol tables, and will also only return uses on
406 /// 'from' if it does not also define a symbol table.
407 static Optional<WalkResult> walkSymbolUses(
408     Operation *from,
409     function_ref<WalkResult(SymbolTable::SymbolUse, ArrayRef<int>)> callback) {
410   // If from is not a symbol table, check for uses. A symbol table defines a new
411   // scope, so we can't walk the attributes from the symbol table op.
412   if (!from->hasTrait<OpTrait::SymbolTable>()) {
413     if (walkSymbolRefs(from, callback).wasInterrupted())
414       return WalkResult::interrupt();
415   }
416 
417   SmallVector<Region *, 1> worklist;
418   worklist.reserve(from->getNumRegions());
419   for (Region &region : from->getRegions())
420     worklist.push_back(&region);
421 
422   while (!worklist.empty()) {
423     Region *region = worklist.pop_back_val();
424     for (Block &block : *region) {
425       for (Operation &op : block) {
426         if (walkSymbolRefs(&op, callback).wasInterrupted())
427           return WalkResult::interrupt();
428 
429         // If this operation has regions, and it as well as its dialect aren't
430         // registered then conservatively fail. The operation may define a
431         // symbol table, so we can't opaquely know if we should traverse to find
432         // nested uses.
433         if (isPotentiallyUnknownSymbolTable(&op))
434           return llvm::None;
435 
436         // If this op defines a new symbol table scope, we can't traverse. Any
437         // symbol references nested within 'op' are different semantically.
438         if (!op.hasTrait<OpTrait::SymbolTable>()) {
439           for (Region &region : op.getRegions())
440             worklist.push_back(&region);
441         }
442       }
443     }
444   }
445   return WalkResult::advance();
446 }
447 
448 /// Walks all of the symbol scopes from 'symbol' to (inclusive) 'limit' invoking
449 /// the provided callback at each one with a properly scoped reference to
450 /// 'symbol'. The callback takes as parameters the symbol reference at the
451 /// current scope as well as the top-level operation representing the top of
452 /// that scope.
453 static Optional<WalkResult> walkSymbolScopes(
454     Operation *symbol, Operation *limit,
455     function_ref<Optional<WalkResult>(SymbolRefAttr, Operation *)> callback) {
456   StringRef symbolName = SymbolTable::getSymbolName(symbol);
457   assert(!symbol->hasTrait<OpTrait::SymbolTable>() || symbol != limit);
458 
459   // Compute the ancestors of 'limit'.
460   llvm::SetVector<Operation *, SmallVector<Operation *, 4>,
461                   SmallPtrSet<Operation *, 4>>
462       limitAncestors;
463   Operation *limitAncestor = limit;
464   do {
465     // Check to see if 'symbol' is an ancestor of 'limit'.
466     if (limitAncestor == symbol) {
467       // Check that the nearest symbol table is 'symbol's parent. SymbolRefAttr
468       // doesn't support parent references.
469       if (getNearestSymbolTable(limit) != symbol->getParentOp())
470         return WalkResult::advance();
471       return callback(SymbolRefAttr::get(symbolName, symbol->getContext()),
472                       limit);
473     }
474 
475     limitAncestors.insert(limitAncestor);
476   } while ((limitAncestor = limitAncestor->getParentOp()));
477 
478   // Try to find the first ancestor of 'symbol' that is an ancestor of 'limit'.
479   Operation *commonAncestor = symbol->getParentOp();
480   do {
481     if (limitAncestors.count(commonAncestor))
482       break;
483   } while ((commonAncestor = commonAncestor->getParentOp()));
484   assert(commonAncestor && "'limit' and 'symbol' have no common ancestor");
485 
486   // Compute the set of valid nested references for 'symbol' as far up to the
487   // common ancestor as possible.
488   SmallVector<SymbolRefAttr, 2> references;
489   bool collectedAllReferences = succeeded(collectValidReferencesFor(
490       symbol, symbolName, commonAncestor, references));
491 
492   // Handle the case where the common ancestor is 'limit'.
493   if (commonAncestor == limit) {
494     // Walk each of the ancestors of 'symbol', calling the compute function for
495     // each one.
496     Operation *limitIt = symbol->getParentOp();
497     for (size_t i = 0, e = references.size(); i != e;
498          ++i, limitIt = limitIt->getParentOp()) {
499       Optional<WalkResult> callbackResult = callback(references[i], limitIt);
500       if (callbackResult != WalkResult::advance())
501         return callbackResult;
502     }
503     return WalkResult::advance();
504   }
505 
506   // Otherwise, we just need the symbol reference for 'symbol' that will be
507   // used within 'limit'. This is the last reference in the list we computed
508   // above if we were able to collect all references.
509   if (!collectedAllReferences)
510     return WalkResult::advance();
511   return callback(references.back(), limit);
512 }
513 
514 /// Walk the symbol scopes defined by 'limit' invoking the provided callback.
515 static Optional<WalkResult> walkSymbolScopes(
516     StringRef symbol, Operation *limit,
517     function_ref<Optional<WalkResult>(SymbolRefAttr, Operation *)> callback) {
518   return callback(SymbolRefAttr::get(symbol, limit->getContext()), limit);
519 }
520 
521 /// Returns true if the given reference 'SubRef' is a sub reference of the
522 /// reference 'ref', i.e. 'ref' is a further qualified reference.
523 static bool isReferencePrefixOf(SymbolRefAttr subRef, SymbolRefAttr ref) {
524   if (ref == subRef)
525     return true;
526 
527   // If the references are not pointer equal, check to see if `subRef` is a
528   // prefix of `ref`.
529   if (ref.isa<FlatSymbolRefAttr>() ||
530       ref.getRootReference() != subRef.getRootReference())
531     return false;
532 
533   auto refLeafs = ref.getNestedReferences();
534   auto subRefLeafs = subRef.getNestedReferences();
535   return subRefLeafs.size() < refLeafs.size() &&
536          subRefLeafs == refLeafs.take_front(subRefLeafs.size());
537 }
538 
539 //===----------------------------------------------------------------------===//
540 // SymbolTable::getSymbolUses
541 
542 /// Get an iterator range for all of the uses, for any symbol, that are nested
543 /// within the given operation 'from'. This does not traverse into any nested
544 /// symbol tables, and will also only return uses on 'from' if it does not
545 /// also define a symbol table. This is because we treat the region as the
546 /// boundary of the symbol table, and not the op itself. This function returns
547 /// None if there are any unknown operations that may potentially be symbol
548 /// tables.
549 auto SymbolTable::getSymbolUses(Operation *from) -> Optional<UseRange> {
550   std::vector<SymbolUse> uses;
551   auto walkFn = [&](SymbolUse symbolUse, ArrayRef<int>) {
552     uses.push_back(symbolUse);
553     return WalkResult::advance();
554   };
555   auto result = walkSymbolUses(from, walkFn);
556   return result ? Optional<UseRange>(std::move(uses)) : Optional<UseRange>();
557 }
558 
559 //===----------------------------------------------------------------------===//
560 // SymbolTable::getSymbolUses
561 
562 /// The implementation of SymbolTable::getSymbolUses below.
563 template <typename SymbolT>
564 static Optional<SymbolTable::UseRange> getSymbolUsesImpl(SymbolT symbol,
565                                                          Operation *limit) {
566   std::vector<SymbolTable::SymbolUse> uses;
567   auto walkFn = [&](SymbolRefAttr symbolRefAttr, Operation *from) {
568     return walkSymbolUses(
569         from, [&](SymbolTable::SymbolUse symbolUse, ArrayRef<int>) {
570           if (isReferencePrefixOf(symbolRefAttr, symbolUse.getSymbolRef()))
571             uses.push_back(symbolUse);
572           return WalkResult::advance();
573         });
574   };
575   if (walkSymbolScopes(symbol, limit, walkFn))
576     return SymbolTable::UseRange(std::move(uses));
577   return llvm::None;
578 }
579 
580 /// Get all of the uses of the given symbol that are nested within the given
581 /// operation 'from', invoking the provided callback for each. This does not
582 /// traverse into any nested symbol tables, and will also only return uses on
583 /// 'from' if it does not also define a symbol table. This is because we treat
584 /// the region as the boundary of the symbol table, and not the op itself. This
585 /// function returns None if there are any unknown operations that may
586 /// potentially be symbol tables.
587 auto SymbolTable::getSymbolUses(StringRef symbol, Operation *from)
588     -> Optional<UseRange> {
589   return getSymbolUsesImpl(symbol, from);
590 }
591 auto SymbolTable::getSymbolUses(Operation *symbol, Operation *from)
592     -> Optional<UseRange> {
593   return getSymbolUsesImpl(symbol, from);
594 }
595 
596 //===----------------------------------------------------------------------===//
597 // SymbolTable::symbolKnownUseEmpty
598 
599 /// The implementation of SymbolTable::symbolKnownUseEmpty below.
600 template <typename SymbolT>
601 static bool symbolKnownUseEmptyImpl(SymbolT symbol, Operation *limit) {
602   // Walk all of the symbol uses looking for a reference to 'symbol'.
603   auto walkFn = [&](SymbolRefAttr symbolRefAttr, Operation *from) {
604     return walkSymbolUses(
605         from, [&](SymbolTable::SymbolUse symbolUse, ArrayRef<int>) {
606           return isReferencePrefixOf(symbolRefAttr, symbolUse.getSymbolRef())
607                      ? WalkResult::interrupt()
608                      : WalkResult::advance();
609         });
610   };
611   return walkSymbolScopes(symbol, limit, walkFn) == WalkResult::advance();
612 }
613 
614 /// Return if the given symbol is known to have no uses that are nested within
615 /// the given operation 'from'. This does not traverse into any nested symbol
616 /// tables, and will also only count uses on 'from' if it does not also define
617 /// a symbol table. This is because we treat the region as the boundary of the
618 /// symbol table, and not the op itself. This function will also return false if
619 /// there are any unknown operations that may potentially be symbol tables.
620 bool SymbolTable::symbolKnownUseEmpty(StringRef symbol, Operation *from) {
621   return symbolKnownUseEmptyImpl(symbol, from);
622 }
623 bool SymbolTable::symbolKnownUseEmpty(Operation *symbol, Operation *from) {
624   return symbolKnownUseEmptyImpl(symbol, from);
625 }
626 
627 //===----------------------------------------------------------------------===//
628 // SymbolTable::replaceAllSymbolUses
629 
630 /// Rebuild the given attribute container after replacing all references to a
631 /// symbol with the updated attribute in 'accesses'.
632 static Attribute rebuildAttrAfterRAUW(
633     Attribute container,
634     ArrayRef<std::pair<SmallVector<int, 1>, SymbolRefAttr>> accesses,
635     unsigned depth) {
636   // Given a range of Attributes, update the ones referred to by the given
637   // access chains to point to the new symbol attribute.
638   auto updateAttrs = [&](auto &&attrRange) {
639     auto attrBegin = std::begin(attrRange);
640     for (unsigned i = 0, e = accesses.size(); i != e;) {
641       ArrayRef<int> access = accesses[i].first;
642       Attribute &attr = *std::next(attrBegin, access[depth]);
643 
644       // Check to see if this is a leaf access, i.e. a SymbolRef.
645       if (access.size() == depth + 1) {
646         attr = accesses[i].second;
647         ++i;
648         continue;
649       }
650 
651       // Otherwise, this is a container. Collect all of the accesses for this
652       // index and recurse. The recursion here is bounded by the size of the
653       // largest access array.
654       auto nestedAccesses = accesses.drop_front(i).take_while([&](auto &it) {
655         ArrayRef<int> nextAccess = it.first;
656         return nextAccess.size() > depth + 1 &&
657                nextAccess[depth] == access[depth];
658       });
659       attr = rebuildAttrAfterRAUW(attr, nestedAccesses, depth + 1);
660 
661       // Skip over all of the accesses that refer to the nested container.
662       i += nestedAccesses.size();
663     }
664   };
665 
666   if (auto dictAttr = container.dyn_cast<DictionaryAttr>()) {
667     auto newAttrs = llvm::to_vector<4>(dictAttr.getValue());
668     updateAttrs(make_second_range(newAttrs));
669     return DictionaryAttr::get(newAttrs, dictAttr.getContext());
670   }
671   auto newAttrs = llvm::to_vector<4>(container.cast<ArrayAttr>().getValue());
672   updateAttrs(newAttrs);
673   return ArrayAttr::get(newAttrs, container.getContext());
674 }
675 
676 /// Generates a new symbol reference attribute with a new leaf reference.
677 static SymbolRefAttr generateNewRefAttr(SymbolRefAttr oldAttr,
678                                         FlatSymbolRefAttr newLeafAttr) {
679   if (oldAttr.isa<FlatSymbolRefAttr>())
680     return newLeafAttr;
681   auto nestedRefs = llvm::to_vector<2>(oldAttr.getNestedReferences());
682   nestedRefs.back() = newLeafAttr;
683   return SymbolRefAttr::get(oldAttr.getRootReference(), nestedRefs,
684                             oldAttr.getContext());
685 }
686 
687 /// The implementation of SymbolTable::replaceAllSymbolUses below.
688 template <typename SymbolT>
689 static LogicalResult replaceAllSymbolUsesImpl(SymbolT symbol,
690                                               StringRef newSymbol,
691                                               Operation *limit) {
692   // A collection of operations along with their new attribute dictionary.
693   std::vector<std::pair<Operation *, DictionaryAttr>> updatedAttrDicts;
694 
695   // The current operation being processed.
696   Operation *curOp = nullptr;
697 
698   // The set of access chains into the attribute dictionary of the current
699   // operation, as well as the replacement attribute to use.
700   SmallVector<std::pair<SmallVector<int, 1>, SymbolRefAttr>, 1> accessChains;
701 
702   // Generate a new attribute dictionary for the current operation by replacing
703   // references to the old symbol.
704   auto generateNewAttrDict = [&] {
705     auto oldDict = curOp->getAttrList().getDictionary();
706     auto newDict = rebuildAttrAfterRAUW(oldDict, accessChains, /*depth=*/0);
707     return newDict.cast<DictionaryAttr>();
708   };
709 
710   // Generate a new attribute to replace the given attribute.
711   MLIRContext *ctx = limit->getContext();
712   FlatSymbolRefAttr newLeafAttr = FlatSymbolRefAttr::get(newSymbol, ctx);
713   auto scopeWalkFn = [&](SymbolRefAttr oldAttr,
714                          Operation *from) -> Optional<WalkResult> {
715     SymbolRefAttr newAttr = generateNewRefAttr(oldAttr, newLeafAttr);
716     auto walkFn = [&](SymbolTable::SymbolUse symbolUse,
717                       ArrayRef<int> accessChain) {
718       SymbolRefAttr useRef = symbolUse.getSymbolRef();
719       if (!isReferencePrefixOf(oldAttr, useRef))
720         return WalkResult::advance();
721 
722       // If we have a valid match, check to see if this is a proper
723       // subreference. If it is, then we will need to generate a different new
724       // attribute specifically for this use.
725       SymbolRefAttr replacementRef = newAttr;
726       if (useRef != oldAttr) {
727         if (oldAttr.isa<FlatSymbolRefAttr>()) {
728           replacementRef =
729               SymbolRefAttr::get(newSymbol, useRef.getNestedReferences(), ctx);
730         } else {
731           auto nestedRefs = llvm::to_vector<4>(useRef.getNestedReferences());
732           nestedRefs[oldAttr.getNestedReferences().size() - 1] = newLeafAttr;
733           replacementRef =
734               SymbolRefAttr::get(useRef.getRootReference(), nestedRefs, ctx);
735         }
736       }
737 
738       // If there was a previous operation, generate a new attribute dict
739       // for it. This means that we've finished processing the current
740       // operation, so generate a new dictionary for it.
741       if (curOp && symbolUse.getUser() != curOp) {
742         updatedAttrDicts.push_back({curOp, generateNewAttrDict()});
743         accessChains.clear();
744       }
745 
746       // Record this access.
747       curOp = symbolUse.getUser();
748       accessChains.push_back({llvm::to_vector<1>(accessChain), replacementRef});
749       return WalkResult::advance();
750     };
751     if (!walkSymbolUses(from, walkFn))
752       return llvm::None;
753 
754     // Check to see if we have a dangling op that needs to be processed.
755     if (curOp) {
756       updatedAttrDicts.push_back({curOp, generateNewAttrDict()});
757       curOp = nullptr;
758     }
759     return WalkResult::advance();
760   };
761   if (!walkSymbolScopes(symbol, limit, scopeWalkFn))
762     return failure();
763 
764   // Update the attribute dictionaries as necessary.
765   for (auto &it : updatedAttrDicts)
766     it.first->setAttrs(it.second);
767   return success();
768 }
769 
770 /// Attempt to replace all uses of the given symbol 'oldSymbol' with the
771 /// provided symbol 'newSymbol' that are nested within the given operation
772 /// 'from'. This does not traverse into any nested symbol tables, and will
773 /// also only replace uses on 'from' if it does not also define a symbol
774 /// table. This is because we treat the region as the boundary of the symbol
775 /// table, and not the op itself. If there are any unknown operations that may
776 /// potentially be symbol tables, no uses are replaced and failure is returned.
777 LogicalResult SymbolTable::replaceAllSymbolUses(StringRef oldSymbol,
778                                                 StringRef newSymbol,
779                                                 Operation *from) {
780   return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from);
781 }
782 LogicalResult SymbolTable::replaceAllSymbolUses(Operation *oldSymbol,
783                                                 StringRef newSymbol,
784                                                 Operation *from) {
785   return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from);
786 }
787