1 //===- SymbolTable.cpp - MLIR Symbol Table Class --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/IR/SymbolTable.h" 10 #include "llvm/ADT/SetVector.h" 11 #include "llvm/ADT/SmallPtrSet.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/StringSwitch.h" 14 15 using namespace mlir; 16 17 /// Return true if the given operation is unknown and may potentially define a 18 /// symbol table. 19 static bool isPotentiallyUnknownSymbolTable(Operation *op) { 20 return !op->getDialect() && op->getNumRegions() == 1; 21 } 22 23 /// Returns the string name of the given symbol, or None if this is not a 24 /// symbol. 25 static Optional<StringRef> getNameIfSymbol(Operation *symbol) { 26 auto nameAttr = 27 symbol->getAttrOfType<StringAttr>(SymbolTable::getSymbolAttrName()); 28 return nameAttr ? nameAttr.getValue() : Optional<StringRef>(); 29 } 30 31 /// Computes the nested symbol reference attribute for the symbol 'symbolName' 32 /// that are usable within the symbol table operations from 'symbol' as far up 33 /// to the given operation 'within', where 'within' is an ancestor of 'symbol'. 34 /// Returns success if all references up to 'within' could be computed. 35 static LogicalResult 36 collectValidReferencesFor(Operation *symbol, StringRef symbolName, 37 Operation *within, 38 SmallVectorImpl<SymbolRefAttr> &results) { 39 assert(within->isAncestor(symbol) && "expected 'within' to be an ancestor"); 40 MLIRContext *ctx = symbol->getContext(); 41 42 auto leafRef = FlatSymbolRefAttr::get(symbolName, ctx); 43 results.push_back(leafRef); 44 45 // Early exit for when 'within' is the parent of 'symbol'. 46 Operation *symbolTableOp = symbol->getParentOp(); 47 if (within == symbolTableOp) 48 return success(); 49 50 // Collect references until 'symbolTableOp' reaches 'within'. 51 SmallVector<FlatSymbolRefAttr, 1> nestedRefs(1, leafRef); 52 do { 53 // Each parent of 'symbol' should define a symbol table. 54 if (!symbolTableOp->hasTrait<OpTrait::SymbolTable>()) 55 return failure(); 56 // Each parent of 'symbol' should also be a symbol. 57 Optional<StringRef> symbolTableName = getNameIfSymbol(symbolTableOp); 58 if (!symbolTableName) 59 return failure(); 60 results.push_back(SymbolRefAttr::get(*symbolTableName, nestedRefs, ctx)); 61 62 symbolTableOp = symbolTableOp->getParentOp(); 63 if (symbolTableOp == within) 64 break; 65 nestedRefs.insert(nestedRefs.begin(), 66 FlatSymbolRefAttr::get(*symbolTableName, ctx)); 67 } while (true); 68 return success(); 69 } 70 71 //===----------------------------------------------------------------------===// 72 // SymbolTable 73 //===----------------------------------------------------------------------===// 74 75 /// Build a symbol table with the symbols within the given operation. 76 SymbolTable::SymbolTable(Operation *symbolTableOp) 77 : symbolTableOp(symbolTableOp) { 78 assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>() && 79 "expected operation to have SymbolTable trait"); 80 assert(symbolTableOp->getNumRegions() == 1 && 81 "expected operation to have a single region"); 82 assert(has_single_element(symbolTableOp->getRegion(0)) && 83 "expected operation to have a single block"); 84 85 for (auto &op : symbolTableOp->getRegion(0).front()) { 86 Optional<StringRef> name = getNameIfSymbol(&op); 87 if (!name) 88 continue; 89 90 auto inserted = symbolTable.insert({*name, &op}); 91 (void)inserted; 92 assert(inserted.second && 93 "expected region to contain uniquely named symbol operations"); 94 } 95 } 96 97 /// Look up a symbol with the specified name, returning null if no such name 98 /// exists. Names never include the @ on them. 99 Operation *SymbolTable::lookup(StringRef name) const { 100 return symbolTable.lookup(name); 101 } 102 103 /// Erase the given symbol from the table. 104 void SymbolTable::erase(Operation *symbol) { 105 Optional<StringRef> name = getNameIfSymbol(symbol); 106 assert(name && "expected valid 'name' attribute"); 107 assert(symbol->getParentOp() == symbolTableOp && 108 "expected this operation to be inside of the operation with this " 109 "SymbolTable"); 110 111 auto it = symbolTable.find(*name); 112 if (it != symbolTable.end() && it->second == symbol) { 113 symbolTable.erase(it); 114 symbol->erase(); 115 } 116 } 117 118 /// Insert a new symbol into the table and associated operation, and rename it 119 /// as necessary to avoid collisions. 120 void SymbolTable::insert(Operation *symbol, Block::iterator insertPt) { 121 auto &body = symbolTableOp->getRegion(0).front(); 122 if (insertPt == Block::iterator() || insertPt == body.end()) 123 insertPt = Block::iterator(body.getTerminator()); 124 125 assert(insertPt->getParentOp() == symbolTableOp && 126 "expected insertPt to be in the associated module operation"); 127 128 body.getOperations().insert(insertPt, symbol); 129 130 // Add this symbol to the symbol table, uniquing the name if a conflict is 131 // detected. 132 StringRef name = getSymbolName(symbol); 133 if (symbolTable.insert({name, symbol}).second) 134 return; 135 // If a conflict was detected, then the symbol will not have been added to 136 // the symbol table. Try suffixes until we get to a unique name that works. 137 SmallString<128> nameBuffer(name); 138 unsigned originalLength = nameBuffer.size(); 139 140 // Iteratively try suffixes until we find one that isn't used. 141 do { 142 nameBuffer.resize(originalLength); 143 nameBuffer += '_'; 144 nameBuffer += std::to_string(uniquingCounter++); 145 } while (!symbolTable.insert({nameBuffer, symbol}).second); 146 setSymbolName(symbol, nameBuffer); 147 } 148 149 /// Returns true if the given operation defines a symbol. 150 bool SymbolTable::isSymbol(Operation *op) { 151 return op->hasTrait<OpTrait::Symbol>() || getNameIfSymbol(op).hasValue(); 152 } 153 154 /// Returns the name of the given symbol operation. 155 StringRef SymbolTable::getSymbolName(Operation *symbol) { 156 Optional<StringRef> name = getNameIfSymbol(symbol); 157 assert(name && "expected valid symbol name"); 158 return *name; 159 } 160 /// Sets the name of the given symbol operation. 161 void SymbolTable::setSymbolName(Operation *symbol, StringRef name) { 162 symbol->setAttr(getSymbolAttrName(), 163 StringAttr::get(name, symbol->getContext())); 164 } 165 166 /// Returns the visibility of the given symbol operation. 167 SymbolTable::Visibility SymbolTable::getSymbolVisibility(Operation *symbol) { 168 // If the attribute doesn't exist, assume public. 169 StringAttr vis = symbol->getAttrOfType<StringAttr>(getVisibilityAttrName()); 170 if (!vis) 171 return Visibility::Public; 172 173 // Otherwise, switch on the string value. 174 return llvm::StringSwitch<Visibility>(vis.getValue()) 175 .Case("private", Visibility::Private) 176 .Case("nested", Visibility::Nested) 177 .Case("public", Visibility::Public); 178 } 179 /// Sets the visibility of the given symbol operation. 180 void SymbolTable::setSymbolVisibility(Operation *symbol, Visibility vis) { 181 MLIRContext *ctx = symbol->getContext(); 182 183 // If the visibility is public, just drop the attribute as this is the 184 // default. 185 if (vis == Visibility::Public) { 186 symbol->removeAttr(Identifier::get(getVisibilityAttrName(), ctx)); 187 return; 188 } 189 190 // Otherwise, update the attribute. 191 assert((vis == Visibility::Private || vis == Visibility::Nested) && 192 "unknown symbol visibility kind"); 193 194 StringRef visName = vis == Visibility::Private ? "private" : "nested"; 195 symbol->setAttr(getVisibilityAttrName(), StringAttr::get(visName, ctx)); 196 } 197 198 /// Returns the nearest symbol table from a given operation `from`. Returns 199 /// nullptr if no valid parent symbol table could be found. 200 Operation *SymbolTable::getNearestSymbolTable(Operation *from) { 201 assert(from && "expected valid operation"); 202 if (isPotentiallyUnknownSymbolTable(from)) 203 return nullptr; 204 205 while (!from->hasTrait<OpTrait::SymbolTable>()) { 206 from = from->getParentOp(); 207 208 // Check that this is a valid op and isn't an unknown symbol table. 209 if (!from || isPotentiallyUnknownSymbolTable(from)) 210 return nullptr; 211 } 212 return from; 213 } 214 215 /// Returns the operation registered with the given symbol name with the 216 /// regions of 'symbolTableOp'. 'symbolTableOp' is required to be an operation 217 /// with the 'OpTrait::SymbolTable' trait. Returns nullptr if no valid symbol 218 /// was found. 219 Operation *SymbolTable::lookupSymbolIn(Operation *symbolTableOp, 220 StringRef symbol) { 221 assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>()); 222 223 // Look for a symbol with the given name. 224 for (auto &block : symbolTableOp->getRegion(0)) { 225 for (auto &op : block) 226 if (getNameIfSymbol(&op) == symbol) 227 return &op; 228 } 229 return nullptr; 230 } 231 Operation *SymbolTable::lookupSymbolIn(Operation *symbolTableOp, 232 SymbolRefAttr symbol) { 233 SmallVector<Operation *, 4> resolvedSymbols; 234 if (failed(lookupSymbolIn(symbolTableOp, symbol, resolvedSymbols))) 235 return nullptr; 236 return resolvedSymbols.back(); 237 } 238 239 LogicalResult 240 SymbolTable::lookupSymbolIn(Operation *symbolTableOp, SymbolRefAttr symbol, 241 SmallVectorImpl<Operation *> &symbols) { 242 assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>()); 243 244 // Lookup the root reference for this symbol. 245 symbolTableOp = lookupSymbolIn(symbolTableOp, symbol.getRootReference()); 246 if (!symbolTableOp) 247 return failure(); 248 symbols.push_back(symbolTableOp); 249 250 // If there are no nested references, just return the root symbol directly. 251 ArrayRef<FlatSymbolRefAttr> nestedRefs = symbol.getNestedReferences(); 252 if (nestedRefs.empty()) 253 return success(); 254 255 // Verify that the root is also a symbol table. 256 if (!symbolTableOp->hasTrait<OpTrait::SymbolTable>()) 257 return failure(); 258 259 // Otherwise, lookup each of the nested non-leaf references and ensure that 260 // each corresponds to a valid symbol table. 261 for (FlatSymbolRefAttr ref : nestedRefs.drop_back()) { 262 symbolTableOp = lookupSymbolIn(symbolTableOp, ref.getValue()); 263 if (!symbolTableOp || !symbolTableOp->hasTrait<OpTrait::SymbolTable>()) 264 return failure(); 265 symbols.push_back(symbolTableOp); 266 } 267 symbols.push_back(lookupSymbolIn(symbolTableOp, symbol.getLeafReference())); 268 return success(symbols.back()); 269 } 270 271 /// Returns the operation registered with the given symbol name within the 272 /// closes parent operation with the 'OpTrait::SymbolTable' trait. Returns 273 /// nullptr if no valid symbol was found. 274 Operation *SymbolTable::lookupNearestSymbolFrom(Operation *from, 275 StringRef symbol) { 276 Operation *symbolTableOp = getNearestSymbolTable(from); 277 return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr; 278 } 279 Operation *SymbolTable::lookupNearestSymbolFrom(Operation *from, 280 SymbolRefAttr symbol) { 281 Operation *symbolTableOp = getNearestSymbolTable(from); 282 return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr; 283 } 284 285 //===----------------------------------------------------------------------===// 286 // SymbolTable Trait Types 287 //===----------------------------------------------------------------------===// 288 289 LogicalResult OpTrait::impl::verifySymbolTable(Operation *op) { 290 if (op->getNumRegions() != 1) 291 return op->emitOpError() 292 << "Operations with a 'SymbolTable' must have exactly one region"; 293 if (!has_single_element(op->getRegion(0))) 294 return op->emitOpError() 295 << "Operations with a 'SymbolTable' must have exactly one block"; 296 297 // Check that all symbols are uniquely named within child regions. 298 DenseMap<Attribute, Location> nameToOrigLoc; 299 for (auto &block : op->getRegion(0)) { 300 for (auto &op : block) { 301 // Check for a symbol name attribute. 302 auto nameAttr = 303 op.getAttrOfType<StringAttr>(mlir::SymbolTable::getSymbolAttrName()); 304 if (!nameAttr) 305 continue; 306 307 // Try to insert this symbol into the table. 308 auto it = nameToOrigLoc.try_emplace(nameAttr, op.getLoc()); 309 if (!it.second) 310 return op.emitError() 311 .append("redefinition of symbol named '", nameAttr.getValue(), "'") 312 .attachNote(it.first->second) 313 .append("see existing symbol definition here"); 314 } 315 } 316 return success(); 317 } 318 319 LogicalResult OpTrait::impl::verifySymbol(Operation *op) { 320 // Verify the name attribute. 321 if (!op->getAttrOfType<StringAttr>(mlir::SymbolTable::getSymbolAttrName())) 322 return op->emitOpError() << "requires string attribute '" 323 << mlir::SymbolTable::getSymbolAttrName() << "'"; 324 325 // Verify the visibility attribute. 326 if (Attribute vis = op->getAttr(mlir::SymbolTable::getVisibilityAttrName())) { 327 StringAttr visStrAttr = vis.dyn_cast<StringAttr>(); 328 if (!visStrAttr) 329 return op->emitOpError() << "requires visibility attribute '" 330 << mlir::SymbolTable::getVisibilityAttrName() 331 << "' to be a string attribute, but got " << vis; 332 333 if (!llvm::is_contained(ArrayRef<StringRef>{"public", "private", "nested"}, 334 visStrAttr.getValue())) 335 return op->emitOpError() 336 << "visibility expected to be one of [\"public\", \"private\", " 337 "\"nested\"], but got " 338 << visStrAttr; 339 } 340 return success(); 341 } 342 343 //===----------------------------------------------------------------------===// 344 // Symbol Use Lists 345 //===----------------------------------------------------------------------===// 346 347 /// Walk all of the symbol references within the given operation, invoking the 348 /// provided callback for each found use. The callbacks takes as arguments: the 349 /// use of the symbol, and the nested access chain to the attribute within the 350 /// operation dictionary. An access chain is a set of indices into nested 351 /// container attributes. For example, a symbol use in an attribute dictionary 352 /// that looks like the following: 353 /// 354 /// {use = [{other_attr, @symbol}]} 355 /// 356 /// May have the following access chain: 357 /// 358 /// [0, 0, 1] 359 /// 360 static WalkResult walkSymbolRefs( 361 Operation *op, 362 function_ref<WalkResult(SymbolTable::SymbolUse, ArrayRef<int>)> callback) { 363 // Check to see if the operation has any attributes. 364 DictionaryAttr attrDict = op->getAttrList().getDictionary(); 365 if (!attrDict) 366 return WalkResult::advance(); 367 368 // A worklist of a container attribute and the current index into the held 369 // attribute list. 370 SmallVector<Attribute, 1> attrWorklist(1, attrDict); 371 SmallVector<int, 1> curAccessChain(1, /*Value=*/-1); 372 373 // Process the symbol references within the given nested attribute range. 374 auto processAttrs = [&](int &index, auto attrRange) -> WalkResult { 375 for (Attribute attr : llvm::drop_begin(attrRange, index)) { 376 /// Check for a nested container attribute, these will also need to be 377 /// walked. 378 if (attr.isa<ArrayAttr>() || attr.isa<DictionaryAttr>()) { 379 attrWorklist.push_back(attr); 380 curAccessChain.push_back(-1); 381 return WalkResult::advance(); 382 } 383 384 // Invoke the provided callback if we find a symbol use and check for a 385 // requested interrupt. 386 if (auto symbolRef = attr.dyn_cast<SymbolRefAttr>()) 387 if (callback({op, symbolRef}, curAccessChain).wasInterrupted()) 388 return WalkResult::interrupt(); 389 390 // Make sure to keep the index counter in sync. 391 ++index; 392 } 393 394 // Pop this container attribute from the worklist. 395 attrWorklist.pop_back(); 396 curAccessChain.pop_back(); 397 return WalkResult::advance(); 398 }; 399 400 WalkResult result = WalkResult::advance(); 401 do { 402 Attribute attr = attrWorklist.back(); 403 int &index = curAccessChain.back(); 404 ++index; 405 406 // Process the given attribute, which is guaranteed to be a container. 407 if (auto dict = attr.dyn_cast<DictionaryAttr>()) 408 result = processAttrs(index, make_second_range(dict.getValue())); 409 else 410 result = processAttrs(index, attr.cast<ArrayAttr>().getValue()); 411 } while (!attrWorklist.empty() && !result.wasInterrupted()); 412 return result; 413 } 414 415 /// Walk all of the uses, for any symbol, that are nested within the given 416 /// regions, invoking the provided callback for each. This does not traverse 417 /// into any nested symbol tables. 418 static Optional<WalkResult> walkSymbolUses( 419 MutableArrayRef<Region> regions, 420 function_ref<WalkResult(SymbolTable::SymbolUse, ArrayRef<int>)> callback) { 421 SmallVector<Region *, 1> worklist(llvm::make_pointer_range(regions)); 422 while (!worklist.empty()) { 423 for (Block &block : *worklist.pop_back_val()) { 424 for (Operation &op : block) { 425 if (walkSymbolRefs(&op, callback).wasInterrupted()) 426 return WalkResult::interrupt(); 427 428 // Check that this isn't a potentially unknown symbol table. 429 if (isPotentiallyUnknownSymbolTable(&op)) 430 return llvm::None; 431 432 // If this op defines a new symbol table scope, we can't traverse. Any 433 // symbol references nested within 'op' are different semantically. 434 if (!op.hasTrait<OpTrait::SymbolTable>()) { 435 for (Region ®ion : op.getRegions()) 436 worklist.push_back(®ion); 437 } 438 } 439 } 440 } 441 return WalkResult::advance(); 442 } 443 /// Walk all of the uses, for any symbol, that are nested within the given 444 /// operaion 'from', invoking the provided callback for each. This does not 445 /// traverse into any nested symbol tables. 446 static Optional<WalkResult> walkSymbolUses( 447 Operation *from, 448 function_ref<WalkResult(SymbolTable::SymbolUse, ArrayRef<int>)> callback) { 449 // If this operation has regions, and it, as well as its dialect, isn't 450 // registered then conservatively fail. The operation may define a 451 // symbol table, so we can't opaquely know if we should traverse to find 452 // nested uses. 453 if (isPotentiallyUnknownSymbolTable(from)) 454 return llvm::None; 455 456 // Walk the uses on this operation. 457 if (walkSymbolRefs(from, callback).wasInterrupted()) 458 return WalkResult::interrupt(); 459 460 // Only recurse if this operation is not a symbol table. A symbol table 461 // defines a new scope, so we can't walk the attributes from within the symbol 462 // table op. 463 if (!from->hasTrait<OpTrait::SymbolTable>()) 464 return walkSymbolUses(from->getRegions(), callback); 465 return WalkResult::advance(); 466 } 467 468 namespace { 469 /// This class represents a single symbol scope. A symbol scope represents the 470 /// set of operations nested within a symbol table that may reference symbols 471 /// within that table. A symbol scope does not contain the symbol table 472 /// operation itself, just its contained operations. A scope ends at leaf 473 /// operations or another symbol table operation. 474 struct SymbolScope { 475 /// Walk the symbol uses within this scope, invoking the given callback. 476 /// This variant is used when the callback type matches that expected by 477 /// 'walkSymbolUses'. 478 template <typename CallbackT, 479 typename std::enable_if_t<!std::is_same< 480 typename FunctionTraits<CallbackT>::result_t, void>::value> * = 481 nullptr> 482 Optional<WalkResult> walk(CallbackT cback) { 483 if (Region *region = limit.dyn_cast<Region *>()) 484 return walkSymbolUses(*region, cback); 485 return walkSymbolUses(limit.get<Operation *>(), cback); 486 } 487 /// This variant is used when the callback type matches a stripped down type: 488 /// void(SymbolTable::SymbolUse use) 489 template <typename CallbackT, 490 typename std::enable_if_t<std::is_same< 491 typename FunctionTraits<CallbackT>::result_t, void>::value> * = 492 nullptr> 493 Optional<WalkResult> walk(CallbackT cback) { 494 return walk([=](SymbolTable::SymbolUse use, ArrayRef<int>) { 495 return cback(use), WalkResult::advance(); 496 }); 497 } 498 499 /// The representation of the symbol within this scope. 500 SymbolRefAttr symbol; 501 502 /// The IR unit representing this scope. 503 llvm::PointerUnion<Operation *, Region *> limit; 504 }; 505 } // end anonymous namespace 506 507 /// Collect all of the symbol scopes from 'symbol' to (inclusive) 'limit'. 508 static SmallVector<SymbolScope, 2> collectSymbolScopes(Operation *symbol, 509 Operation *limit) { 510 StringRef symName = SymbolTable::getSymbolName(symbol); 511 assert(!symbol->hasTrait<OpTrait::SymbolTable>() || symbol != limit); 512 513 // Compute the ancestors of 'limit'. 514 llvm::SetVector<Operation *, SmallVector<Operation *, 4>, 515 SmallPtrSet<Operation *, 4>> 516 limitAncestors; 517 Operation *limitAncestor = limit; 518 do { 519 // Check to see if 'symbol' is an ancestor of 'limit'. 520 if (limitAncestor == symbol) { 521 // Check that the nearest symbol table is 'symbol's parent. SymbolRefAttr 522 // doesn't support parent references. 523 if (SymbolTable::getNearestSymbolTable(limit->getParentOp()) == 524 symbol->getParentOp()) 525 return {{SymbolRefAttr::get(symName, symbol->getContext()), limit}}; 526 return {}; 527 } 528 529 limitAncestors.insert(limitAncestor); 530 } while ((limitAncestor = limitAncestor->getParentOp())); 531 532 // Try to find the first ancestor of 'symbol' that is an ancestor of 'limit'. 533 Operation *commonAncestor = symbol->getParentOp(); 534 do { 535 if (limitAncestors.count(commonAncestor)) 536 break; 537 } while ((commonAncestor = commonAncestor->getParentOp())); 538 assert(commonAncestor && "'limit' and 'symbol' have no common ancestor"); 539 540 // Compute the set of valid nested references for 'symbol' as far up to the 541 // common ancestor as possible. 542 SmallVector<SymbolRefAttr, 2> references; 543 bool collectedAllReferences = succeeded( 544 collectValidReferencesFor(symbol, symName, commonAncestor, references)); 545 546 // Handle the case where the common ancestor is 'limit'. 547 if (commonAncestor == limit) { 548 SmallVector<SymbolScope, 2> scopes; 549 550 // Walk each of the ancestors of 'symbol', calling the compute function for 551 // each one. 552 Operation *limitIt = symbol->getParentOp(); 553 for (size_t i = 0, e = references.size(); i != e; 554 ++i, limitIt = limitIt->getParentOp()) { 555 assert(limitIt->hasTrait<OpTrait::SymbolTable>()); 556 scopes.push_back({references[i], &limitIt->getRegion(0)}); 557 } 558 return scopes; 559 } 560 561 // Otherwise, we just need the symbol reference for 'symbol' that will be 562 // used within 'limit'. This is the last reference in the list we computed 563 // above if we were able to collect all references. 564 if (!collectedAllReferences) 565 return {}; 566 return {{references.back(), limit}}; 567 } 568 static SmallVector<SymbolScope, 2> collectSymbolScopes(Operation *symbol, 569 Region *limit) { 570 auto scopes = collectSymbolScopes(symbol, limit->getParentOp()); 571 572 // If we collected some scopes to walk, make sure to constrain the one for 573 // limit to the specific region requested. 574 if (!scopes.empty()) 575 scopes.back().limit = limit; 576 return scopes; 577 } 578 template <typename IRUnit> 579 static SmallVector<SymbolScope, 1> collectSymbolScopes(StringRef symbol, 580 IRUnit *limit) { 581 return {{SymbolRefAttr::get(symbol, limit->getContext()), limit}}; 582 } 583 584 /// Returns true if the given reference 'SubRef' is a sub reference of the 585 /// reference 'ref', i.e. 'ref' is a further qualified reference. 586 static bool isReferencePrefixOf(SymbolRefAttr subRef, SymbolRefAttr ref) { 587 if (ref == subRef) 588 return true; 589 590 // If the references are not pointer equal, check to see if `subRef` is a 591 // prefix of `ref`. 592 if (ref.isa<FlatSymbolRefAttr>() || 593 ref.getRootReference() != subRef.getRootReference()) 594 return false; 595 596 auto refLeafs = ref.getNestedReferences(); 597 auto subRefLeafs = subRef.getNestedReferences(); 598 return subRefLeafs.size() < refLeafs.size() && 599 subRefLeafs == refLeafs.take_front(subRefLeafs.size()); 600 } 601 602 //===----------------------------------------------------------------------===// 603 // SymbolTable::getSymbolUses 604 605 /// The implementation of SymbolTable::getSymbolUses below. 606 template <typename FromT> 607 static Optional<SymbolTable::UseRange> getSymbolUsesImpl(FromT from) { 608 std::vector<SymbolTable::SymbolUse> uses; 609 auto walkFn = [&](SymbolTable::SymbolUse symbolUse, ArrayRef<int>) { 610 uses.push_back(symbolUse); 611 return WalkResult::advance(); 612 }; 613 auto result = walkSymbolUses(from, walkFn); 614 return result ? Optional<SymbolTable::UseRange>(std::move(uses)) : llvm::None; 615 } 616 617 /// Get an iterator range for all of the uses, for any symbol, that are nested 618 /// within the given operation 'from'. This does not traverse into any nested 619 /// symbol tables, and will also only return uses on 'from' if it does not 620 /// also define a symbol table. This is because we treat the region as the 621 /// boundary of the symbol table, and not the op itself. This function returns 622 /// None if there are any unknown operations that may potentially be symbol 623 /// tables. 624 auto SymbolTable::getSymbolUses(Operation *from) -> Optional<UseRange> { 625 return getSymbolUsesImpl(from); 626 } 627 auto SymbolTable::getSymbolUses(Region *from) -> Optional<UseRange> { 628 return getSymbolUsesImpl(MutableArrayRef<Region>(*from)); 629 } 630 631 //===----------------------------------------------------------------------===// 632 // SymbolTable::getSymbolUses 633 634 /// The implementation of SymbolTable::getSymbolUses below. 635 template <typename SymbolT, typename IRUnitT> 636 static Optional<SymbolTable::UseRange> getSymbolUsesImpl(SymbolT symbol, 637 IRUnitT *limit) { 638 std::vector<SymbolTable::SymbolUse> uses; 639 for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) { 640 if (!scope.walk([&](SymbolTable::SymbolUse symbolUse) { 641 if (isReferencePrefixOf(scope.symbol, symbolUse.getSymbolRef())) 642 uses.push_back(symbolUse); 643 })) 644 return llvm::None; 645 } 646 return SymbolTable::UseRange(std::move(uses)); 647 } 648 649 /// Get all of the uses of the given symbol that are nested within the given 650 /// operation 'from', invoking the provided callback for each. This does not 651 /// traverse into any nested symbol tables. This function returns None if there 652 /// are any unknown operations that may potentially be symbol tables. 653 auto SymbolTable::getSymbolUses(StringRef symbol, Operation *from) 654 -> Optional<UseRange> { 655 return getSymbolUsesImpl(symbol, from); 656 } 657 auto SymbolTable::getSymbolUses(Operation *symbol, Operation *from) 658 -> Optional<UseRange> { 659 return getSymbolUsesImpl(symbol, from); 660 } 661 auto SymbolTable::getSymbolUses(StringRef symbol, Region *from) 662 -> Optional<UseRange> { 663 return getSymbolUsesImpl(symbol, from); 664 } 665 auto SymbolTable::getSymbolUses(Operation *symbol, Region *from) 666 -> Optional<UseRange> { 667 return getSymbolUsesImpl(symbol, from); 668 } 669 670 //===----------------------------------------------------------------------===// 671 // SymbolTable::symbolKnownUseEmpty 672 673 /// The implementation of SymbolTable::symbolKnownUseEmpty below. 674 template <typename SymbolT, typename IRUnitT> 675 static bool symbolKnownUseEmptyImpl(SymbolT symbol, IRUnitT *limit) { 676 for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) { 677 // Walk all of the symbol uses looking for a reference to 'symbol'. 678 if (scope.walk([&](SymbolTable::SymbolUse symbolUse, ArrayRef<int>) { 679 return isReferencePrefixOf(scope.symbol, symbolUse.getSymbolRef()) 680 ? WalkResult::interrupt() 681 : WalkResult::advance(); 682 }) != WalkResult::advance()) 683 return false; 684 } 685 return true; 686 } 687 688 /// Return if the given symbol is known to have no uses that are nested within 689 /// the given operation 'from'. This does not traverse into any nested symbol 690 /// tables. This function will also return false if there are any unknown 691 /// operations that may potentially be symbol tables. 692 bool SymbolTable::symbolKnownUseEmpty(StringRef symbol, Operation *from) { 693 return symbolKnownUseEmptyImpl(symbol, from); 694 } 695 bool SymbolTable::symbolKnownUseEmpty(Operation *symbol, Operation *from) { 696 return symbolKnownUseEmptyImpl(symbol, from); 697 } 698 bool SymbolTable::symbolKnownUseEmpty(StringRef symbol, Region *from) { 699 return symbolKnownUseEmptyImpl(symbol, from); 700 } 701 bool SymbolTable::symbolKnownUseEmpty(Operation *symbol, Region *from) { 702 return symbolKnownUseEmptyImpl(symbol, from); 703 } 704 705 //===----------------------------------------------------------------------===// 706 // SymbolTable::replaceAllSymbolUses 707 708 /// Rebuild the given attribute container after replacing all references to a 709 /// symbol with the updated attribute in 'accesses'. 710 static Attribute rebuildAttrAfterRAUW( 711 Attribute container, 712 ArrayRef<std::pair<SmallVector<int, 1>, SymbolRefAttr>> accesses, 713 unsigned depth) { 714 // Given a range of Attributes, update the ones referred to by the given 715 // access chains to point to the new symbol attribute. 716 auto updateAttrs = [&](auto &&attrRange) { 717 auto attrBegin = std::begin(attrRange); 718 for (unsigned i = 0, e = accesses.size(); i != e;) { 719 ArrayRef<int> access = accesses[i].first; 720 Attribute &attr = *std::next(attrBegin, access[depth]); 721 722 // Check to see if this is a leaf access, i.e. a SymbolRef. 723 if (access.size() == depth + 1) { 724 attr = accesses[i].second; 725 ++i; 726 continue; 727 } 728 729 // Otherwise, this is a container. Collect all of the accesses for this 730 // index and recurse. The recursion here is bounded by the size of the 731 // largest access array. 732 auto nestedAccesses = accesses.drop_front(i).take_while([&](auto &it) { 733 ArrayRef<int> nextAccess = it.first; 734 return nextAccess.size() > depth + 1 && 735 nextAccess[depth] == access[depth]; 736 }); 737 attr = rebuildAttrAfterRAUW(attr, nestedAccesses, depth + 1); 738 739 // Skip over all of the accesses that refer to the nested container. 740 i += nestedAccesses.size(); 741 } 742 }; 743 744 if (auto dictAttr = container.dyn_cast<DictionaryAttr>()) { 745 auto newAttrs = llvm::to_vector<4>(dictAttr.getValue()); 746 updateAttrs(make_second_range(newAttrs)); 747 return DictionaryAttr::get(newAttrs, dictAttr.getContext()); 748 } 749 auto newAttrs = llvm::to_vector<4>(container.cast<ArrayAttr>().getValue()); 750 updateAttrs(newAttrs); 751 return ArrayAttr::get(newAttrs, container.getContext()); 752 } 753 754 /// Generates a new symbol reference attribute with a new leaf reference. 755 static SymbolRefAttr generateNewRefAttr(SymbolRefAttr oldAttr, 756 FlatSymbolRefAttr newLeafAttr) { 757 if (oldAttr.isa<FlatSymbolRefAttr>()) 758 return newLeafAttr; 759 auto nestedRefs = llvm::to_vector<2>(oldAttr.getNestedReferences()); 760 nestedRefs.back() = newLeafAttr; 761 return SymbolRefAttr::get(oldAttr.getRootReference(), nestedRefs, 762 oldAttr.getContext()); 763 } 764 765 /// The implementation of SymbolTable::replaceAllSymbolUses below. 766 template <typename SymbolT, typename IRUnitT> 767 static LogicalResult 768 replaceAllSymbolUsesImpl(SymbolT symbol, StringRef newSymbol, IRUnitT *limit) { 769 // A collection of operations along with their new attribute dictionary. 770 std::vector<std::pair<Operation *, DictionaryAttr>> updatedAttrDicts; 771 772 // The current operation being processed. 773 Operation *curOp = nullptr; 774 775 // The set of access chains into the attribute dictionary of the current 776 // operation, as well as the replacement attribute to use. 777 SmallVector<std::pair<SmallVector<int, 1>, SymbolRefAttr>, 1> accessChains; 778 779 // Generate a new attribute dictionary for the current operation by replacing 780 // references to the old symbol. 781 auto generateNewAttrDict = [&] { 782 auto oldDict = curOp->getAttrList().getDictionary(); 783 auto newDict = rebuildAttrAfterRAUW(oldDict, accessChains, /*depth=*/0); 784 return newDict.cast<DictionaryAttr>(); 785 }; 786 787 // Generate a new attribute to replace the given attribute. 788 MLIRContext *ctx = limit->getContext(); 789 FlatSymbolRefAttr newLeafAttr = FlatSymbolRefAttr::get(newSymbol, ctx); 790 for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) { 791 SymbolRefAttr newAttr = generateNewRefAttr(scope.symbol, newLeafAttr); 792 auto walkFn = [&](SymbolTable::SymbolUse symbolUse, 793 ArrayRef<int> accessChain) { 794 SymbolRefAttr useRef = symbolUse.getSymbolRef(); 795 if (!isReferencePrefixOf(scope.symbol, useRef)) 796 return WalkResult::advance(); 797 798 // If we have a valid match, check to see if this is a proper 799 // subreference. If it is, then we will need to generate a different new 800 // attribute specifically for this use. 801 SymbolRefAttr replacementRef = newAttr; 802 if (useRef != scope.symbol) { 803 if (scope.symbol.isa<FlatSymbolRefAttr>()) { 804 replacementRef = 805 SymbolRefAttr::get(newSymbol, useRef.getNestedReferences(), ctx); 806 } else { 807 auto nestedRefs = llvm::to_vector<4>(useRef.getNestedReferences()); 808 nestedRefs[scope.symbol.getNestedReferences().size() - 1] = 809 newLeafAttr; 810 replacementRef = 811 SymbolRefAttr::get(useRef.getRootReference(), nestedRefs, ctx); 812 } 813 } 814 815 // If there was a previous operation, generate a new attribute dict 816 // for it. This means that we've finished processing the current 817 // operation, so generate a new dictionary for it. 818 if (curOp && symbolUse.getUser() != curOp) { 819 updatedAttrDicts.push_back({curOp, generateNewAttrDict()}); 820 accessChains.clear(); 821 } 822 823 // Record this access. 824 curOp = symbolUse.getUser(); 825 accessChains.push_back({llvm::to_vector<1>(accessChain), replacementRef}); 826 return WalkResult::advance(); 827 }; 828 if (!scope.walk(walkFn)) 829 return failure(); 830 831 // Check to see if we have a dangling op that needs to be processed. 832 if (curOp) { 833 updatedAttrDicts.push_back({curOp, generateNewAttrDict()}); 834 curOp = nullptr; 835 } 836 } 837 838 // Update the attribute dictionaries as necessary. 839 for (auto &it : updatedAttrDicts) 840 it.first->setAttrs(it.second); 841 return success(); 842 } 843 844 /// Attempt to replace all uses of the given symbol 'oldSymbol' with the 845 /// provided symbol 'newSymbol' that are nested within the given operation 846 /// 'from'. This does not traverse into any nested symbol tables. If there are 847 /// any unknown operations that may potentially be symbol tables, no uses are 848 /// replaced and failure is returned. 849 LogicalResult SymbolTable::replaceAllSymbolUses(StringRef oldSymbol, 850 StringRef newSymbol, 851 Operation *from) { 852 return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from); 853 } 854 LogicalResult SymbolTable::replaceAllSymbolUses(Operation *oldSymbol, 855 StringRef newSymbol, 856 Operation *from) { 857 return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from); 858 } 859 LogicalResult SymbolTable::replaceAllSymbolUses(StringRef oldSymbol, 860 StringRef newSymbol, 861 Region *from) { 862 return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from); 863 } 864 LogicalResult SymbolTable::replaceAllSymbolUses(Operation *oldSymbol, 865 StringRef newSymbol, 866 Region *from) { 867 return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from); 868 } 869