1 //===- SymbolTable.cpp - MLIR Symbol Table Class --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/IR/SymbolTable.h" 10 #include "mlir/IR/Builders.h" 11 #include "mlir/IR/OpImplementation.h" 12 #include "llvm/ADT/SetVector.h" 13 #include "llvm/ADT/SmallPtrSet.h" 14 #include "llvm/ADT/SmallString.h" 15 #include "llvm/ADT/StringSwitch.h" 16 17 using namespace mlir; 18 19 /// Return true if the given operation is unknown and may potentially define a 20 /// symbol table. 21 static bool isPotentiallyUnknownSymbolTable(Operation *op) { 22 return op->getNumRegions() == 1 && !op->getDialect(); 23 } 24 25 /// Returns the string name of the given symbol, or None if this is not a 26 /// symbol. 27 static Optional<StringRef> getNameIfSymbol(Operation *symbol) { 28 auto nameAttr = 29 symbol->getAttrOfType<StringAttr>(SymbolTable::getSymbolAttrName()); 30 return nameAttr ? nameAttr.getValue() : Optional<StringRef>(); 31 } 32 static Optional<StringRef> getNameIfSymbol(Operation *symbol, 33 Identifier symbolAttrNameId) { 34 auto nameAttr = symbol->getAttrOfType<StringAttr>(symbolAttrNameId); 35 return nameAttr ? nameAttr.getValue() : Optional<StringRef>(); 36 } 37 38 /// Computes the nested symbol reference attribute for the symbol 'symbolName' 39 /// that are usable within the symbol table operations from 'symbol' as far up 40 /// to the given operation 'within', where 'within' is an ancestor of 'symbol'. 41 /// Returns success if all references up to 'within' could be computed. 42 static LogicalResult 43 collectValidReferencesFor(Operation *symbol, StringRef symbolName, 44 Operation *within, 45 SmallVectorImpl<SymbolRefAttr> &results) { 46 assert(within->isAncestor(symbol) && "expected 'within' to be an ancestor"); 47 MLIRContext *ctx = symbol->getContext(); 48 49 auto leafRef = FlatSymbolRefAttr::get(ctx, symbolName); 50 results.push_back(leafRef); 51 52 // Early exit for when 'within' is the parent of 'symbol'. 53 Operation *symbolTableOp = symbol->getParentOp(); 54 if (within == symbolTableOp) 55 return success(); 56 57 // Collect references until 'symbolTableOp' reaches 'within'. 58 SmallVector<FlatSymbolRefAttr, 1> nestedRefs(1, leafRef); 59 Identifier symbolNameId = 60 Identifier::get(SymbolTable::getSymbolAttrName(), ctx); 61 do { 62 // Each parent of 'symbol' should define a symbol table. 63 if (!symbolTableOp->hasTrait<OpTrait::SymbolTable>()) 64 return failure(); 65 // Each parent of 'symbol' should also be a symbol. 66 Optional<StringRef> symbolTableName = 67 getNameIfSymbol(symbolTableOp, symbolNameId); 68 if (!symbolTableName) 69 return failure(); 70 results.push_back(SymbolRefAttr::get(ctx, *symbolTableName, nestedRefs)); 71 72 symbolTableOp = symbolTableOp->getParentOp(); 73 if (symbolTableOp == within) 74 break; 75 nestedRefs.insert(nestedRefs.begin(), 76 FlatSymbolRefAttr::get(ctx, *symbolTableName)); 77 } while (true); 78 return success(); 79 } 80 81 /// Walk all of the operations within the given set of regions, without 82 /// traversing into any nested symbol tables. Stops walking if the result of the 83 /// callback is anything other than `WalkResult::advance`. 84 static Optional<WalkResult> 85 walkSymbolTable(MutableArrayRef<Region> regions, 86 function_ref<Optional<WalkResult>(Operation *)> callback) { 87 SmallVector<Region *, 1> worklist(llvm::make_pointer_range(regions)); 88 while (!worklist.empty()) { 89 for (Operation &op : worklist.pop_back_val()->getOps()) { 90 Optional<WalkResult> result = callback(&op); 91 if (result != WalkResult::advance()) 92 return result; 93 94 // If this op defines a new symbol table scope, we can't traverse. Any 95 // symbol references nested within 'op' are different semantically. 96 if (!op.hasTrait<OpTrait::SymbolTable>()) { 97 for (Region ®ion : op.getRegions()) 98 worklist.push_back(®ion); 99 } 100 } 101 } 102 return WalkResult::advance(); 103 } 104 105 //===----------------------------------------------------------------------===// 106 // SymbolTable 107 //===----------------------------------------------------------------------===// 108 109 /// Build a symbol table with the symbols within the given operation. 110 SymbolTable::SymbolTable(Operation *symbolTableOp) 111 : symbolTableOp(symbolTableOp) { 112 assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>() && 113 "expected operation to have SymbolTable trait"); 114 assert(symbolTableOp->getNumRegions() == 1 && 115 "expected operation to have a single region"); 116 assert(llvm::hasSingleElement(symbolTableOp->getRegion(0)) && 117 "expected operation to have a single block"); 118 119 Identifier symbolNameId = Identifier::get(SymbolTable::getSymbolAttrName(), 120 symbolTableOp->getContext()); 121 for (auto &op : symbolTableOp->getRegion(0).front()) { 122 Optional<StringRef> name = getNameIfSymbol(&op, symbolNameId); 123 if (!name) 124 continue; 125 126 auto inserted = symbolTable.insert({*name, &op}); 127 (void)inserted; 128 assert(inserted.second && 129 "expected region to contain uniquely named symbol operations"); 130 } 131 } 132 133 /// Look up a symbol with the specified name, returning null if no such name 134 /// exists. Names never include the @ on them. 135 Operation *SymbolTable::lookup(StringRef name) const { 136 return symbolTable.lookup(name); 137 } 138 139 /// Erase the given symbol from the table. 140 void SymbolTable::erase(Operation *symbol) { 141 Optional<StringRef> name = getNameIfSymbol(symbol); 142 assert(name && "expected valid 'name' attribute"); 143 assert(symbol->getParentOp() == symbolTableOp && 144 "expected this operation to be inside of the operation with this " 145 "SymbolTable"); 146 147 auto it = symbolTable.find(*name); 148 if (it != symbolTable.end() && it->second == symbol) { 149 symbolTable.erase(it); 150 symbol->erase(); 151 } 152 } 153 154 // TODO: Consider if this should be renamed to something like insertOrUpdate 155 /// Insert a new symbol into the table and associated operation if not already 156 /// there and rename it as necessary to avoid collisions. 157 void SymbolTable::insert(Operation *symbol, Block::iterator insertPt) { 158 // The symbol cannot be the child of another op and must be the child of the 159 // symbolTableOp after this. 160 // 161 // TODO: consider if SymbolTable's constructor should behave the same. 162 if (!symbol->getParentOp()) { 163 auto &body = symbolTableOp->getRegion(0).front(); 164 if (insertPt == Block::iterator()) { 165 insertPt = Block::iterator(body.end()); 166 } else { 167 assert((insertPt == body.end() || 168 insertPt->getParentOp() == symbolTableOp) && 169 "expected insertPt to be in the associated module operation"); 170 } 171 // Insert before the terminator, if any. 172 if (insertPt == Block::iterator(body.end()) && !body.empty() && 173 std::prev(body.end())->hasTrait<OpTrait::IsTerminator>()) 174 insertPt = std::prev(body.end()); 175 176 body.getOperations().insert(insertPt, symbol); 177 } 178 assert(symbol->getParentOp() == symbolTableOp && 179 "symbol is already inserted in another op"); 180 181 // Add this symbol to the symbol table, uniquing the name if a conflict is 182 // detected. 183 StringRef name = getSymbolName(symbol); 184 if (symbolTable.insert({name, symbol}).second) 185 return; 186 // If the symbol was already in the table, also return. 187 if (symbolTable.lookup(name) == symbol) 188 return; 189 // If a conflict was detected, then the symbol will not have been added to 190 // the symbol table. Try suffixes until we get to a unique name that works. 191 SmallString<128> nameBuffer(name); 192 unsigned originalLength = nameBuffer.size(); 193 194 // Iteratively try suffixes until we find one that isn't used. 195 do { 196 nameBuffer.resize(originalLength); 197 nameBuffer += '_'; 198 nameBuffer += std::to_string(uniquingCounter++); 199 } while (!symbolTable.insert({nameBuffer, symbol}).second); 200 setSymbolName(symbol, nameBuffer); 201 } 202 203 /// Returns the name of the given symbol operation. 204 StringRef SymbolTable::getSymbolName(Operation *symbol) { 205 Optional<StringRef> name = getNameIfSymbol(symbol); 206 assert(name && "expected valid symbol name"); 207 return *name; 208 } 209 /// Sets the name of the given symbol operation. 210 void SymbolTable::setSymbolName(Operation *symbol, StringRef name) { 211 symbol->setAttr(getSymbolAttrName(), 212 StringAttr::get(symbol->getContext(), name)); 213 } 214 215 /// Returns the visibility of the given symbol operation. 216 SymbolTable::Visibility SymbolTable::getSymbolVisibility(Operation *symbol) { 217 // If the attribute doesn't exist, assume public. 218 StringAttr vis = symbol->getAttrOfType<StringAttr>(getVisibilityAttrName()); 219 if (!vis) 220 return Visibility::Public; 221 222 // Otherwise, switch on the string value. 223 return StringSwitch<Visibility>(vis.getValue()) 224 .Case("private", Visibility::Private) 225 .Case("nested", Visibility::Nested) 226 .Case("public", Visibility::Public); 227 } 228 /// Sets the visibility of the given symbol operation. 229 void SymbolTable::setSymbolVisibility(Operation *symbol, Visibility vis) { 230 MLIRContext *ctx = symbol->getContext(); 231 232 // If the visibility is public, just drop the attribute as this is the 233 // default. 234 if (vis == Visibility::Public) { 235 symbol->removeAttr(Identifier::get(getVisibilityAttrName(), ctx)); 236 return; 237 } 238 239 // Otherwise, update the attribute. 240 assert((vis == Visibility::Private || vis == Visibility::Nested) && 241 "unknown symbol visibility kind"); 242 243 StringRef visName = vis == Visibility::Private ? "private" : "nested"; 244 symbol->setAttr(getVisibilityAttrName(), StringAttr::get(ctx, visName)); 245 } 246 247 /// Returns the nearest symbol table from a given operation `from`. Returns 248 /// nullptr if no valid parent symbol table could be found. 249 Operation *SymbolTable::getNearestSymbolTable(Operation *from) { 250 assert(from && "expected valid operation"); 251 if (isPotentiallyUnknownSymbolTable(from)) 252 return nullptr; 253 254 while (!from->hasTrait<OpTrait::SymbolTable>()) { 255 from = from->getParentOp(); 256 257 // Check that this is a valid op and isn't an unknown symbol table. 258 if (!from || isPotentiallyUnknownSymbolTable(from)) 259 return nullptr; 260 } 261 return from; 262 } 263 264 /// Walks all symbol table operations nested within, and including, `op`. For 265 /// each symbol table operation, the provided callback is invoked with the op 266 /// and a boolean signifying if the symbols within that symbol table can be 267 /// treated as if all uses are visible. `allSymUsesVisible` identifies whether 268 /// all of the symbol uses of symbols within `op` are visible. 269 void SymbolTable::walkSymbolTables( 270 Operation *op, bool allSymUsesVisible, 271 function_ref<void(Operation *, bool)> callback) { 272 bool isSymbolTable = op->hasTrait<OpTrait::SymbolTable>(); 273 if (isSymbolTable) { 274 SymbolOpInterface symbol = dyn_cast<SymbolOpInterface>(op); 275 allSymUsesVisible |= !symbol || symbol.isPrivate(); 276 } else { 277 // Otherwise if 'op' is not a symbol table, any nested symbols are 278 // guaranteed to be hidden. 279 allSymUsesVisible = true; 280 } 281 282 for (Region ®ion : op->getRegions()) 283 for (Block &block : region) 284 for (Operation &nestedOp : block) 285 walkSymbolTables(&nestedOp, allSymUsesVisible, callback); 286 287 // If 'op' had the symbol table trait, visit it after any nested symbol 288 // tables. 289 if (isSymbolTable) 290 callback(op, allSymUsesVisible); 291 } 292 293 /// Returns the operation registered with the given symbol name with the 294 /// regions of 'symbolTableOp'. 'symbolTableOp' is required to be an operation 295 /// with the 'OpTrait::SymbolTable' trait. Returns nullptr if no valid symbol 296 /// was found. 297 Operation *SymbolTable::lookupSymbolIn(Operation *symbolTableOp, 298 StringRef symbol) { 299 assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>()); 300 Region ®ion = symbolTableOp->getRegion(0); 301 if (region.empty()) 302 return nullptr; 303 304 // Look for a symbol with the given name. 305 Identifier symbolNameId = Identifier::get(SymbolTable::getSymbolAttrName(), 306 symbolTableOp->getContext()); 307 for (auto &op : region.front()) 308 if (getNameIfSymbol(&op, symbolNameId) == symbol) 309 return &op; 310 return nullptr; 311 } 312 Operation *SymbolTable::lookupSymbolIn(Operation *symbolTableOp, 313 SymbolRefAttr symbol) { 314 SmallVector<Operation *, 4> resolvedSymbols; 315 if (failed(lookupSymbolIn(symbolTableOp, symbol, resolvedSymbols))) 316 return nullptr; 317 return resolvedSymbols.back(); 318 } 319 320 /// Internal implementation of `lookupSymbolIn` that allows for specialized 321 /// implementations of the lookup function. 322 static LogicalResult lookupSymbolInImpl( 323 Operation *symbolTableOp, SymbolRefAttr symbol, 324 SmallVectorImpl<Operation *> &symbols, 325 function_ref<Operation *(Operation *, StringRef)> lookupSymbolFn) { 326 assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>()); 327 328 // Lookup the root reference for this symbol. 329 symbolTableOp = lookupSymbolFn(symbolTableOp, symbol.getRootReference()); 330 if (!symbolTableOp) 331 return failure(); 332 symbols.push_back(symbolTableOp); 333 334 // If there are no nested references, just return the root symbol directly. 335 ArrayRef<FlatSymbolRefAttr> nestedRefs = symbol.getNestedReferences(); 336 if (nestedRefs.empty()) 337 return success(); 338 339 // Verify that the root is also a symbol table. 340 if (!symbolTableOp->hasTrait<OpTrait::SymbolTable>()) 341 return failure(); 342 343 // Otherwise, lookup each of the nested non-leaf references and ensure that 344 // each corresponds to a valid symbol table. 345 for (FlatSymbolRefAttr ref : nestedRefs.drop_back()) { 346 symbolTableOp = lookupSymbolFn(symbolTableOp, ref.getValue()); 347 if (!symbolTableOp || !symbolTableOp->hasTrait<OpTrait::SymbolTable>()) 348 return failure(); 349 symbols.push_back(symbolTableOp); 350 } 351 symbols.push_back(lookupSymbolFn(symbolTableOp, symbol.getLeafReference())); 352 return success(symbols.back()); 353 } 354 355 LogicalResult 356 SymbolTable::lookupSymbolIn(Operation *symbolTableOp, SymbolRefAttr symbol, 357 SmallVectorImpl<Operation *> &symbols) { 358 auto lookupFn = [](Operation *symbolTableOp, StringRef symbol) { 359 return lookupSymbolIn(symbolTableOp, symbol); 360 }; 361 return lookupSymbolInImpl(symbolTableOp, symbol, symbols, lookupFn); 362 } 363 364 /// Returns the operation registered with the given symbol name within the 365 /// closes parent operation with the 'OpTrait::SymbolTable' trait. Returns 366 /// nullptr if no valid symbol was found. 367 Operation *SymbolTable::lookupNearestSymbolFrom(Operation *from, 368 StringRef symbol) { 369 Operation *symbolTableOp = getNearestSymbolTable(from); 370 return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr; 371 } 372 Operation *SymbolTable::lookupNearestSymbolFrom(Operation *from, 373 SymbolRefAttr symbol) { 374 Operation *symbolTableOp = getNearestSymbolTable(from); 375 return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr; 376 } 377 378 //===----------------------------------------------------------------------===// 379 // SymbolTable Trait Types 380 //===----------------------------------------------------------------------===// 381 382 LogicalResult detail::verifySymbolTable(Operation *op) { 383 if (op->getNumRegions() != 1) 384 return op->emitOpError() 385 << "Operations with a 'SymbolTable' must have exactly one region"; 386 if (!llvm::hasSingleElement(op->getRegion(0))) 387 return op->emitOpError() 388 << "Operations with a 'SymbolTable' must have exactly one block"; 389 390 // Check that all symbols are uniquely named within child regions. 391 DenseMap<Attribute, Location> nameToOrigLoc; 392 for (auto &block : op->getRegion(0)) { 393 for (auto &op : block) { 394 // Check for a symbol name attribute. 395 auto nameAttr = 396 op.getAttrOfType<StringAttr>(mlir::SymbolTable::getSymbolAttrName()); 397 if (!nameAttr) 398 continue; 399 400 // Try to insert this symbol into the table. 401 auto it = nameToOrigLoc.try_emplace(nameAttr, op.getLoc()); 402 if (!it.second) 403 return op.emitError() 404 .append("redefinition of symbol named '", nameAttr.getValue(), "'") 405 .attachNote(it.first->second) 406 .append("see existing symbol definition here"); 407 } 408 } 409 410 // Verify any nested symbol user operations. 411 SymbolTableCollection symbolTable; 412 auto verifySymbolUserFn = [&](Operation *op) -> Optional<WalkResult> { 413 if (SymbolUserOpInterface user = dyn_cast<SymbolUserOpInterface>(op)) 414 return WalkResult(user.verifySymbolUses(symbolTable)); 415 return WalkResult::advance(); 416 }; 417 418 Optional<WalkResult> result = 419 walkSymbolTable(op->getRegions(), verifySymbolUserFn); 420 return success(result && !result->wasInterrupted()); 421 } 422 423 LogicalResult detail::verifySymbol(Operation *op) { 424 // Verify the name attribute. 425 if (!op->getAttrOfType<StringAttr>(mlir::SymbolTable::getSymbolAttrName())) 426 return op->emitOpError() << "requires string attribute '" 427 << mlir::SymbolTable::getSymbolAttrName() << "'"; 428 429 // Verify the visibility attribute. 430 if (Attribute vis = op->getAttr(mlir::SymbolTable::getVisibilityAttrName())) { 431 StringAttr visStrAttr = vis.dyn_cast<StringAttr>(); 432 if (!visStrAttr) 433 return op->emitOpError() << "requires visibility attribute '" 434 << mlir::SymbolTable::getVisibilityAttrName() 435 << "' to be a string attribute, but got " << vis; 436 437 if (!llvm::is_contained(ArrayRef<StringRef>{"public", "private", "nested"}, 438 visStrAttr.getValue())) 439 return op->emitOpError() 440 << "visibility expected to be one of [\"public\", \"private\", " 441 "\"nested\"], but got " 442 << visStrAttr; 443 } 444 return success(); 445 } 446 447 //===----------------------------------------------------------------------===// 448 // Symbol Use Lists 449 //===----------------------------------------------------------------------===// 450 451 /// Walk all of the symbol references within the given operation, invoking the 452 /// provided callback for each found use. The callbacks takes as arguments: the 453 /// use of the symbol, and the nested access chain to the attribute within the 454 /// operation dictionary. An access chain is a set of indices into nested 455 /// container attributes. For example, a symbol use in an attribute dictionary 456 /// that looks like the following: 457 /// 458 /// {use = [{other_attr, @symbol}]} 459 /// 460 /// May have the following access chain: 461 /// 462 /// [0, 0, 1] 463 /// 464 static WalkResult walkSymbolRefs( 465 Operation *op, 466 function_ref<WalkResult(SymbolTable::SymbolUse, ArrayRef<int>)> callback) { 467 // Check to see if the operation has any attributes. 468 DictionaryAttr attrDict = op->getAttrDictionary(); 469 if (attrDict.empty()) 470 return WalkResult::advance(); 471 472 // A worklist of a container attribute and the current index into the held 473 // attribute list. 474 SmallVector<Attribute, 1> attrWorklist(1, attrDict); 475 SmallVector<int, 1> curAccessChain(1, /*Value=*/-1); 476 477 // Process the symbol references within the given nested attribute range. 478 auto processAttrs = [&](int &index, auto attrRange) -> WalkResult { 479 for (Attribute attr : llvm::drop_begin(attrRange, index)) { 480 /// Check for a nested container attribute, these will also need to be 481 /// walked. 482 if (attr.isa<ArrayAttr, DictionaryAttr>()) { 483 attrWorklist.push_back(attr); 484 curAccessChain.push_back(-1); 485 return WalkResult::advance(); 486 } 487 488 // Invoke the provided callback if we find a symbol use and check for a 489 // requested interrupt. 490 if (auto symbolRef = attr.dyn_cast<SymbolRefAttr>()) 491 if (callback({op, symbolRef}, curAccessChain).wasInterrupted()) 492 return WalkResult::interrupt(); 493 494 // Make sure to keep the index counter in sync. 495 ++index; 496 } 497 498 // Pop this container attribute from the worklist. 499 attrWorklist.pop_back(); 500 curAccessChain.pop_back(); 501 return WalkResult::advance(); 502 }; 503 504 WalkResult result = WalkResult::advance(); 505 do { 506 Attribute attr = attrWorklist.back(); 507 int &index = curAccessChain.back(); 508 ++index; 509 510 // Process the given attribute, which is guaranteed to be a container. 511 if (auto dict = attr.dyn_cast<DictionaryAttr>()) 512 result = processAttrs(index, make_second_range(dict.getValue())); 513 else 514 result = processAttrs(index, attr.cast<ArrayAttr>().getValue()); 515 } while (!attrWorklist.empty() && !result.wasInterrupted()); 516 return result; 517 } 518 519 /// Walk all of the uses, for any symbol, that are nested within the given 520 /// regions, invoking the provided callback for each. This does not traverse 521 /// into any nested symbol tables. 522 static Optional<WalkResult> walkSymbolUses( 523 MutableArrayRef<Region> regions, 524 function_ref<WalkResult(SymbolTable::SymbolUse, ArrayRef<int>)> callback) { 525 return walkSymbolTable(regions, [&](Operation *op) -> Optional<WalkResult> { 526 // Check that this isn't a potentially unknown symbol table. 527 if (isPotentiallyUnknownSymbolTable(op)) 528 return llvm::None; 529 530 return walkSymbolRefs(op, callback); 531 }); 532 } 533 /// Walk all of the uses, for any symbol, that are nested within the given 534 /// operation 'from', invoking the provided callback for each. This does not 535 /// traverse into any nested symbol tables. 536 static Optional<WalkResult> walkSymbolUses( 537 Operation *from, 538 function_ref<WalkResult(SymbolTable::SymbolUse, ArrayRef<int>)> callback) { 539 // If this operation has regions, and it, as well as its dialect, isn't 540 // registered then conservatively fail. The operation may define a 541 // symbol table, so we can't opaquely know if we should traverse to find 542 // nested uses. 543 if (isPotentiallyUnknownSymbolTable(from)) 544 return llvm::None; 545 546 // Walk the uses on this operation. 547 if (walkSymbolRefs(from, callback).wasInterrupted()) 548 return WalkResult::interrupt(); 549 550 // Only recurse if this operation is not a symbol table. A symbol table 551 // defines a new scope, so we can't walk the attributes from within the symbol 552 // table op. 553 if (!from->hasTrait<OpTrait::SymbolTable>()) 554 return walkSymbolUses(from->getRegions(), callback); 555 return WalkResult::advance(); 556 } 557 558 namespace { 559 /// This class represents a single symbol scope. A symbol scope represents the 560 /// set of operations nested within a symbol table that may reference symbols 561 /// within that table. A symbol scope does not contain the symbol table 562 /// operation itself, just its contained operations. A scope ends at leaf 563 /// operations or another symbol table operation. 564 struct SymbolScope { 565 /// Walk the symbol uses within this scope, invoking the given callback. 566 /// This variant is used when the callback type matches that expected by 567 /// 'walkSymbolUses'. 568 template <typename CallbackT, 569 typename std::enable_if_t<!std::is_same< 570 typename llvm::function_traits<CallbackT>::result_t, 571 void>::value> * = nullptr> 572 Optional<WalkResult> walk(CallbackT cback) { 573 if (Region *region = limit.dyn_cast<Region *>()) 574 return walkSymbolUses(*region, cback); 575 return walkSymbolUses(limit.get<Operation *>(), cback); 576 } 577 /// This variant is used when the callback type matches a stripped down type: 578 /// void(SymbolTable::SymbolUse use) 579 template <typename CallbackT, 580 typename std::enable_if_t<std::is_same< 581 typename llvm::function_traits<CallbackT>::result_t, 582 void>::value> * = nullptr> 583 Optional<WalkResult> walk(CallbackT cback) { 584 return walk([=](SymbolTable::SymbolUse use, ArrayRef<int>) { 585 return cback(use), WalkResult::advance(); 586 }); 587 } 588 589 /// The representation of the symbol within this scope. 590 SymbolRefAttr symbol; 591 592 /// The IR unit representing this scope. 593 llvm::PointerUnion<Operation *, Region *> limit; 594 }; 595 } // end anonymous namespace 596 597 /// Collect all of the symbol scopes from 'symbol' to (inclusive) 'limit'. 598 static SmallVector<SymbolScope, 2> collectSymbolScopes(Operation *symbol, 599 Operation *limit) { 600 StringRef symName = SymbolTable::getSymbolName(symbol); 601 assert(!symbol->hasTrait<OpTrait::SymbolTable>() || symbol != limit); 602 603 // Compute the ancestors of 'limit'. 604 llvm::SetVector<Operation *, SmallVector<Operation *, 4>, 605 SmallPtrSet<Operation *, 4>> 606 limitAncestors; 607 Operation *limitAncestor = limit; 608 do { 609 // Check to see if 'symbol' is an ancestor of 'limit'. 610 if (limitAncestor == symbol) { 611 // Check that the nearest symbol table is 'symbol's parent. SymbolRefAttr 612 // doesn't support parent references. 613 if (SymbolTable::getNearestSymbolTable(limit->getParentOp()) == 614 symbol->getParentOp()) 615 return {{SymbolRefAttr::get(symbol->getContext(), symName), limit}}; 616 return {}; 617 } 618 619 limitAncestors.insert(limitAncestor); 620 } while ((limitAncestor = limitAncestor->getParentOp())); 621 622 // Try to find the first ancestor of 'symbol' that is an ancestor of 'limit'. 623 Operation *commonAncestor = symbol->getParentOp(); 624 do { 625 if (limitAncestors.count(commonAncestor)) 626 break; 627 } while ((commonAncestor = commonAncestor->getParentOp())); 628 assert(commonAncestor && "'limit' and 'symbol' have no common ancestor"); 629 630 // Compute the set of valid nested references for 'symbol' as far up to the 631 // common ancestor as possible. 632 SmallVector<SymbolRefAttr, 2> references; 633 bool collectedAllReferences = succeeded( 634 collectValidReferencesFor(symbol, symName, commonAncestor, references)); 635 636 // Handle the case where the common ancestor is 'limit'. 637 if (commonAncestor == limit) { 638 SmallVector<SymbolScope, 2> scopes; 639 640 // Walk each of the ancestors of 'symbol', calling the compute function for 641 // each one. 642 Operation *limitIt = symbol->getParentOp(); 643 for (size_t i = 0, e = references.size(); i != e; 644 ++i, limitIt = limitIt->getParentOp()) { 645 assert(limitIt->hasTrait<OpTrait::SymbolTable>()); 646 scopes.push_back({references[i], &limitIt->getRegion(0)}); 647 } 648 return scopes; 649 } 650 651 // Otherwise, we just need the symbol reference for 'symbol' that will be 652 // used within 'limit'. This is the last reference in the list we computed 653 // above if we were able to collect all references. 654 if (!collectedAllReferences) 655 return {}; 656 return {{references.back(), limit}}; 657 } 658 static SmallVector<SymbolScope, 2> collectSymbolScopes(Operation *symbol, 659 Region *limit) { 660 auto scopes = collectSymbolScopes(symbol, limit->getParentOp()); 661 662 // If we collected some scopes to walk, make sure to constrain the one for 663 // limit to the specific region requested. 664 if (!scopes.empty()) 665 scopes.back().limit = limit; 666 return scopes; 667 } 668 template <typename IRUnit> 669 static SmallVector<SymbolScope, 1> collectSymbolScopes(StringRef symbol, 670 IRUnit *limit) { 671 return {{SymbolRefAttr::get(limit->getContext(), symbol), limit}}; 672 } 673 674 /// Returns true if the given reference 'SubRef' is a sub reference of the 675 /// reference 'ref', i.e. 'ref' is a further qualified reference. 676 static bool isReferencePrefixOf(SymbolRefAttr subRef, SymbolRefAttr ref) { 677 if (ref == subRef) 678 return true; 679 680 // If the references are not pointer equal, check to see if `subRef` is a 681 // prefix of `ref`. 682 if (ref.isa<FlatSymbolRefAttr>() || 683 ref.getRootReference() != subRef.getRootReference()) 684 return false; 685 686 auto refLeafs = ref.getNestedReferences(); 687 auto subRefLeafs = subRef.getNestedReferences(); 688 return subRefLeafs.size() < refLeafs.size() && 689 subRefLeafs == refLeafs.take_front(subRefLeafs.size()); 690 } 691 692 //===----------------------------------------------------------------------===// 693 // SymbolTable::getSymbolUses 694 695 /// The implementation of SymbolTable::getSymbolUses below. 696 template <typename FromT> 697 static Optional<SymbolTable::UseRange> getSymbolUsesImpl(FromT from) { 698 std::vector<SymbolTable::SymbolUse> uses; 699 auto walkFn = [&](SymbolTable::SymbolUse symbolUse, ArrayRef<int>) { 700 uses.push_back(symbolUse); 701 return WalkResult::advance(); 702 }; 703 auto result = walkSymbolUses(from, walkFn); 704 return result ? Optional<SymbolTable::UseRange>(std::move(uses)) : llvm::None; 705 } 706 707 /// Get an iterator range for all of the uses, for any symbol, that are nested 708 /// within the given operation 'from'. This does not traverse into any nested 709 /// symbol tables, and will also only return uses on 'from' if it does not 710 /// also define a symbol table. This is because we treat the region as the 711 /// boundary of the symbol table, and not the op itself. This function returns 712 /// None if there are any unknown operations that may potentially be symbol 713 /// tables. 714 auto SymbolTable::getSymbolUses(Operation *from) -> Optional<UseRange> { 715 return getSymbolUsesImpl(from); 716 } 717 auto SymbolTable::getSymbolUses(Region *from) -> Optional<UseRange> { 718 return getSymbolUsesImpl(MutableArrayRef<Region>(*from)); 719 } 720 721 //===----------------------------------------------------------------------===// 722 // SymbolTable::getSymbolUses 723 724 /// The implementation of SymbolTable::getSymbolUses below. 725 template <typename SymbolT, typename IRUnitT> 726 static Optional<SymbolTable::UseRange> getSymbolUsesImpl(SymbolT symbol, 727 IRUnitT *limit) { 728 std::vector<SymbolTable::SymbolUse> uses; 729 for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) { 730 if (!scope.walk([&](SymbolTable::SymbolUse symbolUse) { 731 if (isReferencePrefixOf(scope.symbol, symbolUse.getSymbolRef())) 732 uses.push_back(symbolUse); 733 })) 734 return llvm::None; 735 } 736 return SymbolTable::UseRange(std::move(uses)); 737 } 738 739 /// Get all of the uses of the given symbol that are nested within the given 740 /// operation 'from', invoking the provided callback for each. This does not 741 /// traverse into any nested symbol tables. This function returns None if there 742 /// are any unknown operations that may potentially be symbol tables. 743 auto SymbolTable::getSymbolUses(StringRef symbol, Operation *from) 744 -> Optional<UseRange> { 745 return getSymbolUsesImpl(symbol, from); 746 } 747 auto SymbolTable::getSymbolUses(Operation *symbol, Operation *from) 748 -> Optional<UseRange> { 749 return getSymbolUsesImpl(symbol, from); 750 } 751 auto SymbolTable::getSymbolUses(StringRef symbol, Region *from) 752 -> Optional<UseRange> { 753 return getSymbolUsesImpl(symbol, from); 754 } 755 auto SymbolTable::getSymbolUses(Operation *symbol, Region *from) 756 -> Optional<UseRange> { 757 return getSymbolUsesImpl(symbol, from); 758 } 759 760 //===----------------------------------------------------------------------===// 761 // SymbolTable::symbolKnownUseEmpty 762 763 /// The implementation of SymbolTable::symbolKnownUseEmpty below. 764 template <typename SymbolT, typename IRUnitT> 765 static bool symbolKnownUseEmptyImpl(SymbolT symbol, IRUnitT *limit) { 766 for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) { 767 // Walk all of the symbol uses looking for a reference to 'symbol'. 768 if (scope.walk([&](SymbolTable::SymbolUse symbolUse, ArrayRef<int>) { 769 return isReferencePrefixOf(scope.symbol, symbolUse.getSymbolRef()) 770 ? WalkResult::interrupt() 771 : WalkResult::advance(); 772 }) != WalkResult::advance()) 773 return false; 774 } 775 return true; 776 } 777 778 /// Return if the given symbol is known to have no uses that are nested within 779 /// the given operation 'from'. This does not traverse into any nested symbol 780 /// tables. This function will also return false if there are any unknown 781 /// operations that may potentially be symbol tables. 782 bool SymbolTable::symbolKnownUseEmpty(StringRef symbol, Operation *from) { 783 return symbolKnownUseEmptyImpl(symbol, from); 784 } 785 bool SymbolTable::symbolKnownUseEmpty(Operation *symbol, Operation *from) { 786 return symbolKnownUseEmptyImpl(symbol, from); 787 } 788 bool SymbolTable::symbolKnownUseEmpty(StringRef symbol, Region *from) { 789 return symbolKnownUseEmptyImpl(symbol, from); 790 } 791 bool SymbolTable::symbolKnownUseEmpty(Operation *symbol, Region *from) { 792 return symbolKnownUseEmptyImpl(symbol, from); 793 } 794 795 //===----------------------------------------------------------------------===// 796 // SymbolTable::replaceAllSymbolUses 797 798 /// Rebuild the given attribute container after replacing all references to a 799 /// symbol with the updated attribute in 'accesses'. 800 static Attribute rebuildAttrAfterRAUW( 801 Attribute container, 802 ArrayRef<std::pair<SmallVector<int, 1>, SymbolRefAttr>> accesses, 803 unsigned depth) { 804 // Given a range of Attributes, update the ones referred to by the given 805 // access chains to point to the new symbol attribute. 806 auto updateAttrs = [&](auto &&attrRange) { 807 auto attrBegin = std::begin(attrRange); 808 for (unsigned i = 0, e = accesses.size(); i != e;) { 809 ArrayRef<int> access = accesses[i].first; 810 Attribute &attr = *std::next(attrBegin, access[depth]); 811 812 // Check to see if this is a leaf access, i.e. a SymbolRef. 813 if (access.size() == depth + 1) { 814 attr = accesses[i].second; 815 ++i; 816 continue; 817 } 818 819 // Otherwise, this is a container. Collect all of the accesses for this 820 // index and recurse. The recursion here is bounded by the size of the 821 // largest access array. 822 auto nestedAccesses = accesses.drop_front(i).take_while([&](auto &it) { 823 ArrayRef<int> nextAccess = it.first; 824 return nextAccess.size() > depth + 1 && 825 nextAccess[depth] == access[depth]; 826 }); 827 attr = rebuildAttrAfterRAUW(attr, nestedAccesses, depth + 1); 828 829 // Skip over all of the accesses that refer to the nested container. 830 i += nestedAccesses.size(); 831 } 832 }; 833 834 if (auto dictAttr = container.dyn_cast<DictionaryAttr>()) { 835 auto newAttrs = llvm::to_vector<4>(dictAttr.getValue()); 836 updateAttrs(make_second_range(newAttrs)); 837 return DictionaryAttr::get(dictAttr.getContext(), newAttrs); 838 } 839 auto newAttrs = llvm::to_vector<4>(container.cast<ArrayAttr>().getValue()); 840 updateAttrs(newAttrs); 841 return ArrayAttr::get(container.getContext(), newAttrs); 842 } 843 844 /// Generates a new symbol reference attribute with a new leaf reference. 845 static SymbolRefAttr generateNewRefAttr(SymbolRefAttr oldAttr, 846 FlatSymbolRefAttr newLeafAttr) { 847 if (oldAttr.isa<FlatSymbolRefAttr>()) 848 return newLeafAttr; 849 auto nestedRefs = llvm::to_vector<2>(oldAttr.getNestedReferences()); 850 nestedRefs.back() = newLeafAttr; 851 return SymbolRefAttr::get(oldAttr.getContext(), oldAttr.getRootReference(), 852 nestedRefs); 853 } 854 855 /// The implementation of SymbolTable::replaceAllSymbolUses below. 856 template <typename SymbolT, typename IRUnitT> 857 static LogicalResult 858 replaceAllSymbolUsesImpl(SymbolT symbol, StringRef newSymbol, IRUnitT *limit) { 859 // A collection of operations along with their new attribute dictionary. 860 std::vector<std::pair<Operation *, DictionaryAttr>> updatedAttrDicts; 861 862 // The current operation being processed. 863 Operation *curOp = nullptr; 864 865 // The set of access chains into the attribute dictionary of the current 866 // operation, as well as the replacement attribute to use. 867 SmallVector<std::pair<SmallVector<int, 1>, SymbolRefAttr>, 1> accessChains; 868 869 // Generate a new attribute dictionary for the current operation by replacing 870 // references to the old symbol. 871 auto generateNewAttrDict = [&] { 872 auto oldDict = curOp->getAttrDictionary(); 873 auto newDict = rebuildAttrAfterRAUW(oldDict, accessChains, /*depth=*/0); 874 return newDict.cast<DictionaryAttr>(); 875 }; 876 877 // Generate a new attribute to replace the given attribute. 878 MLIRContext *ctx = limit->getContext(); 879 FlatSymbolRefAttr newLeafAttr = FlatSymbolRefAttr::get(ctx, newSymbol); 880 for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) { 881 SymbolRefAttr newAttr = generateNewRefAttr(scope.symbol, newLeafAttr); 882 auto walkFn = [&](SymbolTable::SymbolUse symbolUse, 883 ArrayRef<int> accessChain) { 884 SymbolRefAttr useRef = symbolUse.getSymbolRef(); 885 if (!isReferencePrefixOf(scope.symbol, useRef)) 886 return WalkResult::advance(); 887 888 // If we have a valid match, check to see if this is a proper 889 // subreference. If it is, then we will need to generate a different new 890 // attribute specifically for this use. 891 SymbolRefAttr replacementRef = newAttr; 892 if (useRef != scope.symbol) { 893 if (scope.symbol.isa<FlatSymbolRefAttr>()) { 894 replacementRef = 895 SymbolRefAttr::get(ctx, newSymbol, useRef.getNestedReferences()); 896 } else { 897 auto nestedRefs = llvm::to_vector<4>(useRef.getNestedReferences()); 898 nestedRefs[scope.symbol.getNestedReferences().size() - 1] = 899 newLeafAttr; 900 replacementRef = 901 SymbolRefAttr::get(ctx, useRef.getRootReference(), nestedRefs); 902 } 903 } 904 905 // If there was a previous operation, generate a new attribute dict 906 // for it. This means that we've finished processing the current 907 // operation, so generate a new dictionary for it. 908 if (curOp && symbolUse.getUser() != curOp) { 909 updatedAttrDicts.push_back({curOp, generateNewAttrDict()}); 910 accessChains.clear(); 911 } 912 913 // Record this access. 914 curOp = symbolUse.getUser(); 915 accessChains.push_back({llvm::to_vector<1>(accessChain), replacementRef}); 916 return WalkResult::advance(); 917 }; 918 if (!scope.walk(walkFn)) 919 return failure(); 920 921 // Check to see if we have a dangling op that needs to be processed. 922 if (curOp) { 923 updatedAttrDicts.push_back({curOp, generateNewAttrDict()}); 924 curOp = nullptr; 925 } 926 } 927 928 // Update the attribute dictionaries as necessary. 929 for (auto &it : updatedAttrDicts) 930 it.first->setAttrs(it.second); 931 return success(); 932 } 933 934 /// Attempt to replace all uses of the given symbol 'oldSymbol' with the 935 /// provided symbol 'newSymbol' that are nested within the given operation 936 /// 'from'. This does not traverse into any nested symbol tables. If there are 937 /// any unknown operations that may potentially be symbol tables, no uses are 938 /// replaced and failure is returned. 939 LogicalResult SymbolTable::replaceAllSymbolUses(StringRef oldSymbol, 940 StringRef newSymbol, 941 Operation *from) { 942 return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from); 943 } 944 LogicalResult SymbolTable::replaceAllSymbolUses(Operation *oldSymbol, 945 StringRef newSymbol, 946 Operation *from) { 947 return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from); 948 } 949 LogicalResult SymbolTable::replaceAllSymbolUses(StringRef oldSymbol, 950 StringRef newSymbol, 951 Region *from) { 952 return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from); 953 } 954 LogicalResult SymbolTable::replaceAllSymbolUses(Operation *oldSymbol, 955 StringRef newSymbol, 956 Region *from) { 957 return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from); 958 } 959 960 //===----------------------------------------------------------------------===// 961 // SymbolTableCollection 962 //===----------------------------------------------------------------------===// 963 964 Operation *SymbolTableCollection::lookupSymbolIn(Operation *symbolTableOp, 965 StringRef symbol) { 966 return getSymbolTable(symbolTableOp).lookup(symbol); 967 } 968 Operation *SymbolTableCollection::lookupSymbolIn(Operation *symbolTableOp, 969 SymbolRefAttr name) { 970 SmallVector<Operation *, 4> symbols; 971 if (failed(lookupSymbolIn(symbolTableOp, name, symbols))) 972 return nullptr; 973 return symbols.back(); 974 } 975 /// A variant of 'lookupSymbolIn' that returns all of the symbols referenced by 976 /// a given SymbolRefAttr. Returns failure if any of the nested references could 977 /// not be resolved. 978 LogicalResult 979 SymbolTableCollection::lookupSymbolIn(Operation *symbolTableOp, 980 SymbolRefAttr name, 981 SmallVectorImpl<Operation *> &symbols) { 982 auto lookupFn = [this](Operation *symbolTableOp, StringRef symbol) { 983 return lookupSymbolIn(symbolTableOp, symbol); 984 }; 985 return lookupSymbolInImpl(symbolTableOp, name, symbols, lookupFn); 986 } 987 988 /// Returns the operation registered with the given symbol name within the 989 /// closest parent operation of, or including, 'from' with the 990 /// 'OpTrait::SymbolTable' trait. Returns nullptr if no valid symbol was 991 /// found. 992 Operation *SymbolTableCollection::lookupNearestSymbolFrom(Operation *from, 993 StringRef symbol) { 994 Operation *symbolTableOp = SymbolTable::getNearestSymbolTable(from); 995 return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr; 996 } 997 Operation * 998 SymbolTableCollection::lookupNearestSymbolFrom(Operation *from, 999 SymbolRefAttr symbol) { 1000 Operation *symbolTableOp = SymbolTable::getNearestSymbolTable(from); 1001 return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr; 1002 } 1003 1004 /// Lookup, or create, a symbol table for an operation. 1005 SymbolTable &SymbolTableCollection::getSymbolTable(Operation *op) { 1006 auto it = symbolTables.try_emplace(op, nullptr); 1007 if (it.second) 1008 it.first->second = std::make_unique<SymbolTable>(op); 1009 return *it.first->second; 1010 } 1011 1012 //===----------------------------------------------------------------------===// 1013 // SymbolUserMap 1014 //===----------------------------------------------------------------------===// 1015 1016 SymbolUserMap::SymbolUserMap(SymbolTableCollection &symbolTable, 1017 Operation *symbolTableOp) 1018 : symbolTable(symbolTable) { 1019 // Walk each of the symbol tables looking for discardable callgraph nodes. 1020 SmallVector<Operation *> symbols; 1021 auto walkFn = [&](Operation *symbolTableOp, bool allUsesVisible) { 1022 for (Operation &nestedOp : symbolTableOp->getRegion(0).getOps()) { 1023 auto symbolUses = SymbolTable::getSymbolUses(&nestedOp); 1024 assert(symbolUses && "expected uses to be valid"); 1025 1026 for (const SymbolTable::SymbolUse &use : *symbolUses) { 1027 symbols.clear(); 1028 (void)symbolTable.lookupSymbolIn(symbolTableOp, use.getSymbolRef(), 1029 symbols); 1030 for (Operation *symbolOp : symbols) 1031 symbolToUsers[symbolOp].insert(use.getUser()); 1032 } 1033 } 1034 }; 1035 // We just set `allSymUsesVisible` to false here because it isn't necessary 1036 // for building the user map. 1037 SymbolTable::walkSymbolTables(symbolTableOp, /*allSymUsesVisible=*/false, 1038 walkFn); 1039 } 1040 1041 void SymbolUserMap::replaceAllUsesWith(Operation *symbol, 1042 StringRef newSymbolName) { 1043 auto it = symbolToUsers.find(symbol); 1044 if (it == symbolToUsers.end()) 1045 return; 1046 llvm::SetVector<Operation *> &users = it->second; 1047 1048 // Replace the uses within the users of `symbol`. 1049 for (Operation *user : users) 1050 (void)SymbolTable::replaceAllSymbolUses(symbol, newSymbolName, user); 1051 1052 // Move the current users of `symbol` to the new symbol if it is in the 1053 // symbol table. 1054 Operation *newSymbol = 1055 symbolTable.lookupSymbolIn(symbol->getParentOp(), newSymbolName); 1056 if (newSymbol != symbol) { 1057 // Transfer over the users to the new symbol. 1058 auto newIt = symbolToUsers.find(newSymbol); 1059 if (newIt == symbolToUsers.end()) 1060 symbolToUsers.try_emplace(newSymbol, std::move(users)); 1061 else 1062 newIt->second.set_union(users); 1063 symbolToUsers.erase(symbol); 1064 } 1065 } 1066 1067 //===----------------------------------------------------------------------===// 1068 // Visibility parsing implementation. 1069 //===----------------------------------------------------------------------===// 1070 1071 ParseResult impl::parseOptionalVisibilityKeyword(OpAsmParser &parser, 1072 NamedAttrList &attrs) { 1073 StringRef visibility; 1074 if (parser.parseOptionalKeyword(&visibility, {"public", "private", "nested"})) 1075 return failure(); 1076 1077 StringAttr visibilityAttr = parser.getBuilder().getStringAttr(visibility); 1078 attrs.push_back(parser.getBuilder().getNamedAttr( 1079 SymbolTable::getVisibilityAttrName(), visibilityAttr)); 1080 return success(); 1081 } 1082 1083 //===----------------------------------------------------------------------===// 1084 // Symbol Interfaces 1085 //===----------------------------------------------------------------------===// 1086 1087 /// Include the generated symbol interfaces. 1088 #include "mlir/IR/SymbolInterfaces.cpp.inc" 1089