1 //===- SymbolTable.cpp - MLIR Symbol Table Class --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/IR/SymbolTable.h"
10 #include "mlir/IR/Builders.h"
11 #include "mlir/IR/OpImplementation.h"
12 #include "llvm/ADT/SetVector.h"
13 #include "llvm/ADT/SmallPtrSet.h"
14 #include "llvm/ADT/SmallString.h"
15 #include "llvm/ADT/StringSwitch.h"
16 
17 using namespace mlir;
18 
19 /// Return true if the given operation is unknown and may potentially define a
20 /// symbol table.
21 static bool isPotentiallyUnknownSymbolTable(Operation *op) {
22   return op->getNumRegions() == 1 && !op->getDialect();
23 }
24 
25 /// Returns the string name of the given symbol, or null if this is not a
26 /// symbol.
27 static StringAttr getNameIfSymbol(Operation *op) {
28   return op->getAttrOfType<StringAttr>(SymbolTable::getSymbolAttrName());
29 }
30 static StringAttr getNameIfSymbol(Operation *op, Identifier symbolAttrNameId) {
31   return op->getAttrOfType<StringAttr>(symbolAttrNameId);
32 }
33 
34 /// Computes the nested symbol reference attribute for the symbol 'symbolName'
35 /// that are usable within the symbol table operations from 'symbol' as far up
36 /// to the given operation 'within', where 'within' is an ancestor of 'symbol'.
37 /// Returns success if all references up to 'within' could be computed.
38 static LogicalResult
39 collectValidReferencesFor(Operation *symbol, StringAttr symbolName,
40                           Operation *within,
41                           SmallVectorImpl<SymbolRefAttr> &results) {
42   assert(within->isAncestor(symbol) && "expected 'within' to be an ancestor");
43   MLIRContext *ctx = symbol->getContext();
44 
45   auto leafRef = FlatSymbolRefAttr::get(symbolName);
46   results.push_back(leafRef);
47 
48   // Early exit for when 'within' is the parent of 'symbol'.
49   Operation *symbolTableOp = symbol->getParentOp();
50   if (within == symbolTableOp)
51     return success();
52 
53   // Collect references until 'symbolTableOp' reaches 'within'.
54   SmallVector<FlatSymbolRefAttr, 1> nestedRefs(1, leafRef);
55   Identifier symbolNameId =
56       Identifier::get(SymbolTable::getSymbolAttrName(), ctx);
57   do {
58     // Each parent of 'symbol' should define a symbol table.
59     if (!symbolTableOp->hasTrait<OpTrait::SymbolTable>())
60       return failure();
61     // Each parent of 'symbol' should also be a symbol.
62     StringAttr symbolTableName = getNameIfSymbol(symbolTableOp, symbolNameId);
63     if (!symbolTableName)
64       return failure();
65     results.push_back(SymbolRefAttr::get(symbolTableName, nestedRefs));
66 
67     symbolTableOp = symbolTableOp->getParentOp();
68     if (symbolTableOp == within)
69       break;
70     nestedRefs.insert(nestedRefs.begin(),
71                       FlatSymbolRefAttr::get(symbolTableName));
72   } while (true);
73   return success();
74 }
75 
76 /// Walk all of the operations within the given set of regions, without
77 /// traversing into any nested symbol tables. Stops walking if the result of the
78 /// callback is anything other than `WalkResult::advance`.
79 static Optional<WalkResult>
80 walkSymbolTable(MutableArrayRef<Region> regions,
81                 function_ref<Optional<WalkResult>(Operation *)> callback) {
82   SmallVector<Region *, 1> worklist(llvm::make_pointer_range(regions));
83   while (!worklist.empty()) {
84     for (Operation &op : worklist.pop_back_val()->getOps()) {
85       Optional<WalkResult> result = callback(&op);
86       if (result != WalkResult::advance())
87         return result;
88 
89       // If this op defines a new symbol table scope, we can't traverse. Any
90       // symbol references nested within 'op' are different semantically.
91       if (!op.hasTrait<OpTrait::SymbolTable>()) {
92         for (Region &region : op.getRegions())
93           worklist.push_back(&region);
94       }
95     }
96   }
97   return WalkResult::advance();
98 }
99 
100 //===----------------------------------------------------------------------===//
101 // SymbolTable
102 //===----------------------------------------------------------------------===//
103 
104 /// Build a symbol table with the symbols within the given operation.
105 SymbolTable::SymbolTable(Operation *symbolTableOp)
106     : symbolTableOp(symbolTableOp) {
107   assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>() &&
108          "expected operation to have SymbolTable trait");
109   assert(symbolTableOp->getNumRegions() == 1 &&
110          "expected operation to have a single region");
111   assert(llvm::hasSingleElement(symbolTableOp->getRegion(0)) &&
112          "expected operation to have a single block");
113 
114   Identifier symbolNameId = Identifier::get(SymbolTable::getSymbolAttrName(),
115                                             symbolTableOp->getContext());
116   for (auto &op : symbolTableOp->getRegion(0).front()) {
117     StringAttr name = getNameIfSymbol(&op, symbolNameId);
118     if (!name)
119       continue;
120 
121     auto inserted = symbolTable.insert({name, &op});
122     (void)inserted;
123     assert(inserted.second &&
124            "expected region to contain uniquely named symbol operations");
125   }
126 }
127 
128 /// Look up a symbol with the specified name, returning null if no such name
129 /// exists. Names never include the @ on them.
130 Operation *SymbolTable::lookup(StringRef name) const {
131   return lookup(StringAttr::get(symbolTableOp->getContext(), name));
132 }
133 Operation *SymbolTable::lookup(StringAttr name) const {
134   return symbolTable.lookup(name);
135 }
136 
137 /// Erase the given symbol from the table.
138 void SymbolTable::erase(Operation *symbol) {
139   StringAttr name = getNameIfSymbol(symbol);
140   assert(name && "expected valid 'name' attribute");
141   assert(symbol->getParentOp() == symbolTableOp &&
142          "expected this operation to be inside of the operation with this "
143          "SymbolTable");
144 
145   auto it = symbolTable.find(name);
146   if (it != symbolTable.end() && it->second == symbol) {
147     symbolTable.erase(it);
148     symbol->erase();
149   }
150 }
151 
152 // TODO: Consider if this should be renamed to something like insertOrUpdate
153 /// Insert a new symbol into the table and associated operation if not already
154 /// there and rename it as necessary to avoid collisions.
155 void SymbolTable::insert(Operation *symbol, Block::iterator insertPt) {
156   // The symbol cannot be the child of another op and must be the child of the
157   // symbolTableOp after this.
158   //
159   // TODO: consider if SymbolTable's constructor should behave the same.
160   if (!symbol->getParentOp()) {
161     auto &body = symbolTableOp->getRegion(0).front();
162     if (insertPt == Block::iterator()) {
163       insertPt = Block::iterator(body.end());
164     } else {
165       assert((insertPt == body.end() ||
166               insertPt->getParentOp() == symbolTableOp) &&
167              "expected insertPt to be in the associated module operation");
168     }
169     // Insert before the terminator, if any.
170     if (insertPt == Block::iterator(body.end()) && !body.empty() &&
171         std::prev(body.end())->hasTrait<OpTrait::IsTerminator>())
172       insertPt = std::prev(body.end());
173 
174     body.getOperations().insert(insertPt, symbol);
175   }
176   assert(symbol->getParentOp() == symbolTableOp &&
177          "symbol is already inserted in another op");
178 
179   // Add this symbol to the symbol table, uniquing the name if a conflict is
180   // detected.
181   StringAttr name = getSymbolName(symbol);
182   if (symbolTable.insert({name, symbol}).second)
183     return;
184   // If the symbol was already in the table, also return.
185   if (symbolTable.lookup(name) == symbol)
186     return;
187   // If a conflict was detected, then the symbol will not have been added to
188   // the symbol table. Try suffixes until we get to a unique name that works.
189   SmallString<128> nameBuffer(name.getValue());
190   unsigned originalLength = nameBuffer.size();
191 
192   MLIRContext *context = symbol->getContext();
193 
194   // Iteratively try suffixes until we find one that isn't used.
195   do {
196     nameBuffer.resize(originalLength);
197     nameBuffer += '_';
198     nameBuffer += std::to_string(uniquingCounter++);
199   } while (!symbolTable.insert({StringAttr::get(context, nameBuffer), symbol})
200                 .second);
201   setSymbolName(symbol, nameBuffer);
202 }
203 
204 /// Returns the name of the given symbol operation.
205 StringAttr SymbolTable::getSymbolName(Operation *symbol) {
206   StringAttr name = getNameIfSymbol(symbol);
207   assert(name && "expected valid symbol name");
208   return name;
209 }
210 
211 /// Sets the name of the given symbol operation.
212 void SymbolTable::setSymbolName(Operation *symbol, StringAttr name) {
213   symbol->setAttr(getSymbolAttrName(), name);
214 }
215 
216 /// Returns the visibility of the given symbol operation.
217 SymbolTable::Visibility SymbolTable::getSymbolVisibility(Operation *symbol) {
218   // If the attribute doesn't exist, assume public.
219   StringAttr vis = symbol->getAttrOfType<StringAttr>(getVisibilityAttrName());
220   if (!vis)
221     return Visibility::Public;
222 
223   // Otherwise, switch on the string value.
224   return StringSwitch<Visibility>(vis.getValue())
225       .Case("private", Visibility::Private)
226       .Case("nested", Visibility::Nested)
227       .Case("public", Visibility::Public);
228 }
229 /// Sets the visibility of the given symbol operation.
230 void SymbolTable::setSymbolVisibility(Operation *symbol, Visibility vis) {
231   MLIRContext *ctx = symbol->getContext();
232 
233   // If the visibility is public, just drop the attribute as this is the
234   // default.
235   if (vis == Visibility::Public) {
236     symbol->removeAttr(Identifier::get(getVisibilityAttrName(), ctx));
237     return;
238   }
239 
240   // Otherwise, update the attribute.
241   assert((vis == Visibility::Private || vis == Visibility::Nested) &&
242          "unknown symbol visibility kind");
243 
244   StringRef visName = vis == Visibility::Private ? "private" : "nested";
245   symbol->setAttr(getVisibilityAttrName(), StringAttr::get(ctx, visName));
246 }
247 
248 /// Returns the nearest symbol table from a given operation `from`. Returns
249 /// nullptr if no valid parent symbol table could be found.
250 Operation *SymbolTable::getNearestSymbolTable(Operation *from) {
251   assert(from && "expected valid operation");
252   if (isPotentiallyUnknownSymbolTable(from))
253     return nullptr;
254 
255   while (!from->hasTrait<OpTrait::SymbolTable>()) {
256     from = from->getParentOp();
257 
258     // Check that this is a valid op and isn't an unknown symbol table.
259     if (!from || isPotentiallyUnknownSymbolTable(from))
260       return nullptr;
261   }
262   return from;
263 }
264 
265 /// Walks all symbol table operations nested within, and including, `op`. For
266 /// each symbol table operation, the provided callback is invoked with the op
267 /// and a boolean signifying if the symbols within that symbol table can be
268 /// treated as if all uses are visible. `allSymUsesVisible` identifies whether
269 /// all of the symbol uses of symbols within `op` are visible.
270 void SymbolTable::walkSymbolTables(
271     Operation *op, bool allSymUsesVisible,
272     function_ref<void(Operation *, bool)> callback) {
273   bool isSymbolTable = op->hasTrait<OpTrait::SymbolTable>();
274   if (isSymbolTable) {
275     SymbolOpInterface symbol = dyn_cast<SymbolOpInterface>(op);
276     allSymUsesVisible |= !symbol || symbol.isPrivate();
277   } else {
278     // Otherwise if 'op' is not a symbol table, any nested symbols are
279     // guaranteed to be hidden.
280     allSymUsesVisible = true;
281   }
282 
283   for (Region &region : op->getRegions())
284     for (Block &block : region)
285       for (Operation &nestedOp : block)
286         walkSymbolTables(&nestedOp, allSymUsesVisible, callback);
287 
288   // If 'op' had the symbol table trait, visit it after any nested symbol
289   // tables.
290   if (isSymbolTable)
291     callback(op, allSymUsesVisible);
292 }
293 
294 /// Returns the operation registered with the given symbol name with the
295 /// regions of 'symbolTableOp'. 'symbolTableOp' is required to be an operation
296 /// with the 'OpTrait::SymbolTable' trait. Returns nullptr if no valid symbol
297 /// was found.
298 Operation *SymbolTable::lookupSymbolIn(Operation *symbolTableOp,
299                                        StringAttr symbol) {
300   assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>());
301   Region &region = symbolTableOp->getRegion(0);
302   if (region.empty())
303     return nullptr;
304 
305   // Look for a symbol with the given name.
306   Identifier symbolNameId = Identifier::get(SymbolTable::getSymbolAttrName(),
307                                             symbolTableOp->getContext());
308   for (auto &op : region.front())
309     if (getNameIfSymbol(&op, symbolNameId) == symbol)
310       return &op;
311   return nullptr;
312 }
313 Operation *SymbolTable::lookupSymbolIn(Operation *symbolTableOp,
314                                        SymbolRefAttr symbol) {
315   SmallVector<Operation *, 4> resolvedSymbols;
316   if (failed(lookupSymbolIn(symbolTableOp, symbol, resolvedSymbols)))
317     return nullptr;
318   return resolvedSymbols.back();
319 }
320 
321 /// Internal implementation of `lookupSymbolIn` that allows for specialized
322 /// implementations of the lookup function.
323 static LogicalResult lookupSymbolInImpl(
324     Operation *symbolTableOp, SymbolRefAttr symbol,
325     SmallVectorImpl<Operation *> &symbols,
326     function_ref<Operation *(Operation *, StringAttr)> lookupSymbolFn) {
327   assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>());
328 
329   // Lookup the root reference for this symbol.
330   symbolTableOp = lookupSymbolFn(symbolTableOp, symbol.getRootReference());
331   if (!symbolTableOp)
332     return failure();
333   symbols.push_back(symbolTableOp);
334 
335   // If there are no nested references, just return the root symbol directly.
336   ArrayRef<FlatSymbolRefAttr> nestedRefs = symbol.getNestedReferences();
337   if (nestedRefs.empty())
338     return success();
339 
340   // Verify that the root is also a symbol table.
341   if (!symbolTableOp->hasTrait<OpTrait::SymbolTable>())
342     return failure();
343 
344   // Otherwise, lookup each of the nested non-leaf references and ensure that
345   // each corresponds to a valid symbol table.
346   for (FlatSymbolRefAttr ref : nestedRefs.drop_back()) {
347     symbolTableOp = lookupSymbolFn(symbolTableOp, ref.getAttr());
348     if (!symbolTableOp || !symbolTableOp->hasTrait<OpTrait::SymbolTable>())
349       return failure();
350     symbols.push_back(symbolTableOp);
351   }
352   symbols.push_back(lookupSymbolFn(symbolTableOp, symbol.getLeafReference()));
353   return success(symbols.back());
354 }
355 
356 LogicalResult
357 SymbolTable::lookupSymbolIn(Operation *symbolTableOp, SymbolRefAttr symbol,
358                             SmallVectorImpl<Operation *> &symbols) {
359   auto lookupFn = [](Operation *symbolTableOp, StringAttr symbol) {
360     return lookupSymbolIn(symbolTableOp, symbol);
361   };
362   return lookupSymbolInImpl(symbolTableOp, symbol, symbols, lookupFn);
363 }
364 
365 /// Returns the operation registered with the given symbol name within the
366 /// closes parent operation with the 'OpTrait::SymbolTable' trait. Returns
367 /// nullptr if no valid symbol was found.
368 Operation *SymbolTable::lookupNearestSymbolFrom(Operation *from,
369                                                 StringAttr symbol) {
370   Operation *symbolTableOp = getNearestSymbolTable(from);
371   return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr;
372 }
373 Operation *SymbolTable::lookupNearestSymbolFrom(Operation *from,
374                                                 SymbolRefAttr symbol) {
375   Operation *symbolTableOp = getNearestSymbolTable(from);
376   return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr;
377 }
378 
379 raw_ostream &mlir::operator<<(raw_ostream &os,
380                               SymbolTable::Visibility visibility) {
381   switch (visibility) {
382   case SymbolTable::Visibility::Public:
383     return os << "public";
384   case SymbolTable::Visibility::Private:
385     return os << "private";
386   case SymbolTable::Visibility::Nested:
387     return os << "nested";
388   }
389   llvm_unreachable("Unexpected visibility");
390 }
391 
392 //===----------------------------------------------------------------------===//
393 // SymbolTable Trait Types
394 //===----------------------------------------------------------------------===//
395 
396 LogicalResult detail::verifySymbolTable(Operation *op) {
397   if (op->getNumRegions() != 1)
398     return op->emitOpError()
399            << "Operations with a 'SymbolTable' must have exactly one region";
400   if (!llvm::hasSingleElement(op->getRegion(0)))
401     return op->emitOpError()
402            << "Operations with a 'SymbolTable' must have exactly one block";
403 
404   // Check that all symbols are uniquely named within child regions.
405   DenseMap<Attribute, Location> nameToOrigLoc;
406   for (auto &block : op->getRegion(0)) {
407     for (auto &op : block) {
408       // Check for a symbol name attribute.
409       auto nameAttr =
410           op.getAttrOfType<StringAttr>(mlir::SymbolTable::getSymbolAttrName());
411       if (!nameAttr)
412         continue;
413 
414       // Try to insert this symbol into the table.
415       auto it = nameToOrigLoc.try_emplace(nameAttr, op.getLoc());
416       if (!it.second)
417         return op.emitError()
418             .append("redefinition of symbol named '", nameAttr.getValue(), "'")
419             .attachNote(it.first->second)
420             .append("see existing symbol definition here");
421     }
422   }
423 
424   // Verify any nested symbol user operations.
425   SymbolTableCollection symbolTable;
426   auto verifySymbolUserFn = [&](Operation *op) -> Optional<WalkResult> {
427     if (SymbolUserOpInterface user = dyn_cast<SymbolUserOpInterface>(op))
428       return WalkResult(user.verifySymbolUses(symbolTable));
429     return WalkResult::advance();
430   };
431 
432   Optional<WalkResult> result =
433       walkSymbolTable(op->getRegions(), verifySymbolUserFn);
434   return success(result && !result->wasInterrupted());
435 }
436 
437 LogicalResult detail::verifySymbol(Operation *op) {
438   // Verify the name attribute.
439   if (!op->getAttrOfType<StringAttr>(mlir::SymbolTable::getSymbolAttrName()))
440     return op->emitOpError() << "requires string attribute '"
441                              << mlir::SymbolTable::getSymbolAttrName() << "'";
442 
443   // Verify the visibility attribute.
444   if (Attribute vis = op->getAttr(mlir::SymbolTable::getVisibilityAttrName())) {
445     StringAttr visStrAttr = vis.dyn_cast<StringAttr>();
446     if (!visStrAttr)
447       return op->emitOpError() << "requires visibility attribute '"
448                                << mlir::SymbolTable::getVisibilityAttrName()
449                                << "' to be a string attribute, but got " << vis;
450 
451     if (!llvm::is_contained(ArrayRef<StringRef>{"public", "private", "nested"},
452                             visStrAttr.getValue()))
453       return op->emitOpError()
454              << "visibility expected to be one of [\"public\", \"private\", "
455                 "\"nested\"], but got "
456              << visStrAttr;
457   }
458   return success();
459 }
460 
461 //===----------------------------------------------------------------------===//
462 // Symbol Use Lists
463 //===----------------------------------------------------------------------===//
464 
465 /// Walk all of the symbol references within the given operation, invoking the
466 /// provided callback for each found use. The callbacks takes as arguments: the
467 /// use of the symbol, and the nested access chain to the attribute within the
468 /// operation dictionary. An access chain is a set of indices into nested
469 /// container attributes. For example, a symbol use in an attribute dictionary
470 /// that looks like the following:
471 ///
472 ///    {use = [{other_attr, @symbol}]}
473 ///
474 /// May have the following access chain:
475 ///
476 ///     [0, 0, 1]
477 ///
478 static WalkResult walkSymbolRefs(
479     Operation *op,
480     function_ref<WalkResult(SymbolTable::SymbolUse, ArrayRef<int>)> callback) {
481   // Check to see if the operation has any attributes.
482   DictionaryAttr attrDict = op->getAttrDictionary();
483   if (attrDict.empty())
484     return WalkResult::advance();
485 
486   // A worklist of a container attribute and the current index into the held
487   // attribute list.
488   SmallVector<Attribute, 1> attrWorklist(1, attrDict);
489   SmallVector<int, 1> curAccessChain(1, /*Value=*/-1);
490 
491   // Process the symbol references within the given nested attribute range.
492   auto processAttrs = [&](int &index, auto attrRange) -> WalkResult {
493     for (Attribute attr : llvm::drop_begin(attrRange, index)) {
494       /// Check for a nested container attribute, these will also need to be
495       /// walked.
496       if (attr.isa<ArrayAttr, DictionaryAttr>()) {
497         attrWorklist.push_back(attr);
498         curAccessChain.push_back(-1);
499         return WalkResult::advance();
500       }
501 
502       // Invoke the provided callback if we find a symbol use and check for a
503       // requested interrupt.
504       if (auto symbolRef = attr.dyn_cast<SymbolRefAttr>())
505         if (callback({op, symbolRef}, curAccessChain).wasInterrupted())
506           return WalkResult::interrupt();
507 
508       // Make sure to keep the index counter in sync.
509       ++index;
510     }
511 
512     // Pop this container attribute from the worklist.
513     attrWorklist.pop_back();
514     curAccessChain.pop_back();
515     return WalkResult::advance();
516   };
517 
518   WalkResult result = WalkResult::advance();
519   do {
520     Attribute attr = attrWorklist.back();
521     int &index = curAccessChain.back();
522     ++index;
523 
524     // Process the given attribute, which is guaranteed to be a container.
525     if (auto dict = attr.dyn_cast<DictionaryAttr>())
526       result = processAttrs(index, make_second_range(dict.getValue()));
527     else
528       result = processAttrs(index, attr.cast<ArrayAttr>().getValue());
529   } while (!attrWorklist.empty() && !result.wasInterrupted());
530   return result;
531 }
532 
533 /// Walk all of the uses, for any symbol, that are nested within the given
534 /// regions, invoking the provided callback for each. This does not traverse
535 /// into any nested symbol tables.
536 static Optional<WalkResult> walkSymbolUses(
537     MutableArrayRef<Region> regions,
538     function_ref<WalkResult(SymbolTable::SymbolUse, ArrayRef<int>)> callback) {
539   return walkSymbolTable(regions, [&](Operation *op) -> Optional<WalkResult> {
540     // Check that this isn't a potentially unknown symbol table.
541     if (isPotentiallyUnknownSymbolTable(op))
542       return llvm::None;
543 
544     return walkSymbolRefs(op, callback);
545   });
546 }
547 /// Walk all of the uses, for any symbol, that are nested within the given
548 /// operation 'from', invoking the provided callback for each. This does not
549 /// traverse into any nested symbol tables.
550 static Optional<WalkResult> walkSymbolUses(
551     Operation *from,
552     function_ref<WalkResult(SymbolTable::SymbolUse, ArrayRef<int>)> callback) {
553   // If this operation has regions, and it, as well as its dialect, isn't
554   // registered then conservatively fail. The operation may define a
555   // symbol table, so we can't opaquely know if we should traverse to find
556   // nested uses.
557   if (isPotentiallyUnknownSymbolTable(from))
558     return llvm::None;
559 
560   // Walk the uses on this operation.
561   if (walkSymbolRefs(from, callback).wasInterrupted())
562     return WalkResult::interrupt();
563 
564   // Only recurse if this operation is not a symbol table. A symbol table
565   // defines a new scope, so we can't walk the attributes from within the symbol
566   // table op.
567   if (!from->hasTrait<OpTrait::SymbolTable>())
568     return walkSymbolUses(from->getRegions(), callback);
569   return WalkResult::advance();
570 }
571 
572 namespace {
573 /// This class represents a single symbol scope. A symbol scope represents the
574 /// set of operations nested within a symbol table that may reference symbols
575 /// within that table. A symbol scope does not contain the symbol table
576 /// operation itself, just its contained operations. A scope ends at leaf
577 /// operations or another symbol table operation.
578 struct SymbolScope {
579   /// Walk the symbol uses within this scope, invoking the given callback.
580   /// This variant is used when the callback type matches that expected by
581   /// 'walkSymbolUses'.
582   template <typename CallbackT,
583             typename std::enable_if_t<!std::is_same<
584                 typename llvm::function_traits<CallbackT>::result_t,
585                 void>::value> * = nullptr>
586   Optional<WalkResult> walk(CallbackT cback) {
587     if (Region *region = limit.dyn_cast<Region *>())
588       return walkSymbolUses(*region, cback);
589     return walkSymbolUses(limit.get<Operation *>(), cback);
590   }
591   /// This variant is used when the callback type matches a stripped down type:
592   /// void(SymbolTable::SymbolUse use)
593   template <typename CallbackT,
594             typename std::enable_if_t<std::is_same<
595                 typename llvm::function_traits<CallbackT>::result_t,
596                 void>::value> * = nullptr>
597   Optional<WalkResult> walk(CallbackT cback) {
598     return walk([=](SymbolTable::SymbolUse use, ArrayRef<int>) {
599       return cback(use), WalkResult::advance();
600     });
601   }
602 
603   /// The representation of the symbol within this scope.
604   SymbolRefAttr symbol;
605 
606   /// The IR unit representing this scope.
607   llvm::PointerUnion<Operation *, Region *> limit;
608 };
609 } // end anonymous namespace
610 
611 /// Collect all of the symbol scopes from 'symbol' to (inclusive) 'limit'.
612 static SmallVector<SymbolScope, 2> collectSymbolScopes(Operation *symbol,
613                                                        Operation *limit) {
614   StringAttr symName = SymbolTable::getSymbolName(symbol);
615   assert(!symbol->hasTrait<OpTrait::SymbolTable>() || symbol != limit);
616 
617   // Compute the ancestors of 'limit'.
618   SetVector<Operation *, SmallVector<Operation *, 4>,
619             SmallPtrSet<Operation *, 4>>
620       limitAncestors;
621   Operation *limitAncestor = limit;
622   do {
623     // Check to see if 'symbol' is an ancestor of 'limit'.
624     if (limitAncestor == symbol) {
625       // Check that the nearest symbol table is 'symbol's parent. SymbolRefAttr
626       // doesn't support parent references.
627       if (SymbolTable::getNearestSymbolTable(limit->getParentOp()) ==
628           symbol->getParentOp())
629         return {{SymbolRefAttr::get(symName), limit}};
630       return {};
631     }
632 
633     limitAncestors.insert(limitAncestor);
634   } while ((limitAncestor = limitAncestor->getParentOp()));
635 
636   // Try to find the first ancestor of 'symbol' that is an ancestor of 'limit'.
637   Operation *commonAncestor = symbol->getParentOp();
638   do {
639     if (limitAncestors.count(commonAncestor))
640       break;
641   } while ((commonAncestor = commonAncestor->getParentOp()));
642   assert(commonAncestor && "'limit' and 'symbol' have no common ancestor");
643 
644   // Compute the set of valid nested references for 'symbol' as far up to the
645   // common ancestor as possible.
646   SmallVector<SymbolRefAttr, 2> references;
647   bool collectedAllReferences = succeeded(
648       collectValidReferencesFor(symbol, symName, commonAncestor, references));
649 
650   // Handle the case where the common ancestor is 'limit'.
651   if (commonAncestor == limit) {
652     SmallVector<SymbolScope, 2> scopes;
653 
654     // Walk each of the ancestors of 'symbol', calling the compute function for
655     // each one.
656     Operation *limitIt = symbol->getParentOp();
657     for (size_t i = 0, e = references.size(); i != e;
658          ++i, limitIt = limitIt->getParentOp()) {
659       assert(limitIt->hasTrait<OpTrait::SymbolTable>());
660       scopes.push_back({references[i], &limitIt->getRegion(0)});
661     }
662     return scopes;
663   }
664 
665   // Otherwise, we just need the symbol reference for 'symbol' that will be
666   // used within 'limit'. This is the last reference in the list we computed
667   // above if we were able to collect all references.
668   if (!collectedAllReferences)
669     return {};
670   return {{references.back(), limit}};
671 }
672 static SmallVector<SymbolScope, 2> collectSymbolScopes(Operation *symbol,
673                                                        Region *limit) {
674   auto scopes = collectSymbolScopes(symbol, limit->getParentOp());
675 
676   // If we collected some scopes to walk, make sure to constrain the one for
677   // limit to the specific region requested.
678   if (!scopes.empty())
679     scopes.back().limit = limit;
680   return scopes;
681 }
682 template <typename IRUnit>
683 static SmallVector<SymbolScope, 1> collectSymbolScopes(StringAttr symbol,
684                                                        IRUnit *limit) {
685   return {{SymbolRefAttr::get(symbol), limit}};
686 }
687 
688 /// Returns true if the given reference 'SubRef' is a sub reference of the
689 /// reference 'ref', i.e. 'ref' is a further qualified reference.
690 static bool isReferencePrefixOf(SymbolRefAttr subRef, SymbolRefAttr ref) {
691   if (ref == subRef)
692     return true;
693 
694   // If the references are not pointer equal, check to see if `subRef` is a
695   // prefix of `ref`.
696   if (ref.isa<FlatSymbolRefAttr>() ||
697       ref.getRootReference() != subRef.getRootReference())
698     return false;
699 
700   auto refLeafs = ref.getNestedReferences();
701   auto subRefLeafs = subRef.getNestedReferences();
702   return subRefLeafs.size() < refLeafs.size() &&
703          subRefLeafs == refLeafs.take_front(subRefLeafs.size());
704 }
705 
706 //===----------------------------------------------------------------------===//
707 // SymbolTable::getSymbolUses
708 
709 /// The implementation of SymbolTable::getSymbolUses below.
710 template <typename FromT>
711 static Optional<SymbolTable::UseRange> getSymbolUsesImpl(FromT from) {
712   std::vector<SymbolTable::SymbolUse> uses;
713   auto walkFn = [&](SymbolTable::SymbolUse symbolUse, ArrayRef<int>) {
714     uses.push_back(symbolUse);
715     return WalkResult::advance();
716   };
717   auto result = walkSymbolUses(from, walkFn);
718   return result ? Optional<SymbolTable::UseRange>(std::move(uses)) : llvm::None;
719 }
720 
721 /// Get an iterator range for all of the uses, for any symbol, that are nested
722 /// within the given operation 'from'. This does not traverse into any nested
723 /// symbol tables, and will also only return uses on 'from' if it does not
724 /// also define a symbol table. This is because we treat the region as the
725 /// boundary of the symbol table, and not the op itself. This function returns
726 /// None if there are any unknown operations that may potentially be symbol
727 /// tables.
728 auto SymbolTable::getSymbolUses(Operation *from) -> Optional<UseRange> {
729   return getSymbolUsesImpl(from);
730 }
731 auto SymbolTable::getSymbolUses(Region *from) -> Optional<UseRange> {
732   return getSymbolUsesImpl(MutableArrayRef<Region>(*from));
733 }
734 
735 //===----------------------------------------------------------------------===//
736 // SymbolTable::getSymbolUses
737 
738 /// The implementation of SymbolTable::getSymbolUses below.
739 template <typename SymbolT, typename IRUnitT>
740 static Optional<SymbolTable::UseRange> getSymbolUsesImpl(SymbolT symbol,
741                                                          IRUnitT *limit) {
742   std::vector<SymbolTable::SymbolUse> uses;
743   for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) {
744     if (!scope.walk([&](SymbolTable::SymbolUse symbolUse) {
745           if (isReferencePrefixOf(scope.symbol, symbolUse.getSymbolRef()))
746             uses.push_back(symbolUse);
747         }))
748       return llvm::None;
749   }
750   return SymbolTable::UseRange(std::move(uses));
751 }
752 
753 /// Get all of the uses of the given symbol that are nested within the given
754 /// operation 'from', invoking the provided callback for each. This does not
755 /// traverse into any nested symbol tables. This function returns None if there
756 /// are any unknown operations that may potentially be symbol tables.
757 auto SymbolTable::getSymbolUses(StringAttr symbol, Operation *from)
758     -> Optional<UseRange> {
759   return getSymbolUsesImpl(symbol, from);
760 }
761 auto SymbolTable::getSymbolUses(Operation *symbol, Operation *from)
762     -> Optional<UseRange> {
763   return getSymbolUsesImpl(symbol, from);
764 }
765 auto SymbolTable::getSymbolUses(StringAttr symbol, Region *from)
766     -> Optional<UseRange> {
767   return getSymbolUsesImpl(symbol, from);
768 }
769 auto SymbolTable::getSymbolUses(Operation *symbol, Region *from)
770     -> Optional<UseRange> {
771   return getSymbolUsesImpl(symbol, from);
772 }
773 
774 //===----------------------------------------------------------------------===//
775 // SymbolTable::symbolKnownUseEmpty
776 
777 /// The implementation of SymbolTable::symbolKnownUseEmpty below.
778 template <typename SymbolT, typename IRUnitT>
779 static bool symbolKnownUseEmptyImpl(SymbolT symbol, IRUnitT *limit) {
780   for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) {
781     // Walk all of the symbol uses looking for a reference to 'symbol'.
782     if (scope.walk([&](SymbolTable::SymbolUse symbolUse, ArrayRef<int>) {
783           return isReferencePrefixOf(scope.symbol, symbolUse.getSymbolRef())
784                      ? WalkResult::interrupt()
785                      : WalkResult::advance();
786         }) != WalkResult::advance())
787       return false;
788   }
789   return true;
790 }
791 
792 /// Return if the given symbol is known to have no uses that are nested within
793 /// the given operation 'from'. This does not traverse into any nested symbol
794 /// tables. This function will also return false if there are any unknown
795 /// operations that may potentially be symbol tables.
796 bool SymbolTable::symbolKnownUseEmpty(StringAttr symbol, Operation *from) {
797   return symbolKnownUseEmptyImpl(symbol, from);
798 }
799 bool SymbolTable::symbolKnownUseEmpty(Operation *symbol, Operation *from) {
800   return symbolKnownUseEmptyImpl(symbol, from);
801 }
802 bool SymbolTable::symbolKnownUseEmpty(StringAttr symbol, Region *from) {
803   return symbolKnownUseEmptyImpl(symbol, from);
804 }
805 bool SymbolTable::symbolKnownUseEmpty(Operation *symbol, Region *from) {
806   return symbolKnownUseEmptyImpl(symbol, from);
807 }
808 
809 //===----------------------------------------------------------------------===//
810 // SymbolTable::replaceAllSymbolUses
811 
812 /// Rebuild the given attribute container after replacing all references to a
813 /// symbol with the updated attribute in 'accesses'.
814 static Attribute rebuildAttrAfterRAUW(
815     Attribute container,
816     ArrayRef<std::pair<SmallVector<int, 1>, SymbolRefAttr>> accesses,
817     unsigned depth) {
818   // Given a range of Attributes, update the ones referred to by the given
819   // access chains to point to the new symbol attribute.
820   auto updateAttrs = [&](auto &&attrRange) {
821     auto attrBegin = std::begin(attrRange);
822     for (unsigned i = 0, e = accesses.size(); i != e;) {
823       ArrayRef<int> access = accesses[i].first;
824       Attribute &attr = *std::next(attrBegin, access[depth]);
825 
826       // Check to see if this is a leaf access, i.e. a SymbolRef.
827       if (access.size() == depth + 1) {
828         attr = accesses[i].second;
829         ++i;
830         continue;
831       }
832 
833       // Otherwise, this is a container. Collect all of the accesses for this
834       // index and recurse. The recursion here is bounded by the size of the
835       // largest access array.
836       auto nestedAccesses = accesses.drop_front(i).take_while([&](auto &it) {
837         ArrayRef<int> nextAccess = it.first;
838         return nextAccess.size() > depth + 1 &&
839                nextAccess[depth] == access[depth];
840       });
841       attr = rebuildAttrAfterRAUW(attr, nestedAccesses, depth + 1);
842 
843       // Skip over all of the accesses that refer to the nested container.
844       i += nestedAccesses.size();
845     }
846   };
847 
848   if (auto dictAttr = container.dyn_cast<DictionaryAttr>()) {
849     auto newAttrs = llvm::to_vector<4>(dictAttr.getValue());
850     updateAttrs(make_second_range(newAttrs));
851     return DictionaryAttr::get(dictAttr.getContext(), newAttrs);
852   }
853   auto newAttrs = llvm::to_vector<4>(container.cast<ArrayAttr>().getValue());
854   updateAttrs(newAttrs);
855   return ArrayAttr::get(container.getContext(), newAttrs);
856 }
857 
858 /// Generates a new symbol reference attribute with a new leaf reference.
859 static SymbolRefAttr generateNewRefAttr(SymbolRefAttr oldAttr,
860                                         FlatSymbolRefAttr newLeafAttr) {
861   if (oldAttr.isa<FlatSymbolRefAttr>())
862     return newLeafAttr;
863   auto nestedRefs = llvm::to_vector<2>(oldAttr.getNestedReferences());
864   nestedRefs.back() = newLeafAttr;
865   return SymbolRefAttr::get(oldAttr.getRootReference(), nestedRefs);
866 }
867 
868 /// The implementation of SymbolTable::replaceAllSymbolUses below.
869 template <typename SymbolT, typename IRUnitT>
870 static LogicalResult
871 replaceAllSymbolUsesImpl(SymbolT symbol, StringAttr newSymbol, IRUnitT *limit) {
872   // A collection of operations along with their new attribute dictionary.
873   std::vector<std::pair<Operation *, DictionaryAttr>> updatedAttrDicts;
874 
875   // The current operation being processed.
876   Operation *curOp = nullptr;
877 
878   // The set of access chains into the attribute dictionary of the current
879   // operation, as well as the replacement attribute to use.
880   SmallVector<std::pair<SmallVector<int, 1>, SymbolRefAttr>, 1> accessChains;
881 
882   // Generate a new attribute dictionary for the current operation by replacing
883   // references to the old symbol.
884   auto generateNewAttrDict = [&] {
885     auto oldDict = curOp->getAttrDictionary();
886     auto newDict = rebuildAttrAfterRAUW(oldDict, accessChains, /*depth=*/0);
887     return newDict.cast<DictionaryAttr>();
888   };
889 
890   // Generate a new attribute to replace the given attribute.
891   FlatSymbolRefAttr newLeafAttr = FlatSymbolRefAttr::get(newSymbol);
892   for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) {
893     SymbolRefAttr newAttr = generateNewRefAttr(scope.symbol, newLeafAttr);
894     auto walkFn = [&](SymbolTable::SymbolUse symbolUse,
895                       ArrayRef<int> accessChain) {
896       SymbolRefAttr useRef = symbolUse.getSymbolRef();
897       if (!isReferencePrefixOf(scope.symbol, useRef))
898         return WalkResult::advance();
899 
900       // If we have a valid match, check to see if this is a proper
901       // subreference. If it is, then we will need to generate a different new
902       // attribute specifically for this use.
903       SymbolRefAttr replacementRef = newAttr;
904       if (useRef != scope.symbol) {
905         if (scope.symbol.isa<FlatSymbolRefAttr>()) {
906           replacementRef =
907               SymbolRefAttr::get(newSymbol, useRef.getNestedReferences());
908         } else {
909           auto nestedRefs = llvm::to_vector<4>(useRef.getNestedReferences());
910           nestedRefs[scope.symbol.getNestedReferences().size() - 1] =
911               newLeafAttr;
912           replacementRef =
913               SymbolRefAttr::get(useRef.getRootReference(), nestedRefs);
914         }
915       }
916 
917       // If there was a previous operation, generate a new attribute dict
918       // for it. This means that we've finished processing the current
919       // operation, so generate a new dictionary for it.
920       if (curOp && symbolUse.getUser() != curOp) {
921         updatedAttrDicts.push_back({curOp, generateNewAttrDict()});
922         accessChains.clear();
923       }
924 
925       // Record this access.
926       curOp = symbolUse.getUser();
927       accessChains.push_back({llvm::to_vector<1>(accessChain), replacementRef});
928       return WalkResult::advance();
929     };
930     if (!scope.walk(walkFn))
931       return failure();
932 
933     // Check to see if we have a dangling op that needs to be processed.
934     if (curOp) {
935       updatedAttrDicts.push_back({curOp, generateNewAttrDict()});
936       curOp = nullptr;
937     }
938   }
939 
940   // Update the attribute dictionaries as necessary.
941   for (auto &it : updatedAttrDicts)
942     it.first->setAttrs(it.second);
943   return success();
944 }
945 
946 /// Attempt to replace all uses of the given symbol 'oldSymbol' with the
947 /// provided symbol 'newSymbol' that are nested within the given operation
948 /// 'from'. This does not traverse into any nested symbol tables. If there are
949 /// any unknown operations that may potentially be symbol tables, no uses are
950 /// replaced and failure is returned.
951 LogicalResult SymbolTable::replaceAllSymbolUses(StringAttr oldSymbol,
952                                                 StringAttr newSymbol,
953                                                 Operation *from) {
954   return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from);
955 }
956 LogicalResult SymbolTable::replaceAllSymbolUses(Operation *oldSymbol,
957                                                 StringAttr newSymbol,
958                                                 Operation *from) {
959   return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from);
960 }
961 LogicalResult SymbolTable::replaceAllSymbolUses(StringAttr oldSymbol,
962                                                 StringAttr newSymbol,
963                                                 Region *from) {
964   return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from);
965 }
966 LogicalResult SymbolTable::replaceAllSymbolUses(Operation *oldSymbol,
967                                                 StringAttr newSymbol,
968                                                 Region *from) {
969   return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from);
970 }
971 
972 //===----------------------------------------------------------------------===//
973 // SymbolTableCollection
974 //===----------------------------------------------------------------------===//
975 
976 Operation *SymbolTableCollection::lookupSymbolIn(Operation *symbolTableOp,
977                                                  StringAttr symbol) {
978   return getSymbolTable(symbolTableOp).lookup(symbol);
979 }
980 Operation *SymbolTableCollection::lookupSymbolIn(Operation *symbolTableOp,
981                                                  SymbolRefAttr name) {
982   SmallVector<Operation *, 4> symbols;
983   if (failed(lookupSymbolIn(symbolTableOp, name, symbols)))
984     return nullptr;
985   return symbols.back();
986 }
987 /// A variant of 'lookupSymbolIn' that returns all of the symbols referenced by
988 /// a given SymbolRefAttr. Returns failure if any of the nested references could
989 /// not be resolved.
990 LogicalResult
991 SymbolTableCollection::lookupSymbolIn(Operation *symbolTableOp,
992                                       SymbolRefAttr name,
993                                       SmallVectorImpl<Operation *> &symbols) {
994   auto lookupFn = [this](Operation *symbolTableOp, StringAttr symbol) {
995     return lookupSymbolIn(symbolTableOp, symbol);
996   };
997   return lookupSymbolInImpl(symbolTableOp, name, symbols, lookupFn);
998 }
999 
1000 /// Returns the operation registered with the given symbol name within the
1001 /// closest parent operation of, or including, 'from' with the
1002 /// 'OpTrait::SymbolTable' trait. Returns nullptr if no valid symbol was
1003 /// found.
1004 Operation *SymbolTableCollection::lookupNearestSymbolFrom(Operation *from,
1005                                                           StringAttr symbol) {
1006   Operation *symbolTableOp = SymbolTable::getNearestSymbolTable(from);
1007   return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr;
1008 }
1009 Operation *
1010 SymbolTableCollection::lookupNearestSymbolFrom(Operation *from,
1011                                                SymbolRefAttr symbol) {
1012   Operation *symbolTableOp = SymbolTable::getNearestSymbolTable(from);
1013   return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr;
1014 }
1015 
1016 /// Lookup, or create, a symbol table for an operation.
1017 SymbolTable &SymbolTableCollection::getSymbolTable(Operation *op) {
1018   auto it = symbolTables.try_emplace(op, nullptr);
1019   if (it.second)
1020     it.first->second = std::make_unique<SymbolTable>(op);
1021   return *it.first->second;
1022 }
1023 
1024 //===----------------------------------------------------------------------===//
1025 // SymbolUserMap
1026 //===----------------------------------------------------------------------===//
1027 
1028 SymbolUserMap::SymbolUserMap(SymbolTableCollection &symbolTable,
1029                              Operation *symbolTableOp)
1030     : symbolTable(symbolTable) {
1031   // Walk each of the symbol tables looking for discardable callgraph nodes.
1032   SmallVector<Operation *> symbols;
1033   auto walkFn = [&](Operation *symbolTableOp, bool allUsesVisible) {
1034     for (Operation &nestedOp : symbolTableOp->getRegion(0).getOps()) {
1035       auto symbolUses = SymbolTable::getSymbolUses(&nestedOp);
1036       assert(symbolUses && "expected uses to be valid");
1037 
1038       for (const SymbolTable::SymbolUse &use : *symbolUses) {
1039         symbols.clear();
1040         (void)symbolTable.lookupSymbolIn(symbolTableOp, use.getSymbolRef(),
1041                                          symbols);
1042         for (Operation *symbolOp : symbols)
1043           symbolToUsers[symbolOp].insert(use.getUser());
1044       }
1045     }
1046   };
1047   // We just set `allSymUsesVisible` to false here because it isn't necessary
1048   // for building the user map.
1049   SymbolTable::walkSymbolTables(symbolTableOp, /*allSymUsesVisible=*/false,
1050                                 walkFn);
1051 }
1052 
1053 void SymbolUserMap::replaceAllUsesWith(Operation *symbol,
1054                                        StringAttr newSymbolName) {
1055   auto it = symbolToUsers.find(symbol);
1056   if (it == symbolToUsers.end())
1057     return;
1058   SetVector<Operation *> &users = it->second;
1059 
1060   // Replace the uses within the users of `symbol`.
1061   for (Operation *user : users)
1062     (void)SymbolTable::replaceAllSymbolUses(symbol, newSymbolName, user);
1063 
1064   // Move the current users of `symbol` to the new symbol if it is in the
1065   // symbol table.
1066   Operation *newSymbol =
1067       symbolTable.lookupSymbolIn(symbol->getParentOp(), newSymbolName);
1068   if (newSymbol != symbol) {
1069     // Transfer over the users to the new symbol.
1070     auto newIt = symbolToUsers.find(newSymbol);
1071     if (newIt == symbolToUsers.end())
1072       symbolToUsers.try_emplace(newSymbol, std::move(users));
1073     else
1074       newIt->second.set_union(users);
1075     symbolToUsers.erase(symbol);
1076   }
1077 }
1078 
1079 //===----------------------------------------------------------------------===//
1080 // Visibility parsing implementation.
1081 //===----------------------------------------------------------------------===//
1082 
1083 ParseResult impl::parseOptionalVisibilityKeyword(OpAsmParser &parser,
1084                                                  NamedAttrList &attrs) {
1085   StringRef visibility;
1086   if (parser.parseOptionalKeyword(&visibility, {"public", "private", "nested"}))
1087     return failure();
1088 
1089   StringAttr visibilityAttr = parser.getBuilder().getStringAttr(visibility);
1090   attrs.push_back(parser.getBuilder().getNamedAttr(
1091       SymbolTable::getVisibilityAttrName(), visibilityAttr));
1092   return success();
1093 }
1094 
1095 //===----------------------------------------------------------------------===//
1096 // Symbol Interfaces
1097 //===----------------------------------------------------------------------===//
1098 
1099 /// Include the generated symbol interfaces.
1100 #include "mlir/IR/SymbolInterfaces.cpp.inc"
1101