1 //===- SymbolTable.cpp - MLIR Symbol Table Class --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/IR/SymbolTable.h" 10 #include "mlir/IR/Builders.h" 11 #include "mlir/IR/OpImplementation.h" 12 #include "llvm/ADT/SetVector.h" 13 #include "llvm/ADT/SmallPtrSet.h" 14 #include "llvm/ADT/SmallString.h" 15 #include "llvm/ADT/StringSwitch.h" 16 17 using namespace mlir; 18 19 /// Return true if the given operation is unknown and may potentially define a 20 /// symbol table. 21 static bool isPotentiallyUnknownSymbolTable(Operation *op) { 22 return op->getNumRegions() == 1 && !op->getDialect(); 23 } 24 25 /// Returns the string name of the given symbol, or null if this is not a 26 /// symbol. 27 static StringAttr getNameIfSymbol(Operation *op) { 28 return op->getAttrOfType<StringAttr>(SymbolTable::getSymbolAttrName()); 29 } 30 static StringAttr getNameIfSymbol(Operation *op, Identifier symbolAttrNameId) { 31 return op->getAttrOfType<StringAttr>(symbolAttrNameId); 32 } 33 34 /// Computes the nested symbol reference attribute for the symbol 'symbolName' 35 /// that are usable within the symbol table operations from 'symbol' as far up 36 /// to the given operation 'within', where 'within' is an ancestor of 'symbol'. 37 /// Returns success if all references up to 'within' could be computed. 38 static LogicalResult 39 collectValidReferencesFor(Operation *symbol, StringAttr symbolName, 40 Operation *within, 41 SmallVectorImpl<SymbolRefAttr> &results) { 42 assert(within->isAncestor(symbol) && "expected 'within' to be an ancestor"); 43 MLIRContext *ctx = symbol->getContext(); 44 45 auto leafRef = FlatSymbolRefAttr::get(symbolName); 46 results.push_back(leafRef); 47 48 // Early exit for when 'within' is the parent of 'symbol'. 49 Operation *symbolTableOp = symbol->getParentOp(); 50 if (within == symbolTableOp) 51 return success(); 52 53 // Collect references until 'symbolTableOp' reaches 'within'. 54 SmallVector<FlatSymbolRefAttr, 1> nestedRefs(1, leafRef); 55 Identifier symbolNameId = 56 Identifier::get(SymbolTable::getSymbolAttrName(), ctx); 57 do { 58 // Each parent of 'symbol' should define a symbol table. 59 if (!symbolTableOp->hasTrait<OpTrait::SymbolTable>()) 60 return failure(); 61 // Each parent of 'symbol' should also be a symbol. 62 StringAttr symbolTableName = getNameIfSymbol(symbolTableOp, symbolNameId); 63 if (!symbolTableName) 64 return failure(); 65 results.push_back(SymbolRefAttr::get(symbolTableName, nestedRefs)); 66 67 symbolTableOp = symbolTableOp->getParentOp(); 68 if (symbolTableOp == within) 69 break; 70 nestedRefs.insert(nestedRefs.begin(), 71 FlatSymbolRefAttr::get(symbolTableName)); 72 } while (true); 73 return success(); 74 } 75 76 /// Walk all of the operations within the given set of regions, without 77 /// traversing into any nested symbol tables. Stops walking if the result of the 78 /// callback is anything other than `WalkResult::advance`. 79 static Optional<WalkResult> 80 walkSymbolTable(MutableArrayRef<Region> regions, 81 function_ref<Optional<WalkResult>(Operation *)> callback) { 82 SmallVector<Region *, 1> worklist(llvm::make_pointer_range(regions)); 83 while (!worklist.empty()) { 84 for (Operation &op : worklist.pop_back_val()->getOps()) { 85 Optional<WalkResult> result = callback(&op); 86 if (result != WalkResult::advance()) 87 return result; 88 89 // If this op defines a new symbol table scope, we can't traverse. Any 90 // symbol references nested within 'op' are different semantically. 91 if (!op.hasTrait<OpTrait::SymbolTable>()) { 92 for (Region ®ion : op.getRegions()) 93 worklist.push_back(®ion); 94 } 95 } 96 } 97 return WalkResult::advance(); 98 } 99 100 //===----------------------------------------------------------------------===// 101 // SymbolTable 102 //===----------------------------------------------------------------------===// 103 104 /// Build a symbol table with the symbols within the given operation. 105 SymbolTable::SymbolTable(Operation *symbolTableOp) 106 : symbolTableOp(symbolTableOp) { 107 assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>() && 108 "expected operation to have SymbolTable trait"); 109 assert(symbolTableOp->getNumRegions() == 1 && 110 "expected operation to have a single region"); 111 assert(llvm::hasSingleElement(symbolTableOp->getRegion(0)) && 112 "expected operation to have a single block"); 113 114 Identifier symbolNameId = Identifier::get(SymbolTable::getSymbolAttrName(), 115 symbolTableOp->getContext()); 116 for (auto &op : symbolTableOp->getRegion(0).front()) { 117 StringAttr name = getNameIfSymbol(&op, symbolNameId); 118 if (!name) 119 continue; 120 121 auto inserted = symbolTable.insert({name, &op}); 122 (void)inserted; 123 assert(inserted.second && 124 "expected region to contain uniquely named symbol operations"); 125 } 126 } 127 128 /// Look up a symbol with the specified name, returning null if no such name 129 /// exists. Names never include the @ on them. 130 Operation *SymbolTable::lookup(StringRef name) const { 131 return lookup(StringAttr::get(symbolTableOp->getContext(), name)); 132 } 133 Operation *SymbolTable::lookup(StringAttr name) const { 134 return symbolTable.lookup(name); 135 } 136 137 /// Erase the given symbol from the table. 138 void SymbolTable::erase(Operation *symbol) { 139 StringAttr name = getNameIfSymbol(symbol); 140 assert(name && "expected valid 'name' attribute"); 141 assert(symbol->getParentOp() == symbolTableOp && 142 "expected this operation to be inside of the operation with this " 143 "SymbolTable"); 144 145 auto it = symbolTable.find(name); 146 if (it != symbolTable.end() && it->second == symbol) { 147 symbolTable.erase(it); 148 symbol->erase(); 149 } 150 } 151 152 // TODO: Consider if this should be renamed to something like insertOrUpdate 153 /// Insert a new symbol into the table and associated operation if not already 154 /// there and rename it as necessary to avoid collisions. 155 void SymbolTable::insert(Operation *symbol, Block::iterator insertPt) { 156 // The symbol cannot be the child of another op and must be the child of the 157 // symbolTableOp after this. 158 // 159 // TODO: consider if SymbolTable's constructor should behave the same. 160 if (!symbol->getParentOp()) { 161 auto &body = symbolTableOp->getRegion(0).front(); 162 if (insertPt == Block::iterator()) { 163 insertPt = Block::iterator(body.end()); 164 } else { 165 assert((insertPt == body.end() || 166 insertPt->getParentOp() == symbolTableOp) && 167 "expected insertPt to be in the associated module operation"); 168 } 169 // Insert before the terminator, if any. 170 if (insertPt == Block::iterator(body.end()) && !body.empty() && 171 std::prev(body.end())->hasTrait<OpTrait::IsTerminator>()) 172 insertPt = std::prev(body.end()); 173 174 body.getOperations().insert(insertPt, symbol); 175 } 176 assert(symbol->getParentOp() == symbolTableOp && 177 "symbol is already inserted in another op"); 178 179 // Add this symbol to the symbol table, uniquing the name if a conflict is 180 // detected. 181 StringAttr name = getSymbolName(symbol); 182 if (symbolTable.insert({name, symbol}).second) 183 return; 184 // If the symbol was already in the table, also return. 185 if (symbolTable.lookup(name) == symbol) 186 return; 187 // If a conflict was detected, then the symbol will not have been added to 188 // the symbol table. Try suffixes until we get to a unique name that works. 189 SmallString<128> nameBuffer(name.getValue()); 190 unsigned originalLength = nameBuffer.size(); 191 192 MLIRContext *context = symbol->getContext(); 193 194 // Iteratively try suffixes until we find one that isn't used. 195 do { 196 nameBuffer.resize(originalLength); 197 nameBuffer += '_'; 198 nameBuffer += std::to_string(uniquingCounter++); 199 } while (!symbolTable.insert({StringAttr::get(context, nameBuffer), symbol}) 200 .second); 201 setSymbolName(symbol, nameBuffer); 202 } 203 204 /// Returns the name of the given symbol operation. 205 StringAttr SymbolTable::getSymbolName(Operation *symbol) { 206 StringAttr name = getNameIfSymbol(symbol); 207 assert(name && "expected valid symbol name"); 208 return name; 209 } 210 211 /// Sets the name of the given symbol operation. 212 void SymbolTable::setSymbolName(Operation *symbol, StringAttr name) { 213 symbol->setAttr(getSymbolAttrName(), name); 214 } 215 216 /// Returns the visibility of the given symbol operation. 217 SymbolTable::Visibility SymbolTable::getSymbolVisibility(Operation *symbol) { 218 // If the attribute doesn't exist, assume public. 219 StringAttr vis = symbol->getAttrOfType<StringAttr>(getVisibilityAttrName()); 220 if (!vis) 221 return Visibility::Public; 222 223 // Otherwise, switch on the string value. 224 return StringSwitch<Visibility>(vis.getValue()) 225 .Case("private", Visibility::Private) 226 .Case("nested", Visibility::Nested) 227 .Case("public", Visibility::Public); 228 } 229 /// Sets the visibility of the given symbol operation. 230 void SymbolTable::setSymbolVisibility(Operation *symbol, Visibility vis) { 231 MLIRContext *ctx = symbol->getContext(); 232 233 // If the visibility is public, just drop the attribute as this is the 234 // default. 235 if (vis == Visibility::Public) { 236 symbol->removeAttr(Identifier::get(getVisibilityAttrName(), ctx)); 237 return; 238 } 239 240 // Otherwise, update the attribute. 241 assert((vis == Visibility::Private || vis == Visibility::Nested) && 242 "unknown symbol visibility kind"); 243 244 StringRef visName = vis == Visibility::Private ? "private" : "nested"; 245 symbol->setAttr(getVisibilityAttrName(), StringAttr::get(ctx, visName)); 246 } 247 248 /// Returns the nearest symbol table from a given operation `from`. Returns 249 /// nullptr if no valid parent symbol table could be found. 250 Operation *SymbolTable::getNearestSymbolTable(Operation *from) { 251 assert(from && "expected valid operation"); 252 if (isPotentiallyUnknownSymbolTable(from)) 253 return nullptr; 254 255 while (!from->hasTrait<OpTrait::SymbolTable>()) { 256 from = from->getParentOp(); 257 258 // Check that this is a valid op and isn't an unknown symbol table. 259 if (!from || isPotentiallyUnknownSymbolTable(from)) 260 return nullptr; 261 } 262 return from; 263 } 264 265 /// Walks all symbol table operations nested within, and including, `op`. For 266 /// each symbol table operation, the provided callback is invoked with the op 267 /// and a boolean signifying if the symbols within that symbol table can be 268 /// treated as if all uses are visible. `allSymUsesVisible` identifies whether 269 /// all of the symbol uses of symbols within `op` are visible. 270 void SymbolTable::walkSymbolTables( 271 Operation *op, bool allSymUsesVisible, 272 function_ref<void(Operation *, bool)> callback) { 273 bool isSymbolTable = op->hasTrait<OpTrait::SymbolTable>(); 274 if (isSymbolTable) { 275 SymbolOpInterface symbol = dyn_cast<SymbolOpInterface>(op); 276 allSymUsesVisible |= !symbol || symbol.isPrivate(); 277 } else { 278 // Otherwise if 'op' is not a symbol table, any nested symbols are 279 // guaranteed to be hidden. 280 allSymUsesVisible = true; 281 } 282 283 for (Region ®ion : op->getRegions()) 284 for (Block &block : region) 285 for (Operation &nestedOp : block) 286 walkSymbolTables(&nestedOp, allSymUsesVisible, callback); 287 288 // If 'op' had the symbol table trait, visit it after any nested symbol 289 // tables. 290 if (isSymbolTable) 291 callback(op, allSymUsesVisible); 292 } 293 294 /// Returns the operation registered with the given symbol name with the 295 /// regions of 'symbolTableOp'. 'symbolTableOp' is required to be an operation 296 /// with the 'OpTrait::SymbolTable' trait. Returns nullptr if no valid symbol 297 /// was found. 298 Operation *SymbolTable::lookupSymbolIn(Operation *symbolTableOp, 299 StringAttr symbol) { 300 assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>()); 301 Region ®ion = symbolTableOp->getRegion(0); 302 if (region.empty()) 303 return nullptr; 304 305 // Look for a symbol with the given name. 306 Identifier symbolNameId = Identifier::get(SymbolTable::getSymbolAttrName(), 307 symbolTableOp->getContext()); 308 for (auto &op : region.front()) 309 if (getNameIfSymbol(&op, symbolNameId) == symbol) 310 return &op; 311 return nullptr; 312 } 313 Operation *SymbolTable::lookupSymbolIn(Operation *symbolTableOp, 314 SymbolRefAttr symbol) { 315 SmallVector<Operation *, 4> resolvedSymbols; 316 if (failed(lookupSymbolIn(symbolTableOp, symbol, resolvedSymbols))) 317 return nullptr; 318 return resolvedSymbols.back(); 319 } 320 321 /// Internal implementation of `lookupSymbolIn` that allows for specialized 322 /// implementations of the lookup function. 323 static LogicalResult lookupSymbolInImpl( 324 Operation *symbolTableOp, SymbolRefAttr symbol, 325 SmallVectorImpl<Operation *> &symbols, 326 function_ref<Operation *(Operation *, StringAttr)> lookupSymbolFn) { 327 assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>()); 328 329 // Lookup the root reference for this symbol. 330 symbolTableOp = lookupSymbolFn(symbolTableOp, symbol.getRootReference()); 331 if (!symbolTableOp) 332 return failure(); 333 symbols.push_back(symbolTableOp); 334 335 // If there are no nested references, just return the root symbol directly. 336 ArrayRef<FlatSymbolRefAttr> nestedRefs = symbol.getNestedReferences(); 337 if (nestedRefs.empty()) 338 return success(); 339 340 // Verify that the root is also a symbol table. 341 if (!symbolTableOp->hasTrait<OpTrait::SymbolTable>()) 342 return failure(); 343 344 // Otherwise, lookup each of the nested non-leaf references and ensure that 345 // each corresponds to a valid symbol table. 346 for (FlatSymbolRefAttr ref : nestedRefs.drop_back()) { 347 symbolTableOp = lookupSymbolFn(symbolTableOp, ref.getAttr()); 348 if (!symbolTableOp || !symbolTableOp->hasTrait<OpTrait::SymbolTable>()) 349 return failure(); 350 symbols.push_back(symbolTableOp); 351 } 352 symbols.push_back(lookupSymbolFn(symbolTableOp, symbol.getLeafReference())); 353 return success(symbols.back()); 354 } 355 356 LogicalResult 357 SymbolTable::lookupSymbolIn(Operation *symbolTableOp, SymbolRefAttr symbol, 358 SmallVectorImpl<Operation *> &symbols) { 359 auto lookupFn = [](Operation *symbolTableOp, StringAttr symbol) { 360 return lookupSymbolIn(symbolTableOp, symbol); 361 }; 362 return lookupSymbolInImpl(symbolTableOp, symbol, symbols, lookupFn); 363 } 364 365 /// Returns the operation registered with the given symbol name within the 366 /// closes parent operation with the 'OpTrait::SymbolTable' trait. Returns 367 /// nullptr if no valid symbol was found. 368 Operation *SymbolTable::lookupNearestSymbolFrom(Operation *from, 369 StringAttr symbol) { 370 Operation *symbolTableOp = getNearestSymbolTable(from); 371 return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr; 372 } 373 Operation *SymbolTable::lookupNearestSymbolFrom(Operation *from, 374 SymbolRefAttr symbol) { 375 Operation *symbolTableOp = getNearestSymbolTable(from); 376 return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr; 377 } 378 379 raw_ostream &mlir::operator<<(raw_ostream &os, 380 SymbolTable::Visibility visibility) { 381 switch (visibility) { 382 case SymbolTable::Visibility::Public: 383 return os << "public"; 384 case SymbolTable::Visibility::Private: 385 return os << "private"; 386 case SymbolTable::Visibility::Nested: 387 return os << "nested"; 388 } 389 llvm_unreachable("Unexpected visibility"); 390 } 391 392 //===----------------------------------------------------------------------===// 393 // SymbolTable Trait Types 394 //===----------------------------------------------------------------------===// 395 396 LogicalResult detail::verifySymbolTable(Operation *op) { 397 if (op->getNumRegions() != 1) 398 return op->emitOpError() 399 << "Operations with a 'SymbolTable' must have exactly one region"; 400 if (!llvm::hasSingleElement(op->getRegion(0))) 401 return op->emitOpError() 402 << "Operations with a 'SymbolTable' must have exactly one block"; 403 404 // Check that all symbols are uniquely named within child regions. 405 DenseMap<Attribute, Location> nameToOrigLoc; 406 for (auto &block : op->getRegion(0)) { 407 for (auto &op : block) { 408 // Check for a symbol name attribute. 409 auto nameAttr = 410 op.getAttrOfType<StringAttr>(mlir::SymbolTable::getSymbolAttrName()); 411 if (!nameAttr) 412 continue; 413 414 // Try to insert this symbol into the table. 415 auto it = nameToOrigLoc.try_emplace(nameAttr, op.getLoc()); 416 if (!it.second) 417 return op.emitError() 418 .append("redefinition of symbol named '", nameAttr.getValue(), "'") 419 .attachNote(it.first->second) 420 .append("see existing symbol definition here"); 421 } 422 } 423 424 // Verify any nested symbol user operations. 425 SymbolTableCollection symbolTable; 426 auto verifySymbolUserFn = [&](Operation *op) -> Optional<WalkResult> { 427 if (SymbolUserOpInterface user = dyn_cast<SymbolUserOpInterface>(op)) 428 return WalkResult(user.verifySymbolUses(symbolTable)); 429 return WalkResult::advance(); 430 }; 431 432 Optional<WalkResult> result = 433 walkSymbolTable(op->getRegions(), verifySymbolUserFn); 434 return success(result && !result->wasInterrupted()); 435 } 436 437 LogicalResult detail::verifySymbol(Operation *op) { 438 // Verify the name attribute. 439 if (!op->getAttrOfType<StringAttr>(mlir::SymbolTable::getSymbolAttrName())) 440 return op->emitOpError() << "requires string attribute '" 441 << mlir::SymbolTable::getSymbolAttrName() << "'"; 442 443 // Verify the visibility attribute. 444 if (Attribute vis = op->getAttr(mlir::SymbolTable::getVisibilityAttrName())) { 445 StringAttr visStrAttr = vis.dyn_cast<StringAttr>(); 446 if (!visStrAttr) 447 return op->emitOpError() << "requires visibility attribute '" 448 << mlir::SymbolTable::getVisibilityAttrName() 449 << "' to be a string attribute, but got " << vis; 450 451 if (!llvm::is_contained(ArrayRef<StringRef>{"public", "private", "nested"}, 452 visStrAttr.getValue())) 453 return op->emitOpError() 454 << "visibility expected to be one of [\"public\", \"private\", " 455 "\"nested\"], but got " 456 << visStrAttr; 457 } 458 return success(); 459 } 460 461 //===----------------------------------------------------------------------===// 462 // Symbol Use Lists 463 //===----------------------------------------------------------------------===// 464 465 /// Walk all of the symbol references within the given operation, invoking the 466 /// provided callback for each found use. The callbacks takes as arguments: the 467 /// use of the symbol, and the nested access chain to the attribute within the 468 /// operation dictionary. An access chain is a set of indices into nested 469 /// container attributes. For example, a symbol use in an attribute dictionary 470 /// that looks like the following: 471 /// 472 /// {use = [{other_attr, @symbol}]} 473 /// 474 /// May have the following access chain: 475 /// 476 /// [0, 0, 1] 477 /// 478 static WalkResult walkSymbolRefs( 479 Operation *op, 480 function_ref<WalkResult(SymbolTable::SymbolUse, ArrayRef<int>)> callback) { 481 // Check to see if the operation has any attributes. 482 DictionaryAttr attrDict = op->getAttrDictionary(); 483 if (attrDict.empty()) 484 return WalkResult::advance(); 485 486 // A worklist of a container attribute and the current index into the held 487 // attribute list. 488 struct WorklistItem { 489 SubElementAttrInterface container; 490 SmallVector<Attribute> immediateSubElements; 491 492 explicit WorklistItem(SubElementAttrInterface container) { 493 SmallVector<Attribute> subElements; 494 container.walkImmediateSubElements( 495 [&](Attribute attr) { subElements.push_back(attr); }, [](Type) {}); 496 immediateSubElements = std::move(subElements); 497 } 498 }; 499 500 SmallVector<WorklistItem, 1> attrWorklist(1, WorklistItem(attrDict)); 501 SmallVector<int, 1> curAccessChain(1, /*Value=*/-1); 502 503 // Process the symbol references within the given nested attribute range. 504 auto processAttrs = [&](int &index, 505 WorklistItem &worklistItem) -> WalkResult { 506 for (Attribute attr : 507 llvm::drop_begin(worklistItem.immediateSubElements, index)) { 508 /// Check for a nested container attribute, these will also need to be 509 /// walked. 510 if (auto interface = attr.dyn_cast<SubElementAttrInterface>()) { 511 attrWorklist.emplace_back(interface); 512 curAccessChain.push_back(-1); 513 return WalkResult::advance(); 514 } 515 516 // Invoke the provided callback if we find a symbol use and check for a 517 // requested interrupt. 518 if (auto symbolRef = attr.dyn_cast<SymbolRefAttr>()) 519 if (callback({op, symbolRef}, curAccessChain).wasInterrupted()) 520 return WalkResult::interrupt(); 521 522 // Make sure to keep the index counter in sync. 523 ++index; 524 } 525 526 // Pop this container attribute from the worklist. 527 attrWorklist.pop_back(); 528 curAccessChain.pop_back(); 529 return WalkResult::advance(); 530 }; 531 532 WalkResult result = WalkResult::advance(); 533 do { 534 WorklistItem &item = attrWorklist.back(); 535 int &index = curAccessChain.back(); 536 ++index; 537 538 // Process the given attribute, which is guaranteed to be a container. 539 result = processAttrs(index, item); 540 } while (!attrWorklist.empty() && !result.wasInterrupted()); 541 return result; 542 } 543 544 /// Walk all of the uses, for any symbol, that are nested within the given 545 /// regions, invoking the provided callback for each. This does not traverse 546 /// into any nested symbol tables. 547 static Optional<WalkResult> walkSymbolUses( 548 MutableArrayRef<Region> regions, 549 function_ref<WalkResult(SymbolTable::SymbolUse, ArrayRef<int>)> callback) { 550 return walkSymbolTable(regions, [&](Operation *op) -> Optional<WalkResult> { 551 // Check that this isn't a potentially unknown symbol table. 552 if (isPotentiallyUnknownSymbolTable(op)) 553 return llvm::None; 554 555 return walkSymbolRefs(op, callback); 556 }); 557 } 558 /// Walk all of the uses, for any symbol, that are nested within the given 559 /// operation 'from', invoking the provided callback for each. This does not 560 /// traverse into any nested symbol tables. 561 static Optional<WalkResult> walkSymbolUses( 562 Operation *from, 563 function_ref<WalkResult(SymbolTable::SymbolUse, ArrayRef<int>)> callback) { 564 // If this operation has regions, and it, as well as its dialect, isn't 565 // registered then conservatively fail. The operation may define a 566 // symbol table, so we can't opaquely know if we should traverse to find 567 // nested uses. 568 if (isPotentiallyUnknownSymbolTable(from)) 569 return llvm::None; 570 571 // Walk the uses on this operation. 572 if (walkSymbolRefs(from, callback).wasInterrupted()) 573 return WalkResult::interrupt(); 574 575 // Only recurse if this operation is not a symbol table. A symbol table 576 // defines a new scope, so we can't walk the attributes from within the symbol 577 // table op. 578 if (!from->hasTrait<OpTrait::SymbolTable>()) 579 return walkSymbolUses(from->getRegions(), callback); 580 return WalkResult::advance(); 581 } 582 583 namespace { 584 /// This class represents a single symbol scope. A symbol scope represents the 585 /// set of operations nested within a symbol table that may reference symbols 586 /// within that table. A symbol scope does not contain the symbol table 587 /// operation itself, just its contained operations. A scope ends at leaf 588 /// operations or another symbol table operation. 589 struct SymbolScope { 590 /// Walk the symbol uses within this scope, invoking the given callback. 591 /// This variant is used when the callback type matches that expected by 592 /// 'walkSymbolUses'. 593 template <typename CallbackT, 594 typename std::enable_if_t<!std::is_same< 595 typename llvm::function_traits<CallbackT>::result_t, 596 void>::value> * = nullptr> 597 Optional<WalkResult> walk(CallbackT cback) { 598 if (Region *region = limit.dyn_cast<Region *>()) 599 return walkSymbolUses(*region, cback); 600 return walkSymbolUses(limit.get<Operation *>(), cback); 601 } 602 /// This variant is used when the callback type matches a stripped down type: 603 /// void(SymbolTable::SymbolUse use) 604 template <typename CallbackT, 605 typename std::enable_if_t<std::is_same< 606 typename llvm::function_traits<CallbackT>::result_t, 607 void>::value> * = nullptr> 608 Optional<WalkResult> walk(CallbackT cback) { 609 return walk([=](SymbolTable::SymbolUse use, ArrayRef<int>) { 610 return cback(use), WalkResult::advance(); 611 }); 612 } 613 614 /// The representation of the symbol within this scope. 615 SymbolRefAttr symbol; 616 617 /// The IR unit representing this scope. 618 llvm::PointerUnion<Operation *, Region *> limit; 619 }; 620 } // end anonymous namespace 621 622 /// Collect all of the symbol scopes from 'symbol' to (inclusive) 'limit'. 623 static SmallVector<SymbolScope, 2> collectSymbolScopes(Operation *symbol, 624 Operation *limit) { 625 StringAttr symName = SymbolTable::getSymbolName(symbol); 626 assert(!symbol->hasTrait<OpTrait::SymbolTable>() || symbol != limit); 627 628 // Compute the ancestors of 'limit'. 629 SetVector<Operation *, SmallVector<Operation *, 4>, 630 SmallPtrSet<Operation *, 4>> 631 limitAncestors; 632 Operation *limitAncestor = limit; 633 do { 634 // Check to see if 'symbol' is an ancestor of 'limit'. 635 if (limitAncestor == symbol) { 636 // Check that the nearest symbol table is 'symbol's parent. SymbolRefAttr 637 // doesn't support parent references. 638 if (SymbolTable::getNearestSymbolTable(limit->getParentOp()) == 639 symbol->getParentOp()) 640 return {{SymbolRefAttr::get(symName), limit}}; 641 return {}; 642 } 643 644 limitAncestors.insert(limitAncestor); 645 } while ((limitAncestor = limitAncestor->getParentOp())); 646 647 // Try to find the first ancestor of 'symbol' that is an ancestor of 'limit'. 648 Operation *commonAncestor = symbol->getParentOp(); 649 do { 650 if (limitAncestors.count(commonAncestor)) 651 break; 652 } while ((commonAncestor = commonAncestor->getParentOp())); 653 assert(commonAncestor && "'limit' and 'symbol' have no common ancestor"); 654 655 // Compute the set of valid nested references for 'symbol' as far up to the 656 // common ancestor as possible. 657 SmallVector<SymbolRefAttr, 2> references; 658 bool collectedAllReferences = succeeded( 659 collectValidReferencesFor(symbol, symName, commonAncestor, references)); 660 661 // Handle the case where the common ancestor is 'limit'. 662 if (commonAncestor == limit) { 663 SmallVector<SymbolScope, 2> scopes; 664 665 // Walk each of the ancestors of 'symbol', calling the compute function for 666 // each one. 667 Operation *limitIt = symbol->getParentOp(); 668 for (size_t i = 0, e = references.size(); i != e; 669 ++i, limitIt = limitIt->getParentOp()) { 670 assert(limitIt->hasTrait<OpTrait::SymbolTable>()); 671 scopes.push_back({references[i], &limitIt->getRegion(0)}); 672 } 673 return scopes; 674 } 675 676 // Otherwise, we just need the symbol reference for 'symbol' that will be 677 // used within 'limit'. This is the last reference in the list we computed 678 // above if we were able to collect all references. 679 if (!collectedAllReferences) 680 return {}; 681 return {{references.back(), limit}}; 682 } 683 static SmallVector<SymbolScope, 2> collectSymbolScopes(Operation *symbol, 684 Region *limit) { 685 auto scopes = collectSymbolScopes(symbol, limit->getParentOp()); 686 687 // If we collected some scopes to walk, make sure to constrain the one for 688 // limit to the specific region requested. 689 if (!scopes.empty()) 690 scopes.back().limit = limit; 691 return scopes; 692 } 693 template <typename IRUnit> 694 static SmallVector<SymbolScope, 1> collectSymbolScopes(StringAttr symbol, 695 IRUnit *limit) { 696 return {{SymbolRefAttr::get(symbol), limit}}; 697 } 698 699 /// Returns true if the given reference 'SubRef' is a sub reference of the 700 /// reference 'ref', i.e. 'ref' is a further qualified reference. 701 static bool isReferencePrefixOf(SymbolRefAttr subRef, SymbolRefAttr ref) { 702 if (ref == subRef) 703 return true; 704 705 // If the references are not pointer equal, check to see if `subRef` is a 706 // prefix of `ref`. 707 if (ref.isa<FlatSymbolRefAttr>() || 708 ref.getRootReference() != subRef.getRootReference()) 709 return false; 710 711 auto refLeafs = ref.getNestedReferences(); 712 auto subRefLeafs = subRef.getNestedReferences(); 713 return subRefLeafs.size() < refLeafs.size() && 714 subRefLeafs == refLeafs.take_front(subRefLeafs.size()); 715 } 716 717 //===----------------------------------------------------------------------===// 718 // SymbolTable::getSymbolUses 719 720 /// The implementation of SymbolTable::getSymbolUses below. 721 template <typename FromT> 722 static Optional<SymbolTable::UseRange> getSymbolUsesImpl(FromT from) { 723 std::vector<SymbolTable::SymbolUse> uses; 724 auto walkFn = [&](SymbolTable::SymbolUse symbolUse, ArrayRef<int>) { 725 uses.push_back(symbolUse); 726 return WalkResult::advance(); 727 }; 728 auto result = walkSymbolUses(from, walkFn); 729 return result ? Optional<SymbolTable::UseRange>(std::move(uses)) : llvm::None; 730 } 731 732 /// Get an iterator range for all of the uses, for any symbol, that are nested 733 /// within the given operation 'from'. This does not traverse into any nested 734 /// symbol tables, and will also only return uses on 'from' if it does not 735 /// also define a symbol table. This is because we treat the region as the 736 /// boundary of the symbol table, and not the op itself. This function returns 737 /// None if there are any unknown operations that may potentially be symbol 738 /// tables. 739 auto SymbolTable::getSymbolUses(Operation *from) -> Optional<UseRange> { 740 return getSymbolUsesImpl(from); 741 } 742 auto SymbolTable::getSymbolUses(Region *from) -> Optional<UseRange> { 743 return getSymbolUsesImpl(MutableArrayRef<Region>(*from)); 744 } 745 746 //===----------------------------------------------------------------------===// 747 // SymbolTable::getSymbolUses 748 749 /// The implementation of SymbolTable::getSymbolUses below. 750 template <typename SymbolT, typename IRUnitT> 751 static Optional<SymbolTable::UseRange> getSymbolUsesImpl(SymbolT symbol, 752 IRUnitT *limit) { 753 std::vector<SymbolTable::SymbolUse> uses; 754 for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) { 755 if (!scope.walk([&](SymbolTable::SymbolUse symbolUse) { 756 if (isReferencePrefixOf(scope.symbol, symbolUse.getSymbolRef())) 757 uses.push_back(symbolUse); 758 })) 759 return llvm::None; 760 } 761 return SymbolTable::UseRange(std::move(uses)); 762 } 763 764 /// Get all of the uses of the given symbol that are nested within the given 765 /// operation 'from', invoking the provided callback for each. This does not 766 /// traverse into any nested symbol tables. This function returns None if there 767 /// are any unknown operations that may potentially be symbol tables. 768 auto SymbolTable::getSymbolUses(StringAttr symbol, Operation *from) 769 -> Optional<UseRange> { 770 return getSymbolUsesImpl(symbol, from); 771 } 772 auto SymbolTable::getSymbolUses(Operation *symbol, Operation *from) 773 -> Optional<UseRange> { 774 return getSymbolUsesImpl(symbol, from); 775 } 776 auto SymbolTable::getSymbolUses(StringAttr symbol, Region *from) 777 -> Optional<UseRange> { 778 return getSymbolUsesImpl(symbol, from); 779 } 780 auto SymbolTable::getSymbolUses(Operation *symbol, Region *from) 781 -> Optional<UseRange> { 782 return getSymbolUsesImpl(symbol, from); 783 } 784 785 //===----------------------------------------------------------------------===// 786 // SymbolTable::symbolKnownUseEmpty 787 788 /// The implementation of SymbolTable::symbolKnownUseEmpty below. 789 template <typename SymbolT, typename IRUnitT> 790 static bool symbolKnownUseEmptyImpl(SymbolT symbol, IRUnitT *limit) { 791 for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) { 792 // Walk all of the symbol uses looking for a reference to 'symbol'. 793 if (scope.walk([&](SymbolTable::SymbolUse symbolUse, ArrayRef<int>) { 794 return isReferencePrefixOf(scope.symbol, symbolUse.getSymbolRef()) 795 ? WalkResult::interrupt() 796 : WalkResult::advance(); 797 }) != WalkResult::advance()) 798 return false; 799 } 800 return true; 801 } 802 803 /// Return if the given symbol is known to have no uses that are nested within 804 /// the given operation 'from'. This does not traverse into any nested symbol 805 /// tables. This function will also return false if there are any unknown 806 /// operations that may potentially be symbol tables. 807 bool SymbolTable::symbolKnownUseEmpty(StringAttr symbol, Operation *from) { 808 return symbolKnownUseEmptyImpl(symbol, from); 809 } 810 bool SymbolTable::symbolKnownUseEmpty(Operation *symbol, Operation *from) { 811 return symbolKnownUseEmptyImpl(symbol, from); 812 } 813 bool SymbolTable::symbolKnownUseEmpty(StringAttr symbol, Region *from) { 814 return symbolKnownUseEmptyImpl(symbol, from); 815 } 816 bool SymbolTable::symbolKnownUseEmpty(Operation *symbol, Region *from) { 817 return symbolKnownUseEmptyImpl(symbol, from); 818 } 819 820 //===----------------------------------------------------------------------===// 821 // SymbolTable::replaceAllSymbolUses 822 823 /// Rebuild the given attribute container after replacing all references to a 824 /// symbol with the updated attribute in 'accesses'. 825 static SubElementAttrInterface rebuildAttrAfterRAUW( 826 SubElementAttrInterface container, 827 ArrayRef<std::pair<SmallVector<int, 1>, SymbolRefAttr>> accesses, 828 unsigned depth) { 829 // Given a range of Attributes, update the ones referred to by the given 830 // access chains to point to the new symbol attribute. 831 832 SmallVector<std::pair<size_t, Attribute>> replacements; 833 834 SmallVector<Attribute> subElements; 835 container.walkImmediateSubElements( 836 [&](Attribute attribute) { subElements.push_back(attribute); }, 837 [](Type) {}); 838 for (unsigned i = 0, e = accesses.size(); i != e;) { 839 ArrayRef<int> access = accesses[i].first; 840 841 // Check to see if this is a leaf access, i.e. a SymbolRef. 842 if (access.size() == depth + 1) { 843 replacements.emplace_back(access.back(), accesses[i].second); 844 ++i; 845 continue; 846 } 847 848 // Otherwise, this is a container. Collect all of the accesses for this 849 // index and recurse. The recursion here is bounded by the size of the 850 // largest access array. 851 auto nestedAccesses = accesses.drop_front(i).take_while([&](auto &it) { 852 ArrayRef<int> nextAccess = it.first; 853 return nextAccess.size() > depth + 1 && 854 nextAccess[depth] == access[depth]; 855 }); 856 auto result = rebuildAttrAfterRAUW(subElements[access[depth]], 857 nestedAccesses, depth + 1); 858 replacements.emplace_back(access[depth], result); 859 860 // Skip over all of the accesses that refer to the nested container. 861 i += nestedAccesses.size(); 862 } 863 864 return container.replaceImmediateSubAttribute(replacements); 865 } 866 867 /// Generates a new symbol reference attribute with a new leaf reference. 868 static SymbolRefAttr generateNewRefAttr(SymbolRefAttr oldAttr, 869 FlatSymbolRefAttr newLeafAttr) { 870 if (oldAttr.isa<FlatSymbolRefAttr>()) 871 return newLeafAttr; 872 auto nestedRefs = llvm::to_vector<2>(oldAttr.getNestedReferences()); 873 nestedRefs.back() = newLeafAttr; 874 return SymbolRefAttr::get(oldAttr.getRootReference(), nestedRefs); 875 } 876 877 /// The implementation of SymbolTable::replaceAllSymbolUses below. 878 template <typename SymbolT, typename IRUnitT> 879 static LogicalResult 880 replaceAllSymbolUsesImpl(SymbolT symbol, StringAttr newSymbol, IRUnitT *limit) { 881 // A collection of operations along with their new attribute dictionary. 882 std::vector<std::pair<Operation *, DictionaryAttr>> updatedAttrDicts; 883 884 // The current operation being processed. 885 Operation *curOp = nullptr; 886 887 // The set of access chains into the attribute dictionary of the current 888 // operation, as well as the replacement attribute to use. 889 SmallVector<std::pair<SmallVector<int, 1>, SymbolRefAttr>, 1> accessChains; 890 891 // Generate a new attribute dictionary for the current operation by replacing 892 // references to the old symbol. 893 auto generateNewAttrDict = [&] { 894 auto oldDict = curOp->getAttrDictionary(); 895 auto newDict = rebuildAttrAfterRAUW(oldDict, accessChains, /*depth=*/0); 896 return newDict.cast<DictionaryAttr>(); 897 }; 898 899 // Generate a new attribute to replace the given attribute. 900 FlatSymbolRefAttr newLeafAttr = FlatSymbolRefAttr::get(newSymbol); 901 for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) { 902 SymbolRefAttr newAttr = generateNewRefAttr(scope.symbol, newLeafAttr); 903 auto walkFn = [&](SymbolTable::SymbolUse symbolUse, 904 ArrayRef<int> accessChain) { 905 SymbolRefAttr useRef = symbolUse.getSymbolRef(); 906 if (!isReferencePrefixOf(scope.symbol, useRef)) 907 return WalkResult::advance(); 908 909 // If we have a valid match, check to see if this is a proper 910 // subreference. If it is, then we will need to generate a different new 911 // attribute specifically for this use. 912 SymbolRefAttr replacementRef = newAttr; 913 if (useRef != scope.symbol) { 914 if (scope.symbol.isa<FlatSymbolRefAttr>()) { 915 replacementRef = 916 SymbolRefAttr::get(newSymbol, useRef.getNestedReferences()); 917 } else { 918 auto nestedRefs = llvm::to_vector<4>(useRef.getNestedReferences()); 919 nestedRefs[scope.symbol.getNestedReferences().size() - 1] = 920 newLeafAttr; 921 replacementRef = 922 SymbolRefAttr::get(useRef.getRootReference(), nestedRefs); 923 } 924 } 925 926 // If there was a previous operation, generate a new attribute dict 927 // for it. This means that we've finished processing the current 928 // operation, so generate a new dictionary for it. 929 if (curOp && symbolUse.getUser() != curOp) { 930 updatedAttrDicts.push_back({curOp, generateNewAttrDict()}); 931 accessChains.clear(); 932 } 933 934 // Record this access. 935 curOp = symbolUse.getUser(); 936 accessChains.push_back({llvm::to_vector<1>(accessChain), replacementRef}); 937 return WalkResult::advance(); 938 }; 939 if (!scope.walk(walkFn)) 940 return failure(); 941 942 // Check to see if we have a dangling op that needs to be processed. 943 if (curOp) { 944 updatedAttrDicts.push_back({curOp, generateNewAttrDict()}); 945 curOp = nullptr; 946 } 947 } 948 949 // Update the attribute dictionaries as necessary. 950 for (auto &it : updatedAttrDicts) 951 it.first->setAttrs(it.second); 952 return success(); 953 } 954 955 /// Attempt to replace all uses of the given symbol 'oldSymbol' with the 956 /// provided symbol 'newSymbol' that are nested within the given operation 957 /// 'from'. This does not traverse into any nested symbol tables. If there are 958 /// any unknown operations that may potentially be symbol tables, no uses are 959 /// replaced and failure is returned. 960 LogicalResult SymbolTable::replaceAllSymbolUses(StringAttr oldSymbol, 961 StringAttr newSymbol, 962 Operation *from) { 963 return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from); 964 } 965 LogicalResult SymbolTable::replaceAllSymbolUses(Operation *oldSymbol, 966 StringAttr newSymbol, 967 Operation *from) { 968 return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from); 969 } 970 LogicalResult SymbolTable::replaceAllSymbolUses(StringAttr oldSymbol, 971 StringAttr newSymbol, 972 Region *from) { 973 return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from); 974 } 975 LogicalResult SymbolTable::replaceAllSymbolUses(Operation *oldSymbol, 976 StringAttr newSymbol, 977 Region *from) { 978 return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from); 979 } 980 981 //===----------------------------------------------------------------------===// 982 // SymbolTableCollection 983 //===----------------------------------------------------------------------===// 984 985 Operation *SymbolTableCollection::lookupSymbolIn(Operation *symbolTableOp, 986 StringAttr symbol) { 987 return getSymbolTable(symbolTableOp).lookup(symbol); 988 } 989 Operation *SymbolTableCollection::lookupSymbolIn(Operation *symbolTableOp, 990 SymbolRefAttr name) { 991 SmallVector<Operation *, 4> symbols; 992 if (failed(lookupSymbolIn(symbolTableOp, name, symbols))) 993 return nullptr; 994 return symbols.back(); 995 } 996 /// A variant of 'lookupSymbolIn' that returns all of the symbols referenced by 997 /// a given SymbolRefAttr. Returns failure if any of the nested references could 998 /// not be resolved. 999 LogicalResult 1000 SymbolTableCollection::lookupSymbolIn(Operation *symbolTableOp, 1001 SymbolRefAttr name, 1002 SmallVectorImpl<Operation *> &symbols) { 1003 auto lookupFn = [this](Operation *symbolTableOp, StringAttr symbol) { 1004 return lookupSymbolIn(symbolTableOp, symbol); 1005 }; 1006 return lookupSymbolInImpl(symbolTableOp, name, symbols, lookupFn); 1007 } 1008 1009 /// Returns the operation registered with the given symbol name within the 1010 /// closest parent operation of, or including, 'from' with the 1011 /// 'OpTrait::SymbolTable' trait. Returns nullptr if no valid symbol was 1012 /// found. 1013 Operation *SymbolTableCollection::lookupNearestSymbolFrom(Operation *from, 1014 StringAttr symbol) { 1015 Operation *symbolTableOp = SymbolTable::getNearestSymbolTable(from); 1016 return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr; 1017 } 1018 Operation * 1019 SymbolTableCollection::lookupNearestSymbolFrom(Operation *from, 1020 SymbolRefAttr symbol) { 1021 Operation *symbolTableOp = SymbolTable::getNearestSymbolTable(from); 1022 return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr; 1023 } 1024 1025 /// Lookup, or create, a symbol table for an operation. 1026 SymbolTable &SymbolTableCollection::getSymbolTable(Operation *op) { 1027 auto it = symbolTables.try_emplace(op, nullptr); 1028 if (it.second) 1029 it.first->second = std::make_unique<SymbolTable>(op); 1030 return *it.first->second; 1031 } 1032 1033 //===----------------------------------------------------------------------===// 1034 // SymbolUserMap 1035 //===----------------------------------------------------------------------===// 1036 1037 SymbolUserMap::SymbolUserMap(SymbolTableCollection &symbolTable, 1038 Operation *symbolTableOp) 1039 : symbolTable(symbolTable) { 1040 // Walk each of the symbol tables looking for discardable callgraph nodes. 1041 SmallVector<Operation *> symbols; 1042 auto walkFn = [&](Operation *symbolTableOp, bool allUsesVisible) { 1043 for (Operation &nestedOp : symbolTableOp->getRegion(0).getOps()) { 1044 auto symbolUses = SymbolTable::getSymbolUses(&nestedOp); 1045 assert(symbolUses && "expected uses to be valid"); 1046 1047 for (const SymbolTable::SymbolUse &use : *symbolUses) { 1048 symbols.clear(); 1049 (void)symbolTable.lookupSymbolIn(symbolTableOp, use.getSymbolRef(), 1050 symbols); 1051 for (Operation *symbolOp : symbols) 1052 symbolToUsers[symbolOp].insert(use.getUser()); 1053 } 1054 } 1055 }; 1056 // We just set `allSymUsesVisible` to false here because it isn't necessary 1057 // for building the user map. 1058 SymbolTable::walkSymbolTables(symbolTableOp, /*allSymUsesVisible=*/false, 1059 walkFn); 1060 } 1061 1062 void SymbolUserMap::replaceAllUsesWith(Operation *symbol, 1063 StringAttr newSymbolName) { 1064 auto it = symbolToUsers.find(symbol); 1065 if (it == symbolToUsers.end()) 1066 return; 1067 SetVector<Operation *> &users = it->second; 1068 1069 // Replace the uses within the users of `symbol`. 1070 for (Operation *user : users) 1071 (void)SymbolTable::replaceAllSymbolUses(symbol, newSymbolName, user); 1072 1073 // Move the current users of `symbol` to the new symbol if it is in the 1074 // symbol table. 1075 Operation *newSymbol = 1076 symbolTable.lookupSymbolIn(symbol->getParentOp(), newSymbolName); 1077 if (newSymbol != symbol) { 1078 // Transfer over the users to the new symbol. 1079 auto newIt = symbolToUsers.find(newSymbol); 1080 if (newIt == symbolToUsers.end()) 1081 symbolToUsers.try_emplace(newSymbol, std::move(users)); 1082 else 1083 newIt->second.set_union(users); 1084 symbolToUsers.erase(symbol); 1085 } 1086 } 1087 1088 //===----------------------------------------------------------------------===// 1089 // Visibility parsing implementation. 1090 //===----------------------------------------------------------------------===// 1091 1092 ParseResult impl::parseOptionalVisibilityKeyword(OpAsmParser &parser, 1093 NamedAttrList &attrs) { 1094 StringRef visibility; 1095 if (parser.parseOptionalKeyword(&visibility, {"public", "private", "nested"})) 1096 return failure(); 1097 1098 StringAttr visibilityAttr = parser.getBuilder().getStringAttr(visibility); 1099 attrs.push_back(parser.getBuilder().getNamedAttr( 1100 SymbolTable::getVisibilityAttrName(), visibilityAttr)); 1101 return success(); 1102 } 1103 1104 //===----------------------------------------------------------------------===// 1105 // Symbol Interfaces 1106 //===----------------------------------------------------------------------===// 1107 1108 /// Include the generated symbol interfaces. 1109 #include "mlir/IR/SymbolInterfaces.cpp.inc" 1110