1 //===- Traits.cpp - Common op traits shared by dialects -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "mlir/Dialect/Traits.h"
10 #include "mlir/IR/BuiltinTypes.h"
11 #include "mlir/IR/TypeUtilities.h"
12 #include "llvm/Support/FormatVariadic.h"
13
14 using namespace mlir;
15
staticallyKnownBroadcastable(ArrayRef<int64_t> shape1,ArrayRef<int64_t> shape2)16 bool OpTrait::util::staticallyKnownBroadcastable(ArrayRef<int64_t> shape1,
17 ArrayRef<int64_t> shape2) {
18 SmallVector<SmallVector<int64_t, 6>, 2> extents;
19 extents.emplace_back(shape1.begin(), shape1.end());
20 extents.emplace_back(shape2.begin(), shape2.end());
21 return staticallyKnownBroadcastable(extents);
22 }
23
staticallyKnownBroadcastable(ArrayRef<SmallVector<int64_t,6>> shapes)24 bool OpTrait::util::staticallyKnownBroadcastable(
25 ArrayRef<SmallVector<int64_t, 6>> shapes) {
26 assert(!shapes.empty() && "Expected at least one shape");
27 size_t maxRank = shapes[0].size();
28 for (size_t i = 1; i != shapes.size(); ++i)
29 maxRank = std::max(maxRank, shapes[i].size());
30
31 // We look backwards through every column of `shapes`.
32 for (size_t i = 0; i != maxRank; ++i) {
33 bool seenDynamic = false;
34 Optional<int64_t> nonOneDim;
35 for (ArrayRef<int64_t> extent : shapes) {
36 int64_t dim = i >= extent.size() ? 1 : extent[extent.size() - i - 1];
37
38 if (dim == 1)
39 continue;
40
41 // Dimensions are compatible when
42 //. 1. One is dynamic, the rest are 1
43 if (ShapedType::isDynamic(dim)) {
44 if (seenDynamic || nonOneDim)
45 return false;
46 seenDynamic = true;
47 }
48
49 // 2. All are 1 or a specific constant.
50 if (nonOneDim && dim != *nonOneDim)
51 return false;
52
53 nonOneDim = dim;
54 }
55 }
56 return true;
57 }
58
getBroadcastedShape(ArrayRef<int64_t> shape1,ArrayRef<int64_t> shape2,SmallVectorImpl<int64_t> & resultShape)59 bool OpTrait::util::getBroadcastedShape(ArrayRef<int64_t> shape1,
60 ArrayRef<int64_t> shape2,
61 SmallVectorImpl<int64_t> &resultShape) {
62 // To compute the result broadcasted shape, we compare operand shapes
63 // element-wise: starting with the trailing dimensions, and working the
64 // way backward. Two dimensions are compatible when
65 // 1. they are equal, or
66 // 2. one of them is 1
67 // The result shape has the maximum among the two inputs at every
68 // dimension index.
69
70 resultShape.clear();
71 if (shape1.size() > shape2.size()) {
72 std::copy(shape1.begin(), shape1.end(), std::back_inserter(resultShape));
73 } else {
74 std::copy(shape2.begin(), shape2.end(), std::back_inserter(resultShape));
75 }
76
77 auto i1 = shape1.rbegin(), e1 = shape1.rend();
78 auto i2 = shape2.rbegin(), e2 = shape2.rend();
79 auto iR = resultShape.rbegin();
80
81 // Check each dimension is consistent.
82 for (; i1 != e1 && i2 != e2; ++i1, ++i2, ++iR) {
83 if (*i1 == -1 || *i2 == -1) {
84 // One or both dimensions is unknown. Follow TensorFlow behavior:
85 // - If either dimension is greater than 1, we assume that the program is
86 // correct, and the other dimension will be broadcast to match it.
87 // - If either dimension is 1, the other dimension is the output.
88 if (*i1 > 1) {
89 *iR = *i1;
90 } else if (*i2 > 1) {
91 *iR = *i2;
92 } else if (*i1 == 1) {
93 *iR = *i2;
94 } else if (*i2 == 1) {
95 *iR = *i1;
96 } else {
97 *iR = -1;
98 }
99 } else {
100 if (*i1 == *i2 || *i2 == 1) {
101 *iR = *i1;
102 } else if (*i1 == 1) {
103 *iR = *i2;
104 } else {
105 // This dimension of the two operand types is incompatible.
106 resultShape.clear();
107 return false;
108 }
109 }
110 }
111
112 return true;
113 }
114
115 /// Returns the shape of the given type. Scalars will be considered as having a
116 /// shape with zero dimensions.
getShape(Type type)117 static ArrayRef<int64_t> getShape(Type type) {
118 if (auto sType = type.dyn_cast<ShapedType>())
119 return sType.getShape();
120 return {};
121 }
122
123 /// Returns the result broadcast composition type from the two given types by
124 /// following NumPy broadcast semantics. Returned type may have dynamic shape if
125 /// either of the input types has dynamic shape. Returns null type if the two
126 /// given types are not broadcast-compatible.
127 ///
128 /// elementType, if specified, will be used as the element type of the
129 /// broadcasted result type. Otherwise it is required that the element type of
130 /// type1 and type2 is the same and this element type will be used as the
131 /// resultant element type.
getBroadcastedType(Type type1,Type type2,Type elementType)132 Type OpTrait::util::getBroadcastedType(Type type1, Type type2,
133 Type elementType) {
134 // If the elementType is not specified, then the use the common element type
135 // of the inputs or fail if there is no common element type.
136 if (!elementType) {
137 elementType = getElementTypeOrSelf(type1);
138 if (elementType != getElementTypeOrSelf(type2))
139 return {};
140 }
141
142 // If one of the types is unranked tensor, then the other type shouldn't be
143 // vector and the result should have unranked tensor type.
144 if (type1.isa<UnrankedTensorType>() || type2.isa<UnrankedTensorType>()) {
145 if (type1.isa<VectorType>() || type2.isa<VectorType>())
146 return {};
147 return UnrankedTensorType::get(elementType);
148 }
149
150 // Returns the type kind if the given type is a vector or ranked tensor type.
151 // Returns llvm::None otherwise.
152 auto getCompositeTypeKind = [](Type type) -> Optional<TypeID> {
153 if (type.isa<VectorType, RankedTensorType>())
154 return type.getTypeID();
155 return llvm::None;
156 };
157
158 // Make sure the composite type, if has, is consistent.
159 Optional<TypeID> compositeKind1 = getCompositeTypeKind(type1);
160 Optional<TypeID> compositeKind2 = getCompositeTypeKind(type2);
161 Optional<TypeID> resultCompositeKind;
162
163 if (compositeKind1 && compositeKind2) {
164 // Disallow mixing vector and tensor.
165 if (compositeKind1 != compositeKind2)
166 return {};
167 resultCompositeKind = compositeKind1;
168 } else if (compositeKind1) {
169 resultCompositeKind = compositeKind1;
170 } else if (compositeKind2) {
171 resultCompositeKind = compositeKind2;
172 }
173
174 // Get the shape of each type.
175 SmallVector<int64_t, 4> resultShape;
176 if (!getBroadcastedShape(getShape(type1), getShape(type2), resultShape))
177 return {};
178
179 // Compose the final broadcasted type
180 if (resultCompositeKind == VectorType::getTypeID())
181 return VectorType::get(resultShape, elementType);
182 if (resultCompositeKind == RankedTensorType::getTypeID())
183 return RankedTensorType::get(resultShape, elementType);
184 return elementType;
185 }
186
187 /// Returns a tuple corresponding to whether range has tensor or vector type.
188 template <typename iterator_range>
hasTensorOrVectorType(iterator_range types)189 static std::tuple<bool, bool> hasTensorOrVectorType(iterator_range types) {
190 return std::make_tuple(
191 llvm::any_of(types, [](Type t) { return t.isa<TensorType>(); }),
192 llvm::any_of(types, [](Type t) { return t.isa<VectorType>(); }));
193 }
194
isCompatibleInferredReturnShape(ArrayRef<int64_t> inferred,ArrayRef<int64_t> existing)195 static bool isCompatibleInferredReturnShape(ArrayRef<int64_t> inferred,
196 ArrayRef<int64_t> existing) {
197 auto isCompatible = [](int64_t dim1, int64_t dim2) {
198 // If the inferred and existing dim is the same, or one of them is unknown
199 // then it is compatible, else if the inferred dim is 1 then it is also
200 // compatible. But if the existing dim is 1 and the inferred is greater than
201 // 1 then flag.
202 return dim1 == dim2 || dim1 == -1 || dim2 == -1 || dim1 == 1;
203 };
204 if (inferred.size() != existing.size())
205 return false;
206 for (auto p : llvm::zip(inferred, existing))
207 if (!isCompatible(std::get<0>(p), std::get<1>(p)))
208 return false;
209 return true;
210 }
211
getShapeString(ArrayRef<int64_t> shape)212 static std::string getShapeString(ArrayRef<int64_t> shape) {
213 // TODO: should replace with printing shape more uniformly across here and
214 // when in type.
215 std::string ret;
216 llvm::raw_string_ostream ss(ret);
217 ss << '\'';
218 llvm::interleave(
219 shape, ss,
220 [&](int64_t dim) {
221 if (ShapedType::isDynamic(dim))
222 ss << '?';
223 else
224 ss << dim;
225 },
226 "x");
227 ss << '\'';
228 return ss.str();
229 }
230
verifyCompatibleOperandBroadcast(Operation * op)231 LogicalResult OpTrait::impl::verifyCompatibleOperandBroadcast(Operation *op) {
232 // Ensure broadcasting only tensor or only vector types.
233 auto operandsHasTensorVectorType =
234 hasTensorOrVectorType(op->getOperandTypes());
235 auto resultsHasTensorVectorType = hasTensorOrVectorType(op->getResultTypes());
236 if ((std::get<0>(operandsHasTensorVectorType) ||
237 std::get<0>(resultsHasTensorVectorType)) &&
238 (std::get<1>(operandsHasTensorVectorType) ||
239 std::get<1>(resultsHasTensorVectorType)))
240 return op->emitError("cannot broadcast vector with tensor");
241
242 auto rankedOperands = make_filter_range(
243 op->getOperandTypes(), [](Type t) { return t.isa<RankedTensorType>(); });
244
245 // If all operands are unranked, then all result shapes are possible.
246 if (rankedOperands.empty())
247 return success();
248
249 // Compute broadcasted shape of operands (which requires that operands are
250 // broadcast compatible). The results need to be broadcast compatible with
251 // this result shape.
252 SmallVector<int64_t, 4> resultShape;
253 (void)util::getBroadcastedShape(getShape(*rankedOperands.begin()), {},
254 resultShape);
255 for (auto other : make_early_inc_range(rankedOperands)) {
256 SmallVector<int64_t, 4> temp = resultShape;
257 if (!util::getBroadcastedShape(temp, getShape(other), resultShape))
258 return op->emitOpError("operands don't have broadcast-compatible shapes");
259 }
260
261 auto rankedResults = make_filter_range(
262 op->getResultTypes(), [](Type t) { return t.isa<RankedTensorType>(); });
263
264 // If all of the results are unranked then no further verification.
265 if (rankedResults.empty())
266 return success();
267
268 for (auto type : rankedResults) {
269 ArrayRef<int64_t> actualSuffix =
270 getShape(type).take_back(resultShape.size());
271 if (!isCompatibleInferredReturnShape(resultShape, actualSuffix))
272 return op->emitOpError()
273 << "result type " << getShapeString(getShape(type))
274 << " not broadcast compatible with broadcasted operands's shapes "
275 << getShapeString(resultShape);
276 }
277 return success();
278 }
279