1 //===- TosaMakeBroadcastable.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Insert reshape to binary op's input if needed to match rank
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "mlir/Dialect/Tensor/IR/Tensor.h"
14 #include "mlir/Dialect/Tosa/IR/TosaOps.h"
15 #include "mlir/Dialect/Tosa/Transforms/PassDetail.h"
16 #include "mlir/Dialect/Tosa/Transforms/Passes.h"
17 #include "mlir/Dialect/Tosa/Utils/QuantUtils.h"
18 #include "mlir/Pass/Pass.h"
19 #include "mlir/Transforms/GreedyPatternRewriteDriver.h"
20
21 using namespace mlir;
22 using namespace mlir::tosa;
23
24 /// There are two potential ways implementing broadcast:
25 /// a. https://www.tensorflow.org/xla/broadcasting#formal_definition
26 /// b. https://numpy.org/doc/stable/user/basics.broadcasting.html
27 /// This pass implements b (numpy style) now.
28
29 /// In this pass, we insert RESHAPE operators to increase the rank of the
30 /// lower rank operand as a first step in the broadcasting process. The TOSA
31 /// operators that support broadcast require that the rank of the operands
32 /// are equal.
33
34 // Examples:
35 // If lower=[c], higher=[a, b, c], [c] reshaped into [1, 1, c].
36 // If lower=[b, c], higher=[a, b, c], [b, c] reshaped into [1, b, c].
37 // If lower=[a], higher=[a, a], [a] reshaped into [1, a].
38 // If lower=[a], target=[a, b, a], [a] reshaped into [1, 1, a].
39 // If lower=[], target=[a, b, c], [] reshaped into [1, 1, 1].
40
41 static LogicalResult
computeReshapeOutput(ArrayRef<int64_t> higherRankShape,ArrayRef<int64_t> lowerRankShape,SmallVectorImpl<int64_t> & reshapeOutputShape)42 computeReshapeOutput(ArrayRef<int64_t> higherRankShape,
43 ArrayRef<int64_t> lowerRankShape,
44 SmallVectorImpl<int64_t> &reshapeOutputShape) {
45 // Initialize new shapes with [1] * higherRank.
46 int64_t higherRank = higherRankShape.size();
47 int64_t lowerRank = lowerRankShape.size();
48
49 reshapeOutputShape.assign(higherRank, 1);
50
51 int64_t higherRankDim;
52 int64_t lowerRankDim;
53
54 for (int64_t i = higherRank - 1, j = lowerRank - 1; i >= 0 && j >= 0;
55 i--, j--) {
56 higherRankDim = higherRankShape[i];
57 lowerRankDim = lowerRankShape[j];
58
59 if (lowerRankDim == 1 && higherRankDim > 1)
60 reshapeOutputShape[i] = 1;
61 else if ((lowerRankDim > 1 && higherRankDim == 1) ||
62 (lowerRankDim == higherRankDim))
63 reshapeOutputShape[i] = lowerRankDim;
64 else if (higherRankDim != lowerRankDim)
65 return failure();
66 }
67 return success();
68 }
69
70 /// Common code to create the reshape op where necessary to make the rank of the
71 /// operations equal. Returns the updated input1 and input2 for the original
72 /// input. The caller is expected to use these to rewrite the original operator
73 /// with the RESHAPE now in the graph.
reshapeLowerToHigher(PatternRewriter & rewriter,Location loc,RankedTensorType outputType,Value input1,Value input2,Value & outInput1,Value & outInput2)74 static LogicalResult reshapeLowerToHigher(PatternRewriter &rewriter,
75 Location loc,
76 RankedTensorType outputType,
77 Value input1, Value input2,
78 Value &outInput1, Value &outInput2) {
79 auto input1Ty = input1.getType().dyn_cast<RankedTensorType>();
80 auto input2Ty = input2.getType().dyn_cast<RankedTensorType>();
81
82 if (!input1Ty || !input2Ty)
83 return failure();
84
85 int64_t input1Rank = input1Ty.getRank();
86 int64_t input2Rank = input2Ty.getRank();
87
88 Value higherTensorValue, lowerTensorValue;
89 // Cannot rewrite as its already correct.
90 if (input1Rank == input2Rank)
91 return failure();
92
93 if (input1Rank > input2Rank) {
94 higherTensorValue = input1;
95 lowerTensorValue = input2;
96 } else {
97 higherTensorValue = input2;
98 lowerTensorValue = input1;
99 }
100
101 ArrayRef<int64_t> higherRankShape =
102 higherTensorValue.getType().cast<RankedTensorType>().getShape();
103 (void)higherRankShape;
104 ArrayRef<int64_t> lowerRankShape =
105 lowerTensorValue.getType().cast<RankedTensorType>().getShape();
106
107 SmallVector<int64_t, 4> reshapeOutputShape;
108
109 if (computeReshapeOutput(higherRankShape, lowerRankShape, reshapeOutputShape)
110 .failed())
111 return failure();
112
113 auto reshapeInputType = lowerTensorValue.getType().cast<RankedTensorType>();
114 auto reshapeOutputType = RankedTensorType::get(
115 ArrayRef<int64_t>(reshapeOutputShape), reshapeInputType.getElementType());
116
117 // Verify the rank agrees with the output type if the output type is ranked.
118 if (outputType) {
119 if (outputType.getShape().size() != reshapeOutputShape.size() ||
120 outputType.getShape().size() != higherRankShape.size())
121 return failure();
122 }
123
124 auto reshapeLower = rewriter.create<tosa::ReshapeOp>(
125 loc, reshapeOutputType, lowerTensorValue,
126 rewriter.getI64ArrayAttr(reshapeOutputShape));
127
128 if (input1Rank > input2Rank) {
129 outInput1 = higherTensorValue;
130 outInput2 = reshapeLower.getResult();
131 } else {
132 outInput1 = reshapeLower.getResult();
133 outInput2 = higherTensorValue;
134 }
135
136 return success();
137 }
138
139 namespace {
140 template <typename OpTy>
141 struct ConvertTosaOp : public OpRewritePattern<OpTy> {
142 using OpRewritePattern<OpTy>::OpRewritePattern;
143
matchAndRewrite__anon0064147e0111::ConvertTosaOp144 LogicalResult matchAndRewrite(OpTy tosaBinaryOp,
145 PatternRewriter &rewriter) const override {
146
147 Value input1 = tosaBinaryOp.getInput1();
148 Value input2 = tosaBinaryOp.getInput2();
149 Value output = tosaBinaryOp.getResult();
150
151 auto outputType = output.getType().dyn_cast<RankedTensorType>();
152 if (!outputType)
153 return failure();
154
155 Value outInput1, outInput2;
156 if (reshapeLowerToHigher(rewriter, tosaBinaryOp.getLoc(), outputType,
157 input1, input2, outInput1, outInput2)
158 .failed())
159 return failure();
160
161 rewriter.replaceOpWithNewOp<OpTy>(tosaBinaryOp, outputType, outInput1,
162 outInput2);
163
164 return success();
165 }
166 };
167
168 // The MulOp has an extra parameter 'shift' not present in other elementwise
169 // binary ops, that necessitates special handling of its builder.
170 template <>
171 struct ConvertTosaOp<tosa::MulOp> : public OpRewritePattern<tosa::MulOp> {
172 using OpRewritePattern<tosa::MulOp>::OpRewritePattern;
173
matchAndRewrite__anon0064147e0111::ConvertTosaOp174 LogicalResult matchAndRewrite(tosa::MulOp tosaBinaryOp,
175 PatternRewriter &rewriter) const override {
176
177 Value input1 = tosaBinaryOp.getInput1();
178 Value input2 = tosaBinaryOp.getInput2();
179 int32_t shift = tosaBinaryOp.getShift();
180 Value output = tosaBinaryOp.getResult();
181 auto outputType = output.getType().dyn_cast<RankedTensorType>();
182 if (!outputType)
183 return failure();
184
185 Value outInput1, outInput2;
186 if (reshapeLowerToHigher(rewriter, tosaBinaryOp.getLoc(), outputType,
187 input1, input2, outInput1, outInput2)
188 .failed())
189 return failure();
190
191 rewriter.replaceOpWithNewOp<tosa::MulOp>(tosaBinaryOp, outputType,
192 outInput1, outInput2, shift);
193
194 return success();
195 }
196 };
197
198 // The ArithmeticRightShiftOp has an extra parameter 'round' not present in
199 // other elementwise binary ops, that necessitates special handling of its
200 // builder.
201 template <>
202 struct ConvertTosaOp<tosa::ArithmeticRightShiftOp>
203 : public OpRewritePattern<tosa::ArithmeticRightShiftOp> {
204 using OpRewritePattern<tosa::ArithmeticRightShiftOp>::OpRewritePattern;
205
matchAndRewrite__anon0064147e0111::ConvertTosaOp206 LogicalResult matchAndRewrite(tosa::ArithmeticRightShiftOp tosaBinaryOp,
207 PatternRewriter &rewriter) const override {
208
209 Value input1 = tosaBinaryOp.getInput1();
210 Value input2 = tosaBinaryOp.getInput2();
211 int32_t round = tosaBinaryOp.getRound();
212 Value output = tosaBinaryOp.getResult();
213 auto outputType = output.getType().dyn_cast<RankedTensorType>();
214 if (!outputType)
215 return failure();
216
217 Value outInput1, outInput2;
218 if (reshapeLowerToHigher(rewriter, tosaBinaryOp.getLoc(), outputType,
219 input1, input2, outInput1, outInput2)
220 .failed())
221 return failure();
222
223 rewriter.replaceOpWithNewOp<tosa::ArithmeticRightShiftOp>(
224 tosaBinaryOp, outputType, outInput1, outInput2, round);
225
226 return success();
227 }
228 };
229 } // namespace
230
231 namespace {
232 /// Pass that enables broadcast by making all input arrays have the same
233 /// number of dimensions. Insert RESHAPE operations to lower rank operand
234 struct TosaMakeBroadcastable
235 : public TosaMakeBroadcastableBase<TosaMakeBroadcastable> {
236 public:
runOnOperation__anon0064147e0211::TosaMakeBroadcastable237 void runOnOperation() override {
238 auto func = getOperation();
239 RewritePatternSet patterns(func.getContext());
240 MLIRContext *ctx = func.getContext();
241 // Add the generated patterns to the list.
242 patterns.add<ConvertTosaOp<tosa::BitwiseAndOp>>(ctx);
243 patterns.add<ConvertTosaOp<tosa::BitwiseOrOp>>(ctx);
244 patterns.add<ConvertTosaOp<tosa::BitwiseXorOp>>(ctx);
245 patterns.add<ConvertTosaOp<tosa::AddOp>>(ctx);
246 patterns.add<ConvertTosaOp<tosa::SubOp>>(ctx);
247 patterns.add<ConvertTosaOp<tosa::MulOp>>(ctx);
248 patterns.add<ConvertTosaOp<tosa::DivOp>>(ctx);
249 patterns.add<ConvertTosaOp<tosa::MaximumOp>>(ctx);
250 patterns.add<ConvertTosaOp<tosa::MinimumOp>>(ctx);
251 patterns.add<ConvertTosaOp<tosa::EqualOp>>(ctx);
252 patterns.add<ConvertTosaOp<tosa::GreaterOp>>(ctx);
253 patterns.add<ConvertTosaOp<tosa::GreaterEqualOp>>(ctx);
254 patterns.add<ConvertTosaOp<tosa::LogicalLeftShiftOp>>(ctx);
255 patterns.add<ConvertTosaOp<tosa::ArithmeticRightShiftOp>>(ctx);
256 patterns.add<ConvertTosaOp<tosa::LogicalRightShiftOp>>(ctx);
257 patterns.add<ConvertTosaOp<tosa::LogicalAndOp>>(ctx);
258 patterns.add<ConvertTosaOp<tosa::LogicalOrOp>>(ctx);
259 patterns.add<ConvertTosaOp<tosa::LogicalXorOp>>(ctx);
260 patterns.add<ConvertTosaOp<tosa::PowOp>>(ctx);
261 (void)applyPatternsAndFoldGreedily(func, std::move(patterns));
262 }
263 };
264 } // namespace
265
createTosaMakeBroadcastablePass()266 std::unique_ptr<Pass> mlir::tosa::createTosaMakeBroadcastablePass() {
267 return std::make_unique<TosaMakeBroadcastable>();
268 }
269