1 //===- Sparsification.cpp - Implementation of sparsification --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements lowering sparse tensor types to actual sparse code. 10 // 11 // The concept of letting a compiler generate sparse code automatically was 12 // pioneered for dense linear algebra code in Fortran by [Bik96] in MT1 and 13 // formalized to tensor algebra by [Kjolstad17,20] for the Sparse Tensor 14 // Algebra Compiler (TACO). The implementation in this file closely follows 15 // the "sparse iteration theory" that forms the foundation of TACO. A rewriting 16 // rule is applied to each tensor expression in linalg (MLIR's tensor index 17 // notation) where the sparsity of tensors is indicated with annotation using 18 // a per-dimension specification of sparse/dense storage together with a 19 // specification of the order on the dimensions. Subsequently, a topologically 20 // sorted iteration graph, reflecting the required order on indices with respect 21 // to the dimensions of each tensor, is constructed to ensure that all tensors 22 // are visited in natural index order. Next, iteration lattices are constructed 23 // for the tensor expression for every index in topological order. Each 24 // iteration lattice point consists of a conjunction of tensor indices together 25 // with a tensor (sub)expression that needs to be evaluated for that 26 // conjunction. Within the lattice, iteration points are ordered according to 27 // the way indices are exhausted. As such these iteration lattices drive actual 28 // sparse code generation, which consists of a tedious but relatively 29 // straightforward one-to-one mapping from iteration lattices to combinations 30 // of for-loops, while-loops, and if-statements. 31 // 32 // [Bik96] Aart J.C. Bik. Compiler Support for Sparse Matrix Computations. 33 // PhD thesis, Leiden University, May 1996 (aartbik.com/sparse.php). 34 // [Kjolstad17] Fredrik Berg Kjolstad, Shoaib Ashraf Kamil, Stephen Chou, 35 // David Lugato, and Saman Amarasinghe. The Tensor Algebra Compiler. 36 // Proceedings of the ACM on Programming Languages, October 2017. 37 // [Kjolstad20] Fredrik Berg Kjolstad. Sparse Tensor Algebra Compilation. 38 // PhD thesis, MIT, February, 2020 (tensor-compiler.org). 39 // 40 // Implementation detail: We use llvm::SmallVector for vectors with 41 // variable lengths and std::vector for vectors with fixed lengths. 42 //===----------------------------------------------------------------------===// 43 44 #include "mlir/Dialect/Linalg/IR/LinalgOps.h" 45 #include "mlir/Dialect/Linalg/Utils/Utils.h" 46 #include "mlir/Dialect/SCF/SCF.h" 47 #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h" 48 #include "mlir/Dialect/SparseTensor/Transforms/Passes.h" 49 #include "mlir/Dialect/StandardOps/IR/Ops.h" 50 #include "mlir/Dialect/Vector/VectorOps.h" 51 #include "mlir/IR/Matchers.h" 52 #include "mlir/IR/TensorEncoding.h" 53 #include "llvm/ADT/SmallBitVector.h" 54 55 using namespace mlir; 56 using namespace mlir::sparse_tensor; 57 58 namespace { 59 60 enum class Kind { kTensor, kInvariant, kMulF, kMulI, kAddF, kAddI }; 61 enum class Dim { kSparse, kDense, kSingle, kUndef }; 62 63 /// Tensor expression. Represents a MLIR expression in tensor index notation. 64 /// For tensors, e0 denotes the tensor index. For invariants, the IR value is 65 /// stored directly. For binary operations, e0 and e1 denote the index of the 66 /// children tensor expressions. 67 struct TensorExp { 68 TensorExp(Kind k, unsigned x, unsigned y, Value v) 69 : kind(k), e0(x), e1(y), val(v) { 70 assert((kind == Kind::kTensor && e0 != -1u && e1 == -1u && !val) || 71 (kind == Kind::kInvariant && e0 == -1u && e1 == -1u && val) || 72 (kind >= Kind::kMulF && e0 != -1u && e1 != -1u && !val)); 73 } 74 Kind kind; 75 /// Indices of children expression(s). 76 unsigned e0; 77 unsigned e1; 78 /// Direct link to IR for an invariant. During code generation, 79 /// field is used to cache "hoisted" loop invariant tensor loads. 80 Value val; 81 }; 82 83 /// Lattice point. Each lattice point consists of a conjunction of tensor 84 /// loop indices (encoded in a bitvector) and the index of the corresponding 85 /// tensor expression. 86 struct LatPoint { 87 LatPoint(unsigned n, unsigned e, unsigned b) : bits(n, false), exp(e) { 88 bits.set(b); 89 } 90 LatPoint(const llvm::BitVector &b, unsigned e) : bits(b), exp(e) {} 91 /// Conjunction of tensor loop indices as bitvector. This represents 92 /// all indices involved in the tensor expression 93 llvm::BitVector bits; 94 /// Simplified conjunction of tensor loop indices as bitvector. This 95 /// represents a simplified condition under which this tensor expression 96 /// must execute. Pre-computed during codegen to avoid repeated eval. 97 llvm::BitVector simple; 98 /// Index of the tensor expresssion. 99 unsigned exp; 100 }; 101 102 /// A class to handle all iteration lattice operations. This class abstracts 103 /// away from some implementation details of storing iteration lattices and 104 /// tensor expressions. This allows for fine-tuning performance characteristics 105 /// independently from the basic algorithm if bottlenecks are identified. 106 class Merger { 107 public: 108 /// Constructs a merger for the given number of tensors and loops. The 109 /// user supplies the number of tensors involved in the kernel, with the 110 /// last tensor in this set denoting the output tensor. The merger adds an 111 /// additional synthetic tensor at the end of this set to represent all 112 /// invariant expressions in the kernel. 113 Merger(unsigned t, unsigned l) 114 : outTensor(t - 1), numTensors(t + 1), numLoops(l), 115 dims(t + 1, std::vector<Dim>(l, Dim::kUndef)) {} 116 117 /// Adds a tensor expression. Returns its index. 118 unsigned addExp(Kind k, unsigned e0, unsigned e1 = -1u, Value v = Value()) { 119 unsigned e = tensorExps.size(); 120 tensorExps.push_back(TensorExp(k, e0, e1, v)); 121 return e; 122 } 123 unsigned addExp(Kind k, Value v) { return addExp(k, -1u, -1u, v); } 124 125 /// Adds an iteration lattice point. Returns its index. 126 unsigned addLat(unsigned t, unsigned i, unsigned e) { 127 assert(t < numTensors && i < numLoops); 128 unsigned p = latPoints.size(); 129 latPoints.push_back(LatPoint(numLoops * numTensors, e, numTensors * i + t)); 130 return p; 131 } 132 133 /// Adds a new, initially empty, set. Returns its index. 134 unsigned addSet() { 135 unsigned s = latSets.size(); 136 latSets.emplace_back(SmallVector<unsigned, 16>()); 137 return s; 138 } 139 140 /// Computes a single conjunction of two lattice points by taking the "union" 141 /// of loop indices (effectively constructing a larger "intersection" of those 142 /// indices) with a newly constructed tensor (sub)expression of given kind. 143 /// Returns the index of the new lattice point. 144 unsigned conjLatPoint(Kind kind, unsigned p0, unsigned p1) { 145 unsigned p = latPoints.size(); 146 llvm::BitVector nb = llvm::BitVector(latPoints[p0].bits); 147 nb |= latPoints[p1].bits; 148 unsigned e = addExp(kind, latPoints[p0].exp, latPoints[p1].exp); 149 latPoints.push_back(LatPoint(nb, e)); 150 return p; 151 } 152 153 /// Conjunctive merge of two lattice sets L0 and L1 is conjunction of 154 /// cartesian product. Returns the index of the new set. 155 unsigned takeConj(Kind kind, unsigned s0, unsigned s1) { 156 unsigned s = addSet(); 157 for (unsigned p0 : latSets[s0]) 158 for (unsigned p1 : latSets[s1]) 159 latSets[s].push_back(conjLatPoint(kind, p0, p1)); 160 return s; 161 } 162 163 /// Disjunctive merge of two lattice sets L0 and L1 is (L0 /\_op L1, L0, L1). 164 /// Returns the index of the new set. 165 unsigned takeDisj(Kind kind, unsigned s0, unsigned s1) { 166 unsigned s = takeConj(kind, s0, s1); 167 for (unsigned p : latSets[s0]) 168 latSets[s].push_back(p); 169 for (unsigned p : latSets[s1]) 170 latSets[s].push_back(p); 171 return s; 172 } 173 174 /// Optimizes the iteration lattice points in the given set. This 175 /// method should be called right before code generation to avoid 176 /// generating redundant loops and conditions. 177 unsigned optimizeSet(unsigned s0) { 178 unsigned s = addSet(); 179 assert(latSets[s0].size() != 0); 180 unsigned p0 = latSets[s0][0]; 181 for (unsigned p1 : latSets[s0]) { 182 bool add = true; 183 if (p0 != p1) { 184 // Is this a straightforward copy? 185 unsigned e = latPoints[p1].exp; 186 if (exp(e).kind == Kind::kTensor && exp(e).e0 == outTensor) 187 continue; 188 // Conjunction already covered? 189 for (unsigned p2 : latSets[s]) { 190 assert(!latGT(p1, p2)); // Lj => Li would be bad 191 if (onlyDenseDiff(p2, p1)) { 192 add = false; 193 break; 194 } 195 } 196 assert(!add || latGT(p0, p1)); 197 } 198 if (add) 199 latSets[s].push_back(p1); 200 } 201 for (unsigned p : latSets[s]) 202 latPoints[p].simple = simplifyCond(s, p); 203 return s; 204 } 205 206 /// Simplifies the conditions in a conjunction of a given lattice point 207 /// within the given set using just two basic rules: 208 /// (1) multiple dense conditions are reduced to single dense, and 209 /// (2) a *singleton* sparse/dense is reduced to sparse/random access. 210 llvm::BitVector simplifyCond(unsigned s, unsigned p0) { 211 // First determine if this lattice point is a *singleton*, i.e., 212 // the last point in a lattice, no other is less than this one. 213 bool isSingleton = true; 214 for (unsigned p1 : latSets[s]) { 215 if (p0 != p1 && latGT(p0, p1)) { 216 isSingleton = false; 217 break; 218 } 219 } 220 // Now apply the two basic rules. 221 llvm::BitVector simple = latPoints[p0].bits; 222 bool reset = isSingleton && hasAnyDimOf(simple, Dim::kSparse); 223 for (unsigned b = 0, be = simple.size(); b < be; b++) { 224 if (simple[b] && !isDim(b, Dim::kSparse)) { 225 if (reset) 226 simple.reset(b); 227 reset = true; 228 } 229 } 230 return simple; 231 } 232 233 /// Returns true if Li > Lj. 234 bool latGT(unsigned i, unsigned j) const { 235 const llvm::BitVector &bitsi = latPoints[i].bits; 236 const llvm::BitVector &bitsj = latPoints[j].bits; 237 assert(bitsi.size() == bitsj.size()); 238 if (bitsi.count() > bitsj.count()) { 239 for (unsigned b = 0, be = bitsj.size(); b < be; b++) 240 if (bitsj[b] && !bitsi[b]) 241 return false; 242 return true; 243 } 244 return false; 245 } 246 247 /// Returns true if Li and Lj only differ in dense. 248 bool onlyDenseDiff(unsigned i, unsigned j) { 249 llvm::BitVector tmp = latPoints[j].bits; 250 tmp ^= latPoints[i].bits; 251 return !hasAnyDimOf(tmp, Dim::kSparse); 252 } 253 254 /// Bit translation. 255 unsigned tensor(unsigned b) const { return b % numTensors; } 256 unsigned index(unsigned b) const { return b / numTensors; } 257 258 /// Returns true if bit corresponds to queried dim. 259 bool isDim(unsigned b, Dim d) const { return isDim(tensor(b), index(b), d); } 260 261 /// Returns true if tensor access at given index has queried dim. 262 bool isDim(unsigned t, unsigned i, Dim d) const { 263 assert(t < numTensors && i < numLoops); 264 return dims[t][i] == d; 265 } 266 267 /// Returns true if any set bit corresponds to queried dim. 268 bool hasAnyDimOf(const llvm::BitVector &bits, Dim d) const { 269 for (unsigned b = 0, be = bits.size(); b < be; b++) 270 if (bits[b] && isDim(b, d)) 271 return true; 272 return false; 273 } 274 275 /// Setter 276 void setDim(unsigned t, unsigned i, Dim d) { dims[t][i] = d; } 277 278 /// Getters. 279 TensorExp &exp(unsigned e) { return tensorExps[e]; } 280 LatPoint &lat(unsigned l) { return latPoints[l]; } 281 SmallVector<unsigned, 16> &set(unsigned s) { return latSets[s]; } 282 283 private: 284 const unsigned outTensor; 285 const unsigned numTensors; 286 const unsigned numLoops; 287 288 std::vector<std::vector<Dim>> dims; 289 llvm::SmallVector<TensorExp, 32> tensorExps; 290 llvm::SmallVector<LatPoint, 16> latPoints; 291 llvm::SmallVector<SmallVector<unsigned, 16>, 8> latSets; 292 }; 293 294 // Code generation. 295 struct CodeGen { 296 CodeGen(SparsificationOptions o, unsigned numTensors, unsigned numLoops) 297 : options(o), loops(numLoops), sizes(numLoops), buffers(numTensors), 298 pointers(numTensors, std::vector<Value>(numLoops)), 299 indices(numTensors, std::vector<Value>(numLoops)), 300 highs(numTensors, std::vector<Value>(numLoops)), 301 pidxs(numTensors, std::vector<Value>(numLoops)), 302 idxs(numTensors, std::vector<Value>(numLoops)), redExp(-1u), redVal(), 303 curVecLength(1), curVecMask() {} 304 /// Sparsification options. 305 SparsificationOptions options; 306 /// Universal dense indices and upper bounds (by index). The loops array 307 /// is updated with the value of the universal dense index in the current 308 /// loop. The sizes array is set once with the inferred dimension sizes. 309 std::vector<Value> loops; 310 std::vector<Value> sizes; 311 /// Buffers for storing dense and sparse numerical values (by tensor). 312 /// This array is set once during bufferization of all tensors. 313 std::vector<Value> buffers; 314 /// Sparse storage schemes (1-D): pointers and indices (by tensor and index). 315 /// This array is set once during bufferization of all sparse tensors. 316 std::vector<std::vector<Value>> pointers; 317 std::vector<std::vector<Value>> indices; 318 /// Sparse iteration information (by tensor and index). These arrays 319 /// are updated to remain current within the current loop. 320 std::vector<std::vector<Value>> highs; 321 std::vector<std::vector<Value>> pidxs; 322 std::vector<std::vector<Value>> idxs; 323 /// Current reduction, updated during code generation. When indices of a 324 /// reduction are exhausted, all inner loops can "scalarize" the reduction. 325 // TODO: currently only done for (a chain of) innermost for-loops, where it 326 // is most effective; we could generalize to more outer and while-loops. 327 unsigned redExp; 328 Value redVal; 329 // Current vector length and mask. 330 unsigned curVecLength; 331 Value curVecMask; 332 }; 333 334 } // namespace 335 336 // Helper method to translate dim level type to internal representation. 337 static Dim toDim(SparseTensorEncodingAttr &enc, unsigned d) { 338 if (enc) { 339 SparseTensorEncodingAttr::DimLevelType tp = enc.getDimLevelType()[d]; 340 if (tp == SparseTensorEncodingAttr::DimLevelType::Compressed) 341 return Dim::kSparse; 342 if (tp == SparseTensorEncodingAttr::DimLevelType::Singleton) 343 return Dim::kSingle; 344 } 345 return Dim::kDense; 346 } 347 348 /// Helper method to inspect sparse encodings in the tensor types. 349 /// Fills the per-dimension sparsity information for all tensors. 350 static void findSparseAnnotations(Merger &merger, linalg::GenericOp op) { 351 unsigned numTensors = op.getNumShapedOperands(); 352 for (unsigned t = 0; t < numTensors; t++) { 353 auto map = op.getIndexingMap(t); 354 unsigned rank = op.getShapedType(t).getRank(); 355 auto enc = getSparseTensorEncoding(op.getShapedType(t)); 356 for (unsigned d = 0; d < rank; d++) { 357 unsigned idx = map.getDimPosition(d); 358 merger.setDim(t, idx, toDim(enc, d)); 359 } 360 } 361 } 362 363 /// A DFS helper to compute a topological sort. Note that recursion is 364 /// bounded by the number of implicit loops, which is always small. 365 /// Returns false when a cycle is detected. 366 static bool topSortDFS(unsigned i, std::vector<unsigned> &visit, 367 std::vector<unsigned> &topSort, 368 std::vector<std::vector<bool>> &adjM) { 369 if (visit[i] != 0) 370 return visit[i] != 1; // 1 denotes cycle! 371 visit[i] = 1; 372 for (unsigned j = 0, e = visit.size(); j < e; j++) 373 if (adjM[i][j]) 374 if (!topSortDFS(j, visit, topSort, adjM)) 375 return false; 376 visit[i] = 2; 377 topSort.push_back(i); 378 return true; 379 } 380 381 /// Computes a topologically sorted iteration graph for the linalg operation. 382 /// Ensures all tensors are visited in natural index order. This is essential 383 /// for sparse storage formats since these only support access along fixed 384 /// dimensions. Even for dense storage formats, however, the natural index 385 /// order yields innermost unit-stride access with better spatial locality. 386 static bool computeIterationGraph(Merger &merger, linalg::GenericOp op, 387 std::vector<unsigned> &topSort, 388 bool sparseOnly) { 389 // Set up an n x n from/to adjacency matrix of the iteration graph 390 // for the implicit loop indices i_0 .. i_n-1. 391 unsigned n = op.getNumLoops(); 392 std::vector<std::vector<bool>> adjM(n, std::vector<bool>(n, false)); 393 394 // Iterate over the indexing maps of every tensor in the tensor expression. 395 unsigned numTensors = op.getNumShapedOperands(); 396 for (unsigned t = 0; t < numTensors; t++) { 397 auto map = op.getIndexingMap(t); 398 assert(map.getNumDims() == n); 399 // Skip dense tensor constraints when sparse only is requested. 400 if (sparseOnly && !getSparseTensorEncoding(op.getShapedType(t))) 401 continue; 402 // At the moment, we take the index variables in the tensor access 403 // expression in the order in which they appear (conceptually a 404 // "row-major" layout of every tensor). So, a tensor access A_ijk 405 // forces the ordering i < j < k on the loop indices. 406 // TODO: support affine map to define alternative dimension orders. 407 for (unsigned d = 1, e = map.getNumResults(); d < e; d++) { 408 unsigned f = map.getDimPosition(d - 1); 409 unsigned t = map.getDimPosition(d); 410 adjM[f][t] = true; 411 } 412 } 413 414 // Topologically sort the iteration graph to determine loop order. 415 // Report failure for a cyclic iteration graph. 416 topSort.clear(); 417 topSort.reserve(n); 418 std::vector<unsigned> visit(n, 0); 419 for (unsigned i = 0; i < n; i++) 420 if (visit[i] == 0) 421 if (!topSortDFS(i, visit, topSort, adjM)) 422 return false; // cycle! 423 std::reverse(std::begin(topSort), std::end(topSort)); 424 return true; 425 } 426 427 /// Traverses the SSA tree (possibly a DAG) to build a tensor expression. 428 /// This simplifies constructing (sub)expressions during iteration lattice 429 /// building (compared to using the SSA representation everywhere). 430 static Optional<unsigned> buildTensorExp(Merger &merger, linalg::GenericOp op, 431 Value val) { 432 if (auto arg = val.dyn_cast<BlockArgument>()) { 433 unsigned argN = arg.getArgNumber(); 434 if (arg.getOwner()->getParentOp() == op) { 435 // Any parameter of the generic op is considered a tensor, 436 // indexed by the implicit loop bounds. 437 auto map = op.getIndexingMap(argN); 438 if (map.isProjectedPermutation()) 439 return merger.addExp(Kind::kTensor, argN); 440 // Cannot handle (yet). 441 return None; 442 } 443 // Any parameter of a higher op is invariant. 444 return merger.addExp(Kind::kInvariant, val); 445 } 446 Operation *def = val.getDefiningOp(); 447 if (def->getBlock() != &op.region().front()) { 448 // Something defined outside is invariant. 449 return merger.addExp(Kind::kInvariant, val); 450 } else if (def->getNumOperands() == 2) { 451 // Construct binary operations if subexpressions could be built. 452 auto x = buildTensorExp(merger, op, def->getOperand(0)); 453 auto y = buildTensorExp(merger, op, def->getOperand(1)); 454 if (x.hasValue() && y.hasValue()) { 455 unsigned e0 = x.getValue(); 456 unsigned e1 = y.getValue(); 457 if (isa<MulFOp>(def)) 458 return merger.addExp(Kind::kMulF, e0, e1); 459 if (isa<MulIOp>(def)) 460 return merger.addExp(Kind::kMulI, e0, e1); 461 if (isa<AddFOp>(def)) 462 return merger.addExp(Kind::kAddF, e0, e1); 463 if (isa<AddIOp>(def)) 464 return merger.addExp(Kind::kAddI, e0, e1); 465 } 466 } 467 // Cannot build (yet). 468 return None; 469 } 470 471 /// Builds the iteration lattices in a bottom-up traversal given the remaining 472 /// tensor (sub)expression and the next loop index in the iteration graph. 473 static unsigned buildLattices(Merger &merger, linalg::GenericOp op, 474 unsigned exp, unsigned idx) { 475 Kind kind = merger.exp(exp).kind; 476 if (kind == Kind::kTensor || kind == Kind::kInvariant) { 477 // Either the index is really used in the tensor expression, or it is 478 // set to the undefined index in that dimension. An invariant expression 479 // is set to a synthetic tensor with undefined indices only. 480 unsigned s = merger.addSet(); 481 unsigned t = 482 kind == Kind::kTensor ? merger.exp(exp).e0 : op.getNumShapedOperands(); 483 merger.set(s).push_back(merger.addLat(t, idx, exp)); 484 return s; 485 } 486 unsigned s0 = buildLattices(merger, op, merger.exp(exp).e0, idx); 487 unsigned s1 = buildLattices(merger, op, merger.exp(exp).e1, idx); 488 switch (kind) { 489 case Kind::kTensor: 490 case Kind::kInvariant: 491 llvm_unreachable("handled above"); 492 case Kind::kMulF: 493 case Kind::kMulI: 494 return merger.takeConj(kind, s0, s1); 495 case Kind::kAddF: 496 case Kind::kAddI: 497 return merger.takeDisj(kind, s0, s1); 498 } 499 llvm_unreachable("unexpected expression kind"); 500 } 501 502 /// Maps sparse integer option to actual integral storage type. 503 static Type genIntType(PatternRewriter &rewriter, unsigned width) { 504 if (width == 0) 505 return rewriter.getIndexType(); 506 return rewriter.getIntegerType(width); 507 } 508 509 /// Detects in-place annotation on tensor argument. 510 static bool getInPlace(Value val) { 511 if (auto arg = val.dyn_cast<BlockArgument>()) 512 if (auto funcOp = dyn_cast<FuncOp>(arg.getOwner()->getParentOp())) 513 if (auto attr = funcOp.getArgAttrOfType<BoolAttr>( 514 arg.getArgNumber(), linalg::LinalgDialect::kInplaceableAttrName)) 515 return attr.getValue(); 516 return false; 517 } 518 519 /// Generates buffer for the output tensor. 520 static Value genOutputBuffer(CodeGen &codegen, PatternRewriter &rewriter, 521 linalg::GenericOp op, MemRefType denseTp, 522 ArrayRef<Value> args) { 523 Location loc = op.getLoc(); 524 Value tensor = op.getOutput(0); 525 // The output tensor simply could materialize from the buffer that will 526 // be generated for the tensor present in the outs() clause. This has 527 // the major advantage that the sparse kernel only updates the nonzero 528 // positions for the output tensor. 529 if (getInPlace(tensor)) 530 return rewriter.create<memref::BufferCastOp>(loc, denseTp, tensor); 531 // By default, a new buffer is allocated which is initialized to the 532 // tensor defined in the outs() clause. This is always correct but 533 // introduces a dense initialization component that may negatively 534 // impact the running complexity of the sparse kernel. 535 Value init = rewriter.create<memref::BufferCastOp>(loc, denseTp, tensor); 536 Value alloc = rewriter.create<memref::AllocOp>(loc, denseTp, args); 537 rewriter.create<linalg::CopyOp>(loc, init, alloc); 538 return alloc; 539 } 540 541 /// Local bufferization of all dense and sparse data structures. 542 /// This code enables testing the first prototype sparse compiler. 543 // TODO: replace this with a proliferated bufferization strategy 544 static void genBuffers(Merger &merger, CodeGen &codegen, 545 PatternRewriter &rewriter, linalg::GenericOp op) { 546 Location loc = op.getLoc(); 547 unsigned numTensors = op.getNumShapedOperands(); 548 unsigned numInputs = op.getNumInputs(); 549 assert(numTensors == numInputs + 1); 550 // For every tensor, find lower and upper bound on dimensions, set the 551 // same bounds on loop indices, and obtain dense or sparse buffer(s). 552 SmallVector<Value, 4> args; 553 for (unsigned t = 0; t < numTensors; t++) { 554 Value tensor = t < numInputs ? op.getInput(t) : op.getOutput(0); 555 auto tensorType = op.getShapedType(t); 556 auto shape = tensorType.getShape(); 557 auto map = op.getIndexingMap(t); 558 auto enc = getSparseTensorEncoding(tensorType); 559 // Scan all dimensions of current tensor. 560 args.clear(); 561 for (unsigned d = 0, rank = shape.size(); d < rank; d++) { 562 unsigned i = map.getDimPosition(d); 563 // Handle sparse storage schemes. 564 if (merger.isDim(t, i, Dim::kSparse)) { 565 auto dynShape = {ShapedType::kDynamicSize}; 566 auto ptrTp = MemRefType::get( 567 dynShape, genIntType(rewriter, enc.getPointerBitWidth())); 568 auto indTp = MemRefType::get( 569 dynShape, genIntType(rewriter, enc.getIndexBitWidth())); 570 Value dim = rewriter.create<ConstantIndexOp>(loc, d); 571 // Generate sparse primitives to obtains pointer and indices. 572 codegen.pointers[t][i] = 573 rewriter.create<ToPointersOp>(loc, ptrTp, tensor, dim); 574 codegen.indices[t][i] = 575 rewriter.create<ToIndicesOp>(loc, indTp, tensor, dim); 576 } 577 // Find lower and upper bound in current dimension. 578 Value up; 579 if (shape[d] == MemRefType::kDynamicSize) { 580 up = rewriter.create<memref::DimOp>(loc, tensor, d); 581 args.push_back(up); 582 } else { 583 up = rewriter.create<ConstantIndexOp>(loc, shape[d]); 584 } 585 codegen.sizes[i] = codegen.highs[t][i] = up; 586 } 587 // Perform the required bufferization. All dense inputs materialize 588 // from the input tensor. The dense output tensor needs special 589 // handling. Sparse inputs use a sparse primitive to obtain the values. 590 if (!enc) { 591 auto denseTp = MemRefType::get(shape, tensorType.getElementType()); 592 if (t < numInputs) 593 codegen.buffers[t] = 594 rewriter.create<memref::BufferCastOp>(loc, denseTp, tensor); 595 else 596 codegen.buffers[t] = 597 genOutputBuffer(codegen, rewriter, op, denseTp, args); 598 } else { 599 auto dynShape = {ShapedType::kDynamicSize}; 600 auto sparseTp = MemRefType::get(dynShape, tensorType.getElementType()); 601 codegen.buffers[t] = rewriter.create<ToValuesOp>(loc, sparseTp, tensor); 602 } 603 } 604 } 605 606 /// Constructs vector type. 607 static VectorType vectorType(CodeGen &codegen, Type etp) { 608 return VectorType::get(codegen.curVecLength, etp); 609 } 610 611 /// Constructs vector type from pointer. 612 static VectorType vectorType(CodeGen &codegen, Value ptr) { 613 return vectorType(codegen, ptr.getType().cast<MemRefType>().getElementType()); 614 } 615 616 /// Constructs vector iteration mask. 617 static Value genVectorMask(CodeGen &codegen, PatternRewriter &rewriter, 618 Value iv, Value lo, Value hi, Value step) { 619 Location loc = iv.getLoc(); 620 VectorType mtp = vectorType(codegen, rewriter.getIntegerType(1)); 621 // Special case if the vector length evenly divides the trip count (for 622 // example, "for i = 0, 128, 16"). A constant all-true mask is generated 623 // so that all subsequent masked memory operations are immediately folded 624 // into unconditional memory operations. 625 IntegerAttr loInt, hiInt, stepInt; 626 if (matchPattern(lo, m_Constant(&loInt)) && 627 matchPattern(hi, m_Constant(&hiInt)) && 628 matchPattern(step, m_Constant(&stepInt))) { 629 if (((hiInt.getInt() - loInt.getInt()) % stepInt.getInt()) == 0) 630 return rewriter.create<vector::BroadcastOp>( 631 loc, mtp, rewriter.create<ConstantIntOp>(loc, 1, 1)); 632 } 633 // Otherwise, generate a vector mask that avoids overrunning the upperbound 634 // during vector execution. Here we rely on subsequent loop optimizations to 635 // avoid executing the mask in all iterations, for example, by splitting the 636 // loop into an unconditional vector loop and a scalar cleanup loop. 637 Value end = rewriter.create<SubIOp>(loc, hi, iv); 638 return rewriter.create<vector::CreateMaskOp>(loc, mtp, end); 639 } 640 641 /// Generates a vectorized load lhs = a[ind[lo:hi]] or lhs = a[lo:hi]. 642 static Value genVectorLoad(CodeGen &codegen, PatternRewriter &rewriter, 643 Value ptr, ArrayRef<Value> args) { 644 Location loc = ptr.getLoc(); 645 VectorType vtp = vectorType(codegen, ptr); 646 Value pass = rewriter.create<ConstantOp>(loc, vtp, rewriter.getZeroAttr(vtp)); 647 if (args.back().getType().isa<VectorType>()) { 648 SmallVector<Value, 4> scalarArgs(args.begin(), args.end()); 649 Value indexVec = args.back(); 650 scalarArgs.back() = rewriter.create<ConstantIndexOp>(loc, 0); 651 return rewriter.create<vector::GatherOp>( 652 loc, vtp, ptr, scalarArgs, indexVec, codegen.curVecMask, pass); 653 } 654 return rewriter.create<vector::MaskedLoadOp>(loc, vtp, ptr, args, 655 codegen.curVecMask, pass); 656 } 657 658 /// Generates a vectorized store a[ind[lo:hi]] = rhs or a[lo:hi] = rhs. 659 static void genVectorStore(CodeGen &codegen, PatternRewriter &rewriter, 660 Value rhs, Value ptr, ArrayRef<Value> args) { 661 Location loc = ptr.getLoc(); 662 if (args.back().getType().isa<VectorType>()) { 663 SmallVector<Value, 4> scalarArgs(args.begin(), args.end()); 664 Value indexVec = args.back(); 665 scalarArgs.back() = rewriter.create<ConstantIndexOp>(loc, 0); 666 rewriter.create<vector::ScatterOp>(loc, ptr, scalarArgs, indexVec, 667 codegen.curVecMask, rhs); 668 return; 669 } 670 rewriter.create<vector::MaskedStoreOp>(loc, ptr, args, codegen.curVecMask, 671 rhs); 672 } 673 674 /// Generates a vectorized invariant. Here we rely on subsequent loop 675 /// optimizations to hoist the invariant broadcast out of the vector loop. 676 static Value genVectorInvariantValue(CodeGen &codegen, 677 PatternRewriter &rewriter, Value val) { 678 VectorType vtp = vectorType(codegen, val.getType()); 679 return rewriter.create<vector::BroadcastOp>(val.getLoc(), vtp, val); 680 } 681 682 /// Generates a load on a dense or sparse tensor. 683 static Value genTensorLoad(Merger &merger, CodeGen &codegen, 684 PatternRewriter &rewriter, linalg::GenericOp op, 685 unsigned exp) { 686 // Test if the load was hoisted to a higher loop nest. 687 Value val = merger.exp(exp).val; 688 if (val) { 689 if (codegen.curVecLength > 1 && !val.getType().isa<VectorType>()) 690 return genVectorInvariantValue(codegen, rewriter, val); 691 return val; 692 } 693 // Actual load. 694 SmallVector<Value, 4> args; 695 unsigned tensor = merger.exp(exp).e0; 696 auto map = op.getIndexingMap(tensor); 697 auto enc = getSparseTensorEncoding(op.getShapedType(tensor)); 698 for (unsigned i = 0, m = map.getNumResults(); i < m; ++i) { 699 unsigned idx = map.getDimPosition(i); 700 args.push_back(codegen.loops[idx]); // universal dense index 701 if (enc) { 702 args.clear(); 703 args.push_back(codegen.pidxs[tensor][idx]); // position index 704 } 705 } 706 Location loc = op.getLoc(); 707 Value ptr = codegen.buffers[tensor]; 708 if (codegen.curVecLength > 1) 709 return genVectorLoad(codegen, rewriter, ptr, args); 710 return rewriter.create<memref::LoadOp>(loc, ptr, args); 711 } 712 713 /// Generates a store on a dense tensor. 714 static void genTensorStore(Merger &merger, CodeGen &codegen, 715 PatternRewriter &rewriter, linalg::GenericOp op, 716 unsigned tensor, Value rhs) { 717 Location loc = op.getLoc(); 718 // Test if this is a scalarized reduction. 719 unsigned lhs = op.getNumShapedOperands() - 1; 720 if (lhs == tensor && codegen.redVal) { 721 if (codegen.curVecLength > 1) 722 rhs = rewriter.create<SelectOp>(loc, codegen.curVecMask, rhs, 723 codegen.redVal); 724 codegen.redVal = rhs; 725 return; 726 } 727 // Actual store. 728 SmallVector<Value, 4> args; 729 auto map = op.getIndexingMap(tensor); 730 for (unsigned i = 0, m = map.getNumResults(); i < m; ++i) { 731 unsigned idx = map.getDimPosition(i); 732 args.push_back(codegen.loops[idx]); // universal dense index 733 } 734 Value ptr = codegen.buffers[tensor]; 735 if (codegen.curVecLength > 1) 736 genVectorStore(codegen, rewriter, rhs, ptr, args); 737 else 738 rewriter.create<memref::StoreOp>(loc, rhs, ptr, args); 739 } 740 741 /// Generates a pointer/index load from the sparse storage scheme. Narrower 742 /// data types need to be zero extended before casting the value into the 743 /// index type used for looping and indexing. 744 static Value genLoad(CodeGen &codegen, PatternRewriter &rewriter, Location loc, 745 Value ptr, Value s) { 746 // See https://llvm.org/docs/GetElementPtr.html for some background on 747 // the complications described below. 748 if (codegen.curVecLength > 1) { 749 // Since the index vector is used in a subsequent gather/scatter operations, 750 // which effectively defines an unsigned pointer + signed index, we must 751 // zero extend the vector to an index width. For 8-bit and 16-bit values, 752 // an 32-bit index width suffices. For 32-bit values, zero extending the 753 // elements into 64-bit loses some performance since the 32-bit indexed 754 // gather/scatter is more efficient than the 64-bit index variant (in 755 // the future, we could introduce a flag that states the negative space 756 // of 32-bit indices is unused). For 64-bit values, there is no good way 757 // to state that the indices are unsigned, with creates the potential of 758 // incorrect address calculations in the unlikely case we need such 759 // extremely large offsets. 760 Type etp = ptr.getType().cast<MemRefType>().getElementType(); 761 Value vload = genVectorLoad(codegen, rewriter, ptr, {s}); 762 if (!etp.isa<IndexType>()) { 763 if (etp.getIntOrFloatBitWidth() < 32) 764 vload = rewriter.create<ZeroExtendIOp>( 765 loc, vload, vectorType(codegen, rewriter.getIntegerType(32))); 766 else if (etp.getIntOrFloatBitWidth() < 64) 767 vload = rewriter.create<ZeroExtendIOp>( 768 loc, vload, vectorType(codegen, rewriter.getIntegerType(64))); 769 } 770 return vload; 771 } 772 // For the scalar case, we simply zero extend narrower indices into 64-bit 773 // values before casting to index without a performance penalty. Here too, 774 // however, indices that already are 64-bit, in theory, cannot express the 775 // full range as explained above. 776 Value load = rewriter.create<memref::LoadOp>(loc, ptr, s); 777 if (!load.getType().isa<IndexType>()) { 778 if (load.getType().getIntOrFloatBitWidth() < 64) 779 load = rewriter.create<ZeroExtendIOp>(loc, load, 780 rewriter.getIntegerType(64)); 781 load = rewriter.create<IndexCastOp>(loc, load, rewriter.getIndexType()); 782 } 783 return load; 784 } 785 786 /// Generates an invariant value. 787 static Value genInvariantValue(Merger &merger, CodeGen &codegen, 788 PatternRewriter &rewriter, unsigned exp) { 789 Value val = merger.exp(exp).val; 790 if (codegen.curVecLength > 1) 791 return genVectorInvariantValue(codegen, rewriter, val); 792 return val; 793 } 794 795 /// Generates an address computation "sz * p + i". 796 static Value genAddress(CodeGen &codegen, PatternRewriter &rewriter, 797 Location loc, Value size, Value p, Value i) { 798 Value mul = rewriter.create<MulIOp>(loc, size, p); 799 if (auto vtp = i.getType().dyn_cast<VectorType>()) { 800 Value inv = rewriter.create<IndexCastOp>(loc, mul, vtp.getElementType()); 801 mul = genVectorInvariantValue(codegen, rewriter, inv); 802 } 803 return rewriter.create<AddIOp>(loc, mul, i); 804 } 805 806 /// Generates start of a reduction. 807 static Value genReductionStart(Merger &merger, CodeGen &codegen, 808 PatternRewriter &rewriter, 809 linalg::GenericOp op) { 810 if (codegen.redVal) 811 return codegen.redVal; // chained with previous for-loop 812 if (codegen.curVecLength > 1) { 813 // TODO: assumes + reductions for now 814 VectorType vtp = vectorType(codegen, codegen.buffers[codegen.redExp]); 815 return rewriter.create<ConstantOp>(op.getLoc(), vtp, 816 rewriter.getZeroAttr(vtp)); 817 } 818 return genTensorLoad(merger, codegen, rewriter, op, codegen.redExp); 819 } 820 821 /// Generates end of a reduction. 822 static void genReductionEnd(Merger &merger, CodeGen &codegen, 823 PatternRewriter &rewriter, linalg::GenericOp op) { 824 Value red = codegen.redVal; 825 if (!red) 826 return; 827 assert(codegen.curVecLength == 1); 828 codegen.redVal = merger.exp(codegen.redExp).val = Value(); // end chain 829 unsigned lhs = op.getNumShapedOperands() - 1; 830 if (auto vtp = red.getType().dyn_cast<VectorType>()) { 831 // TODO: assumes + reductions for now 832 StringAttr kind = rewriter.getStringAttr("add"); 833 Value ld = genTensorLoad(merger, codegen, rewriter, op, codegen.redExp); 834 // Integer reductions don't accept an accumulator. 835 if (vtp.getElementType().isa<IntegerType>()) { 836 red = rewriter.create<vector::ReductionOp>(op.getLoc(), ld.getType(), 837 kind, red, ValueRange{}); 838 red = rewriter.create<AddIOp>(op.getLoc(), red, ld); 839 } else { 840 red = rewriter.create<vector::ReductionOp>(op.getLoc(), ld.getType(), 841 kind, red, ld); 842 } 843 } 844 genTensorStore(merger, codegen, rewriter, op, lhs, red); 845 } 846 847 /// Recursively generates tensor expression. 848 static Value genExp(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, 849 linalg::GenericOp op, unsigned exp) { 850 if (merger.exp(exp).kind == Kind::kTensor) 851 return genTensorLoad(merger, codegen, rewriter, op, exp); 852 else if (merger.exp(exp).kind == Kind::kInvariant) 853 return genInvariantValue(merger, codegen, rewriter, exp); 854 Value v0 = genExp(merger, codegen, rewriter, op, merger.exp(exp).e0); 855 Value v1 = genExp(merger, codegen, rewriter, op, merger.exp(exp).e1); 856 switch (merger.exp(exp).kind) { 857 case Kind::kTensor: 858 case Kind::kInvariant: 859 llvm_unreachable("handled above"); 860 case Kind::kMulF: 861 return rewriter.create<MulFOp>(op.getLoc(), v0, v1); 862 case Kind::kMulI: 863 return rewriter.create<MulIOp>(op.getLoc(), v0, v1); 864 case Kind::kAddF: 865 return rewriter.create<AddFOp>(op.getLoc(), v0, v1); 866 case Kind::kAddI: 867 return rewriter.create<AddIOp>(op.getLoc(), v0, v1); 868 } 869 llvm_unreachable("unexpected expression kind"); 870 } 871 872 /// Hoists loop invariant tensor loads for which indices have been exhausted. 873 static void genInvariants(Merger &merger, CodeGen &codegen, 874 PatternRewriter &rewriter, linalg::GenericOp op, 875 unsigned exp, unsigned ldx, bool hoist) { 876 if (merger.exp(exp).kind == Kind::kTensor) { 877 // Inspect tensor indices. 878 bool atLevel = ldx == -1u; 879 unsigned tensor = merger.exp(exp).e0; 880 auto map = op.getIndexingMap(tensor); 881 for (unsigned i = 0, m = map.getNumResults(); i < m; ++i) { 882 unsigned idx = map.getDimPosition(i); 883 if (!codegen.loops[idx]) 884 return; // still in play 885 else if (idx == ldx) 886 atLevel = true; 887 } 888 // All exhausted at this level (atLevel denotes exactly at this level). 889 unsigned lhs = op.getNumShapedOperands() - 1; 890 if (lhs == tensor) { 891 codegen.redExp = hoist ? exp : -1u; 892 } else if (atLevel) { 893 merger.exp(exp).val = 894 hoist ? genTensorLoad(merger, codegen, rewriter, op, exp) : Value(); 895 } 896 } else if (merger.exp(exp).kind != Kind::kInvariant) { 897 // Traverse into the binary operations. Note that we only hoist 898 // tensor loads, since subsequent MLIR/LLVM passes know how to 899 // deal with all other kinds of derived loop invariants. 900 unsigned e0 = merger.exp(exp).e0; 901 unsigned e1 = merger.exp(exp).e1; 902 genInvariants(merger, codegen, rewriter, op, e0, ldx, hoist); 903 genInvariants(merger, codegen, rewriter, op, e1, ldx, hoist); 904 } 905 } 906 907 /// Generates initialization code for the subsequent loop sequence at 908 /// current index level. Returns true if the loop sequence needs to 909 /// maintain the universal index. 910 static bool genInit(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, 911 linalg::GenericOp op, std::vector<unsigned> &topSort, 912 unsigned at, llvm::BitVector &inits) { 913 bool needsUniv = false; 914 Location loc = op.getLoc(); 915 unsigned idx = topSort[at]; 916 917 // Initialize sparse positions. 918 for (unsigned b = 0, be = inits.size(); b < be; b++) { 919 if (inits[b]) { 920 unsigned tensor = merger.tensor(b); 921 assert(idx == merger.index(b)); 922 if (merger.isDim(b, Dim::kSparse)) { 923 // Initialize sparse index. 924 unsigned pat = at; 925 for (; pat != 0; pat--) { 926 if (codegen.pidxs[tensor][topSort[pat - 1]]) 927 break; 928 } 929 Value ptr = codegen.pointers[tensor][idx]; 930 Value one = rewriter.create<ConstantIndexOp>(loc, 1); 931 Value p0 = (pat == 0) ? rewriter.create<ConstantIndexOp>(loc, 0) 932 : codegen.pidxs[tensor][topSort[pat - 1]]; 933 codegen.pidxs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p0); 934 Value p1 = rewriter.create<AddIOp>(loc, p0, one); 935 codegen.highs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p1); 936 } else { 937 // Dense index still in play. 938 needsUniv = true; 939 } 940 } 941 } 942 943 // Initialize the universal dense index. 944 codegen.loops[idx] = rewriter.create<ConstantIndexOp>(loc, 0); 945 return needsUniv; 946 } 947 948 /// Returns vectorization strategy. Any implicit inner loop in the Linalg 949 /// operation is a candidate. Whether it is actually converted to SIMD code 950 /// depends on the requested strategy. 951 static bool isVectorFor(CodeGen &codegen, bool isInner, bool isSparse) { 952 switch (codegen.options.vectorizationStrategy) { 953 case SparseVectorizationStrategy::kNone: 954 return false; 955 case SparseVectorizationStrategy::kDenseInnerLoop: 956 return isInner && !isSparse; 957 case SparseVectorizationStrategy::kAnyStorageInnerLoop: 958 return isInner; 959 } 960 llvm_unreachable("unexpected vectorization strategy"); 961 } 962 963 /// Returns parallelization strategy. Any implicit loop in the Linalg operation 964 /// that is marked "parallel" is a candidate. Whether it is actually converted 965 /// to a parallel operation depends on the requested strategy. 966 static bool isParallelFor(CodeGen &codegen, bool isOuter, bool isReduction, 967 bool isSparse, bool isVector) { 968 switch (codegen.options.parallelizationStrategy) { 969 case SparseParallelizationStrategy::kNone: 970 return false; 971 case SparseParallelizationStrategy::kDenseOuterLoop: 972 return isOuter && !isSparse && !isReduction && !isVector; 973 case SparseParallelizationStrategy::kAnyStorageOuterLoop: 974 return isOuter && !isReduction && !isVector; 975 case SparseParallelizationStrategy::kDenseAnyLoop: 976 return !isSparse && !isReduction && !isVector; 977 case SparseParallelizationStrategy::kAnyStorageAnyLoop: 978 return !isReduction && !isVector; 979 } 980 llvm_unreachable("unexpected parallelization strategy"); 981 } 982 983 /// Checks unit strides for dense tensors. The iteration graph may have ignored 984 /// dense access patterns in order to avoid cycles (sparse access patterns are 985 /// always placed innermost), but that means dense access has become strided. 986 /// For now, we reject vectorization of such cases. 987 /// TODO: implement strided load/stores on dense arrays 988 static bool denseUnitStrides(Merger &merger, linalg::GenericOp op, 989 unsigned idx) { 990 unsigned numTensors = op.getNumShapedOperands(); 991 for (unsigned t = 0; t < numTensors; t++) { 992 if (!getSparseTensorEncoding(op.getShapedType(t))) { 993 auto map = op.getIndexingMap(t); 994 unsigned r = map.getNumResults(); 995 for (unsigned i = 0; i < r; i++) { 996 if (map.getDimPosition(i) == idx && i != r - 1) 997 return false; 998 } 999 } 1000 } 1001 return true; 1002 } 1003 1004 /// Generates a for-loop on a single index. 1005 static Operation *genFor(Merger &merger, CodeGen &codegen, 1006 PatternRewriter &rewriter, linalg::GenericOp op, 1007 bool isOuter, bool isInner, unsigned idx, 1008 llvm::BitVector &indices) { 1009 unsigned fb = indices.find_first(); 1010 unsigned tensor = merger.tensor(fb); 1011 assert(idx == merger.index(fb)); 1012 auto iteratorTypes = op.iterator_types().getValue(); 1013 bool isReduction = linalg::isReductionIteratorType(iteratorTypes[idx]); 1014 bool isSparse = merger.isDim(fb, Dim::kSparse); 1015 bool isVector = isVectorFor(codegen, isInner, isSparse) && 1016 denseUnitStrides(merger, op, idx); 1017 bool isParallel = 1018 isParallelFor(codegen, isOuter, isReduction, isSparse, isVector); 1019 1020 // Prepare vector length. 1021 if (isVector) 1022 codegen.curVecLength = codegen.options.vectorLength; 1023 1024 // Loop bounds and increment. 1025 Location loc = op.getLoc(); 1026 Value lo = isSparse ? codegen.pidxs[tensor][idx] : codegen.loops[idx]; 1027 Value hi = isSparse ? codegen.highs[tensor][idx] : codegen.sizes[idx]; 1028 Value step = rewriter.create<ConstantIndexOp>(loc, codegen.curVecLength); 1029 1030 // Emit a parallel loop. 1031 if (isParallel) { 1032 assert(!isVector); 1033 scf::ParallelOp parOp = rewriter.create<scf::ParallelOp>(loc, lo, hi, step); 1034 if (isSparse) 1035 codegen.pidxs[tensor][idx] = parOp.getInductionVars()[0]; 1036 else 1037 codegen.loops[idx] = parOp.getInductionVars()[0]; 1038 rewriter.setInsertionPointToStart(parOp.getBody()); 1039 return parOp; 1040 } 1041 1042 // Emit a sequential loop, potentially with a scalarized reduction. 1043 bool scalarRed = isInner && codegen.redExp != -1u; 1044 SmallVector<Value, 4> operands; 1045 if (scalarRed) { 1046 Value load = genReductionStart(merger, codegen, rewriter, op); 1047 operands.push_back(load); 1048 } 1049 scf::ForOp forOp = rewriter.create<scf::ForOp>(loc, lo, hi, step, operands); 1050 if (scalarRed) { 1051 codegen.redVal = merger.exp(codegen.redExp).val = 1052 forOp.getRegionIterArgs().front(); 1053 } 1054 // Assign induction variable to sparse or dense index. 1055 Value iv = forOp.getInductionVar(); 1056 if (isSparse) 1057 codegen.pidxs[tensor][idx] = iv; 1058 else 1059 codegen.loops[idx] = iv; 1060 rewriter.setInsertionPointToStart(forOp.getBody()); 1061 // Share vector iteration mask between all subsequent loads/stores. 1062 if (isVector) 1063 codegen.curVecMask = genVectorMask(codegen, rewriter, iv, lo, hi, step); 1064 return forOp; 1065 } 1066 1067 /// Emit a while-loop for co-iteration over multiple indices. 1068 static Operation *genWhile(Merger &merger, CodeGen &codegen, 1069 PatternRewriter &rewriter, linalg::GenericOp op, 1070 unsigned idx, bool needsUniv, 1071 llvm::BitVector &indices) { 1072 SmallVector<Type, 4> types; 1073 SmallVector<Value, 4> operands; 1074 // Construct the while-loop with a parameter for each index. 1075 Type indexType = rewriter.getIndexType(); 1076 for (unsigned b = 0, be = indices.size(); b < be; b++) { 1077 if (indices[b] && merger.isDim(b, Dim::kSparse)) { 1078 unsigned tensor = merger.tensor(b); 1079 assert(idx == merger.index(b)); 1080 types.push_back(indexType); 1081 assert(codegen.pidxs[tensor][idx].getType().isa<IndexType>() && 1082 "type mismatch for sparse index"); 1083 operands.push_back(codegen.pidxs[tensor][idx]); 1084 } 1085 } 1086 if (needsUniv) { 1087 types.push_back(indexType); 1088 assert(codegen.loops[idx].getType().isa<IndexType>() && 1089 "type mismatch for universal index"); 1090 operands.push_back(codegen.loops[idx]); 1091 } 1092 Location loc = op.getLoc(); 1093 scf::WhileOp whileOp = rewriter.create<scf::WhileOp>(loc, types, operands); 1094 Block *before = rewriter.createBlock(&whileOp.before(), {}, types); 1095 Block *after = rewriter.createBlock(&whileOp.after(), {}, types); 1096 1097 // Build the "before" region, which effectively consists 1098 // of a conjunction of "i < upper" tests on all induction. 1099 rewriter.setInsertionPointToStart(&whileOp.before().front()); 1100 Value cond; 1101 unsigned o = 0; 1102 for (unsigned b = 0, be = indices.size(); b < be; b++) { 1103 if (indices[b] && merger.isDim(b, Dim::kSparse)) { 1104 unsigned tensor = merger.tensor(b); 1105 assert(idx == merger.index(b)); 1106 Value op1 = before->getArgument(o); 1107 Value op2 = codegen.highs[tensor][idx]; 1108 Value opc = rewriter.create<CmpIOp>(loc, CmpIPredicate::ult, op1, op2); 1109 cond = cond ? rewriter.create<AndOp>(loc, cond, opc) : opc; 1110 codegen.pidxs[tensor][idx] = after->getArgument(o++); 1111 } 1112 } 1113 if (needsUniv) 1114 codegen.loops[idx] = after->getArgument(o++); 1115 assert(o == operands.size()); 1116 rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments()); 1117 rewriter.setInsertionPointToStart(&whileOp.after().front()); 1118 return whileOp; 1119 } 1120 1121 /// Generates a for-loop or a while-loop, depending on whether it implements 1122 /// singleton iteration or co-iteration over the given conjunction. 1123 static Operation *genLoop(Merger &merger, CodeGen &codegen, 1124 PatternRewriter &rewriter, linalg::GenericOp op, 1125 std::vector<unsigned> &topSort, unsigned at, 1126 bool needsUniv, llvm::BitVector &indices) { 1127 unsigned idx = topSort[at]; 1128 if (indices.count() == 1) { 1129 bool isOuter = at == 0; 1130 bool isInner = at == topSort.size() - 1; 1131 return genFor(merger, codegen, rewriter, op, isOuter, isInner, idx, 1132 indices); 1133 } 1134 genReductionEnd(merger, codegen, rewriter, op); // cannot chain 1135 return genWhile(merger, codegen, rewriter, op, idx, needsUniv, indices); 1136 } 1137 1138 /// Generates the local variables for this loop, consisting of the sparse 1139 /// indices, restored universal dense index, and dense positions. 1140 static void genLocals(Merger &merger, CodeGen &codegen, 1141 PatternRewriter &rewriter, linalg::GenericOp op, 1142 std::vector<unsigned> &topSort, unsigned at, 1143 bool needsUniv, llvm::BitVector &locals) { 1144 Location loc = op.getLoc(); 1145 unsigned idx = topSort[at]; 1146 1147 // Initialize sparse indices. 1148 Value min; 1149 for (unsigned b = 0, be = locals.size(); b < be; b++) { 1150 if (locals[b] && merger.isDim(b, Dim::kSparse)) { 1151 unsigned tensor = merger.tensor(b); 1152 assert(idx == merger.index(b)); 1153 Value ptr = codegen.indices[tensor][idx]; 1154 Value s = codegen.pidxs[tensor][idx]; 1155 Value load = genLoad(codegen, rewriter, loc, ptr, s); 1156 codegen.idxs[tensor][idx] = load; 1157 if (!needsUniv) { 1158 if (min) { 1159 Value cmp = 1160 rewriter.create<CmpIOp>(loc, CmpIPredicate::ult, load, min); 1161 min = rewriter.create<SelectOp>(loc, cmp, load, min); 1162 } else { 1163 min = load; 1164 } 1165 } 1166 } 1167 } 1168 1169 // Merge dense universal index over minimum. 1170 if (min) { 1171 assert(!needsUniv); 1172 codegen.loops[idx] = min; 1173 } 1174 1175 // Initialize dense positions. 1176 for (unsigned b = 0, be = locals.size(); b < be; b++) { 1177 if (locals[b] && merger.isDim(b, Dim::kDense)) { 1178 unsigned tensor = merger.tensor(b); 1179 assert(idx == merger.index(b)); 1180 unsigned pat = at; 1181 for (; pat != 0; pat--) 1182 if (codegen.pidxs[tensor][topSort[pat - 1]]) 1183 break; 1184 Value p = (pat == 0) ? rewriter.create<ConstantIndexOp>(loc, 0) 1185 : codegen.pidxs[tensor][topSort[pat - 1]]; 1186 codegen.pidxs[tensor][idx] = genAddress( 1187 codegen, rewriter, loc, codegen.sizes[idx], p, codegen.loops[idx]); 1188 } 1189 } 1190 } 1191 1192 /// Generates the induction structure for a while-loop. 1193 static void genWhileInduction(Merger &merger, CodeGen &codegen, 1194 PatternRewriter &rewriter, linalg::GenericOp op, 1195 unsigned idx, bool needsUniv, 1196 llvm::BitVector &induction, ResultRange results) { 1197 Location loc = op.getLoc(); 1198 unsigned o = 0; 1199 SmallVector<Value, 4> operands; 1200 Value one = rewriter.create<ConstantIndexOp>(loc, 1); 1201 for (unsigned b = 0, be = induction.size(); b < be; b++) { 1202 if (induction[b] && merger.isDim(b, Dim::kSparse)) { 1203 unsigned tensor = merger.tensor(b); 1204 assert(idx == merger.index(b)); 1205 Value op1 = codegen.idxs[tensor][idx]; 1206 Value op2 = codegen.loops[idx]; 1207 Value op3 = codegen.pidxs[tensor][idx]; 1208 Value cmp = rewriter.create<CmpIOp>(loc, CmpIPredicate::eq, op1, op2); 1209 Value add = rewriter.create<AddIOp>(loc, op3, one); 1210 operands.push_back(rewriter.create<SelectOp>(loc, cmp, add, op3)); 1211 codegen.pidxs[tensor][idx] = results[o++]; 1212 } 1213 } 1214 if (needsUniv) { 1215 operands.push_back(rewriter.create<AddIOp>(loc, codegen.loops[idx], one)); 1216 codegen.loops[idx] = results[o++]; 1217 } 1218 assert(o == operands.size()); 1219 rewriter.create<scf::YieldOp>(loc, operands); 1220 } 1221 1222 /// Generates a single if-statement within a while-loop. 1223 static scf::IfOp genIf(Merger &merger, CodeGen &codegen, 1224 PatternRewriter &rewriter, linalg::GenericOp op, 1225 unsigned idx, llvm::BitVector &conditions) { 1226 Location loc = op.getLoc(); 1227 Value cond; 1228 for (unsigned b = 0, be = conditions.size(); b < be; b++) { 1229 if (conditions[b]) { 1230 unsigned tensor = merger.tensor(b); 1231 assert(idx == merger.index(b)); 1232 Value clause; 1233 if (merger.isDim(b, Dim::kSparse)) { 1234 Value op1 = codegen.idxs[tensor][idx]; 1235 Value op2 = codegen.loops[idx]; 1236 clause = rewriter.create<CmpIOp>(loc, CmpIPredicate::eq, op1, op2); 1237 } else { 1238 clause = rewriter.create<ConstantIntOp>(loc, 1, 1); // true 1239 } 1240 cond = cond ? rewriter.create<AndOp>(loc, cond, clause) : clause; 1241 } 1242 } 1243 scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, cond, /*else*/ true); 1244 rewriter.setInsertionPointToStart(&ifOp.thenRegion().front()); 1245 return ifOp; 1246 } 1247 1248 /// Recursively generates code while computing iteration lattices in order 1249 /// to manage the complexity of implementing co-iteration over unions 1250 /// and intersections of sparse iterations spaces. 1251 static void genStmt(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, 1252 linalg::GenericOp op, std::vector<unsigned> &topSort, 1253 unsigned exp, unsigned at) { 1254 // At each leaf, assign remaining tensor (sub)expression to output tensor. 1255 if (at == topSort.size()) { 1256 unsigned lhs = op.getNumShapedOperands() - 1; 1257 Value rhs = genExp(merger, codegen, rewriter, op, exp); 1258 genTensorStore(merger, codegen, rewriter, op, lhs, rhs); 1259 return; 1260 } 1261 assert(codegen.curVecLength == 1); 1262 1263 // Construct iteration lattices for current loop index, with L0 at top. 1264 // Then emit initialization code for the loop sequence at this level. 1265 // We maintain the universal dense index if dense indices are still 1266 // in play for a non-singleton loop sequence. 1267 Location loc = op.getLoc(); 1268 unsigned idx = topSort[at]; 1269 unsigned lts = merger.optimizeSet(buildLattices(merger, op, exp, idx)); 1270 unsigned lsize = merger.set(lts).size(); 1271 assert(lsize != 0); 1272 unsigned l0 = merger.set(lts)[0]; 1273 unsigned ldx = at == 0 ? -1u : topSort[at - 1]; 1274 genInvariants(merger, codegen, rewriter, op, exp, ldx, /*hoist=*/true); 1275 bool needsUniv = false; 1276 if (genInit(merger, codegen, rewriter, op, topSort, at, 1277 merger.lat(l0).bits)) { 1278 // Maintain the universal index only if it is actually 1279 // consumed by a subsequent lattice point. 1280 for (unsigned i = 1; i < lsize; i++) { 1281 unsigned li = merger.set(lts)[i]; 1282 if (!merger.hasAnyDimOf(merger.lat(li).simple, Dim::kSparse)) { 1283 needsUniv = true; 1284 break; 1285 } 1286 } 1287 } 1288 1289 // Emit a loop for every lattice point L0 >= Li. 1290 for (unsigned i = 0; i < lsize; i++) { 1291 unsigned li = merger.set(lts)[i]; 1292 1293 // Emit loop. 1294 codegen.curVecLength = 1; 1295 llvm::BitVector indices = merger.lat(li).simple; 1296 Operation *loop = 1297 genLoop(merger, codegen, rewriter, op, topSort, at, needsUniv, indices); 1298 genLocals(merger, codegen, rewriter, op, topSort, at, needsUniv, 1299 merger.lat(li).bits); 1300 1301 // Visit all lattices points with Li >= Lj to generate the 1302 // loop-body, possibly with if statements for coiteration. 1303 bool isWhile = dyn_cast<scf::WhileOp>(loop) != nullptr; 1304 for (unsigned j = 0; j < lsize; j++) { 1305 unsigned lj = merger.set(lts)[j]; 1306 unsigned ej = merger.lat(lj).exp; 1307 if (li == lj || merger.latGT(li, lj)) { 1308 // Recurse into body of each branch. 1309 if (isWhile) { 1310 scf::IfOp ifOp = 1311 genIf(merger, codegen, rewriter, op, idx, merger.lat(lj).simple); 1312 genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1); 1313 rewriter.setInsertionPointToStart(&ifOp.elseRegion().front()); 1314 } else { 1315 genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1); 1316 } 1317 } 1318 } 1319 1320 // Wrap-up induction and restore insertion point. 1321 if (isWhile) { 1322 scf::WhileOp whileOp = cast<scf::WhileOp>(loop); 1323 rewriter.setInsertionPointToEnd(&whileOp.after().front()); 1324 genWhileInduction(merger, codegen, rewriter, op, idx, needsUniv, 1325 merger.lat(li).bits, whileOp.results()); 1326 } else { 1327 needsUniv = false; 1328 if (codegen.redVal) { 1329 rewriter.create<scf::YieldOp>(loc, codegen.redVal); 1330 codegen.redVal = loop->getResult(0); 1331 } 1332 } 1333 rewriter.setInsertionPointAfter(loop); 1334 } 1335 1336 // Wrap-up loop sequence. 1337 codegen.curVecLength = 1; 1338 genReductionEnd(merger, codegen, rewriter, op); 1339 genInvariants(merger, codegen, rewriter, op, exp, ldx, /*hoist=*/false); 1340 codegen.loops[idx] = Value(); 1341 } 1342 1343 namespace { 1344 1345 /// Sparse rewriting rule for generic Lingalg operation. 1346 struct GenericOpSparsifier : public OpRewritePattern<linalg::GenericOp> { 1347 public: 1348 GenericOpSparsifier(MLIRContext *context, SparsificationOptions o) 1349 : OpRewritePattern<linalg::GenericOp>(context), options(o) {} 1350 1351 LogicalResult matchAndRewrite(linalg::GenericOp op, 1352 PatternRewriter &rewriter) const override { 1353 // Detects sparse annotations and translate the per-dimension sparsity 1354 // information for all tensors to loop indices in the kernel. 1355 assert(op.getNumOutputs() == 1); 1356 unsigned numTensors = op.getNumShapedOperands(); 1357 unsigned numLoops = op.iterator_types().getValue().size(); 1358 Merger merger(numTensors, numLoops); 1359 findSparseAnnotations(merger, op); 1360 1361 // Computes a topologically sorted iteration graph to ensure 1362 // tensors are visited in natural index order. Fails on cycles. 1363 // This assumes that higher-level passes have already put the 1364 // tensors in each tensor expression in a feasible order. 1365 std::vector<unsigned> topSort; 1366 if (!computeIterationGraph(merger, op, topSort, /*sparseOnly=*/false) && 1367 !computeIterationGraph(merger, op, topSort, /*sparseOnly=*/true)) 1368 return failure(); 1369 1370 // Finds the terminating yield statement and builds the tensor 1371 // expression for the Linalg operation in SSA form. 1372 Operation *yield = op.region().front().getTerminator(); 1373 Optional<unsigned> exp = buildTensorExp(merger, op, yield->getOperand(0)); 1374 if (!exp.hasValue()) 1375 return failure(); // build failure 1376 1377 // Recursively generates code. 1378 CodeGen codegen(options, numTensors, numLoops); 1379 genBuffers(merger, codegen, rewriter, op); 1380 genStmt(merger, codegen, rewriter, op, topSort, exp.getValue(), 0); 1381 Value result = rewriter.create<memref::TensorLoadOp>( 1382 op.getLoc(), codegen.buffers.back()); 1383 rewriter.replaceOp(op, result); 1384 return success(); 1385 } 1386 1387 private: 1388 /// Options to control sparse code generation. 1389 SparsificationOptions options; 1390 }; 1391 1392 } // namespace 1393 1394 /// Populates the given patterns list with rewriting rules required for 1395 /// the sparsification of linear algebra operations. 1396 void mlir::populateSparsificationPatterns( 1397 RewritePatternSet &patterns, const SparsificationOptions &options) { 1398 patterns.add<GenericOpSparsifier>(patterns.getContext(), options); 1399 } 1400