1 //===- Sparsification.cpp - Implementation of sparsification --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements converting sparse tensor types to actual sparse code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodegenUtils.h" 14 15 #include "mlir/Dialect/Affine/IR/AffineOps.h" 16 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 17 #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h" 18 #include "mlir/Dialect/Bufferization/IR/Bufferization.h" 19 #include "mlir/Dialect/Func/IR/FuncOps.h" 20 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 21 #include "mlir/Dialect/Linalg/IR/Linalg.h" 22 #include "mlir/Dialect/Linalg/Utils/Utils.h" 23 #include "mlir/Dialect/MemRef/IR/MemRef.h" 24 #include "mlir/Dialect/SCF/SCF.h" 25 #include "mlir/Dialect/SCF/Transforms.h" 26 #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h" 27 #include "mlir/Dialect/SparseTensor/Transforms/Passes.h" 28 #include "mlir/Dialect/SparseTensor/Utils/Merger.h" 29 #include "mlir/Dialect/Vector/IR/VectorOps.h" 30 #include "mlir/IR/Matchers.h" 31 #include "mlir/IR/TensorEncoding.h" 32 #include "llvm/ADT/SmallBitVector.h" 33 34 using namespace mlir; 35 using namespace mlir::sparse_tensor; 36 37 //===----------------------------------------------------------------------===// 38 // Declarations of data structures. 39 //===----------------------------------------------------------------------===// 40 41 namespace { 42 43 // Iteration graph sorting. 44 enum SortMask { kSparseOnly = 0x0, kIncludeDense = 0x1, kIncludeUndef = 0x2 }; 45 46 // Reduction kinds. 47 enum Reduction { kNoReduc, kSum, kProduct, kAnd, kOr, kXor }; 48 49 // Code generation. 50 struct CodeGen { 51 CodeGen(SparsificationOptions o, unsigned numTensors, unsigned numLoops, 52 OpOperand *op, unsigned nest) 53 : options(o), loops(numLoops), sizes(numLoops), buffers(numTensors), 54 pointers(numTensors, std::vector<Value>(numLoops)), 55 indices(numTensors, std::vector<Value>(numLoops)), 56 highs(numTensors, std::vector<Value>(numLoops)), 57 pidxs(numTensors, std::vector<Value>(numLoops)), 58 idxs(numTensors, std::vector<Value>(numLoops)), redVal(), sparseOut(op), 59 outerParNest(nest), lexIdx(), expValues(), expFilled(), expAdded(), 60 expCount(), curVecMask() {} 61 /// Sparsification options. 62 SparsificationOptions options; 63 /// Universal dense indices and upper bounds (by index). The loops array 64 /// is updated with the value of the universal dense index in the current 65 /// loop. The sizes array is set once with the inferred dimension sizes. 66 std::vector<Value> loops; 67 std::vector<Value> sizes; 68 /// Buffers for storing dense and sparse numerical values (by tensor). 69 /// This array is set once during bufferization of all tensors. 70 std::vector<Value> buffers; 71 /// Sparse storage schemes (1-D): pointers and indices (by tensor and index). 72 /// This array is set once during bufferization of all sparse tensors. 73 std::vector<std::vector<Value>> pointers; 74 std::vector<std::vector<Value>> indices; 75 /// Sparse iteration information (by tensor and index). These arrays 76 /// are updated to remain current within the current loop. 77 std::vector<std::vector<Value>> highs; 78 std::vector<std::vector<Value>> pidxs; 79 std::vector<std::vector<Value>> idxs; 80 /// Current reduction, updated during code generation. When indices of a 81 /// reduction are exhausted, all inner loops can use a scalarized reduction. 82 unsigned redExp = -1u; 83 Value redVal; 84 Reduction redKind = kNoReduc; 85 // Sparse tensor as output. Implemented either through direct injective 86 // insertion in lexicographic index order (where indices are updated 87 // in the temporary array `lexIdx`) or through access pattern expansion 88 // in the innermost loop nest (`expValues` through `expCount`). 89 OpOperand *sparseOut; 90 unsigned outerParNest; 91 Value lexIdx; 92 Value expValues; 93 Value expFilled; 94 Value expAdded; 95 Value expCount; 96 // Current vector length and mask. 97 unsigned curVecLength = 1; 98 Value curVecMask; 99 }; 100 101 } // namespace 102 103 //===----------------------------------------------------------------------===// 104 // Sparse compiler analysis methods. 105 //===----------------------------------------------------------------------===// 106 107 /// Helper method to apply dimension ordering permutation. 108 static unsigned perm(const SparseTensorEncodingAttr &enc, unsigned d) { 109 if (enc) { 110 auto order = enc.getDimOrdering(); 111 if (order) { 112 assert(order.isPermutation()); 113 return order.getDimPosition(d); 114 } 115 } 116 return d; 117 } 118 119 /// Helper method to translate dim level type to internal representation. 120 static Dim toDim(const SparseTensorEncodingAttr &enc, unsigned d) { 121 if (enc) { 122 SparseTensorEncodingAttr::DimLevelType tp = enc.getDimLevelType()[d]; 123 if (tp == SparseTensorEncodingAttr::DimLevelType::Compressed) 124 return Dim::kSparse; 125 if (tp == SparseTensorEncodingAttr::DimLevelType::Singleton) 126 return Dim::kSingle; 127 } 128 return Dim::kDense; 129 } 130 131 /// Helper method to inspect affine expressions. Rejects cases where the 132 /// same index is used more than once. Also rejects affine expressions 133 /// that are not a direct index for annotated tensors. 134 // TODO: accept more affine cases for sparse tensors 135 static bool findAffine(Merger &merger, unsigned tensor, AffineExpr a, Dim dim, 136 bool isDense) { 137 switch (a.getKind()) { 138 case AffineExprKind::DimId: { 139 unsigned idx = a.cast<AffineDimExpr>().getPosition(); 140 if (!merger.isDim(tensor, idx, Dim::kUndef)) 141 return false; // used more than once 142 merger.setDim(tensor, idx, dim); 143 return true; 144 } 145 case AffineExprKind::Add: 146 case AffineExprKind::Mul: { 147 if (!isDense) 148 return false; 149 auto binOp = a.cast<AffineBinaryOpExpr>(); 150 return findAffine(merger, tensor, binOp.getLHS(), dim, isDense) && 151 findAffine(merger, tensor, binOp.getRHS(), dim, isDense); 152 } 153 case AffineExprKind::Constant: 154 return isDense; 155 default: 156 return false; 157 } 158 } 159 160 /// Helper method to inspect sparse encodings in the tensor types. 161 /// Fills the per-dimension sparsity information for all tensors. 162 /// Returns true if the sparse annotations and affine subscript 163 /// expressions of all tensors are admissable. Returns false if 164 /// no annotations are found or inadmissable constructs occur. 165 static bool findSparseAnnotations(Merger &merger, linalg::GenericOp op) { 166 bool annotated = false; 167 for (OpOperand *t : op.getInputAndOutputOperands()) { 168 auto map = op.getTiedIndexingMap(t); 169 auto enc = getSparseTensorEncoding(t->get().getType()); 170 if (enc) 171 annotated = true; 172 assert(map.getNumResults() == op.getRank(t)); 173 for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { 174 unsigned tensor = t->getOperandNumber(); 175 AffineExpr a = map.getResult(perm(enc, d)); 176 if (!findAffine(merger, tensor, a, toDim(enc, d), !enc)) 177 return false; // inadmissable affine expression 178 } 179 } 180 return annotated; 181 } 182 183 /// A DFS helper to compute a topological sort. Note that recursion is 184 /// bounded by the number of implicit loops, which is always small. 185 /// Returns false when a cycle is detected. 186 static bool topSortDFS(unsigned i, std::vector<unsigned> &visit, 187 std::vector<unsigned> &topSort, 188 std::vector<std::vector<bool>> &adjM) { 189 if (visit[i] != 0) 190 return visit[i] != 1; // 1 denotes cycle! 191 visit[i] = 1; 192 for (unsigned j = 0, e = visit.size(); j < e; j++) 193 if (adjM[i][j]) 194 if (!topSortDFS(j, visit, topSort, adjM)) 195 return false; 196 visit[i] = 2; 197 topSort.push_back(i); 198 return true; 199 } 200 201 /// Helper method to add all constraints from the indices in one affine 202 /// expression before all indices in the other affine expression. For 203 /// example i0+i1 < i2+i3+1 yields i0<i2, i0<i3, i1<i2, and i1<i3. 204 static void addAffineOrderings(std::vector<std::vector<bool>> &adjM, 205 AffineExpr a, AffineExpr b, unsigned fidx) { 206 switch (a.getKind()) { 207 case AffineExprKind::DimId: { 208 unsigned idx = a.cast<AffineDimExpr>().getPosition(); 209 if (b) 210 addAffineOrderings(adjM, b, AffineExpr(), idx); 211 else 212 adjM[fidx][idx] = true; 213 break; 214 } 215 case AffineExprKind::Add: 216 case AffineExprKind::Mul: { 217 auto binOp = a.cast<AffineBinaryOpExpr>(); 218 addAffineOrderings(adjM, binOp.getLHS(), b, fidx); 219 addAffineOrderings(adjM, binOp.getRHS(), b, fidx); 220 break; 221 } 222 default: 223 break; 224 } 225 } 226 227 /// Computes a topologically sorted iteration graph for the linalg operation. 228 /// Ensures all tensors are visited in natural index order. This is essential 229 /// for sparse storage formats since these only support access along fixed 230 /// dimensions. Even for dense storage formats, however, the natural index 231 /// order yields innermost unit-stride access with better spatial locality. 232 static bool computeIterationGraph(Merger &merger, linalg::GenericOp op, 233 std::vector<unsigned> &topSort, 234 unsigned mask) { 235 // Set up an n x n from/to adjacency matrix of the iteration graph 236 // for the implicit loop indices i_0 .. i_n-1. 237 unsigned n = op.getNumLoops(); 238 std::vector<std::vector<bool>> adjM(n, std::vector<bool>(n, false)); 239 240 // Iterate over the indexing maps of every tensor in the tensor expression. 241 for (OpOperand *t : op.getInputAndOutputOperands()) { 242 auto map = op.getTiedIndexingMap(t); 243 auto enc = getSparseTensorEncoding(t->get().getType()); 244 assert(map.getNumDims() == n); 245 // Skip dense tensor constraints when not requested. 246 if (!(mask & SortMask::kIncludeDense) && !enc) 247 continue; 248 // Each tensor expression and optional dimension ordering (row-major 249 // by default) puts an ordering constraint on the loop indices. For 250 // example, the tensor expresion A_ijk forces the ordering i < j < k 251 // on the loop indices if no explicit dimension ordering is given. 252 for (unsigned d = 1, rank = map.getNumResults(); d < rank; d++) { 253 AffineExpr f = map.getResult(perm(enc, d - 1)); 254 AffineExpr t = map.getResult(perm(enc, d)); 255 addAffineOrderings(adjM, f, t, 0); 256 } 257 // Push unrelated loops into sparse iteration space, so these 258 // will be skipped more often. 259 if (mask & SortMask::kIncludeUndef) { 260 unsigned tensor = t->getOperandNumber(); 261 for (unsigned i = 0; i < n; i++) 262 if (merger.isDim(tensor, i, Dim::kSparse)) 263 for (unsigned j = 0; j < n; j++) 264 if (merger.isDim(tensor, j, Dim::kUndef)) 265 adjM[i][j] = true; 266 } 267 } 268 269 // Topologically sort the iteration graph to determine loop order. 270 // Report failure for a cyclic iteration graph. 271 topSort.clear(); 272 topSort.reserve(n); 273 std::vector<unsigned> visit(n, 0); 274 for (unsigned i = 0; i < n; i++) 275 if (visit[i] == 0) 276 if (!topSortDFS(i, visit, topSort, adjM)) 277 return false; // cycle! 278 std::reverse(std::begin(topSort), std::end(topSort)); 279 return true; 280 } 281 282 /// Returns true if tensor has an in-place annotation. 283 static bool isInPlace(Value val) { 284 if (auto arg = val.dyn_cast<BlockArgument>()) 285 if (auto funcOp = dyn_cast<func::FuncOp>(arg.getOwner()->getParentOp())) 286 if (auto attr = funcOp.getArgAttrOfType<BoolAttr>( 287 arg.getArgNumber(), 288 bufferization::BufferizableOpInterface::kInplaceableAttrName)) 289 return attr.getValue(); 290 return false; 291 } 292 293 /// Returns true if tensor materializes uninitialized into the computation. 294 static bool isMaterializing(Value val) { 295 return val.getDefiningOp<linalg::InitTensorOp>() || 296 val.getDefiningOp<InitOp>(); 297 } 298 299 /// Returns true when the tensor expression is admissable for codegen. 300 /// Since all sparse input tensors are admissable, we just need to check 301 /// whether the out tensor in the tensor expression codegen is admissable. 302 /// Sets `sparseOut` to the tensor and `outerParNest` to the outer injective 303 /// nesting depth when a "truly dynamic" sparse tensor output occurs. 304 static bool isAdmissableTensorExp(Merger &merger, linalg::GenericOp op, 305 std::vector<unsigned> &topSort, unsigned exp, 306 OpOperand **sparseOut, 307 unsigned &outerParNest) { 308 OpOperand *lhs = op.getOutputOperand(0); 309 unsigned tensor = lhs->getOperandNumber(); 310 auto enc = getSparseTensorEncoding(lhs->get().getType()); 311 // An non-annotated output tensor is assumed dense, and becomes a random 312 // access n-dim memref. Admissable since insertions cannot occur. 313 if (!enc) 314 return true; 315 // An all-dense annotated "sparse" output tensor becomes a linearized random 316 // access 1-dim memref. Also admissable since insertions cannot occur. 317 bool allDense = true; 318 auto iteratorTypes = op.iterator_types().getValue(); 319 unsigned numLoops = iteratorTypes.size(); 320 for (unsigned i = 0; i < numLoops; i++) 321 if (merger.isDim(tensor, i, Dim::kSparse)) { 322 allDense = false; 323 break; 324 } 325 if (allDense) 326 return true; 327 // A tensor expression with a sparse output tensor that changes its values 328 // but not its nonzero structure, an operation called "simply dynamic" in 329 // [Bik96,Ch9], is also admissable without special codegen, provided 330 // the tensor's underlying sparse storage scheme can be modified in place. 331 if (merger.isSingleCondition(tensor, exp) && isInPlace(lhs->get())) 332 return true; 333 // Accept "truly dynamic" if the output tensor materializes uninitialized 334 // into the computation and insertions occur in lexicographic index order. 335 if (isMaterializing(lhs->get())) { 336 unsigned nest = 0; 337 for (unsigned i = 0; i < numLoops; i++) { 338 if (isReductionIterator(iteratorTypes[topSort[i]])) 339 break; // terminate at first reduction 340 nest++; 341 } 342 // Determine admissable dynamic insertion situations: 343 // (1) fully injective, since there are no reductions, 344 // (2) admissable 1-d expansion in innermost dimension. 345 if (nest >= op.getRank(lhs) - 1) { 346 *sparseOut = lhs; 347 outerParNest = nest; 348 return true; 349 } 350 } 351 return false; 352 } 353 354 //===----------------------------------------------------------------------===// 355 // Sparse compiler synthesis methods (reductions). 356 //===----------------------------------------------------------------------===// 357 358 /// Maps reduction kind to vector::CombiningKind. 359 static vector::CombiningKind getCombiningKind(Reduction kind) { 360 switch (kind) { 361 case kNoReduc: 362 break; 363 case kSum: 364 return vector::CombiningKind::ADD; 365 case kProduct: 366 return vector::CombiningKind::MUL; 367 case kAnd: 368 return vector::CombiningKind::AND; 369 case kOr: 370 return vector::CombiningKind::OR; 371 case kXor: 372 return vector::CombiningKind::XOR; 373 } 374 llvm_unreachable("unknown reduction kind"); 375 } 376 377 /// Maps operation to reduction. 378 static Reduction getReduction(Kind kind) { 379 switch (kind) { 380 case Kind::kAddF: 381 case Kind::kAddI: 382 case Kind::kSubF: 383 case Kind::kSubI: 384 return kSum; 385 case Kind::kMulF: 386 case Kind::kMulI: 387 return kProduct; 388 case Kind::kAndI: 389 return kAnd; 390 case Kind::kOrI: 391 return kOr; 392 case Kind::kXorI: 393 return kXor; 394 default: 395 llvm_unreachable("unexpected reduction operator"); 396 } 397 } 398 399 /// Generates an initial value for a vector reduction, following the scheme 400 /// given in Chapter 5 of "The Software Vectorization Handbook", where the 401 /// initial scalar value is correctly embedded in the vector reduction value, 402 /// and a straightforward horizontal reduction will complete the operation. 403 static Value genVectorReducInit(CodeGen &codegen, OpBuilder &builder, 404 Location loc, VectorType vtp) { 405 Value r = codegen.redVal; 406 switch (codegen.redKind) { 407 case kNoReduc: 408 break; 409 case kSum: 410 case kXor: 411 // Initialize reduction vector to: | 0 | .. | 0 | r | 412 return builder.create<vector::InsertElementOp>( 413 loc, r, constantZero(builder, loc, vtp), 414 constantIndex(builder, loc, 0)); 415 case kProduct: 416 // Initialize reduction vector to: | 1 | .. | 1 | r | 417 return builder.create<vector::InsertElementOp>( 418 loc, r, constantOne(builder, loc, vtp), constantIndex(builder, loc, 0)); 419 case kAnd: 420 case kOr: 421 // Initialize reduction vector to: | r | .. | r | r | 422 return builder.create<vector::BroadcastOp>(loc, vtp, r); 423 } 424 llvm_unreachable("unknown reduction kind"); 425 } 426 427 /// Generates final value for a vector reduction. 428 static Value genVectorReducEnd(CodeGen &codegen, OpBuilder &builder, 429 Location loc, VectorType vtp) { 430 vector::CombiningKind kind = getCombiningKind(codegen.redKind); 431 return builder.create<vector::ReductionOp>(loc, kind, codegen.redVal); 432 } 433 434 /// Updates scalarized reduction value. 435 static void updateReduc(Merger &merger, CodeGen &codegen, Value reduc) { 436 assert(codegen.redKind != kNoReduc); 437 codegen.redVal = merger.exp(codegen.redExp).val = reduc; 438 } 439 440 //===----------------------------------------------------------------------===// 441 // Sparse compiler synthesis methods (statements and expressions). 442 //===----------------------------------------------------------------------===// 443 444 /// Generates buffer for the output tensor. Note that all sparse kernels 445 /// assume that when all elements are written to (viz. x(i) = y(i) * z(i)), 446 /// the output buffer is already initialized to all zeroes and only nonzeroes 447 /// values are computed and written out. For updates (viz. x(i) += y(i) * z(i)), 448 /// only nonzeroes values are used for the updates and no assumption on the 449 /// original contents of the output buffer is necessary.. 450 static Value genOutputBuffer(CodeGen &codegen, OpBuilder &builder, 451 linalg::GenericOp op, MemRefType denseTp, 452 ArrayRef<Value> args) { 453 Location loc = op.getLoc(); 454 Value tensor = op.getOutputOperand(0)->get(); 455 // The output tensor simply could materialize from the buffer that will 456 // be generated for the tensor present in the outs() clause. This has 457 // the major advantage that the sparse kernel only updates the nonzero 458 // positions for the output tensor. 459 if (isInPlace(tensor)) 460 return builder.create<bufferization::ToMemrefOp>(loc, denseTp, tensor); 461 // By default, a new buffer is allocated which is initialized to the 462 // tensor defined in the outs() clause. This is always correct but 463 // introduces a dense initialization component that may negatively 464 // impact the running complexity of the sparse kernel. If the tensor 465 // materializes into the computation, we need to preserve the zero 466 // initialization assumption of all sparse output buffers. 467 Value alloc = builder.create<memref::AllocOp>(loc, denseTp, args); 468 if (isMaterializing(tensor)) { 469 Value zero = constantZero(builder, loc, denseTp.getElementType()); 470 builder.create<linalg::FillOp>(loc, ValueRange{zero}, ValueRange{alloc}); 471 } else { 472 Value init = 473 builder.create<bufferization::ToMemrefOp>(loc, denseTp, tensor); 474 builder.create<memref::CopyOp>(loc, init, alloc); 475 } 476 return alloc; 477 } 478 479 /// Local bufferization of all dense and sparse data structures. 480 /// This code enables testing the first prototype sparse compiler. 481 // TODO: replace this with a proliferated bufferization strategy 482 static void genBuffers(Merger &merger, CodeGen &codegen, OpBuilder &builder, 483 linalg::GenericOp op) { 484 Location loc = op.getLoc(); 485 assert(op.getNumInputsAndOutputs() == op.getNumInputs() + 1); 486 // For every tensor, find lower and upper bound on dimensions, set the 487 // same bounds on loop indices, and obtain dense or sparse buffer(s). 488 SmallVector<Value, 4> args; 489 for (OpOperand *t : op.getInputAndOutputOperands()) { 490 unsigned tensor = t->getOperandNumber(); 491 auto shape = op.getShape(t); 492 auto map = op.getTiedIndexingMap(t); 493 auto enc = getSparseTensorEncoding(t->get().getType()); 494 // Scan all dimensions of current tensor. 495 args.clear(); 496 for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { 497 AffineExpr a = map.getResult(perm(enc, d)); 498 if (a.getKind() != AffineExprKind::DimId) 499 continue; // compound 500 unsigned idx = a.cast<AffineDimExpr>().getPosition(); 501 // Handle sparse storage schemes. 502 if (merger.isDim(tensor, idx, Dim::kSparse)) { 503 auto dynShape = {ShapedType::kDynamicSize}; 504 auto ptrTp = 505 MemRefType::get(dynShape, getPointerOverheadType(builder, enc)); 506 auto indTp = 507 MemRefType::get(dynShape, getIndexOverheadType(builder, enc)); 508 Value dim = constantIndex(builder, loc, d); 509 // Generate sparse primitives to obtains pointer and indices. 510 codegen.pointers[tensor][idx] = 511 builder.create<ToPointersOp>(loc, ptrTp, t->get(), dim); 512 codegen.indices[tensor][idx] = 513 builder.create<ToIndicesOp>(loc, indTp, t->get(), dim); 514 } 515 // Find upper bound in current dimension. 516 unsigned p = perm(enc, d); 517 Value up = linalg::createOrFoldDimOp(builder, loc, t->get(), p); 518 if (ShapedType::isDynamic(shape[p])) 519 args.push_back(up); 520 assert(codegen.highs[tensor][idx] == nullptr); 521 codegen.sizes[idx] = codegen.highs[tensor][idx] = up; 522 } 523 // Perform the required bufferization. Dense inputs materialize 524 // from the input tensors. Dense outputs need special handling. 525 // Sparse inputs use sparse primitives to obtain the values. 526 // We also accept in-place all-dense annotated "sparse" outputs. 527 Type elementType = getElementTypeOrSelf(t->get().getType()); 528 if (!enc) { 529 // Non-annotated dense tensors. 530 auto denseTp = MemRefType::get(shape, elementType); 531 if (tensor < op.getNumInputs()) 532 codegen.buffers[tensor] = 533 builder.create<bufferization::ToMemrefOp>(loc, denseTp, t->get()); 534 else 535 codegen.buffers[tensor] = 536 genOutputBuffer(codegen, builder, op, denseTp, args); 537 } else if (t == codegen.sparseOut) { 538 // True sparse output needs a lexIdx array. 539 Value rank = constantIndex(builder, loc, op.getRank(t)); 540 auto dynShape = {ShapedType::kDynamicSize}; 541 auto memTp = MemRefType::get(dynShape, builder.getIndexType()); 542 codegen.lexIdx = builder.create<memref::AllocaOp>(loc, memTp, rank); 543 } else { 544 // Annotated sparse tensors. 545 auto dynShape = {ShapedType::kDynamicSize}; 546 auto sparseTp = MemRefType::get(dynShape, elementType); 547 codegen.buffers[tensor] = 548 builder.create<ToValuesOp>(loc, sparseTp, t->get()); 549 } 550 } 551 } 552 553 /// Constructs vector type. 554 static VectorType vectorType(CodeGen &codegen, Type etp) { 555 unsigned numScalableDims = codegen.options.enableVLAVectorization; 556 return VectorType::get(codegen.curVecLength, etp, numScalableDims); 557 } 558 559 /// Constructs vector type from pointer. 560 static VectorType vectorType(CodeGen &codegen, Value ptr) { 561 return vectorType(codegen, ptr.getType().cast<MemRefType>().getElementType()); 562 } 563 564 /// Constructs vector iteration mask. 565 static Value genVectorMask(CodeGen &codegen, OpBuilder &builder, Value iv, 566 Value lo, Value hi, Value step) { 567 Location loc = iv.getLoc(); 568 VectorType mtp = vectorType(codegen, builder.getI1Type()); 569 // Special case if the vector length evenly divides the trip count (for 570 // example, "for i = 0, 128, 16"). A constant all-true mask is generated 571 // so that all subsequent masked memory operations are immediately folded 572 // into unconditional memory operations. 573 IntegerAttr loInt, hiInt, stepInt; 574 if (matchPattern(lo, m_Constant(&loInt)) && 575 matchPattern(hi, m_Constant(&hiInt)) && 576 matchPattern(step, m_Constant(&stepInt))) { 577 if (((hiInt.getInt() - loInt.getInt()) % stepInt.getInt()) == 0) 578 return builder.create<vector::BroadcastOp>( 579 loc, mtp, constantI1(builder, loc, true)); 580 } 581 // Otherwise, generate a vector mask that avoids overrunning the upperbound 582 // during vector execution. Here we rely on subsequent loop optimizations to 583 // avoid executing the mask in all iterations, for example, by splitting the 584 // loop into an unconditional vector loop and a scalar cleanup loop. 585 auto minMap = AffineMap::get( 586 /*dimCount=*/2, /*symbolCount=*/1, 587 {builder.getAffineSymbolExpr(0), 588 builder.getAffineDimExpr(0) - builder.getAffineDimExpr(1)}, 589 builder.getContext()); 590 Value end = 591 builder.createOrFold<AffineMinOp>(loc, minMap, ValueRange{hi, iv, step}); 592 return builder.create<vector::CreateMaskOp>(loc, mtp, end); 593 } 594 595 /// Generates a vectorized load lhs = a[ind[lo:hi]] or lhs = a[lo:hi]. 596 static Value genVectorLoad(CodeGen &codegen, OpBuilder &builder, Value ptr, 597 ArrayRef<Value> args) { 598 Location loc = ptr.getLoc(); 599 VectorType vtp = vectorType(codegen, ptr); 600 Value pass = constantZero(builder, loc, vtp); 601 if (args.back().getType().isa<VectorType>()) { 602 SmallVector<Value, 4> scalarArgs(args.begin(), args.end()); 603 Value indexVec = args.back(); 604 scalarArgs.back() = constantIndex(builder, loc, 0); 605 return builder.create<vector::GatherOp>(loc, vtp, ptr, scalarArgs, indexVec, 606 codegen.curVecMask, pass); 607 } 608 return builder.create<vector::MaskedLoadOp>(loc, vtp, ptr, args, 609 codegen.curVecMask, pass); 610 } 611 612 /// Generates a vectorized store a[ind[lo:hi]] = rhs or a[lo:hi] = rhs. 613 static void genVectorStore(CodeGen &codegen, OpBuilder &builder, Value rhs, 614 Value ptr, ArrayRef<Value> args) { 615 Location loc = ptr.getLoc(); 616 if (args.back().getType().isa<VectorType>()) { 617 SmallVector<Value, 4> scalarArgs(args.begin(), args.end()); 618 Value indexVec = args.back(); 619 scalarArgs.back() = constantIndex(builder, loc, 0); 620 builder.create<vector::ScatterOp>(loc, ptr, scalarArgs, indexVec, 621 codegen.curVecMask, rhs); 622 return; 623 } 624 builder.create<vector::MaskedStoreOp>(loc, ptr, args, codegen.curVecMask, 625 rhs); 626 } 627 628 /// Generates a vectorized invariant. Here we rely on subsequent loop 629 /// optimizations to hoist the invariant broadcast out of the vector loop. 630 static Value genVectorInvariantValue(CodeGen &codegen, OpBuilder &builder, 631 Value val) { 632 VectorType vtp = vectorType(codegen, val.getType()); 633 return builder.create<vector::BroadcastOp>(val.getLoc(), vtp, val); 634 } 635 636 /// Generates an affine expression. 637 // 638 // TODO: generalize for sparse tensor subscripts 639 // 640 static Value genAffine(CodeGen &codegen, OpBuilder &builder, AffineExpr a, 641 Location loc) { 642 switch (a.getKind()) { 643 case AffineExprKind::DimId: { 644 unsigned idx = a.cast<AffineDimExpr>().getPosition(); 645 return codegen.loops[idx]; // universal dense index 646 } 647 case AffineExprKind::Add: { 648 auto binOp = a.cast<AffineBinaryOpExpr>(); 649 return builder.create<arith::AddIOp>( 650 loc, genAffine(codegen, builder, binOp.getLHS(), loc), 651 genAffine(codegen, builder, binOp.getRHS(), loc)); 652 } 653 case AffineExprKind::Mul: { 654 auto binOp = a.cast<AffineBinaryOpExpr>(); 655 return builder.create<arith::MulIOp>( 656 loc, genAffine(codegen, builder, binOp.getLHS(), loc), 657 genAffine(codegen, builder, binOp.getRHS(), loc)); 658 } 659 case AffineExprKind::Constant: { 660 int64_t c = a.cast<AffineConstantExpr>().getValue(); 661 return constantIndex(builder, loc, c); 662 } 663 default: 664 llvm_unreachable("unexpected affine subscript"); 665 } 666 } 667 668 /// Generates index for load/store on sparse tensor. 669 static Value genIndex(CodeGen &codegen, linalg::GenericOp op, OpOperand *t) { 670 auto map = op.getTiedIndexingMap(t); 671 auto enc = getSparseTensorEncoding(t->get().getType()); 672 AffineExpr a = map.getResult(perm(enc, map.getNumResults() - 1)); 673 assert(a.getKind() == AffineExprKind::DimId); 674 unsigned idx = a.cast<AffineDimExpr>().getPosition(); 675 return codegen.loops[idx]; 676 } 677 678 /// Generates subscript for load/store on a dense or sparse tensor. 679 static Value genSubscript(CodeGen &codegen, OpBuilder &builder, 680 linalg::GenericOp op, OpOperand *t, 681 SmallVector<Value, 4> &args) { 682 unsigned tensor = t->getOperandNumber(); 683 auto map = op.getTiedIndexingMap(t); 684 auto enc = getSparseTensorEncoding(t->get().getType()); 685 unsigned rank = map.getNumResults(); 686 if (enc) { 687 // Note that currently, all sparse subscripts are simple. 688 // TODO: accept affine too? 689 AffineExpr a = map.getResult(perm(enc, rank - 1)); 690 assert(a.getKind() == AffineExprKind::DimId); 691 unsigned idx = a.cast<AffineDimExpr>().getPosition(); 692 assert(codegen.pidxs[tensor][idx] != nullptr); 693 args.push_back(codegen.pidxs[tensor][idx]); // position index 694 } else { 695 for (unsigned d = 0; d < rank; d++) { 696 AffineExpr a = map.getResult(perm(enc, d)); 697 args.push_back(genAffine(codegen, builder, a, op.getLoc())); 698 } 699 } 700 return codegen.buffers[tensor]; 701 } 702 703 /// Generates insertion code to implement dynamic tensor load. 704 static Value genInsertionLoad(CodeGen &codegen, OpBuilder &builder, 705 linalg::GenericOp op, OpOperand *t) { 706 Location loc = op.getLoc(); 707 // Direct lexicographic index order, tensor loads as zero. 708 if (!codegen.expValues) { 709 Type tp = getElementTypeOrSelf(t->get().getType()); 710 return constantZero(builder, loc, tp); 711 } 712 // Load from expanded access pattern. 713 Value index = genIndex(codegen, op, t); 714 return builder.create<memref::LoadOp>(loc, codegen.expValues, index); 715 } 716 717 /// Generates insertion code to implement dynamic tensor store. 718 static void genInsertionStore(CodeGen &codegen, OpBuilder &builder, 719 linalg::GenericOp op, OpOperand *t, Value rhs) { 720 Location loc = op.getLoc(); 721 // Direct insertion in lexicographic index order. 722 if (!codegen.expValues) { 723 builder.create<LexInsertOp>(loc, t->get(), codegen.lexIdx, rhs); 724 return; 725 } 726 // Generates insertion code along expanded access pattern. 727 // if (!expFilled[i]) then 728 // expFilled[i] = true 729 // expAdded[inserts++] = i 730 // endif 731 // values[i] = rhs 732 Value index = genIndex(codegen, op, t); 733 Value fval = constantI1(builder, loc, false); 734 Value tval = constantI1(builder, loc, true); 735 // If statement. 736 Value filled = builder.create<memref::LoadOp>(loc, codegen.expFilled, index); 737 Value cond = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq, 738 filled, fval); 739 scf::IfOp ifOp = builder.create<scf::IfOp>(loc, builder.getIndexType(), cond, 740 /*else=*/true); 741 // True branch. 742 builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); 743 builder.create<memref::StoreOp>(loc, tval, codegen.expFilled, index); 744 builder.create<memref::StoreOp>(loc, index, codegen.expAdded, 745 codegen.expCount); 746 Value one = constantIndex(builder, loc, 1); 747 Value add = builder.create<arith::AddIOp>(loc, codegen.expCount, one); 748 builder.create<scf::YieldOp>(loc, add); 749 // False branch. 750 builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); 751 builder.create<scf::YieldOp>(loc, codegen.expCount); 752 builder.setInsertionPointAfter(ifOp); 753 // Value assignment. 754 codegen.expCount = ifOp.getResult(0); 755 builder.create<memref::StoreOp>(loc, rhs, codegen.expValues, index); 756 } 757 758 /// Generates a load on a dense or sparse tensor. 759 static Value genTensorLoad(Merger &merger, CodeGen &codegen, OpBuilder &builder, 760 linalg::GenericOp op, unsigned exp) { 761 // Test if the load was hoisted to a higher loop nest. 762 Value val = merger.exp(exp).val; 763 if (val) { 764 if (codegen.curVecLength > 1 && !val.getType().isa<VectorType>()) 765 return genVectorInvariantValue(codegen, builder, val); 766 return val; 767 } 768 // Load during insertion. 769 OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).tensor]; 770 if (t == codegen.sparseOut) 771 return genInsertionLoad(codegen, builder, op, t); 772 // Actual load. 773 SmallVector<Value, 4> args; 774 Value ptr = genSubscript(codegen, builder, op, t, args); 775 if (codegen.curVecLength > 1) 776 return genVectorLoad(codegen, builder, ptr, args); 777 return builder.create<memref::LoadOp>(op.getLoc(), ptr, args); 778 } 779 780 /// Generates a store on a dense or sparse tensor. 781 static void genTensorStore(Merger &merger, CodeGen &codegen, OpBuilder &builder, 782 linalg::GenericOp op, unsigned exp, Value rhs) { 783 Location loc = op.getLoc(); 784 // Test if this is a scalarized reduction. 785 if (codegen.redVal) { 786 if (codegen.curVecLength > 1) 787 rhs = builder.create<arith::SelectOp>(loc, codegen.curVecMask, rhs, 788 codegen.redVal); 789 updateReduc(merger, codegen, rhs); 790 return; 791 } 792 // Store during insertion. 793 OpOperand *t = op.getOutputOperand(0); 794 if (t == codegen.sparseOut) { 795 if (!rhs) { 796 // Only unary and binary are allowed to return uninitialized rhs 797 // to indicate missing output. 798 assert(merger.exp(exp).kind == kUnary || merger.exp(exp).kind == kBinary); 799 } else { 800 genInsertionStore(codegen, builder, op, t, rhs); 801 } 802 return; 803 } 804 // Actual store. 805 SmallVector<Value, 4> args; 806 Value ptr = genSubscript(codegen, builder, op, t, args); 807 if (codegen.curVecLength > 1) 808 genVectorStore(codegen, builder, rhs, ptr, args); 809 else 810 builder.create<memref::StoreOp>(loc, rhs, ptr, args); 811 } 812 813 /// Generates a pointer/index load from the sparse storage scheme. Narrower 814 /// data types need to be zero extended before casting the value into the 815 /// index type used for looping and indexing. 816 static Value genLoad(CodeGen &codegen, OpBuilder &builder, Location loc, 817 Value ptr, Value s) { 818 // See https://llvm.org/docs/GetElementPtr.html for some background on 819 // the complications described below. 820 if (codegen.curVecLength > 1) { 821 // Since the index vector is used in a subsequent gather/scatter operations, 822 // which effectively defines an unsigned pointer + signed index, we must 823 // zero extend the vector to an index width. For 8-bit and 16-bit values, 824 // an 32-bit index width suffices. For 32-bit values, zero extending the 825 // elements into 64-bit loses some performance since the 32-bit indexed 826 // gather/scatter is more efficient than the 64-bit index variant (if the 827 // negative 32-bit index space is unused, the enableSIMDIndex32 flag can 828 // preserve this performance). For 64-bit values, there is no good way 829 // to state that the indices are unsigned, with creates the potential of 830 // incorrect address calculations in the unlikely case we need such 831 // extremely large offsets. 832 Type etp = ptr.getType().cast<MemRefType>().getElementType(); 833 Value vload = genVectorLoad(codegen, builder, ptr, {s}); 834 if (!etp.isa<IndexType>()) { 835 if (etp.getIntOrFloatBitWidth() < 32) 836 vload = builder.create<arith::ExtUIOp>( 837 loc, vectorType(codegen, builder.getI32Type()), vload); 838 else if (etp.getIntOrFloatBitWidth() < 64 && 839 !codegen.options.enableSIMDIndex32) 840 vload = builder.create<arith::ExtUIOp>( 841 loc, vectorType(codegen, builder.getI64Type()), vload); 842 } 843 return vload; 844 } 845 // For the scalar case, we simply zero extend narrower indices into 64-bit 846 // values before casting to index without a performance penalty. Here too, 847 // however, indices that already are 64-bit, in theory, cannot express the 848 // full range as explained above. 849 Value load = builder.create<memref::LoadOp>(loc, ptr, s); 850 if (!load.getType().isa<IndexType>()) { 851 if (load.getType().getIntOrFloatBitWidth() < 64) 852 load = builder.create<arith::ExtUIOp>(loc, builder.getI64Type(), load); 853 load = 854 builder.create<arith::IndexCastOp>(loc, builder.getIndexType(), load); 855 } 856 return load; 857 } 858 859 /// Generates an invariant value. 860 static Value genInvariantValue(Merger &merger, CodeGen &codegen, 861 OpBuilder &builder, unsigned exp) { 862 Value val = merger.exp(exp).val; 863 if (codegen.curVecLength > 1) 864 return genVectorInvariantValue(codegen, builder, val); 865 return val; 866 } 867 868 /// Generates an address computation "sz * p + i". 869 static Value genAddress(CodeGen &codegen, OpBuilder &builder, Location loc, 870 Value size, Value p, Value i) { 871 Value mul = builder.create<arith::MulIOp>(loc, size, p); 872 if (auto vtp = i.getType().dyn_cast<VectorType>()) { 873 Value inv = 874 builder.create<arith::IndexCastOp>(loc, vtp.getElementType(), mul); 875 mul = genVectorInvariantValue(codegen, builder, inv); 876 } 877 return builder.create<arith::AddIOp>(loc, mul, i); 878 } 879 880 /// Generates an index value. 881 static Value genIndexValue(Merger &merger, CodeGen &codegen, OpBuilder &builder, 882 unsigned exp, unsigned ldx) { 883 unsigned idx = merger.exp(exp).index; 884 Value ival = codegen.loops[idx]; 885 Type itype = ival.getType(); 886 // During vectorization, we either encounter: 887 // (1) indices already in vector form, as in ... = ind[lo:hi], good to go, or 888 // (2) single index, as in ... = i, must convert to [i, i+1, ...] for inner i. 889 unsigned vl = codegen.curVecLength; 890 if (vl > 1 && !itype.isa<VectorType>()) { 891 Location loc = ival.getLoc(); 892 VectorType vtp = vectorType(codegen, itype); 893 ival = builder.create<vector::BroadcastOp>(loc, vtp, ival); 894 if (idx == ldx) { 895 Value incr; 896 if (vtp.isScalable()) { 897 Type stepvty = vectorType(codegen, builder.getI64Type()); 898 Value stepv = builder.create<LLVM::StepVectorOp>(loc, stepvty); 899 incr = builder.create<arith::IndexCastOp>(loc, vtp, stepv); 900 } else { 901 SmallVector<APInt, 4> integers; 902 for (unsigned i = 0; i < vl; i++) 903 integers.push_back(APInt(/*width=*/64, i)); 904 auto values = DenseElementsAttr::get(vtp, integers); 905 incr = builder.create<arith::ConstantOp>(loc, vtp, values); 906 } 907 ival = builder.create<arith::AddIOp>(loc, ival, incr); 908 } 909 } 910 return ival; 911 } 912 913 /// Recursively generates tensor expression. 914 static Value genExp(Merger &merger, CodeGen &codegen, RewriterBase &rewriter, 915 linalg::GenericOp op, unsigned exp, unsigned ldx) { 916 Location loc = op.getLoc(); 917 if (exp == -1u) 918 return Value(); 919 if (merger.exp(exp).kind == Kind::kTensor) 920 return genTensorLoad(merger, codegen, rewriter, op, exp); 921 if (merger.exp(exp).kind == Kind::kInvariant) 922 return genInvariantValue(merger, codegen, rewriter, exp); 923 if (merger.exp(exp).kind == Kind::kIndex) 924 return genIndexValue(merger, codegen, rewriter, exp, ldx); 925 Value v0 = 926 genExp(merger, codegen, rewriter, op, merger.exp(exp).children.e0, ldx); 927 Value v1 = 928 genExp(merger, codegen, rewriter, op, merger.exp(exp).children.e1, ldx); 929 return merger.buildExp(rewriter, loc, exp, v0, v1); 930 } 931 932 /// Determines if affine expression is invariant. 933 static bool isInvariantAffine(const CodeGen &codegen, AffineExpr a, 934 unsigned ldx, bool &atLevel) { 935 switch (a.getKind()) { 936 case AffineExprKind::DimId: { 937 unsigned idx = a.cast<AffineDimExpr>().getPosition(); 938 if (idx == ldx) 939 atLevel = true; 940 return codegen.loops[idx] != nullptr; // no longer in play? 941 } 942 case AffineExprKind::Add: 943 case AffineExprKind::Mul: { 944 auto binOp = a.cast<AffineBinaryOpExpr>(); 945 return isInvariantAffine(codegen, binOp.getLHS(), ldx, atLevel) && 946 isInvariantAffine(codegen, binOp.getRHS(), ldx, atLevel); 947 } 948 default: 949 return true; 950 } 951 } 952 953 /// Hoists loop invariant tensor loads for which indices have been exhausted. 954 static void genInvariants(Merger &merger, CodeGen &codegen, OpBuilder &builder, 955 linalg::GenericOp op, unsigned exp, unsigned ldx, 956 bool atStart, Kind last = Kind::kTensor) { 957 if (exp == -1u) 958 return; 959 if (merger.exp(exp).kind == Kind::kTensor) { 960 // Inspect tensor indices. 961 bool atLevel = ldx == -1u; 962 OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).tensor]; 963 auto map = op.getTiedIndexingMap(t); 964 auto enc = getSparseTensorEncoding(t->get().getType()); 965 for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { 966 AffineExpr a = map.getResult(perm(enc, d)); 967 if (!isInvariantAffine(codegen, a, ldx, atLevel)) 968 return; // still in play 969 } 970 // All exhausted at this level (atLevel denotes exactly at this level). 971 if (!atLevel) 972 return; 973 OpOperand *lhs = op.getOutputOperand(0); 974 if (lhs == t) { 975 // Start or end a scalarized reduction 976 if (atStart) { 977 Value load = genTensorLoad(merger, codegen, builder, op, exp); 978 codegen.redKind = getReduction(last); 979 codegen.redExp = exp; 980 updateReduc(merger, codegen, load); 981 } else { 982 Value redVal = codegen.redVal; 983 updateReduc(merger, codegen, Value()); 984 codegen.redExp = -1u; 985 codegen.redKind = kNoReduc; 986 genTensorStore(merger, codegen, builder, op, exp, redVal); 987 } 988 } else { 989 // Start or end loop invariant hoisting of a tensor load. 990 merger.exp(exp).val = 991 atStart ? genTensorLoad(merger, codegen, builder, op, exp) : Value(); 992 } 993 } else if (merger.exp(exp).kind != Kind::kInvariant && 994 merger.exp(exp).kind != Kind::kIndex) { 995 // Traverse into the binary operations. Note that we only hoist 996 // tensor loads, since subsequent MLIR/LLVM passes know how to 997 // deal with all other kinds of derived loop invariants. 998 Kind last = merger.exp(exp).kind; 999 unsigned e0 = merger.exp(exp).children.e0; 1000 unsigned e1 = merger.exp(exp).children.e1; 1001 genInvariants(merger, codegen, builder, op, e0, ldx, atStart, last); 1002 genInvariants(merger, codegen, builder, op, e1, ldx, atStart, last); 1003 } 1004 } 1005 1006 /// Generates an expanded access pattern in innermost dimension. 1007 static void genExpansion(Merger &merger, CodeGen &codegen, OpBuilder &builder, 1008 linalg::GenericOp op, unsigned at, bool atStart) { 1009 OpOperand *lhs = codegen.sparseOut; 1010 if (!lhs || codegen.outerParNest != op.getRank(lhs) - 1 || 1011 at != codegen.outerParNest) 1012 return; // not needed at this level 1013 // Generate start or end of an expanded access pattern. 1014 Value tensor = lhs->get(); 1015 Location loc = op.getLoc(); 1016 if (atStart) { 1017 auto dynShape = {ShapedType::kDynamicSize}; 1018 Type etp = tensor.getType().cast<ShapedType>().getElementType(); 1019 Type t1 = MemRefType::get(dynShape, etp); 1020 Type t2 = MemRefType::get(dynShape, builder.getI1Type()); 1021 Type t3 = MemRefType::get(dynShape, builder.getIndexType()); 1022 Type t4 = builder.getIndexType(); 1023 auto res = 1024 builder.create<ExpandOp>(loc, TypeRange({t1, t2, t3, t4}), tensor); 1025 assert(res.getNumResults() == 4); 1026 assert(!codegen.expValues); 1027 codegen.expValues = res.getResult(0); 1028 codegen.expFilled = res.getResult(1); 1029 codegen.expAdded = res.getResult(2); 1030 codegen.expCount = res.getResult(3); 1031 } else { 1032 assert(codegen.expValues); 1033 builder.create<CompressOp>(loc, tensor, codegen.lexIdx, codegen.expValues, 1034 codegen.expFilled, codegen.expAdded, 1035 codegen.expCount); 1036 codegen.expValues = codegen.expFilled = codegen.expAdded = 1037 codegen.expCount = Value(); 1038 } 1039 } 1040 1041 /// Generates initialization code for the subsequent loop sequence at 1042 /// current index level. Returns true if the loop sequence needs to 1043 /// maintain the universal index. 1044 static bool genInit(Merger &merger, CodeGen &codegen, OpBuilder &builder, 1045 linalg::GenericOp op, std::vector<unsigned> &topSort, 1046 unsigned at, BitVector &inits) { 1047 bool needsUniv = false; 1048 Location loc = op.getLoc(); 1049 unsigned idx = topSort[at]; 1050 1051 // Initialize sparse positions. 1052 for (unsigned b = 0, be = inits.size(); b < be; b++) { 1053 if (inits[b]) { 1054 unsigned tensor = merger.tensor(b); 1055 assert(idx == merger.index(b)); 1056 if (merger.isDim(b, Dim::kSparse)) { 1057 // Initialize sparse index. 1058 unsigned pat = at; 1059 for (; pat != 0; pat--) { 1060 if (codegen.pidxs[tensor][topSort[pat - 1]]) 1061 break; 1062 } 1063 Value ptr = codegen.pointers[tensor][idx]; 1064 Value one = constantIndex(builder, loc, 1); 1065 Value p0 = (pat == 0) ? constantIndex(builder, loc, 0) 1066 : codegen.pidxs[tensor][topSort[pat - 1]]; 1067 codegen.pidxs[tensor][idx] = genLoad(codegen, builder, loc, ptr, p0); 1068 Value p1 = builder.create<arith::AddIOp>(loc, p0, one); 1069 codegen.highs[tensor][idx] = genLoad(codegen, builder, loc, ptr, p1); 1070 } else { 1071 // Dense index still in play. 1072 needsUniv = true; 1073 } 1074 } 1075 } 1076 1077 // Initialize the universal dense index. 1078 codegen.loops[idx] = constantIndex(builder, loc, 0); 1079 return needsUniv; 1080 } 1081 1082 /// Returns vectorization strategy. Any implicit inner loop in the Linalg 1083 /// operation is a candidate. Whether it is actually converted to SIMD code 1084 /// depends on the requested strategy. 1085 static bool isVectorFor(CodeGen &codegen, bool isInner, bool isReduction, 1086 bool isSparse) { 1087 // Reject vectorization of sparse output, unless innermost is reduction. 1088 if (codegen.sparseOut && !isReduction) 1089 return false; 1090 // Inspect strategy. 1091 switch (codegen.options.vectorizationStrategy) { 1092 case SparseVectorizationStrategy::kNone: 1093 return false; 1094 case SparseVectorizationStrategy::kDenseInnerLoop: 1095 return isInner && !isSparse; 1096 case SparseVectorizationStrategy::kAnyStorageInnerLoop: 1097 return isInner; 1098 } 1099 llvm_unreachable("unexpected vectorization strategy"); 1100 } 1101 1102 /// Returns parallelization strategy. Any implicit loop in the Linalg operation 1103 /// that is marked "parallel" is a candidate. Whether it is actually converted 1104 /// to a parallel operation depends on the requested strategy. 1105 static bool isParallelFor(CodeGen &codegen, bool isOuter, bool isReduction, 1106 bool isSparse, bool isVector) { 1107 // Reject parallelization of sparse output. 1108 if (codegen.sparseOut) 1109 return false; 1110 // Inspect strategy. 1111 switch (codegen.options.parallelizationStrategy) { 1112 case SparseParallelizationStrategy::kNone: 1113 return false; 1114 case SparseParallelizationStrategy::kDenseOuterLoop: 1115 return isOuter && !isSparse && !isReduction && !isVector; 1116 case SparseParallelizationStrategy::kAnyStorageOuterLoop: 1117 return isOuter && !isReduction && !isVector; 1118 case SparseParallelizationStrategy::kDenseAnyLoop: 1119 return !isSparse && !isReduction && !isVector; 1120 case SparseParallelizationStrategy::kAnyStorageAnyLoop: 1121 return !isReduction && !isVector; 1122 } 1123 llvm_unreachable("unexpected parallelization strategy"); 1124 } 1125 1126 /// Checks unit stride for dense tensors. The iteration graph may have ignored 1127 /// dense access patterns in order to avoid cycles (sparse access patterns are 1128 /// always placed innermost), but that means dense access has become strided. 1129 /// This prevents effective vectorization. 1130 static bool denseUnitStrides(Merger &merger, linalg::GenericOp op, 1131 unsigned idx) { 1132 for (OpOperand *t : op.getInputAndOutputOperands()) { 1133 if (!getSparseTensorEncoding(t->get().getType())) { 1134 auto map = op.getTiedIndexingMap(t); 1135 for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { 1136 AffineExpr a = map.getResult(d); 1137 // Report non-unit stride if innermost index appears at an outer 1138 // dimension (true non-unit stride) or if the innermost index appears 1139 // in a compound subscript in the innermost dimension. Even if the 1140 // latter is unit stride, it does not play well with scatter/gather. 1141 // TODO: accept unit stride affine innermost like a[i,j+k+1]? 1142 if (a.isFunctionOfDim(idx) && 1143 ((d != rank - 1) || (a.getKind() != AffineExprKind::DimId))) 1144 return false; 1145 } 1146 } 1147 } 1148 return true; 1149 } 1150 1151 /// Generates a for-loop on a single index. 1152 static Operation *genFor(Merger &merger, CodeGen &codegen, OpBuilder &builder, 1153 linalg::GenericOp op, bool isOuter, bool isInner, 1154 unsigned idx, BitVector &indices) { 1155 unsigned fb = indices.find_first(); 1156 unsigned tensor = merger.tensor(fb); 1157 assert(idx == merger.index(fb)); 1158 auto iteratorTypes = op.iterator_types().getValue(); 1159 bool isReduction = isReductionIterator(iteratorTypes[idx]); 1160 bool isSparse = merger.isDim(fb, Dim::kSparse); 1161 bool isVector = isVectorFor(codegen, isInner, isReduction, isSparse) && 1162 denseUnitStrides(merger, op, idx); 1163 bool isParallel = 1164 isParallelFor(codegen, isOuter, isReduction, isSparse, isVector); 1165 1166 // Prepare vector length. 1167 if (isVector) 1168 codegen.curVecLength = codegen.options.vectorLength; 1169 1170 // Loop bounds and increment. 1171 Location loc = op.getLoc(); 1172 Value lo = isSparse ? codegen.pidxs[tensor][idx] : codegen.loops[idx]; 1173 Value hi = isSparse ? codegen.highs[tensor][idx] : codegen.sizes[idx]; 1174 Value step = constantIndex(builder, loc, codegen.curVecLength); 1175 if (isVector && codegen.options.enableVLAVectorization) { 1176 Value vscale = builder.create<vector::VectorScaleOp>( 1177 loc, IndexType::get(builder.getContext())); 1178 step = builder.create<arith::MulIOp>(loc, vscale, step); 1179 } 1180 1181 // Emit a parallel loop. 1182 if (isParallel) { 1183 assert(!isVector); 1184 scf::ParallelOp parOp = builder.create<scf::ParallelOp>(loc, lo, hi, step); 1185 if (isSparse) 1186 codegen.pidxs[tensor][idx] = parOp.getInductionVars()[0]; 1187 else 1188 codegen.loops[idx] = parOp.getInductionVars()[0]; 1189 builder.setInsertionPointToStart(parOp.getBody()); 1190 return parOp; 1191 } 1192 1193 // Emit a sequential or vector loop. 1194 SmallVector<Value, 4> operands; 1195 if (codegen.redVal) { 1196 // In a vector loop, bring reduction into SIMD form, if not already. 1197 if (isVector && !codegen.redVal.getType().isa<VectorType>()) { 1198 VectorType vtp = vectorType(codegen, codegen.redVal.getType()); 1199 Value vred = genVectorReducInit(codegen, builder, loc, vtp); 1200 updateReduc(merger, codegen, vred); 1201 } 1202 operands.push_back(codegen.redVal); 1203 } 1204 if (codegen.expValues) 1205 operands.push_back(codegen.expCount); 1206 scf::ForOp forOp = builder.create<scf::ForOp>(loc, lo, hi, step, operands); 1207 if (codegen.redVal) 1208 updateReduc(merger, codegen, forOp.getRegionIterArgs().front()); 1209 if (codegen.expValues) 1210 codegen.expCount = forOp.getRegionIterArgs().back(); 1211 // Assign induction variable to sparse or dense index. 1212 Value iv = forOp.getInductionVar(); 1213 if (isSparse) 1214 codegen.pidxs[tensor][idx] = iv; 1215 else 1216 codegen.loops[idx] = iv; 1217 builder.setInsertionPointToStart(forOp.getBody()); 1218 // Share vector iteration mask between all subsequent loads/stores. 1219 if (isVector) 1220 codegen.curVecMask = genVectorMask(codegen, builder, iv, lo, hi, step); 1221 return forOp; 1222 } 1223 1224 /// Emit a while-loop for co-iteration over multiple indices. 1225 static Operation *genWhile(Merger &merger, CodeGen &codegen, OpBuilder &builder, 1226 linalg::GenericOp op, unsigned idx, bool needsUniv, 1227 BitVector &indices) { 1228 SmallVector<Type, 4> types; 1229 SmallVector<Value, 4> operands; 1230 // Construct the while-loop with a parameter for each index. 1231 Type indexType = builder.getIndexType(); 1232 for (unsigned b = 0, be = indices.size(); b < be; b++) { 1233 if (indices[b] && merger.isDim(b, Dim::kSparse)) { 1234 unsigned tensor = merger.tensor(b); 1235 assert(idx == merger.index(b)); 1236 types.push_back(indexType); 1237 operands.push_back(codegen.pidxs[tensor][idx]); 1238 } 1239 } 1240 if (codegen.redVal) { 1241 types.push_back(codegen.redVal.getType()); 1242 operands.push_back(codegen.redVal); 1243 } 1244 if (codegen.expValues) { 1245 types.push_back(indexType); 1246 operands.push_back(codegen.expCount); 1247 } 1248 if (needsUniv) { 1249 types.push_back(indexType); 1250 operands.push_back(codegen.loops[idx]); 1251 } 1252 assert(types.size() == operands.size()); 1253 Location loc = op.getLoc(); 1254 scf::WhileOp whileOp = builder.create<scf::WhileOp>(loc, types, operands); 1255 1256 SmallVector<Location> locs(types.size(), loc); 1257 Block *before = builder.createBlock(&whileOp.getBefore(), {}, types, locs); 1258 Block *after = builder.createBlock(&whileOp.getAfter(), {}, types, locs); 1259 1260 // Build the "before" region, which effectively consists 1261 // of a conjunction of "i < upper" tests on all induction. 1262 builder.setInsertionPointToStart(&whileOp.getBefore().front()); 1263 Value cond; 1264 unsigned o = 0; 1265 for (unsigned b = 0, be = indices.size(); b < be; b++) { 1266 if (indices[b] && merger.isDim(b, Dim::kSparse)) { 1267 unsigned tensor = merger.tensor(b); 1268 assert(idx == merger.index(b)); 1269 Value op1 = before->getArgument(o); 1270 Value op2 = codegen.highs[tensor][idx]; 1271 Value opc = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult, 1272 op1, op2); 1273 cond = cond ? builder.create<arith::AndIOp>(loc, cond, opc) : opc; 1274 codegen.pidxs[tensor][idx] = after->getArgument(o++); 1275 } 1276 } 1277 if (codegen.redVal) 1278 updateReduc(merger, codegen, after->getArgument(o++)); 1279 if (codegen.expValues) 1280 codegen.expCount = after->getArgument(o++); 1281 if (needsUniv) 1282 codegen.loops[idx] = after->getArgument(o++); 1283 assert(o == operands.size()); 1284 builder.create<scf::ConditionOp>(loc, cond, before->getArguments()); 1285 builder.setInsertionPointToStart(&whileOp.getAfter().front()); 1286 return whileOp; 1287 } 1288 1289 /// Generates a for-loop or a while-loop, depending on whether it implements 1290 /// singleton iteration or co-iteration over the given conjunction. 1291 static Operation *genLoop(Merger &merger, CodeGen &codegen, OpBuilder &builder, 1292 linalg::GenericOp op, std::vector<unsigned> &topSort, 1293 unsigned at, bool needsUniv, BitVector &indices) { 1294 unsigned idx = topSort[at]; 1295 if (indices.count() == 1) { 1296 bool isOuter = at == 0; 1297 bool isInner = at == topSort.size() - 1; 1298 return genFor(merger, codegen, builder, op, isOuter, isInner, idx, indices); 1299 } 1300 return genWhile(merger, codegen, builder, op, idx, needsUniv, indices); 1301 } 1302 1303 /// Generates the local variables for this loop, consisting of the sparse 1304 /// indices, restored universal dense index, and dense positions. 1305 static void genLocals(Merger &merger, CodeGen &codegen, OpBuilder &builder, 1306 linalg::GenericOp op, std::vector<unsigned> &topSort, 1307 unsigned at, bool needsUniv, BitVector &locals) { 1308 Location loc = op.getLoc(); 1309 unsigned idx = topSort[at]; 1310 1311 // Initialize sparse indices. 1312 Value min; 1313 for (unsigned b = 0, be = locals.size(); b < be; b++) { 1314 if (locals[b] && merger.isDim(b, Dim::kSparse)) { 1315 unsigned tensor = merger.tensor(b); 1316 assert(idx == merger.index(b)); 1317 Value ptr = codegen.indices[tensor][idx]; 1318 Value s = codegen.pidxs[tensor][idx]; 1319 Value load = genLoad(codegen, builder, loc, ptr, s); 1320 codegen.idxs[tensor][idx] = load; 1321 if (!needsUniv) { 1322 if (min) { 1323 Value cmp = builder.create<arith::CmpIOp>( 1324 loc, arith::CmpIPredicate::ult, load, min); 1325 min = builder.create<arith::SelectOp>(loc, cmp, load, min); 1326 } else { 1327 min = load; 1328 } 1329 } 1330 } 1331 } 1332 1333 // Merge dense universal index over minimum. 1334 if (min) { 1335 assert(!needsUniv); 1336 codegen.loops[idx] = min; 1337 } 1338 1339 // Initialize dense positions. Note that we generate dense indices of the 1340 // output tensor unconditionally, since they may not appear in the lattice, 1341 // but may be needed for linearized codegen. 1342 for (unsigned b = 0, be = locals.size(); b < be; b++) { 1343 if ((locals[b] || merger.isOutTensor(b, idx)) && 1344 merger.isDim(b, Dim::kDense)) { 1345 unsigned tensor = merger.tensor(b); 1346 assert(idx == merger.index(b)); 1347 unsigned pat = at; 1348 for (; pat != 0; pat--) 1349 if (codegen.pidxs[tensor][topSort[pat - 1]]) 1350 break; 1351 Value p = (pat == 0) ? constantIndex(builder, loc, 0) 1352 : codegen.pidxs[tensor][topSort[pat - 1]]; 1353 codegen.pidxs[tensor][idx] = genAddress( 1354 codegen, builder, loc, codegen.sizes[idx], p, codegen.loops[idx]); 1355 } 1356 } 1357 1358 // Move the insertion indices in lexicographic index order. During access 1359 // pattern expansion, we can skip setting the innermost dimension. 1360 if (codegen.sparseOut && !codegen.expValues) { 1361 Value pos = constantIndex(builder, loc, at); 1362 builder.create<memref::StoreOp>(loc, codegen.loops[idx], codegen.lexIdx, 1363 pos); 1364 } 1365 } 1366 1367 /// Generates the induction structure for a while-loop. 1368 static void genWhileInduction(Merger &merger, CodeGen &codegen, 1369 OpBuilder &builder, linalg::GenericOp op, 1370 unsigned idx, bool needsUniv, 1371 BitVector &induction, scf::WhileOp whileOp) { 1372 Location loc = op.getLoc(); 1373 // Finalize each else branch of all if statements. 1374 if (codegen.redVal || codegen.expValues) { 1375 while (auto ifOp = dyn_cast_or_null<scf::IfOp>( 1376 builder.getInsertionBlock()->getParentOp())) { 1377 unsigned y = 0; 1378 SmallVector<Value, 4> yields; 1379 if (codegen.redVal) { 1380 yields.push_back(codegen.redVal); 1381 updateReduc(merger, codegen, ifOp.getResult(y++)); 1382 } 1383 if (codegen.expValues) { 1384 yields.push_back(codegen.expCount); 1385 codegen.expCount = ifOp->getResult(y++); 1386 } 1387 assert(y == yields.size()); 1388 builder.create<scf::YieldOp>(loc, yields); 1389 builder.setInsertionPointAfter(ifOp); 1390 } 1391 } 1392 builder.setInsertionPointToEnd(&whileOp.getAfter().front()); 1393 // Finalize the induction. Note that the induction could be performed 1394 // in the individual if-branches to avoid re-evaluating the conditions. 1395 // However, that would result in a rather elaborate forest of yield 1396 // instructions during code generation. Moreover, performing the induction 1397 // after the if-statements more closely resembles code generated by TACO. 1398 unsigned o = 0; 1399 SmallVector<Value, 4> operands; 1400 Value one = constantIndex(builder, loc, 1); 1401 for (unsigned b = 0, be = induction.size(); b < be; b++) { 1402 if (induction[b] && merger.isDim(b, Dim::kSparse)) { 1403 unsigned tensor = merger.tensor(b); 1404 assert(idx == merger.index(b)); 1405 Value op1 = codegen.idxs[tensor][idx]; 1406 Value op2 = codegen.loops[idx]; 1407 Value op3 = codegen.pidxs[tensor][idx]; 1408 Value cmp = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq, 1409 op1, op2); 1410 Value add = builder.create<arith::AddIOp>(loc, op3, one); 1411 operands.push_back(builder.create<arith::SelectOp>(loc, cmp, add, op3)); 1412 codegen.pidxs[tensor][idx] = whileOp->getResult(o++); 1413 } 1414 } 1415 if (codegen.redVal) { 1416 operands.push_back(codegen.redVal); 1417 updateReduc(merger, codegen, whileOp->getResult(o++)); 1418 } 1419 if (codegen.expValues) { 1420 operands.push_back(codegen.expCount); 1421 codegen.expCount = whileOp->getResult(o++); 1422 } 1423 if (needsUniv) { 1424 operands.push_back( 1425 builder.create<arith::AddIOp>(loc, codegen.loops[idx], one)); 1426 codegen.loops[idx] = whileOp->getResult(o++); 1427 } 1428 assert(o == operands.size()); 1429 builder.create<scf::YieldOp>(loc, operands); 1430 builder.setInsertionPointAfter(whileOp); 1431 } 1432 1433 /// Generates the induction structure for a for-loop. 1434 static void genForInduction(Merger &merger, CodeGen &codegen, 1435 OpBuilder &builder, linalg::GenericOp op, 1436 Operation *loop) { 1437 Location loc = op.getLoc(); 1438 unsigned o = 0; 1439 SmallVector<Value, 4> operands; 1440 if (codegen.redVal) { 1441 operands.push_back(codegen.redVal); 1442 updateReduc(merger, codegen, loop->getResult(o++)); 1443 } 1444 if (codegen.expValues) { 1445 operands.push_back(codegen.expCount); 1446 codegen.expCount = loop->getResult(o++); 1447 } 1448 assert(o == operands.size()); 1449 if (o > 0) 1450 builder.create<scf::YieldOp>(loc, operands); 1451 builder.setInsertionPointAfter(loop); 1452 } 1453 1454 /// Generates a single if-statement within a while-loop. 1455 static scf::IfOp genIf(Merger &merger, CodeGen &codegen, OpBuilder &builder, 1456 linalg::GenericOp op, unsigned idx, 1457 BitVector &conditions) { 1458 Location loc = op.getLoc(); 1459 SmallVector<Type, 4> types; 1460 Value cond; 1461 for (unsigned b = 0, be = conditions.size(); b < be; b++) { 1462 if (conditions[b]) { 1463 unsigned tensor = merger.tensor(b); 1464 assert(idx == merger.index(b)); 1465 Value clause; 1466 if (merger.isDim(b, Dim::kSparse)) { 1467 Value op1 = codegen.idxs[tensor][idx]; 1468 Value op2 = codegen.loops[idx]; 1469 clause = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq, 1470 op1, op2); 1471 } else { 1472 clause = constantI1(builder, loc, true); 1473 } 1474 cond = cond ? builder.create<arith::AndIOp>(loc, cond, clause) : clause; 1475 } 1476 } 1477 if (codegen.redVal) 1478 types.push_back(codegen.redVal.getType()); 1479 if (codegen.expValues) 1480 types.push_back(builder.getIndexType()); 1481 scf::IfOp ifOp = builder.create<scf::IfOp>(loc, types, cond, /*else=*/true); 1482 builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); 1483 return ifOp; 1484 } 1485 1486 /// Generates end of true branch of if-statement within a while-loop. 1487 static void endIf(Merger &merger, CodeGen &codegen, OpBuilder &builder, 1488 linalg::GenericOp op, scf::IfOp ifOp, Operation *loop, 1489 Value redInput, Value cntInput) { 1490 SmallVector<Value, 4> operands; 1491 if (codegen.redVal) { 1492 operands.push_back(codegen.redVal); 1493 updateReduc(merger, codegen, redInput); 1494 } 1495 if (codegen.expValues) { 1496 operands.push_back(codegen.expCount); 1497 codegen.expCount = cntInput; 1498 } 1499 if (!operands.empty()) 1500 builder.create<scf::YieldOp>(op.getLoc(), operands); 1501 builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); 1502 } 1503 1504 //===----------------------------------------------------------------------===// 1505 // Sparse compiler synthesis methods (loop sequence). 1506 //===----------------------------------------------------------------------===// 1507 1508 /// Starts a loop sequence at given level. Returns true if 1509 /// the universal loop index must be maintained at this level. 1510 static bool startLoopSeq(Merger &merger, CodeGen &codegen, OpBuilder &builder, 1511 linalg::GenericOp op, std::vector<unsigned> &topSort, 1512 unsigned exp, unsigned at, unsigned idx, unsigned ldx, 1513 unsigned lts) { 1514 assert(codegen.curVecLength == 1); 1515 assert(!codegen.loops[idx]); 1516 // Emit invariants at this loop sequence level. 1517 genInvariants(merger, codegen, builder, op, exp, ldx, /*atStart=*/true); 1518 // Emit access pattern expansion for sparse tensor output. 1519 genExpansion(merger, codegen, builder, op, at, /*atStart=*/true); 1520 // Emit further intitialization at this loop sequence level. 1521 unsigned l0 = merger.set(lts)[0]; 1522 bool needsUniv = 1523 genInit(merger, codegen, builder, op, topSort, at, merger.lat(l0).bits); 1524 // Maintain the universal index only if it is actually 1525 // consumed by a subsequent lattice point. 1526 if (needsUniv) { 1527 unsigned lsize = merger.set(lts).size(); 1528 for (unsigned i = 1; i < lsize; i++) { 1529 unsigned li = merger.set(lts)[i]; 1530 if (!merger.hasAnyDimOf(merger.lat(li).simple, Dim::kSparse)) 1531 return true; 1532 } 1533 } 1534 return false; 1535 } 1536 1537 /// Starts a single loop in current sequence. 1538 static Operation *startLoop(Merger &merger, CodeGen &codegen, 1539 OpBuilder &builder, linalg::GenericOp op, 1540 std::vector<unsigned> &topSort, unsigned at, 1541 unsigned li, bool needsUniv) { 1542 assert(codegen.curVecLength == 1); 1543 // Emit the for/while-loop control. 1544 Operation *loop = genLoop(merger, codegen, builder, op, topSort, at, 1545 needsUniv, merger.lat(li).simple); 1546 // Emit the locals for this loop. 1547 genLocals(merger, codegen, builder, op, topSort, at, needsUniv, 1548 merger.lat(li).bits); 1549 return loop; 1550 } 1551 1552 /// Ends a single loop in current sequence. Returns new values for needsUniv. 1553 static bool endLoop(Merger &merger, CodeGen &codegen, OpBuilder &builder, 1554 linalg::GenericOp op, Operation *loop, unsigned idx, 1555 unsigned li, bool needsUniv) { 1556 codegen.curVecLength = 1; 1557 // End a while-loop. 1558 if (auto whileOp = dyn_cast<scf::WhileOp>(loop)) { 1559 genWhileInduction(merger, codegen, builder, op, idx, needsUniv, 1560 merger.lat(li).bits, whileOp); 1561 return needsUniv; 1562 } 1563 // End a for-loop. 1564 genForInduction(merger, codegen, builder, op, loop); 1565 return false; 1566 } 1567 1568 /// Ends a loop sequence at given level. 1569 static void endLoopSeq(Merger &merger, CodeGen &codegen, OpBuilder &builder, 1570 linalg::GenericOp op, unsigned exp, unsigned at, 1571 unsigned idx, unsigned ldx) { 1572 assert(codegen.curVecLength == 1); 1573 codegen.loops[idx] = Value(); 1574 // Bring a pending reduction back from SIMD form when sequence ends. 1575 if (codegen.redVal) 1576 if (auto vtp = codegen.redVal.getType().dyn_cast<VectorType>()) 1577 updateReduc(merger, codegen, 1578 genVectorReducEnd(codegen, builder, op.getLoc(), vtp)); 1579 // Unmark bookkeeping of invariants and loop index. 1580 genInvariants(merger, codegen, builder, op, exp, ldx, /*atStart=*/false); 1581 // Finalize access pattern expansion for sparse tensor output. 1582 genExpansion(merger, codegen, builder, op, at, /*atStart=*/false); 1583 } 1584 1585 /// Recursively generates code while computing iteration lattices in order 1586 /// to manage the complexity of implementing co-iteration over unions 1587 /// and intersections of sparse iterations spaces. 1588 static void genStmt(Merger &merger, CodeGen &codegen, RewriterBase &rewriter, 1589 linalg::GenericOp op, std::vector<unsigned> &topSort, 1590 unsigned exp, unsigned at) { 1591 // At each leaf, assign remaining tensor (sub)expression to output tensor. 1592 if (at == topSort.size()) { 1593 unsigned ldx = topSort[at - 1]; 1594 Value rhs = genExp(merger, codegen, rewriter, op, exp, ldx); 1595 genTensorStore(merger, codegen, rewriter, op, exp, rhs); 1596 return; 1597 } 1598 1599 // Construct iteration lattices for current loop index, with L0 at top. 1600 unsigned idx = topSort[at]; 1601 unsigned ldx = at == 0 ? -1u : topSort[at - 1]; 1602 unsigned lts = merger.optimizeSet(merger.buildLattices(exp, idx)); 1603 1604 // Start a loop sequence. 1605 bool needsUniv = startLoopSeq(merger, codegen, rewriter, op, topSort, exp, at, 1606 idx, ldx, lts); 1607 1608 // Emit a loop for every lattice point L0 >= Li in this loop sequence. 1609 unsigned lsize = merger.set(lts).size(); 1610 for (unsigned i = 0; i < lsize; i++) { 1611 // Start a loop. 1612 unsigned li = merger.set(lts)[i]; 1613 Operation *loop = 1614 startLoop(merger, codegen, rewriter, op, topSort, at, li, needsUniv); 1615 1616 // Visit all lattices points with Li >= Lj to generate the 1617 // loop-body, possibly with if statements for coiteration. 1618 Value redInput = codegen.redVal; 1619 Value cntInput = codegen.expCount; 1620 bool isWhile = dyn_cast<scf::WhileOp>(loop) != nullptr; 1621 for (unsigned j = 0; j < lsize; j++) { 1622 unsigned lj = merger.set(lts)[j]; 1623 unsigned ej = merger.lat(lj).exp; 1624 if (li == lj || merger.latGT(li, lj)) { 1625 // Recurse into body of each branch. 1626 if (isWhile) { 1627 scf::IfOp ifOp = 1628 genIf(merger, codegen, rewriter, op, idx, merger.lat(lj).simple); 1629 genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1); 1630 endIf(merger, codegen, rewriter, op, ifOp, loop, redInput, cntInput); 1631 } else { 1632 genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1); 1633 } 1634 } 1635 } 1636 1637 // End a loop. 1638 needsUniv = 1639 endLoop(merger, codegen, rewriter, op, loop, idx, li, needsUniv); 1640 } 1641 1642 // End a loop sequence. 1643 endLoopSeq(merger, codegen, rewriter, op, exp, at, idx, ldx); 1644 } 1645 1646 /// Converts the result computed by the sparse kernel into the required form. 1647 static void genResult(Merger &merger, CodeGen &codegen, RewriterBase &rewriter, 1648 linalg::GenericOp op) { 1649 OpOperand *lhs = op.getOutputOperand(0); 1650 Type resType = lhs->get().getType(); 1651 if (getSparseTensorEncoding(resType)) { 1652 // The sparse tensor rematerializes from the original sparse tensor's 1653 // underlying sparse storage format. 1654 rewriter.replaceOpWithNewOp<LoadOp>(op, resType, lhs->get(), 1655 codegen.sparseOut == lhs); 1656 } else { 1657 // To rematerialize an non-annotated tensor, simply load it 1658 // from the bufferized value. 1659 Value val = codegen.buffers.back(); // value array 1660 rewriter.replaceOpWithNewOp<bufferization::ToTensorOp>(op, resType, val); 1661 } 1662 } 1663 1664 //===----------------------------------------------------------------------===// 1665 // Sparse compiler rewriting methods. 1666 //===----------------------------------------------------------------------===// 1667 1668 namespace { 1669 1670 /// Sparse rewriting rule for generic Lingalg operation. 1671 struct GenericOpSparsifier : public OpRewritePattern<linalg::GenericOp> { 1672 public: 1673 GenericOpSparsifier(MLIRContext *context, SparsificationOptions o) 1674 : OpRewritePattern<linalg::GenericOp>(context), options(o) {} 1675 1676 LogicalResult matchAndRewrite(linalg::GenericOp op, 1677 PatternRewriter &rewriter) const override { 1678 // Detects sparse annotations and translate the per-dimension sparsity 1679 // information for all tensors to loop indices in the kernel. 1680 assert(op.getNumOutputs() == 1); 1681 unsigned numTensors = op.getNumInputsAndOutputs(); 1682 unsigned numLoops = op.iterator_types().getValue().size(); 1683 Merger merger(numTensors, numLoops); 1684 if (!findSparseAnnotations(merger, op)) 1685 return failure(); 1686 1687 // Computes a topologically sorted iteration graph to ensure 1688 // tensors are visited in natural index order. Fails on cycles. 1689 // This assumes that higher-level passes have already put the 1690 // tensors in each tensor expression in a feasible order. 1691 std::vector<unsigned> topSort; 1692 if (!computeIterationGraph(merger, op, topSort, 1693 SortMask::kIncludeUndef | 1694 SortMask::kIncludeDense) && 1695 !computeIterationGraph(merger, op, topSort, SortMask::kIncludeUndef) && 1696 !computeIterationGraph(merger, op, topSort, SortMask::kIncludeDense) && 1697 !computeIterationGraph(merger, op, topSort, SortMask::kSparseOnly)) 1698 return failure(); 1699 1700 // Builds the tensor expression for the Linalg operation in SSA form. 1701 Optional<unsigned> optExp = merger.buildTensorExpFromLinalg(op); 1702 if (!optExp.hasValue()) 1703 return failure(); 1704 unsigned exp = optExp.getValue(); 1705 1706 // Rejects an inadmissable tensor expression. 1707 OpOperand *sparseOut = nullptr; 1708 unsigned outerParNest = 0; 1709 if (!isAdmissableTensorExp(merger, op, topSort, exp, &sparseOut, 1710 outerParNest)) 1711 return failure(); 1712 1713 // Recursively generates code. 1714 merger.setHasSparseOut(sparseOut != nullptr); 1715 CodeGen codegen(options, numTensors, numLoops, sparseOut, outerParNest); 1716 genBuffers(merger, codegen, rewriter, op); 1717 genStmt(merger, codegen, rewriter, op, topSort, exp, 0); 1718 genResult(merger, codegen, rewriter, op); 1719 return success(); 1720 } 1721 1722 private: 1723 /// Options to control sparse code generation. 1724 SparsificationOptions options; 1725 }; 1726 1727 } // namespace 1728 1729 /// Populates the given patterns list with rewriting rules required for 1730 /// the sparsification of linear algebra operations. 1731 void mlir::populateSparsificationPatterns( 1732 RewritePatternSet &patterns, const SparsificationOptions &options) { 1733 patterns.add<GenericOpSparsifier>(patterns.getContext(), options); 1734 } 1735