1 //===- Sparsification.cpp - Implementation of sparsification --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements converting sparse tensor types to actual sparse code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "mlir/Dialect/Linalg/IR/LinalgOps.h"
14 #include "mlir/Dialect/Linalg/Utils/Utils.h"
15 #include "mlir/Dialect/MemRef/IR/MemRef.h"
16 #include "mlir/Dialect/SCF/SCF.h"
17 #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
18 #include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
19 #include "mlir/Dialect/SparseTensor/Utils/Merger.h"
20 #include "mlir/Dialect/StandardOps/IR/Ops.h"
21 #include "mlir/Dialect/Vector/VectorOps.h"
22 #include "mlir/IR/Matchers.h"
23 #include "mlir/IR/TensorEncoding.h"
24 #include "llvm/ADT/SmallBitVector.h"
25 
26 using namespace mlir;
27 using namespace mlir::sparse_tensor;
28 
29 namespace {
30 
31 // Code generation.
32 struct CodeGen {
33   CodeGen(SparsificationOptions o, unsigned numTensors, unsigned numLoops)
34       : options(o), loops(numLoops), sizes(numLoops), buffers(numTensors),
35         pointers(numTensors, std::vector<Value>(numLoops)),
36         indices(numTensors, std::vector<Value>(numLoops)),
37         highs(numTensors, std::vector<Value>(numLoops)),
38         pidxs(numTensors, std::vector<Value>(numLoops)),
39         idxs(numTensors, std::vector<Value>(numLoops)), redExp(-1u), redVal(),
40         curVecLength(1), curVecMask() {}
41   /// Sparsification options.
42   SparsificationOptions options;
43   /// Universal dense indices and upper bounds (by index). The loops array
44   /// is updated with the value of the universal dense index in the current
45   /// loop. The sizes array is set once with the inferred dimension sizes.
46   std::vector<Value> loops;
47   std::vector<Value> sizes;
48   /// Buffers for storing dense and sparse numerical values (by tensor).
49   /// This array is set once during bufferization of all tensors.
50   std::vector<Value> buffers;
51   /// Sparse storage schemes (1-D): pointers and indices (by tensor and index).
52   /// This array is set once during bufferization of all sparse tensors.
53   std::vector<std::vector<Value>> pointers;
54   std::vector<std::vector<Value>> indices;
55   /// Sparse iteration information (by tensor and index). These arrays
56   /// are updated to remain current within the current loop.
57   std::vector<std::vector<Value>> highs;
58   std::vector<std::vector<Value>> pidxs;
59   std::vector<std::vector<Value>> idxs;
60   /// Current reduction, updated during code generation. When indices of a
61   /// reduction are exhausted,  all inner loops can "scalarize" the reduction.
62   // TODO: currently only done for (a chain of) innermost for-loops, where it
63   // is most effective; we could generalize to more outer and while-loops.
64   unsigned redExp;
65   Value redVal;
66   // Current vector length and mask.
67   unsigned curVecLength;
68   Value curVecMask;
69 };
70 
71 } // namespace
72 
73 // Helper method to apply dimension ordering permutation.
74 static unsigned perm(SparseTensorEncodingAttr &enc, unsigned d) {
75   if (enc) {
76     auto order = enc.getDimOrdering();
77     if (order) {
78       assert(order.isPermutation());
79       return order.getDimPosition(d);
80     }
81   }
82   return d;
83 }
84 
85 // Helper method to translate dim level type to internal representation.
86 static Dim toDim(SparseTensorEncodingAttr &enc, unsigned d) {
87   if (enc) {
88     SparseTensorEncodingAttr::DimLevelType tp = enc.getDimLevelType()[d];
89     if (tp == SparseTensorEncodingAttr::DimLevelType::Compressed)
90       return Dim::kSparse;
91     if (tp == SparseTensorEncodingAttr::DimLevelType::Singleton)
92       return Dim::kSingle;
93   }
94   return Dim::kDense;
95 }
96 
97 /// Helper method to inspect sparse encodings in the tensor types.
98 /// Fills the per-dimension sparsity information for all tensors.
99 static bool findSparseAnnotations(Merger &merger, linalg::GenericOp op) {
100   bool annotated = false;
101   for (OpOperand *t : op.getInputAndOutputOperands()) {
102     auto map = op.getTiedIndexingMap(t);
103     if (!map.isProjectedPermutation())
104       return false;
105     auto enc = getSparseTensorEncoding(t->get().getType());
106     if (enc)
107       annotated = true;
108     assert(map.getNumResults() == op.getRank(t));
109     for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
110       unsigned idx = map.getDimPosition(perm(enc, d));
111       merger.setDim(t->getOperandNumber(), idx, toDim(enc, d));
112     }
113   }
114   return annotated;
115 }
116 
117 /// A DFS helper to compute a topological sort. Note that recursion is
118 /// bounded by the number of implicit loops, which is always small.
119 /// Returns false when a cycle is detected.
120 static bool topSortDFS(unsigned i, std::vector<unsigned> &visit,
121                        std::vector<unsigned> &topSort,
122                        std::vector<std::vector<bool>> &adjM) {
123   if (visit[i] != 0)
124     return visit[i] != 1; // 1 denotes cycle!
125   visit[i] = 1;
126   for (unsigned j = 0, e = visit.size(); j < e; j++)
127     if (adjM[i][j])
128       if (!topSortDFS(j, visit, topSort, adjM))
129         return false;
130   visit[i] = 2;
131   topSort.push_back(i);
132   return true;
133 }
134 
135 /// Computes a topologically sorted iteration graph for the linalg operation.
136 /// Ensures all tensors are visited in natural index order. This is essential
137 /// for sparse storage formats since these only support access along fixed
138 /// dimensions. Even for dense storage formats, however, the natural index
139 /// order yields innermost unit-stride access with better spatial locality.
140 static bool computeIterationGraph(Merger &merger, linalg::GenericOp op,
141                                   std::vector<unsigned> &topSort,
142                                   bool sparseOnly) {
143   // Set up an n x n from/to adjacency matrix of the iteration graph
144   // for the implicit loop indices i_0 .. i_n-1.
145   unsigned n = op.getNumLoops();
146   std::vector<std::vector<bool>> adjM(n, std::vector<bool>(n, false));
147 
148   // Iterate over the indexing maps of every tensor in the tensor expression.
149   for (OpOperand *t : op.getInputAndOutputOperands()) {
150     auto map = op.getTiedIndexingMap(t);
151     auto enc = getSparseTensorEncoding(t->get().getType());
152     assert(map.getNumDims() == n);
153     // Skip dense tensor constraints when sparse only is requested.
154     if (sparseOnly && !enc)
155       continue;
156     // Each tensor expression and optional dimension ordering (row-major
157     // by default) puts an ordering constraint on the loop indices. For
158     // example, the tensor expresion A_ijk forces the ordering i < j < k
159     // on the loop indices if no explicit dimension ordering is given.
160     for (unsigned d = 1, rank = map.getNumResults(); d < rank; d++) {
161       unsigned f = map.getDimPosition(perm(enc, d - 1));
162       unsigned t = map.getDimPosition(perm(enc, d));
163       adjM[f][t] = true;
164     }
165   }
166 
167   // Topologically sort the iteration graph to determine loop order.
168   // Report failure for a cyclic iteration graph.
169   topSort.clear();
170   topSort.reserve(n);
171   std::vector<unsigned> visit(n, 0);
172   for (unsigned i = 0; i < n; i++)
173     if (visit[i] == 0)
174       if (!topSortDFS(i, visit, topSort, adjM))
175         return false; // cycle!
176   std::reverse(std::begin(topSort), std::end(topSort));
177   return true;
178 }
179 
180 /// Returns true when the tensor expression is admissable for codegen.
181 /// Since all sparse input tensors are admissable, we just need to check
182 /// whether the output tensor in the tensor expression codegen is admissable.
183 static bool isAdmissableTensorExp(Merger &merger, linalg::GenericOp op,
184                                   unsigned exp) {
185   OpOperand *lhs = op.getOutputOperand(0);
186   unsigned tensor = lhs->getOperandNumber();
187   auto enc = getSparseTensorEncoding(lhs->get().getType());
188   // An non-annotated output tensor is assumed dense, and becomes a random
189   // access n-dim memref. Admissable since inserstions cannot occur.
190   if (!enc)
191     return true;
192   // An all-dense annotated "sparse" output tensor becomes a linearized random
193   // access 1-dim memref. Also admissable since insertions cannot occur.
194   bool allDense = true;
195   unsigned numLoops = op.iterator_types().getValue().size();
196   for (unsigned i = 0; i < numLoops; i++)
197     if (merger.isDim(tensor, i, Dim::kSparse)) {
198       allDense = false;
199       break;
200     }
201   if (allDense)
202     return true;
203   // A tensor expression with a sparse output tensor that changes its values
204   // but not its nonzero structure, an operation called "simply dynamic" in
205   // [Bik96,Ch9], is also admissable without special codegen.
206   if (merger.isConjunction(tensor, exp))
207     return true;
208   // Reject for now since this requires changes to the nonzero structure.
209   // TODO: implement "workspaces" [Kjolstad2019]
210   return false;
211 }
212 
213 /// Maps sparse integer option to actual integral storage type.
214 static Type genIntType(PatternRewriter &rewriter, unsigned width) {
215   if (width == 0)
216     return rewriter.getIndexType();
217   return rewriter.getIntegerType(width);
218 }
219 
220 /// Detects in-place annotation on tensor argument.
221 static bool getInPlace(Value val) {
222   if (auto arg = val.dyn_cast<BlockArgument>())
223     if (auto funcOp = dyn_cast<FuncOp>(arg.getOwner()->getParentOp()))
224       if (auto attr = funcOp.getArgAttrOfType<BoolAttr>(
225               arg.getArgNumber(), linalg::LinalgDialect::kInplaceableAttrName))
226         return attr.getValue();
227   return false;
228 }
229 
230 /// Generates buffer for the output tensor.
231 static Value genOutputBuffer(CodeGen &codegen, PatternRewriter &rewriter,
232                              linalg::GenericOp op, MemRefType denseTp,
233                              ArrayRef<Value> args) {
234   Location loc = op.getLoc();
235   Value tensor = op.getOutputOperand(0)->get();
236   // The output tensor simply could materialize from the buffer that will
237   // be generated for the tensor present in the outs() clause. This has
238   // the major advantage that the sparse kernel only updates the nonzero
239   // positions for the output tensor.
240   if (getInPlace(tensor))
241     return rewriter.create<memref::BufferCastOp>(loc, denseTp, tensor);
242   // By default, a new buffer is allocated which is initialized to the
243   // tensor defined in the outs() clause. This is always correct but
244   // introduces a dense initialization component that may negatively
245   // impact the running complexity of the sparse kernel.
246   Value init = rewriter.create<memref::BufferCastOp>(loc, denseTp, tensor);
247   Value alloc = rewriter.create<memref::AllocOp>(loc, denseTp, args);
248   rewriter.create<memref::CopyOp>(loc, init, alloc);
249   return alloc;
250 }
251 
252 /// Local bufferization of all dense and sparse data structures.
253 /// This code enables testing the first prototype sparse compiler.
254 // TODO: replace this with a proliferated bufferization strategy
255 static bool genBuffers(Merger &merger, CodeGen &codegen,
256                        PatternRewriter &rewriter, linalg::GenericOp op) {
257   Location loc = op.getLoc();
258   assert(op.getNumInputsAndOutputs() == op.getNumInputs() + 1);
259   // For every tensor, find lower and upper bound on dimensions, set the
260   // same bounds on loop indices, and obtain dense or sparse buffer(s).
261   SmallVector<Value, 4> args;
262   for (OpOperand *t : op.getInputAndOutputOperands()) {
263     unsigned tensor = t->getOperandNumber();
264     auto shape = op.getShape(t);
265     auto map = op.getTiedIndexingMap(t);
266     auto enc = getSparseTensorEncoding(t->get().getType());
267     // Scan all dimensions of current tensor.
268     args.clear();
269     for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
270       unsigned idx = map.getDimPosition(perm(enc, d));
271       // Handle sparse storage schemes.
272       if (merger.isDim(tensor, idx, Dim::kSparse)) {
273         auto dynShape = {ShapedType::kDynamicSize};
274         auto ptrTp = MemRefType::get(
275             dynShape, genIntType(rewriter, enc.getPointerBitWidth()));
276         auto indTp = MemRefType::get(
277             dynShape, genIntType(rewriter, enc.getIndexBitWidth()));
278         Value dim = rewriter.create<ConstantIndexOp>(loc, d);
279         // Generate sparse primitives to obtains pointer and indices.
280         codegen.pointers[tensor][idx] =
281             rewriter.create<ToPointersOp>(loc, ptrTp, t->get(), dim);
282         codegen.indices[tensor][idx] =
283             rewriter.create<ToIndicesOp>(loc, indTp, t->get(), dim);
284       }
285       // Find lower and upper bound in current dimension. Note that a
286       // permuted encoding queries static type dimensions accordingly,
287       // but queries dynamic type dimensions in the generated order.
288       Value up;
289       unsigned p = perm(enc, d);
290       if (shape[p] == MemRefType::kDynamicSize) {
291         up = rewriter.create<tensor::DimOp>(loc, t->get(), d);
292         args.push_back(up);
293       } else {
294         up = rewriter.create<ConstantIndexOp>(loc, shape[p]);
295       }
296       assert(codegen.highs[tensor][idx] == nullptr);
297       codegen.sizes[idx] = codegen.highs[tensor][idx] = up;
298     }
299     // Perform the required bufferization. Dense inputs materialize
300     // from the input tensors. Dense outputs need special handling.
301     // Sparse inputs use sparse primitives to obtain the values.
302     // We also accept in-place all-dense annotated "sparse" outputs.
303     Type elementType = getElementTypeOrSelf(t->get().getType());
304     if (!enc) {
305       // Non-annotated dense tensors.
306       auto denseTp = MemRefType::get(shape, elementType);
307       if (tensor < op.getNumInputs())
308         codegen.buffers[tensor] =
309             rewriter.create<memref::BufferCastOp>(loc, denseTp, t->get());
310       else
311         codegen.buffers[tensor] =
312             genOutputBuffer(codegen, rewriter, op, denseTp, args);
313     } else {
314       // Annotated sparse tensors.
315       if (tensor == op.getNumInputs() && !getInPlace(t->get()))
316         return false; // reject output if not in-place
317       auto dynShape = {ShapedType::kDynamicSize};
318       auto sparseTp = MemRefType::get(dynShape, elementType);
319       codegen.buffers[tensor] =
320           rewriter.create<ToValuesOp>(loc, sparseTp, t->get());
321     }
322   }
323   return true;
324 }
325 
326 /// Constructs vector type.
327 static VectorType vectorType(CodeGen &codegen, Type etp) {
328   return VectorType::get(codegen.curVecLength, etp);
329 }
330 
331 /// Constructs vector type from pointer.
332 static VectorType vectorType(CodeGen &codegen, Value ptr) {
333   return vectorType(codegen, ptr.getType().cast<MemRefType>().getElementType());
334 }
335 
336 /// Constructs vector iteration mask.
337 static Value genVectorMask(CodeGen &codegen, PatternRewriter &rewriter,
338                            Value iv, Value lo, Value hi, Value step) {
339   Location loc = iv.getLoc();
340   VectorType mtp = vectorType(codegen, rewriter.getIntegerType(1));
341   // Special case if the vector length evenly divides the trip count (for
342   // example, "for i = 0, 128, 16"). A constant all-true mask is generated
343   // so that all subsequent masked memory operations are immediately folded
344   // into unconditional memory operations.
345   IntegerAttr loInt, hiInt, stepInt;
346   if (matchPattern(lo, m_Constant(&loInt)) &&
347       matchPattern(hi, m_Constant(&hiInt)) &&
348       matchPattern(step, m_Constant(&stepInt))) {
349     if (((hiInt.getInt() - loInt.getInt()) % stepInt.getInt()) == 0)
350       return rewriter.create<vector::BroadcastOp>(
351           loc, mtp, rewriter.create<ConstantIntOp>(loc, 1, 1));
352   }
353   // Otherwise, generate a vector mask that avoids overrunning the upperbound
354   // during vector execution. Here we rely on subsequent loop optimizations to
355   // avoid executing the mask in all iterations, for example, by splitting the
356   // loop into an unconditional vector loop and a scalar cleanup loop.
357   Value end = rewriter.create<SubIOp>(loc, hi, iv);
358   return rewriter.create<vector::CreateMaskOp>(loc, mtp, end);
359 }
360 
361 /// Generates a vectorized load lhs = a[ind[lo:hi]] or lhs = a[lo:hi].
362 static Value genVectorLoad(CodeGen &codegen, PatternRewriter &rewriter,
363                            Value ptr, ArrayRef<Value> args) {
364   Location loc = ptr.getLoc();
365   VectorType vtp = vectorType(codegen, ptr);
366   Value pass = rewriter.create<ConstantOp>(loc, vtp, rewriter.getZeroAttr(vtp));
367   if (args.back().getType().isa<VectorType>()) {
368     SmallVector<Value, 4> scalarArgs(args.begin(), args.end());
369     Value indexVec = args.back();
370     scalarArgs.back() = rewriter.create<ConstantIndexOp>(loc, 0);
371     return rewriter.create<vector::GatherOp>(
372         loc, vtp, ptr, scalarArgs, indexVec, codegen.curVecMask, pass);
373   }
374   return rewriter.create<vector::MaskedLoadOp>(loc, vtp, ptr, args,
375                                                codegen.curVecMask, pass);
376 }
377 
378 /// Generates a vectorized store a[ind[lo:hi]] = rhs or a[lo:hi] = rhs.
379 static void genVectorStore(CodeGen &codegen, PatternRewriter &rewriter,
380                            Value rhs, Value ptr, ArrayRef<Value> args) {
381   Location loc = ptr.getLoc();
382   if (args.back().getType().isa<VectorType>()) {
383     SmallVector<Value, 4> scalarArgs(args.begin(), args.end());
384     Value indexVec = args.back();
385     scalarArgs.back() = rewriter.create<ConstantIndexOp>(loc, 0);
386     rewriter.create<vector::ScatterOp>(loc, ptr, scalarArgs, indexVec,
387                                        codegen.curVecMask, rhs);
388     return;
389   }
390   rewriter.create<vector::MaskedStoreOp>(loc, ptr, args, codegen.curVecMask,
391                                          rhs);
392 }
393 
394 /// Generates a vectorized invariant. Here we rely on subsequent loop
395 /// optimizations to hoist the invariant broadcast out of the vector loop.
396 static Value genVectorInvariantValue(CodeGen &codegen,
397                                      PatternRewriter &rewriter, Value val) {
398   VectorType vtp = vectorType(codegen, val.getType());
399   return rewriter.create<vector::BroadcastOp>(val.getLoc(), vtp, val);
400 }
401 
402 /// Generates a load on a dense or sparse tensor.
403 static Value genTensorLoad(Merger &merger, CodeGen &codegen,
404                            PatternRewriter &rewriter, linalg::GenericOp op,
405                            unsigned exp) {
406   // Test if the load was hoisted to a higher loop nest.
407   Value val = merger.exp(exp).val;
408   if (val) {
409     if (codegen.curVecLength > 1 && !val.getType().isa<VectorType>())
410       return genVectorInvariantValue(codegen, rewriter, val);
411     return val;
412   }
413   // Actual load.
414   SmallVector<Value, 4> args;
415   OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).tensor];
416   unsigned tensor = t->getOperandNumber();
417   auto map = op.getTiedIndexingMap(t);
418   auto enc = getSparseTensorEncoding(t->get().getType());
419   unsigned rank = map.getNumResults();
420   if (enc) {
421     unsigned idx = map.getDimPosition(perm(enc, rank - 1));
422     assert(codegen.pidxs[tensor][idx] != nullptr);
423     args.push_back(codegen.pidxs[tensor][idx]); // position index
424   } else {
425     for (unsigned d = 0; d < rank; d++) {
426       unsigned idx = map.getDimPosition(d);
427       args.push_back(codegen.loops[idx]); // universal dense index
428     }
429   }
430   Location loc = op.getLoc();
431   Value ptr = codegen.buffers[tensor];
432   if (codegen.curVecLength > 1)
433     return genVectorLoad(codegen, rewriter, ptr, args);
434   return rewriter.create<memref::LoadOp>(loc, ptr, args);
435 }
436 
437 /// Generates a store on a dense or sparse tensor.
438 static void genTensorStore(Merger &merger, CodeGen &codegen,
439                            PatternRewriter &rewriter, linalg::GenericOp op,
440                            OpOperand *t, Value rhs) {
441   Location loc = op.getLoc();
442   // Test if this is a scalarized reduction.
443   OpOperand *lhs = op.getOutputOperand(0);
444   if (lhs == t && codegen.redVal) {
445     if (codegen.curVecLength > 1)
446       rhs = rewriter.create<SelectOp>(loc, codegen.curVecMask, rhs,
447                                       codegen.redVal);
448     codegen.redVal = rhs;
449     return;
450   }
451   // Actual store.
452   SmallVector<Value, 4> args;
453   unsigned tensor = t->getOperandNumber();
454   auto map = op.getTiedIndexingMap(t);
455   auto enc = getSparseTensorEncoding(t->get().getType());
456   unsigned rank = map.getNumResults();
457   if (enc) {
458     unsigned idx = map.getDimPosition(perm(enc, rank - 1));
459     assert(codegen.pidxs[tensor][idx] != nullptr);
460     args.push_back(codegen.pidxs[tensor][idx]); // position index
461   } else {
462     for (unsigned d = 0; d < rank; d++) {
463       unsigned idx = map.getDimPosition(d);
464       args.push_back(codegen.loops[idx]); // universal dense index
465     }
466   }
467   Value ptr = codegen.buffers[tensor];
468   if (codegen.curVecLength > 1)
469     genVectorStore(codegen, rewriter, rhs, ptr, args);
470   else
471     rewriter.create<memref::StoreOp>(loc, rhs, ptr, args);
472 }
473 
474 /// Generates a pointer/index load from the sparse storage scheme. Narrower
475 /// data types need to be zero extended before casting the value into the
476 /// index type used for looping and indexing.
477 static Value genLoad(CodeGen &codegen, PatternRewriter &rewriter, Location loc,
478                      Value ptr, Value s) {
479   // See https://llvm.org/docs/GetElementPtr.html for some background on
480   // the complications described below.
481   if (codegen.curVecLength > 1) {
482     // Since the index vector is used in a subsequent gather/scatter operations,
483     // which effectively defines an unsigned pointer + signed index, we must
484     // zero extend the vector to an index width. For 8-bit and 16-bit values,
485     // an 32-bit index width suffices. For 32-bit values, zero extending the
486     // elements into 64-bit loses some performance since the 32-bit indexed
487     // gather/scatter is more efficient than the 64-bit index variant (if the
488     // negative 32-bit index space is unused, the enableSIMDIndex32 flag can
489     // preserve this performance). For 64-bit values, there is no good way
490     // to state that the indices are unsigned, with creates the potential of
491     // incorrect address calculations in the unlikely case we need such
492     // extremely large offsets.
493     Type etp = ptr.getType().cast<MemRefType>().getElementType();
494     Value vload = genVectorLoad(codegen, rewriter, ptr, {s});
495     if (!etp.isa<IndexType>()) {
496       if (etp.getIntOrFloatBitWidth() < 32)
497         vload = rewriter.create<ZeroExtendIOp>(
498             loc, vload, vectorType(codegen, rewriter.getIntegerType(32)));
499       else if (etp.getIntOrFloatBitWidth() < 64 &&
500                !codegen.options.enableSIMDIndex32)
501         vload = rewriter.create<ZeroExtendIOp>(
502             loc, vload, vectorType(codegen, rewriter.getIntegerType(64)));
503     }
504     return vload;
505   }
506   // For the scalar case, we simply zero extend narrower indices into 64-bit
507   // values before casting to index without a performance penalty. Here too,
508   // however, indices that already are 64-bit, in theory, cannot express the
509   // full range as explained above.
510   Value load = rewriter.create<memref::LoadOp>(loc, ptr, s);
511   if (!load.getType().isa<IndexType>()) {
512     if (load.getType().getIntOrFloatBitWidth() < 64)
513       load = rewriter.create<ZeroExtendIOp>(loc, load,
514                                             rewriter.getIntegerType(64));
515     load = rewriter.create<IndexCastOp>(loc, load, rewriter.getIndexType());
516   }
517   return load;
518 }
519 
520 /// Generates an invariant value.
521 static Value genInvariantValue(Merger &merger, CodeGen &codegen,
522                                PatternRewriter &rewriter, unsigned exp) {
523   Value val = merger.exp(exp).val;
524   if (codegen.curVecLength > 1)
525     return genVectorInvariantValue(codegen, rewriter, val);
526   return val;
527 }
528 
529 /// Generates an address computation "sz * p + i".
530 static Value genAddress(CodeGen &codegen, PatternRewriter &rewriter,
531                         Location loc, Value size, Value p, Value i) {
532   Value mul = rewriter.create<MulIOp>(loc, size, p);
533   if (auto vtp = i.getType().dyn_cast<VectorType>()) {
534     Value inv = rewriter.create<IndexCastOp>(loc, mul, vtp.getElementType());
535     mul = genVectorInvariantValue(codegen, rewriter, inv);
536   }
537   return rewriter.create<AddIOp>(loc, mul, i);
538 }
539 
540 /// Generates start of a reduction.
541 static Value genReductionStart(Merger &merger, CodeGen &codegen,
542                                PatternRewriter &rewriter,
543                                linalg::GenericOp op) {
544   if (codegen.redVal)
545     return codegen.redVal; // chained with previous for-loop
546   if (codegen.curVecLength > 1) {
547     // TODO: assumes + reductions for now
548     VectorType vtp = vectorType(codegen, codegen.buffers[codegen.redExp]);
549     return rewriter.create<ConstantOp>(op.getLoc(), vtp,
550                                        rewriter.getZeroAttr(vtp));
551   }
552   return genTensorLoad(merger, codegen, rewriter, op, codegen.redExp);
553 }
554 
555 /// Generates end of a reduction.
556 static void genReductionEnd(Merger &merger, CodeGen &codegen,
557                             PatternRewriter &rewriter, linalg::GenericOp op) {
558   Value red = codegen.redVal;
559   if (!red)
560     return;
561   assert(codegen.curVecLength == 1);
562   codegen.redVal = merger.exp(codegen.redExp).val = Value(); // end chain
563   OpOperand *lhs = op.getOutputOperand(0);
564   if (auto vtp = red.getType().dyn_cast<VectorType>()) {
565     // TODO: assumes + reductions for now
566     StringAttr kind = rewriter.getStringAttr("add");
567     Value ld = genTensorLoad(merger, codegen, rewriter, op, codegen.redExp);
568     // Integer reductions don't accept an accumulator.
569     if (vtp.getElementType().isa<IntegerType>()) {
570       red = rewriter.create<vector::ReductionOp>(op.getLoc(), ld.getType(),
571                                                  kind, red, ValueRange{});
572       red = rewriter.create<AddIOp>(op.getLoc(), red, ld);
573     } else {
574       red = rewriter.create<vector::ReductionOp>(op.getLoc(), ld.getType(),
575                                                  kind, red, ld);
576     }
577   }
578   genTensorStore(merger, codegen, rewriter, op, lhs, red);
579 }
580 
581 /// Recursively generates tensor expression.
582 static Value genExp(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
583                     linalg::GenericOp op, unsigned exp) {
584   Location loc = op.getLoc();
585   if (exp == -1u)
586     return Value();
587   if (merger.exp(exp).kind == Kind::kTensor)
588     return genTensorLoad(merger, codegen, rewriter, op, exp);
589   if (merger.exp(exp).kind == Kind::kInvariant)
590     return genInvariantValue(merger, codegen, rewriter, exp);
591   Value v0 = genExp(merger, codegen, rewriter, op, merger.exp(exp).children.e0);
592   Value v1 = genExp(merger, codegen, rewriter, op, merger.exp(exp).children.e1);
593   if (merger.exp(exp).kind == Kind::kNegI) {
594     // TODO: no negi in std, need to make zero explicit.
595     Type tp = op.getOutputTensorTypes()[0].getElementType();
596     v1 = v0;
597     v0 = rewriter.create<ConstantOp>(loc, tp, rewriter.getZeroAttr(tp));
598     if (codegen.curVecLength > 1)
599       v0 = genVectorInvariantValue(codegen, rewriter, v0);
600   }
601   return merger.buildExp(rewriter, loc, exp, v0, v1);
602 }
603 
604 /// Hoists loop invariant tensor loads for which indices have been exhausted.
605 static void genInvariants(Merger &merger, CodeGen &codegen,
606                           PatternRewriter &rewriter, linalg::GenericOp op,
607                           unsigned exp, unsigned ldx, bool hoist) {
608   if (exp == -1u)
609     return;
610   if (merger.exp(exp).kind == Kind::kTensor) {
611     // Inspect tensor indices.
612     bool atLevel = ldx == -1u;
613     OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).tensor];
614     auto map = op.getTiedIndexingMap(t);
615     auto enc = getSparseTensorEncoding(t->get().getType());
616     for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
617       unsigned idx = map.getDimPosition(perm(enc, d));
618       if (!codegen.loops[idx])
619         return; // still in play
620       else if (idx == ldx)
621         atLevel = true;
622     }
623     // All exhausted at this level (atLevel denotes exactly at this level).
624     OpOperand *lhs = op.getOutputOperand(0);
625     if (lhs == t) {
626       codegen.redExp = hoist ? exp : -1u;
627     } else if (atLevel) {
628       merger.exp(exp).val =
629           hoist ? genTensorLoad(merger, codegen, rewriter, op, exp) : Value();
630     }
631   } else if (merger.exp(exp).kind != Kind::kInvariant) {
632     // Traverse into the binary operations. Note that we only hoist
633     // tensor loads, since subsequent MLIR/LLVM passes know how to
634     // deal with all other kinds of derived loop invariants.
635     unsigned e0 = merger.exp(exp).children.e0;
636     unsigned e1 = merger.exp(exp).children.e1;
637     genInvariants(merger, codegen, rewriter, op, e0, ldx, hoist);
638     genInvariants(merger, codegen, rewriter, op, e1, ldx, hoist);
639   }
640 }
641 
642 /// Generates initialization code for the subsequent loop sequence at
643 /// current index level. Returns true if the loop sequence needs to
644 /// maintain the universal index.
645 static bool genInit(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
646                     linalg::GenericOp op, std::vector<unsigned> &topSort,
647                     unsigned at, llvm::BitVector &inits) {
648   bool needsUniv = false;
649   Location loc = op.getLoc();
650   unsigned idx = topSort[at];
651 
652   // Initialize sparse positions.
653   for (unsigned b = 0, be = inits.size(); b < be; b++) {
654     if (inits[b]) {
655       unsigned tensor = merger.tensor(b);
656       assert(idx == merger.index(b));
657       if (merger.isDim(b, Dim::kSparse)) {
658         // Initialize sparse index.
659         unsigned pat = at;
660         for (; pat != 0; pat--) {
661           if (codegen.pidxs[tensor][topSort[pat - 1]])
662             break;
663         }
664         Value ptr = codegen.pointers[tensor][idx];
665         Value one = rewriter.create<ConstantIndexOp>(loc, 1);
666         Value p0 = (pat == 0) ? rewriter.create<ConstantIndexOp>(loc, 0)
667                               : codegen.pidxs[tensor][topSort[pat - 1]];
668         codegen.pidxs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p0);
669         Value p1 = rewriter.create<AddIOp>(loc, p0, one);
670         codegen.highs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p1);
671       } else {
672         // Dense index still in play.
673         needsUniv = true;
674       }
675     }
676   }
677 
678   // Initialize the universal dense index.
679   codegen.loops[idx] = rewriter.create<ConstantIndexOp>(loc, 0);
680   return needsUniv;
681 }
682 
683 /// Returns vectorization strategy. Any implicit inner loop in the Linalg
684 /// operation is a candidate. Whether it is actually converted to SIMD code
685 /// depends on the requested strategy.
686 static bool isVectorFor(CodeGen &codegen, bool isInner, bool isSparse) {
687   switch (codegen.options.vectorizationStrategy) {
688   case SparseVectorizationStrategy::kNone:
689     return false;
690   case SparseVectorizationStrategy::kDenseInnerLoop:
691     return isInner && !isSparse;
692   case SparseVectorizationStrategy::kAnyStorageInnerLoop:
693     return isInner;
694   }
695   llvm_unreachable("unexpected vectorization strategy");
696 }
697 
698 /// Returns parallelization strategy. Any implicit loop in the Linalg operation
699 /// that is marked "parallel" is a candidate. Whether it is actually converted
700 /// to a parallel operation depends on the requested strategy.
701 static bool isParallelFor(CodeGen &codegen, bool isOuter, bool isReduction,
702                           bool isSparse, bool isVector) {
703   switch (codegen.options.parallelizationStrategy) {
704   case SparseParallelizationStrategy::kNone:
705     return false;
706   case SparseParallelizationStrategy::kDenseOuterLoop:
707     return isOuter && !isSparse && !isReduction && !isVector;
708   case SparseParallelizationStrategy::kAnyStorageOuterLoop:
709     return isOuter && !isReduction && !isVector;
710   case SparseParallelizationStrategy::kDenseAnyLoop:
711     return !isSparse && !isReduction && !isVector;
712   case SparseParallelizationStrategy::kAnyStorageAnyLoop:
713     return !isReduction && !isVector;
714   }
715   llvm_unreachable("unexpected parallelization strategy");
716 }
717 
718 /// Checks unit strides for dense tensors. The iteration graph may have ignored
719 /// dense access patterns in order to avoid cycles (sparse access patterns are
720 /// always placed innermost), but that means dense access has become strided.
721 /// For now, we reject vectorization of such cases.
722 /// TODO: implement strided load/stores on dense arrays
723 static bool denseUnitStrides(Merger &merger, linalg::GenericOp op,
724                              unsigned idx) {
725   for (OpOperand *t : op.getInputAndOutputOperands()) {
726     if (!getSparseTensorEncoding(t->get().getType())) {
727       auto map = op.getTiedIndexingMap(t);
728       for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
729         if (map.getDimPosition(d) == idx && d != rank - 1)
730           return false;
731       }
732     }
733   }
734   return true;
735 }
736 
737 /// Generates a for-loop on a single index.
738 static Operation *genFor(Merger &merger, CodeGen &codegen,
739                          PatternRewriter &rewriter, linalg::GenericOp op,
740                          bool isOuter, bool isInner, unsigned idx,
741                          llvm::BitVector &indices) {
742   unsigned fb = indices.find_first();
743   unsigned tensor = merger.tensor(fb);
744   assert(idx == merger.index(fb));
745   auto iteratorTypes = op.iterator_types().getValue();
746   bool isReduction = linalg::isReductionIteratorType(iteratorTypes[idx]);
747   bool isSparse = merger.isDim(fb, Dim::kSparse);
748   bool isVector = isVectorFor(codegen, isInner, isSparse) &&
749                   denseUnitStrides(merger, op, idx);
750   bool isParallel =
751       isParallelFor(codegen, isOuter, isReduction, isSparse, isVector);
752 
753   // Prepare vector length.
754   if (isVector)
755     codegen.curVecLength = codegen.options.vectorLength;
756 
757   // Loop bounds and increment.
758   Location loc = op.getLoc();
759   Value lo = isSparse ? codegen.pidxs[tensor][idx] : codegen.loops[idx];
760   Value hi = isSparse ? codegen.highs[tensor][idx] : codegen.sizes[idx];
761   Value step = rewriter.create<ConstantIndexOp>(loc, codegen.curVecLength);
762 
763   // Emit a parallel loop.
764   if (isParallel) {
765     assert(!isVector);
766     scf::ParallelOp parOp = rewriter.create<scf::ParallelOp>(loc, lo, hi, step);
767     if (isSparse)
768       codegen.pidxs[tensor][idx] = parOp.getInductionVars()[0];
769     else
770       codegen.loops[idx] = parOp.getInductionVars()[0];
771     rewriter.setInsertionPointToStart(parOp.getBody());
772     return parOp;
773   }
774 
775   // Emit a sequential loop, potentially with a scalarized reduction.
776   bool scalarRed = isInner && codegen.redExp != -1u;
777   SmallVector<Value, 4> operands;
778   if (scalarRed) {
779     Value load = genReductionStart(merger, codegen, rewriter, op);
780     operands.push_back(load);
781   }
782   scf::ForOp forOp = rewriter.create<scf::ForOp>(loc, lo, hi, step, operands);
783   if (scalarRed) {
784     codegen.redVal = merger.exp(codegen.redExp).val =
785         forOp.getRegionIterArgs().front();
786   }
787   // Assign induction variable to sparse or dense index.
788   Value iv = forOp.getInductionVar();
789   if (isSparse)
790     codegen.pidxs[tensor][idx] = iv;
791   else
792     codegen.loops[idx] = iv;
793   rewriter.setInsertionPointToStart(forOp.getBody());
794   // Share vector iteration mask between all subsequent loads/stores.
795   if (isVector)
796     codegen.curVecMask = genVectorMask(codegen, rewriter, iv, lo, hi, step);
797   return forOp;
798 }
799 
800 /// Emit a while-loop for co-iteration over multiple indices.
801 static Operation *genWhile(Merger &merger, CodeGen &codegen,
802                            PatternRewriter &rewriter, linalg::GenericOp op,
803                            unsigned idx, bool needsUniv,
804                            llvm::BitVector &indices) {
805   SmallVector<Type, 4> types;
806   SmallVector<Value, 4> operands;
807   // Construct the while-loop with a parameter for each index.
808   Type indexType = rewriter.getIndexType();
809   for (unsigned b = 0, be = indices.size(); b < be; b++) {
810     if (indices[b] && merger.isDim(b, Dim::kSparse)) {
811       unsigned tensor = merger.tensor(b);
812       assert(idx == merger.index(b));
813       types.push_back(indexType);
814       assert(codegen.pidxs[tensor][idx].getType().isa<IndexType>() &&
815              "type mismatch for sparse index");
816       operands.push_back(codegen.pidxs[tensor][idx]);
817     }
818   }
819   if (needsUniv) {
820     types.push_back(indexType);
821     assert(codegen.loops[idx].getType().isa<IndexType>() &&
822            "type mismatch for universal index");
823     operands.push_back(codegen.loops[idx]);
824   }
825   Location loc = op.getLoc();
826   scf::WhileOp whileOp = rewriter.create<scf::WhileOp>(loc, types, operands);
827   Block *before = rewriter.createBlock(&whileOp.before(), {}, types);
828   Block *after = rewriter.createBlock(&whileOp.after(), {}, types);
829 
830   // Build the "before" region, which effectively consists
831   // of a conjunction of "i < upper" tests on all induction.
832   rewriter.setInsertionPointToStart(&whileOp.before().front());
833   Value cond;
834   unsigned o = 0;
835   for (unsigned b = 0, be = indices.size(); b < be; b++) {
836     if (indices[b] && merger.isDim(b, Dim::kSparse)) {
837       unsigned tensor = merger.tensor(b);
838       assert(idx == merger.index(b));
839       Value op1 = before->getArgument(o);
840       Value op2 = codegen.highs[tensor][idx];
841       Value opc = rewriter.create<CmpIOp>(loc, CmpIPredicate::ult, op1, op2);
842       cond = cond ? rewriter.create<AndOp>(loc, cond, opc) : opc;
843       codegen.pidxs[tensor][idx] = after->getArgument(o++);
844     }
845   }
846   if (needsUniv)
847     codegen.loops[idx] = after->getArgument(o++);
848   assert(o == operands.size());
849   rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments());
850   rewriter.setInsertionPointToStart(&whileOp.after().front());
851   return whileOp;
852 }
853 
854 /// Generates a for-loop or a while-loop, depending on whether it implements
855 /// singleton iteration or co-iteration over the given conjunction.
856 static Operation *genLoop(Merger &merger, CodeGen &codegen,
857                           PatternRewriter &rewriter, linalg::GenericOp op,
858                           std::vector<unsigned> &topSort, unsigned at,
859                           bool needsUniv, llvm::BitVector &indices) {
860   unsigned idx = topSort[at];
861   if (indices.count() == 1) {
862     bool isOuter = at == 0;
863     bool isInner = at == topSort.size() - 1;
864     return genFor(merger, codegen, rewriter, op, isOuter, isInner, idx,
865                   indices);
866   }
867   genReductionEnd(merger, codegen, rewriter, op); // cannot chain
868   return genWhile(merger, codegen, rewriter, op, idx, needsUniv, indices);
869 }
870 
871 /// Generates the local variables for this loop, consisting of the sparse
872 /// indices, restored universal dense index, and dense positions.
873 static void genLocals(Merger &merger, CodeGen &codegen,
874                       PatternRewriter &rewriter, linalg::GenericOp op,
875                       std::vector<unsigned> &topSort, unsigned at,
876                       bool needsUniv, llvm::BitVector &locals) {
877   Location loc = op.getLoc();
878   unsigned idx = topSort[at];
879 
880   // Initialize sparse indices.
881   Value min;
882   for (unsigned b = 0, be = locals.size(); b < be; b++) {
883     if (locals[b] && merger.isDim(b, Dim::kSparse)) {
884       unsigned tensor = merger.tensor(b);
885       assert(idx == merger.index(b));
886       Value ptr = codegen.indices[tensor][idx];
887       Value s = codegen.pidxs[tensor][idx];
888       Value load = genLoad(codegen, rewriter, loc, ptr, s);
889       codegen.idxs[tensor][idx] = load;
890       if (!needsUniv) {
891         if (min) {
892           Value cmp =
893               rewriter.create<CmpIOp>(loc, CmpIPredicate::ult, load, min);
894           min = rewriter.create<SelectOp>(loc, cmp, load, min);
895         } else {
896           min = load;
897         }
898       }
899     }
900   }
901 
902   // Merge dense universal index over minimum.
903   if (min) {
904     assert(!needsUniv);
905     codegen.loops[idx] = min;
906   }
907 
908   // Initialize dense positions. Note that we generate dense indices of the
909   // output tensor unconditionally, since they may not appear in the lattice,
910   // but may be needed for linearized codegen.
911   for (unsigned b = 0, be = locals.size(); b < be; b++) {
912     if ((locals[b] || merger.isOutTensor(b, idx)) &&
913         merger.isDim(b, Dim::kDense)) {
914       unsigned tensor = merger.tensor(b);
915       assert(idx == merger.index(b));
916       unsigned pat = at;
917       for (; pat != 0; pat--)
918         if (codegen.pidxs[tensor][topSort[pat - 1]])
919           break;
920       Value p = (pat == 0) ? rewriter.create<ConstantIndexOp>(loc, 0)
921                            : codegen.pidxs[tensor][topSort[pat - 1]];
922       codegen.pidxs[tensor][idx] = genAddress(
923           codegen, rewriter, loc, codegen.sizes[idx], p, codegen.loops[idx]);
924     }
925   }
926 }
927 
928 /// Generates the induction structure for a while-loop.
929 static void genWhileInduction(Merger &merger, CodeGen &codegen,
930                               PatternRewriter &rewriter, linalg::GenericOp op,
931                               unsigned idx, bool needsUniv,
932                               llvm::BitVector &induction, ResultRange results) {
933   Location loc = op.getLoc();
934   unsigned o = 0;
935   SmallVector<Value, 4> operands;
936   Value one = rewriter.create<ConstantIndexOp>(loc, 1);
937   for (unsigned b = 0, be = induction.size(); b < be; b++) {
938     if (induction[b] && merger.isDim(b, Dim::kSparse)) {
939       unsigned tensor = merger.tensor(b);
940       assert(idx == merger.index(b));
941       Value op1 = codegen.idxs[tensor][idx];
942       Value op2 = codegen.loops[idx];
943       Value op3 = codegen.pidxs[tensor][idx];
944       Value cmp = rewriter.create<CmpIOp>(loc, CmpIPredicate::eq, op1, op2);
945       Value add = rewriter.create<AddIOp>(loc, op3, one);
946       operands.push_back(rewriter.create<SelectOp>(loc, cmp, add, op3));
947       codegen.pidxs[tensor][idx] = results[o++];
948     }
949   }
950   if (needsUniv) {
951     operands.push_back(rewriter.create<AddIOp>(loc, codegen.loops[idx], one));
952     codegen.loops[idx] = results[o++];
953   }
954   assert(o == operands.size());
955   rewriter.create<scf::YieldOp>(loc, operands);
956 }
957 
958 /// Generates a single if-statement within a while-loop.
959 static scf::IfOp genIf(Merger &merger, CodeGen &codegen,
960                        PatternRewriter &rewriter, linalg::GenericOp op,
961                        unsigned idx, llvm::BitVector &conditions) {
962   Location loc = op.getLoc();
963   Value cond;
964   for (unsigned b = 0, be = conditions.size(); b < be; b++) {
965     if (conditions[b]) {
966       unsigned tensor = merger.tensor(b);
967       assert(idx == merger.index(b));
968       Value clause;
969       if (merger.isDim(b, Dim::kSparse)) {
970         Value op1 = codegen.idxs[tensor][idx];
971         Value op2 = codegen.loops[idx];
972         clause = rewriter.create<CmpIOp>(loc, CmpIPredicate::eq, op1, op2);
973       } else {
974         clause = rewriter.create<ConstantIntOp>(loc, 1, 1); // true
975       }
976       cond = cond ? rewriter.create<AndOp>(loc, cond, clause) : clause;
977     }
978   }
979   scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, cond, /*else*/ true);
980   rewriter.setInsertionPointToStart(&ifOp.thenRegion().front());
981   return ifOp;
982 }
983 
984 /// Recursively generates code while computing iteration lattices in order
985 /// to manage the complexity of implementing co-iteration over unions
986 /// and intersections of sparse iterations spaces.
987 static void genStmt(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
988                     linalg::GenericOp op, std::vector<unsigned> &topSort,
989                     unsigned exp, unsigned at) {
990   // At each leaf, assign remaining tensor (sub)expression to output tensor.
991   if (at == topSort.size()) {
992     OpOperand *lhs = op.getOutputOperand(0);
993     Value rhs = genExp(merger, codegen, rewriter, op, exp);
994     genTensorStore(merger, codegen, rewriter, op, lhs, rhs);
995     return;
996   }
997   assert(codegen.curVecLength == 1);
998 
999   // Construct iteration lattices for current loop index, with L0 at top.
1000   // Then emit initialization code for the loop sequence at this level.
1001   // We maintain the universal dense index if dense indices are still
1002   // in play for a non-singleton loop sequence.
1003   Location loc = op.getLoc();
1004   unsigned idx = topSort[at];
1005   unsigned lts = merger.optimizeSet(merger.buildLattices(exp, idx));
1006   unsigned lsize = merger.set(lts).size();
1007   assert(lsize != 0);
1008   unsigned l0 = merger.set(lts)[0];
1009   unsigned ldx = at == 0 ? -1u : topSort[at - 1];
1010   genInvariants(merger, codegen, rewriter, op, exp, ldx, /*hoist=*/true);
1011   bool needsUniv = false;
1012   if (genInit(merger, codegen, rewriter, op, topSort, at,
1013               merger.lat(l0).bits)) {
1014     // Maintain the universal index only if it is actually
1015     // consumed by a subsequent lattice point.
1016     for (unsigned i = 1; i < lsize; i++) {
1017       unsigned li = merger.set(lts)[i];
1018       if (!merger.hasAnyDimOf(merger.lat(li).simple, Dim::kSparse)) {
1019         needsUniv = true;
1020         break;
1021       }
1022     }
1023   }
1024 
1025   // Emit a loop for every lattice point L0 >= Li.
1026   for (unsigned i = 0; i < lsize; i++) {
1027     unsigned li = merger.set(lts)[i];
1028 
1029     // Emit loop.
1030     codegen.curVecLength = 1;
1031     llvm::BitVector indices = merger.lat(li).simple;
1032     Operation *loop =
1033         genLoop(merger, codegen, rewriter, op, topSort, at, needsUniv, indices);
1034     genLocals(merger, codegen, rewriter, op, topSort, at, needsUniv,
1035               merger.lat(li).bits);
1036 
1037     // Visit all lattices points with Li >= Lj to generate the
1038     // loop-body, possibly with if statements for coiteration.
1039     bool isWhile = dyn_cast<scf::WhileOp>(loop) != nullptr;
1040     for (unsigned j = 0; j < lsize; j++) {
1041       unsigned lj = merger.set(lts)[j];
1042       unsigned ej = merger.lat(lj).exp;
1043       if (li == lj || merger.latGT(li, lj)) {
1044         // Recurse into body of each branch.
1045         if (isWhile) {
1046           scf::IfOp ifOp =
1047               genIf(merger, codegen, rewriter, op, idx, merger.lat(lj).simple);
1048           genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1);
1049           rewriter.setInsertionPointToStart(&ifOp.elseRegion().front());
1050         } else {
1051           genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1);
1052         }
1053       }
1054     }
1055 
1056     // Wrap-up induction and restore insertion point.
1057     if (isWhile) {
1058       scf::WhileOp whileOp = cast<scf::WhileOp>(loop);
1059       rewriter.setInsertionPointToEnd(&whileOp.after().front());
1060       genWhileInduction(merger, codegen, rewriter, op, idx, needsUniv,
1061                         merger.lat(li).bits, whileOp.results());
1062     } else {
1063       needsUniv = false;
1064       if (codegen.redVal) {
1065         rewriter.create<scf::YieldOp>(loc, codegen.redVal);
1066         codegen.redVal = loop->getResult(0);
1067       }
1068     }
1069     rewriter.setInsertionPointAfter(loop);
1070   }
1071 
1072   // Wrap-up loop sequence.
1073   codegen.curVecLength = 1;
1074   genReductionEnd(merger, codegen, rewriter, op);
1075   genInvariants(merger, codegen, rewriter, op, exp, ldx, /*hoist=*/false);
1076   codegen.loops[idx] = Value();
1077 }
1078 
1079 /// Converts the result computed by the sparse kernel into the required form.
1080 static void genResult(Merger &merger, CodeGen &codegen,
1081                       PatternRewriter &rewriter, linalg::GenericOp op) {
1082   Location loc = op.getLoc();
1083   OpOperand *lhs = op.getOutputOperand(0);
1084   Type resType = lhs->get().getType();
1085   unsigned tensor = lhs->getOperandNumber();
1086   auto map = op.getTiedIndexingMap(lhs);
1087   auto enc = getSparseTensorEncoding(resType);
1088   Value result = codegen.buffers.back(); // value array
1089   if (enc) {
1090     // The sparse annotation unambigiously defines the arrays needed
1091     // to "reconstruct" the sparse tensor from the storage scheme
1092     // (even though lowering should never need this eventually).
1093     SmallVector<Value, 4> args;
1094     for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
1095       unsigned idx = map.getDimPosition(perm(enc, d));
1096       if (merger.isDim(tensor, idx, Dim::kSparse)) {
1097         args.push_back(codegen.pointers[tensor][idx]);
1098         args.push_back(codegen.indices[tensor][idx]);
1099       }
1100     }
1101     args.push_back(result);
1102     result = rewriter.create<ToTensorOp>(loc, resType, args);
1103   } else {
1104     // To "reconstruct" an non-annotated tensor, sipmly load it
1105     // from the bufferized value.
1106     result = rewriter.create<memref::TensorLoadOp>(loc, resType, result);
1107   }
1108   rewriter.replaceOp(op, result);
1109 }
1110 
1111 namespace {
1112 
1113 /// Sparse rewriting rule for generic Lingalg operation.
1114 struct GenericOpSparsifier : public OpRewritePattern<linalg::GenericOp> {
1115 public:
1116   GenericOpSparsifier(MLIRContext *context, SparsificationOptions o)
1117       : OpRewritePattern<linalg::GenericOp>(context), options(o) {}
1118 
1119   LogicalResult matchAndRewrite(linalg::GenericOp op,
1120                                 PatternRewriter &rewriter) const override {
1121     // Detects sparse annotations and translate the per-dimension sparsity
1122     // information for all tensors to loop indices in the kernel.
1123     assert(op.getNumOutputs() == 1);
1124     unsigned numTensors = op.getNumInputsAndOutputs();
1125     unsigned numLoops = op.iterator_types().getValue().size();
1126     Merger merger(numTensors, numLoops);
1127     if (!findSparseAnnotations(merger, op))
1128       return failure();
1129 
1130     // Computes a topologically sorted iteration graph to ensure
1131     // tensors are visited in natural index order. Fails on cycles.
1132     // This assumes that higher-level passes have already put the
1133     // tensors in each tensor expression in a feasible order.
1134     std::vector<unsigned> topSort;
1135     if (!computeIterationGraph(merger, op, topSort, /*sparseOnly=*/false) &&
1136         !computeIterationGraph(merger, op, topSort, /*sparseOnly=*/true))
1137       return failure();
1138 
1139     // Builds the tensor expression for the Linalg operation in SSA form.
1140     Optional<unsigned> exp = merger.buildTensorExpFromLinalg(op);
1141     if (!exp.hasValue())
1142       return failure();
1143 
1144     // Rejects an inadmissable tensor expression.
1145     if (!isAdmissableTensorExp(merger, op, exp.getValue()))
1146       return failure();
1147 
1148     // Recursively generates code.
1149     CodeGen codegen(options, numTensors, numLoops);
1150     if (!genBuffers(merger, codegen, rewriter, op))
1151       return failure(); // could not bufferize
1152     genStmt(merger, codegen, rewriter, op, topSort, exp.getValue(), 0);
1153     genResult(merger, codegen, rewriter, op);
1154     return success();
1155   }
1156 
1157 private:
1158   /// Options to control sparse code generation.
1159   SparsificationOptions options;
1160 };
1161 
1162 } // namespace
1163 
1164 /// Populates the given patterns list with rewriting rules required for
1165 /// the sparsification of linear algebra operations.
1166 void mlir::populateSparsificationPatterns(
1167     RewritePatternSet &patterns, const SparsificationOptions &options) {
1168   patterns.add<GenericOpSparsifier>(patterns.getContext(), options);
1169 }
1170