1 //===- Sparsification.cpp - Implementation of sparsification --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements lowering sparse tensor types to actual sparse code. 10 // 11 // The concept of letting a compiler generate sparse code automatically was 12 // pioneered for dense linear algebra code in Fortran by [Bik96] in MT1 and 13 // formalized to tensor algebra by [Kjolstad17,20] for the Sparse Tensor 14 // Algebra Compiler (TACO). The implementation in this file closely follows 15 // the "sparse iteration theory" that forms the foundation of TACO. A rewriting 16 // rule is applied to each tensor expression in linalg (MLIR's tensor index 17 // notation) where the sparsity of tensors is indicated with annotation using 18 // a per-dimension specification of sparse/dense storage together with a 19 // specification of the order on the dimensions. Subsequently, a topologically 20 // sorted iteration graph, reflecting the required order on indices with respect 21 // to the dimensions of each tensor, is constructed to ensure that all tensors 22 // are visited in natural index order. Next, iteration lattices are constructed 23 // for the tensor expression for every index in topological order. Each 24 // iteration lattice point consists of a conjunction of tensor indices together 25 // with a tensor (sub)expression that needs to be evaluated for that 26 // conjunction. Within the lattice, iteration points are ordered according to 27 // the way indices are exhausted. As such these iteration lattices drive actual 28 // sparse code generation, which consists of a tedious but relatively 29 // straightforward one-to-one mapping from iteration lattices to combinations 30 // of for-loops, while-loops, and if-statements. 31 // 32 // [Bik96] Aart J.C. Bik. Compiler Support for Sparse Matrix Computations. 33 // PhD thesis, Leiden University, May 1996 (aartbik.com/sparse.php). 34 // [Kjolstad17] Fredrik Berg Kjolstad, Shoaib Ashraf Kamil, Stephen Chou, 35 // David Lugato, and Saman Amarasinghe. The Tensor Algebra Compiler. 36 // Proceedings of the ACM on Programming Languages, October 2017. 37 // [Kjolstad20] Fredrik Berg Kjolstad. Sparse Tensor Algebra Compilation. 38 // PhD thesis, MIT, February, 2020 (tensor-compiler.org). 39 // 40 // Implementation detail: We use llvm::SmallVector for vectors with 41 // variable lengths and std::vector for vectors with fixed lengths. 42 //===----------------------------------------------------------------------===// 43 44 #include "mlir/Dialect/Linalg/IR/LinalgOps.h" 45 #include "mlir/Dialect/Linalg/Utils/Utils.h" 46 #include "mlir/Dialect/SCF/SCF.h" 47 #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h" 48 #include "mlir/Dialect/SparseTensor/Transforms/Passes.h" 49 #include "mlir/Dialect/StandardOps/IR/Ops.h" 50 #include "mlir/Dialect/Vector/VectorOps.h" 51 #include "mlir/IR/Matchers.h" 52 #include "mlir/IR/TensorEncoding.h" 53 #include "llvm/ADT/SmallBitVector.h" 54 55 using namespace mlir; 56 using namespace mlir::sparse_tensor; 57 58 namespace { 59 60 enum class Kind { kTensor, kInvariant, kMulF, kMulI, kAddF, kAddI }; 61 enum class Dim { kSparse, kDense, kSingle, kUndef }; 62 63 /// Tensor expression. Represents a MLIR expression in tensor index notation. 64 /// For tensors, e0 denotes the tensor index. For invariants, the IR value is 65 /// stored directly. For binary operations, e0 and e1 denote the index of the 66 /// children tensor expressions. 67 struct TensorExp { 68 TensorExp(Kind k, unsigned x, unsigned y, Value v) 69 : kind(k), e0(x), e1(y), val(v) { 70 assert((kind == Kind::kTensor && e0 != -1u && e1 == -1u && !val) || 71 (kind == Kind::kInvariant && e0 == -1u && e1 == -1u && val) || 72 (kind >= Kind::kMulF && e0 != -1u && e1 != -1u && !val)); 73 } 74 Kind kind; 75 /// Indices of children expression(s). 76 unsigned e0; 77 unsigned e1; 78 /// Direct link to IR for an invariant. During code generation, 79 /// field is used to cache "hoisted" loop invariant tensor loads. 80 Value val; 81 }; 82 83 /// Lattice point. Each lattice point consists of a conjunction of tensor 84 /// loop indices (encoded in a bitvector) and the index of the corresponding 85 /// tensor expression. 86 struct LatPoint { 87 LatPoint(unsigned n, unsigned e, unsigned b) : bits(n, false), exp(e) { 88 bits.set(b); 89 } 90 LatPoint(const llvm::BitVector &b, unsigned e) : bits(b), exp(e) {} 91 /// Conjunction of tensor loop indices as bitvector. This represents 92 /// all indices involved in the tensor expression 93 llvm::BitVector bits; 94 /// Simplified conjunction of tensor loop indices as bitvector. This 95 /// represents a simplified condition under which this tensor expression 96 /// must execute. Pre-computed during codegen to avoid repeated eval. 97 llvm::BitVector simple; 98 /// Index of the tensor expresssion. 99 unsigned exp; 100 }; 101 102 /// A class to handle all iteration lattice operations. This class abstracts 103 /// away from some implementation details of storing iteration lattices and 104 /// tensor expressions. This allows for fine-tuning performance characteristics 105 /// independently from the basic algorithm if bottlenecks are identified. 106 class Merger { 107 public: 108 /// Constructs a merger for the given number of tensors and loops. The 109 /// user supplies the number of tensors involved in the kernel, with the 110 /// last tensor in this set denoting the output tensor. The merger adds an 111 /// additional synthetic tensor at the end of this set to represent all 112 /// invariant expressions in the kernel. 113 Merger(unsigned t, unsigned l) 114 : outTensor(t - 1), numTensors(t + 1), numLoops(l), 115 dims(t + 1, std::vector<Dim>(l, Dim::kUndef)) {} 116 117 /// Adds a tensor expression. Returns its index. 118 unsigned addExp(Kind k, unsigned e0, unsigned e1 = -1u, Value v = Value()) { 119 unsigned e = tensorExps.size(); 120 tensorExps.push_back(TensorExp(k, e0, e1, v)); 121 return e; 122 } 123 unsigned addExp(Kind k, Value v) { return addExp(k, -1u, -1u, v); } 124 125 /// Adds an iteration lattice point. Returns its index. 126 unsigned addLat(unsigned t, unsigned i, unsigned e) { 127 assert(t < numTensors && i < numLoops); 128 unsigned p = latPoints.size(); 129 latPoints.push_back(LatPoint(numLoops * numTensors, e, numTensors * i + t)); 130 return p; 131 } 132 133 /// Adds a new, initially empty, set. Returns its index. 134 unsigned addSet() { 135 unsigned s = latSets.size(); 136 latSets.emplace_back(SmallVector<unsigned, 16>()); 137 return s; 138 } 139 140 /// Computes a single conjunction of two lattice points by taking the "union" 141 /// of loop indices (effectively constructing a larger "intersection" of those 142 /// indices) with a newly constructed tensor (sub)expression of given kind. 143 /// Returns the index of the new lattice point. 144 unsigned conjLatPoint(Kind kind, unsigned p0, unsigned p1) { 145 unsigned p = latPoints.size(); 146 llvm::BitVector nb = llvm::BitVector(latPoints[p0].bits); 147 nb |= latPoints[p1].bits; 148 unsigned e = addExp(kind, latPoints[p0].exp, latPoints[p1].exp); 149 latPoints.push_back(LatPoint(nb, e)); 150 return p; 151 } 152 153 /// Conjunctive merge of two lattice sets L0 and L1 is conjunction of 154 /// cartesian product. Returns the index of the new set. 155 unsigned takeConj(Kind kind, unsigned s0, unsigned s1) { 156 unsigned s = addSet(); 157 for (unsigned p0 : latSets[s0]) 158 for (unsigned p1 : latSets[s1]) 159 latSets[s].push_back(conjLatPoint(kind, p0, p1)); 160 return s; 161 } 162 163 /// Disjunctive merge of two lattice sets L0 and L1 is (L0 /\_op L1, L0, L1). 164 /// Returns the index of the new set. 165 unsigned takeDisj(Kind kind, unsigned s0, unsigned s1) { 166 unsigned s = takeConj(kind, s0, s1); 167 for (unsigned p : latSets[s0]) 168 latSets[s].push_back(p); 169 for (unsigned p : latSets[s1]) 170 latSets[s].push_back(p); 171 return s; 172 } 173 174 /// Optimizes the iteration lattice points in the given set. This 175 /// method should be called right before code generation to avoid 176 /// generating redundant loops and conditions. 177 unsigned optimizeSet(unsigned s0) { 178 unsigned s = addSet(); 179 assert(latSets[s0].size() != 0); 180 unsigned p0 = latSets[s0][0]; 181 for (unsigned p1 : latSets[s0]) { 182 bool add = true; 183 if (p0 != p1) { 184 // Is this a straightforward copy? 185 unsigned e = latPoints[p1].exp; 186 if (exp(e).kind == Kind::kTensor && exp(e).e0 == outTensor) 187 continue; 188 // Conjunction already covered? 189 for (unsigned p2 : latSets[s]) { 190 assert(!latGT(p1, p2)); // Lj => Li would be bad 191 if (onlyDenseDiff(p2, p1)) { 192 add = false; 193 break; 194 } 195 } 196 assert(!add || latGT(p0, p1)); 197 } 198 if (add) 199 latSets[s].push_back(p1); 200 } 201 for (unsigned p : latSets[s]) 202 latPoints[p].simple = simplifyCond(s, p); 203 return s; 204 } 205 206 /// Simplifies the conditions in a conjunction of a given lattice point 207 /// within the given set using just two basic rules: 208 /// (1) multiple dense conditions are reduced to single dense, and 209 /// (2) a *singleton* sparse/dense is reduced to sparse/random access. 210 llvm::BitVector simplifyCond(unsigned s, unsigned p0) { 211 // First determine if this lattice point is a *singleton*, i.e., 212 // the last point in a lattice, no other is less than this one. 213 bool isSingleton = true; 214 for (unsigned p1 : latSets[s]) { 215 if (p0 != p1 && latGT(p0, p1)) { 216 isSingleton = false; 217 break; 218 } 219 } 220 // Now apply the two basic rules. 221 llvm::BitVector simple = latPoints[p0].bits; 222 bool reset = isSingleton && hasAnyDimOf(simple, Dim::kSparse); 223 for (unsigned b = 0, be = simple.size(); b < be; b++) { 224 if (simple[b] && !isDim(b, Dim::kSparse)) { 225 if (reset) 226 simple.reset(b); 227 reset = true; 228 } 229 } 230 return simple; 231 } 232 233 /// Returns true if Li > Lj. 234 bool latGT(unsigned i, unsigned j) const { 235 const llvm::BitVector &bitsi = latPoints[i].bits; 236 const llvm::BitVector &bitsj = latPoints[j].bits; 237 assert(bitsi.size() == bitsj.size()); 238 if (bitsi.count() > bitsj.count()) { 239 for (unsigned b = 0, be = bitsj.size(); b < be; b++) 240 if (bitsj[b] && !bitsi[b]) 241 return false; 242 return true; 243 } 244 return false; 245 } 246 247 /// Returns true if Li and Lj only differ in dense. 248 bool onlyDenseDiff(unsigned i, unsigned j) { 249 llvm::BitVector tmp = latPoints[j].bits; 250 tmp ^= latPoints[i].bits; 251 return !hasAnyDimOf(tmp, Dim::kSparse); 252 } 253 254 /// Bit translation. 255 unsigned tensor(unsigned b) const { return b % numTensors; } 256 unsigned index(unsigned b) const { return b / numTensors; } 257 258 /// Returns true if bit corresponds to queried dim. 259 bool isDim(unsigned b, Dim d) const { return isDim(tensor(b), index(b), d); } 260 261 /// Returns true if tensor access at given index has queried dim. 262 bool isDim(unsigned t, unsigned i, Dim d) const { 263 assert(t < numTensors && i < numLoops); 264 return dims[t][i] == d; 265 } 266 267 /// Returns true if any set bit corresponds to queried dim. 268 bool hasAnyDimOf(const llvm::BitVector &bits, Dim d) const { 269 for (unsigned b = 0, be = bits.size(); b < be; b++) 270 if (bits[b] && isDim(b, d)) 271 return true; 272 return false; 273 } 274 275 /// Setter 276 void setDim(unsigned t, unsigned i, Dim d) { dims[t][i] = d; } 277 278 /// Getters. 279 TensorExp &exp(unsigned e) { return tensorExps[e]; } 280 LatPoint &lat(unsigned l) { return latPoints[l]; } 281 SmallVector<unsigned, 16> &set(unsigned s) { return latSets[s]; } 282 283 private: 284 const unsigned outTensor; 285 const unsigned numTensors; 286 const unsigned numLoops; 287 288 std::vector<std::vector<Dim>> dims; 289 llvm::SmallVector<TensorExp, 32> tensorExps; 290 llvm::SmallVector<LatPoint, 16> latPoints; 291 llvm::SmallVector<SmallVector<unsigned, 16>, 8> latSets; 292 }; 293 294 // Code generation. 295 struct CodeGen { 296 CodeGen(SparsificationOptions o, unsigned numTensors, unsigned numLoops) 297 : options(o), loops(numLoops), sizes(numLoops), buffers(numTensors), 298 pointers(numTensors, std::vector<Value>(numLoops)), 299 indices(numTensors, std::vector<Value>(numLoops)), 300 highs(numTensors, std::vector<Value>(numLoops)), 301 pidxs(numTensors, std::vector<Value>(numLoops)), 302 idxs(numTensors, std::vector<Value>(numLoops)), redExp(-1u), redVal(), 303 curVecLength(1), curVecMask() {} 304 /// Sparsification options. 305 SparsificationOptions options; 306 /// Universal dense indices and upper bounds (by index). The loops array 307 /// is updated with the value of the universal dense index in the current 308 /// loop. The sizes array is set once with the inferred dimension sizes. 309 std::vector<Value> loops; 310 std::vector<Value> sizes; 311 /// Buffers for storing dense and sparse numerical values (by tensor). 312 /// This array is set once during bufferization of all tensors. 313 std::vector<Value> buffers; 314 /// Sparse storage schemes (1-D): pointers and indices (by tensor and index). 315 /// This array is set once during bufferization of all sparse tensors. 316 std::vector<std::vector<Value>> pointers; 317 std::vector<std::vector<Value>> indices; 318 /// Sparse iteration information (by tensor and index). These arrays 319 /// are updated to remain current within the current loop. 320 std::vector<std::vector<Value>> highs; 321 std::vector<std::vector<Value>> pidxs; 322 std::vector<std::vector<Value>> idxs; 323 /// Current reduction, updated during code generation. When indices of a 324 /// reduction are exhausted, all inner loops can "scalarize" the reduction. 325 // TODO: currently only done for (a chain of) innermost for-loops, where it 326 // is most effective; we could generalize to more outer and while-loops. 327 unsigned redExp; 328 Value redVal; 329 // Current vector length and mask. 330 unsigned curVecLength; 331 Value curVecMask; 332 }; 333 334 } // namespace 335 336 // Helper method to apply dimension ordering permutation. 337 static unsigned perm(SparseTensorEncodingAttr &enc, unsigned d) { 338 if (enc) { 339 auto order = enc.getDimOrdering(); 340 if (order) { 341 assert(order.isPermutation()); 342 return order.getDimPosition(d); 343 } 344 } 345 return d; 346 } 347 348 // Helper method to translate dim level type to internal representation. 349 static Dim toDim(SparseTensorEncodingAttr &enc, unsigned d) { 350 if (enc) { 351 SparseTensorEncodingAttr::DimLevelType tp = enc.getDimLevelType()[d]; 352 if (tp == SparseTensorEncodingAttr::DimLevelType::Compressed) 353 return Dim::kSparse; 354 if (tp == SparseTensorEncodingAttr::DimLevelType::Singleton) 355 return Dim::kSingle; 356 } 357 return Dim::kDense; 358 } 359 360 /// Helper method to inspect sparse encodings in the tensor types. 361 /// Fills the per-dimension sparsity information for all tensors. 362 static bool findSparseAnnotations(Merger &merger, linalg::GenericOp op) { 363 bool annotated = false; 364 OpOperand *lhs = op.getOutputOperand(0); 365 for (OpOperand *t : op.getInputAndOutputOperands()) { 366 auto map = op.getTiedIndexingMap(t); 367 if (!map.isProjectedPermutation()) 368 return false; 369 auto enc = getSparseTensorEncoding(t->get().getType()); 370 if (enc) { 371 annotated = true; 372 if (t == lhs) 373 return false; // TODO: handle sparse outputs 374 } 375 assert(map.getNumResults() == op.getRank(t)); 376 for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { 377 unsigned idx = map.getDimPosition(perm(enc, d)); 378 merger.setDim(t->getOperandNumber(), idx, toDim(enc, d)); 379 } 380 } 381 return annotated; 382 } 383 384 /// A DFS helper to compute a topological sort. Note that recursion is 385 /// bounded by the number of implicit loops, which is always small. 386 /// Returns false when a cycle is detected. 387 static bool topSortDFS(unsigned i, std::vector<unsigned> &visit, 388 std::vector<unsigned> &topSort, 389 std::vector<std::vector<bool>> &adjM) { 390 if (visit[i] != 0) 391 return visit[i] != 1; // 1 denotes cycle! 392 visit[i] = 1; 393 for (unsigned j = 0, e = visit.size(); j < e; j++) 394 if (adjM[i][j]) 395 if (!topSortDFS(j, visit, topSort, adjM)) 396 return false; 397 visit[i] = 2; 398 topSort.push_back(i); 399 return true; 400 } 401 402 /// Computes a topologically sorted iteration graph for the linalg operation. 403 /// Ensures all tensors are visited in natural index order. This is essential 404 /// for sparse storage formats since these only support access along fixed 405 /// dimensions. Even for dense storage formats, however, the natural index 406 /// order yields innermost unit-stride access with better spatial locality. 407 static bool computeIterationGraph(Merger &merger, linalg::GenericOp op, 408 std::vector<unsigned> &topSort, 409 bool sparseOnly) { 410 // Set up an n x n from/to adjacency matrix of the iteration graph 411 // for the implicit loop indices i_0 .. i_n-1. 412 unsigned n = op.getNumLoops(); 413 std::vector<std::vector<bool>> adjM(n, std::vector<bool>(n, false)); 414 415 // Iterate over the indexing maps of every tensor in the tensor expression. 416 for (OpOperand *t : op.getInputAndOutputOperands()) { 417 auto map = op.getTiedIndexingMap(t); 418 auto enc = getSparseTensorEncoding(t->get().getType()); 419 assert(map.getNumDims() == n); 420 // Skip dense tensor constraints when sparse only is requested. 421 if (sparseOnly && !enc) 422 continue; 423 // Each tensor expression and optional dimension ordering (row-major 424 // by default) puts an ordering constraint on the loop indices. For 425 // example, the tensor expresion A_ijk forces the ordering i < j < k 426 // on the loop indices if no explicit dimension ordering is given. 427 for (unsigned d = 1, rank = map.getNumResults(); d < rank; d++) { 428 unsigned f = map.getDimPosition(perm(enc, d - 1)); 429 unsigned t = map.getDimPosition(perm(enc, d)); 430 adjM[f][t] = true; 431 } 432 } 433 434 // Topologically sort the iteration graph to determine loop order. 435 // Report failure for a cyclic iteration graph. 436 topSort.clear(); 437 topSort.reserve(n); 438 std::vector<unsigned> visit(n, 0); 439 for (unsigned i = 0; i < n; i++) 440 if (visit[i] == 0) 441 if (!topSortDFS(i, visit, topSort, adjM)) 442 return false; // cycle! 443 std::reverse(std::begin(topSort), std::end(topSort)); 444 return true; 445 } 446 447 /// Traverses the SSA tree (possibly a DAG) to build a tensor expression. 448 /// This simplifies constructing (sub)expressions during iteration lattice 449 /// building (compared to using the SSA representation everywhere). 450 static Optional<unsigned> buildTensorExp(Merger &merger, linalg::GenericOp op, 451 Value val) { 452 if (auto arg = val.dyn_cast<BlockArgument>()) { 453 unsigned argN = arg.getArgNumber(); 454 // Any parameter of the generic op is considered a tensor, 455 // indexed by the implicit loop bounds. 456 if (arg.getOwner()->getParentOp() == op) 457 return merger.addExp(Kind::kTensor, argN); 458 // Any parameter of a higher op is invariant. 459 return merger.addExp(Kind::kInvariant, val); 460 } 461 Operation *def = val.getDefiningOp(); 462 if (def->getBlock() != &op.region().front()) { 463 // Something defined outside is invariant. 464 return merger.addExp(Kind::kInvariant, val); 465 } else if (def->getNumOperands() == 2) { 466 // Construct binary operations if subexpressions could be built. 467 auto x = buildTensorExp(merger, op, def->getOperand(0)); 468 auto y = buildTensorExp(merger, op, def->getOperand(1)); 469 if (x.hasValue() && y.hasValue()) { 470 unsigned e0 = x.getValue(); 471 unsigned e1 = y.getValue(); 472 if (isa<MulFOp>(def)) 473 return merger.addExp(Kind::kMulF, e0, e1); 474 if (isa<MulIOp>(def)) 475 return merger.addExp(Kind::kMulI, e0, e1); 476 if (isa<AddFOp>(def)) 477 return merger.addExp(Kind::kAddF, e0, e1); 478 if (isa<AddIOp>(def)) 479 return merger.addExp(Kind::kAddI, e0, e1); 480 } 481 } 482 // Cannot build (yet). 483 return None; 484 } 485 486 /// Builds the iteration lattices in a bottom-up traversal given the remaining 487 /// tensor (sub)expression and the next loop index in the iteration graph. 488 static unsigned buildLattices(Merger &merger, linalg::GenericOp op, 489 unsigned exp, unsigned idx) { 490 Kind kind = merger.exp(exp).kind; 491 if (kind == Kind::kTensor || kind == Kind::kInvariant) { 492 // Either the index is really used in the tensor expression, or it is 493 // set to the undefined index in that dimension. An invariant expression 494 // is set to a synthetic tensor with undefined indices only. 495 unsigned s = merger.addSet(); 496 unsigned t = kind == Kind::kTensor ? merger.exp(exp).e0 497 : op.getNumInputsAndOutputs(); 498 merger.set(s).push_back(merger.addLat(t, idx, exp)); 499 return s; 500 } 501 unsigned s0 = buildLattices(merger, op, merger.exp(exp).e0, idx); 502 unsigned s1 = buildLattices(merger, op, merger.exp(exp).e1, idx); 503 switch (kind) { 504 case Kind::kTensor: 505 case Kind::kInvariant: 506 llvm_unreachable("handled above"); 507 case Kind::kMulF: 508 case Kind::kMulI: 509 return merger.takeConj(kind, s0, s1); 510 case Kind::kAddF: 511 case Kind::kAddI: 512 return merger.takeDisj(kind, s0, s1); 513 } 514 llvm_unreachable("unexpected expression kind"); 515 } 516 517 /// Maps sparse integer option to actual integral storage type. 518 static Type genIntType(PatternRewriter &rewriter, unsigned width) { 519 if (width == 0) 520 return rewriter.getIndexType(); 521 return rewriter.getIntegerType(width); 522 } 523 524 /// Detects in-place annotation on tensor argument. 525 static bool getInPlace(Value val) { 526 if (auto arg = val.dyn_cast<BlockArgument>()) 527 if (auto funcOp = dyn_cast<FuncOp>(arg.getOwner()->getParentOp())) 528 if (auto attr = funcOp.getArgAttrOfType<BoolAttr>( 529 arg.getArgNumber(), linalg::LinalgDialect::kInplaceableAttrName)) 530 return attr.getValue(); 531 return false; 532 } 533 534 /// Generates buffer for the output tensor. 535 static Value genOutputBuffer(CodeGen &codegen, PatternRewriter &rewriter, 536 linalg::GenericOp op, MemRefType denseTp, 537 ArrayRef<Value> args) { 538 Location loc = op.getLoc(); 539 Value tensor = op.getOutputOperand(0)->get(); 540 // The output tensor simply could materialize from the buffer that will 541 // be generated for the tensor present in the outs() clause. This has 542 // the major advantage that the sparse kernel only updates the nonzero 543 // positions for the output tensor. 544 if (getInPlace(tensor)) 545 return rewriter.create<memref::BufferCastOp>(loc, denseTp, tensor); 546 // By default, a new buffer is allocated which is initialized to the 547 // tensor defined in the outs() clause. This is always correct but 548 // introduces a dense initialization component that may negatively 549 // impact the running complexity of the sparse kernel. 550 Value init = rewriter.create<memref::BufferCastOp>(loc, denseTp, tensor); 551 Value alloc = rewriter.create<memref::AllocOp>(loc, denseTp, args); 552 rewriter.create<linalg::CopyOp>(loc, init, alloc); 553 return alloc; 554 } 555 556 /// Local bufferization of all dense and sparse data structures. 557 /// This code enables testing the first prototype sparse compiler. 558 // TODO: replace this with a proliferated bufferization strategy 559 static void genBuffers(Merger &merger, CodeGen &codegen, 560 PatternRewriter &rewriter, linalg::GenericOp op) { 561 Location loc = op.getLoc(); 562 assert(op.getNumInputsAndOutputs() == op.getNumInputs() + 1); 563 // For every tensor, find lower and upper bound on dimensions, set the 564 // same bounds on loop indices, and obtain dense or sparse buffer(s). 565 SmallVector<Value, 4> args; 566 for (OpOperand *t : op.getInputAndOutputOperands()) { 567 auto shape = op.getShape(t); 568 auto map = op.getTiedIndexingMap(t); 569 auto enc = getSparseTensorEncoding(t->get().getType()); 570 // Scan all dimensions of current tensor. 571 args.clear(); 572 for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { 573 unsigned idx = map.getDimPosition(perm(enc, d)); 574 // Handle sparse storage schemes. 575 if (merger.isDim(t->getOperandNumber(), idx, Dim::kSparse)) { 576 auto dynShape = {ShapedType::kDynamicSize}; 577 auto ptrTp = MemRefType::get( 578 dynShape, genIntType(rewriter, enc.getPointerBitWidth())); 579 auto indTp = MemRefType::get( 580 dynShape, genIntType(rewriter, enc.getIndexBitWidth())); 581 Value dim = rewriter.create<ConstantIndexOp>(loc, d); 582 // Generate sparse primitives to obtains pointer and indices. 583 codegen.pointers[t->getOperandNumber()][idx] = 584 rewriter.create<ToPointersOp>(loc, ptrTp, t->get(), dim); 585 codegen.indices[t->getOperandNumber()][idx] = 586 rewriter.create<ToIndicesOp>(loc, indTp, t->get(), dim); 587 } 588 // Find lower and upper bound in current dimension. 589 Value up; 590 if (shape[d] == MemRefType::kDynamicSize) { 591 up = rewriter.create<memref::DimOp>(loc, t->get(), d); 592 args.push_back(up); 593 } else { 594 up = rewriter.create<ConstantIndexOp>(loc, shape[d]); 595 } 596 codegen.sizes[idx] = codegen.highs[t->getOperandNumber()][idx] = up; 597 } 598 // Perform the required bufferization. All dense inputs materialize 599 // from the input tensor. The dense output tensor needs special 600 // handling. Sparse inputs use a sparse primitive to obtain the values. 601 Type elementType = getElementTypeOrSelf(t->get().getType()); 602 if (!enc) { 603 auto denseTp = MemRefType::get(shape, elementType); 604 if (t->getOperandNumber() < op.getNumInputs()) 605 codegen.buffers[t->getOperandNumber()] = 606 rewriter.create<memref::BufferCastOp>(loc, denseTp, t->get()); 607 else 608 codegen.buffers[t->getOperandNumber()] = 609 genOutputBuffer(codegen, rewriter, op, denseTp, args); 610 } else { 611 auto dynShape = {ShapedType::kDynamicSize}; 612 auto sparseTp = MemRefType::get(dynShape, elementType); 613 codegen.buffers[t->getOperandNumber()] = 614 rewriter.create<ToValuesOp>(loc, sparseTp, t->get()); 615 } 616 } 617 } 618 619 /// Constructs vector type. 620 static VectorType vectorType(CodeGen &codegen, Type etp) { 621 return VectorType::get(codegen.curVecLength, etp); 622 } 623 624 /// Constructs vector type from pointer. 625 static VectorType vectorType(CodeGen &codegen, Value ptr) { 626 return vectorType(codegen, ptr.getType().cast<MemRefType>().getElementType()); 627 } 628 629 /// Constructs vector iteration mask. 630 static Value genVectorMask(CodeGen &codegen, PatternRewriter &rewriter, 631 Value iv, Value lo, Value hi, Value step) { 632 Location loc = iv.getLoc(); 633 VectorType mtp = vectorType(codegen, rewriter.getIntegerType(1)); 634 // Special case if the vector length evenly divides the trip count (for 635 // example, "for i = 0, 128, 16"). A constant all-true mask is generated 636 // so that all subsequent masked memory operations are immediately folded 637 // into unconditional memory operations. 638 IntegerAttr loInt, hiInt, stepInt; 639 if (matchPattern(lo, m_Constant(&loInt)) && 640 matchPattern(hi, m_Constant(&hiInt)) && 641 matchPattern(step, m_Constant(&stepInt))) { 642 if (((hiInt.getInt() - loInt.getInt()) % stepInt.getInt()) == 0) 643 return rewriter.create<vector::BroadcastOp>( 644 loc, mtp, rewriter.create<ConstantIntOp>(loc, 1, 1)); 645 } 646 // Otherwise, generate a vector mask that avoids overrunning the upperbound 647 // during vector execution. Here we rely on subsequent loop optimizations to 648 // avoid executing the mask in all iterations, for example, by splitting the 649 // loop into an unconditional vector loop and a scalar cleanup loop. 650 Value end = rewriter.create<SubIOp>(loc, hi, iv); 651 return rewriter.create<vector::CreateMaskOp>(loc, mtp, end); 652 } 653 654 /// Generates a vectorized load lhs = a[ind[lo:hi]] or lhs = a[lo:hi]. 655 static Value genVectorLoad(CodeGen &codegen, PatternRewriter &rewriter, 656 Value ptr, ArrayRef<Value> args) { 657 Location loc = ptr.getLoc(); 658 VectorType vtp = vectorType(codegen, ptr); 659 Value pass = rewriter.create<ConstantOp>(loc, vtp, rewriter.getZeroAttr(vtp)); 660 if (args.back().getType().isa<VectorType>()) { 661 SmallVector<Value, 4> scalarArgs(args.begin(), args.end()); 662 Value indexVec = args.back(); 663 scalarArgs.back() = rewriter.create<ConstantIndexOp>(loc, 0); 664 return rewriter.create<vector::GatherOp>( 665 loc, vtp, ptr, scalarArgs, indexVec, codegen.curVecMask, pass); 666 } 667 return rewriter.create<vector::MaskedLoadOp>(loc, vtp, ptr, args, 668 codegen.curVecMask, pass); 669 } 670 671 /// Generates a vectorized store a[ind[lo:hi]] = rhs or a[lo:hi] = rhs. 672 static void genVectorStore(CodeGen &codegen, PatternRewriter &rewriter, 673 Value rhs, Value ptr, ArrayRef<Value> args) { 674 Location loc = ptr.getLoc(); 675 if (args.back().getType().isa<VectorType>()) { 676 SmallVector<Value, 4> scalarArgs(args.begin(), args.end()); 677 Value indexVec = args.back(); 678 scalarArgs.back() = rewriter.create<ConstantIndexOp>(loc, 0); 679 rewriter.create<vector::ScatterOp>(loc, ptr, scalarArgs, indexVec, 680 codegen.curVecMask, rhs); 681 return; 682 } 683 rewriter.create<vector::MaskedStoreOp>(loc, ptr, args, codegen.curVecMask, 684 rhs); 685 } 686 687 /// Generates a vectorized invariant. Here we rely on subsequent loop 688 /// optimizations to hoist the invariant broadcast out of the vector loop. 689 static Value genVectorInvariantValue(CodeGen &codegen, 690 PatternRewriter &rewriter, Value val) { 691 VectorType vtp = vectorType(codegen, val.getType()); 692 return rewriter.create<vector::BroadcastOp>(val.getLoc(), vtp, val); 693 } 694 695 /// Generates a load on a dense or sparse tensor. 696 static Value genTensorLoad(Merger &merger, CodeGen &codegen, 697 PatternRewriter &rewriter, linalg::GenericOp op, 698 unsigned exp) { 699 // Test if the load was hoisted to a higher loop nest. 700 Value val = merger.exp(exp).val; 701 if (val) { 702 if (codegen.curVecLength > 1 && !val.getType().isa<VectorType>()) 703 return genVectorInvariantValue(codegen, rewriter, val); 704 return val; 705 } 706 // Actual load. 707 SmallVector<Value, 4> args; 708 OpOperand *tensor = merger.exp(exp).e0 < op.getNumInputs() 709 ? op.getInputOperand(merger.exp(exp).e0) 710 : op.getOutputOperand(0); 711 auto map = op.getTiedIndexingMap(tensor); 712 auto enc = getSparseTensorEncoding(tensor->get().getType()); 713 for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { 714 unsigned idx = map.getDimPosition(perm(enc, d)); 715 args.push_back(codegen.loops[idx]); // universal dense index 716 if (enc) { 717 args.clear(); 718 args.push_back( 719 codegen.pidxs[tensor->getOperandNumber()][idx]); // position index 720 } 721 } 722 Location loc = op.getLoc(); 723 Value ptr = codegen.buffers[tensor->getOperandNumber()]; 724 if (codegen.curVecLength > 1) 725 return genVectorLoad(codegen, rewriter, ptr, args); 726 return rewriter.create<memref::LoadOp>(loc, ptr, args); 727 } 728 729 /// Generates a store on a dense tensor. 730 static void genTensorStore(Merger &merger, CodeGen &codegen, 731 PatternRewriter &rewriter, linalg::GenericOp op, 732 OpOperand *tensor, Value rhs) { 733 Location loc = op.getLoc(); 734 // Test if this is a scalarized reduction. 735 OpOperand *lhs = op.getOutputOperand(0); 736 if (lhs == tensor && codegen.redVal) { 737 if (codegen.curVecLength > 1) 738 rhs = rewriter.create<SelectOp>(loc, codegen.curVecMask, rhs, 739 codegen.redVal); 740 codegen.redVal = rhs; 741 return; 742 } 743 // Actual store. 744 SmallVector<Value, 4> args; 745 auto map = op.getTiedIndexingMap(tensor); 746 assert(!getSparseTensorEncoding(tensor->get().getType())); 747 for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { 748 unsigned idx = map.getDimPosition(d); 749 args.push_back(codegen.loops[idx]); // universal dense index 750 } 751 Value ptr = codegen.buffers[tensor->getOperandNumber()]; 752 if (codegen.curVecLength > 1) 753 genVectorStore(codegen, rewriter, rhs, ptr, args); 754 else 755 rewriter.create<memref::StoreOp>(loc, rhs, ptr, args); 756 } 757 758 /// Generates a pointer/index load from the sparse storage scheme. Narrower 759 /// data types need to be zero extended before casting the value into the 760 /// index type used for looping and indexing. 761 static Value genLoad(CodeGen &codegen, PatternRewriter &rewriter, Location loc, 762 Value ptr, Value s) { 763 // See https://llvm.org/docs/GetElementPtr.html for some background on 764 // the complications described below. 765 if (codegen.curVecLength > 1) { 766 // Since the index vector is used in a subsequent gather/scatter operations, 767 // which effectively defines an unsigned pointer + signed index, we must 768 // zero extend the vector to an index width. For 8-bit and 16-bit values, 769 // an 32-bit index width suffices. For 32-bit values, zero extending the 770 // elements into 64-bit loses some performance since the 32-bit indexed 771 // gather/scatter is more efficient than the 64-bit index variant (if the 772 // negative 32-bit index space is unused, the enableSIMDIndex32 flag can 773 // preserve this performance)). For 64-bit values, there is no good way 774 // to state that the indices are unsigned, with creates the potential of 775 // incorrect address calculations in the unlikely case we need such 776 // extremely large offsets. 777 Type etp = ptr.getType().cast<MemRefType>().getElementType(); 778 Value vload = genVectorLoad(codegen, rewriter, ptr, {s}); 779 if (!etp.isa<IndexType>()) { 780 if (etp.getIntOrFloatBitWidth() < 32) 781 vload = rewriter.create<ZeroExtendIOp>( 782 loc, vload, vectorType(codegen, rewriter.getIntegerType(32))); 783 else if (etp.getIntOrFloatBitWidth() < 64 && 784 !codegen.options.enableSIMDIndex32) 785 vload = rewriter.create<ZeroExtendIOp>( 786 loc, vload, vectorType(codegen, rewriter.getIntegerType(64))); 787 } 788 return vload; 789 } 790 // For the scalar case, we simply zero extend narrower indices into 64-bit 791 // values before casting to index without a performance penalty. Here too, 792 // however, indices that already are 64-bit, in theory, cannot express the 793 // full range as explained above. 794 Value load = rewriter.create<memref::LoadOp>(loc, ptr, s); 795 if (!load.getType().isa<IndexType>()) { 796 if (load.getType().getIntOrFloatBitWidth() < 64) 797 load = rewriter.create<ZeroExtendIOp>(loc, load, 798 rewriter.getIntegerType(64)); 799 load = rewriter.create<IndexCastOp>(loc, load, rewriter.getIndexType()); 800 } 801 return load; 802 } 803 804 /// Generates an invariant value. 805 static Value genInvariantValue(Merger &merger, CodeGen &codegen, 806 PatternRewriter &rewriter, unsigned exp) { 807 Value val = merger.exp(exp).val; 808 if (codegen.curVecLength > 1) 809 return genVectorInvariantValue(codegen, rewriter, val); 810 return val; 811 } 812 813 /// Generates an address computation "sz * p + i". 814 static Value genAddress(CodeGen &codegen, PatternRewriter &rewriter, 815 Location loc, Value size, Value p, Value i) { 816 Value mul = rewriter.create<MulIOp>(loc, size, p); 817 if (auto vtp = i.getType().dyn_cast<VectorType>()) { 818 Value inv = rewriter.create<IndexCastOp>(loc, mul, vtp.getElementType()); 819 mul = genVectorInvariantValue(codegen, rewriter, inv); 820 } 821 return rewriter.create<AddIOp>(loc, mul, i); 822 } 823 824 /// Generates start of a reduction. 825 static Value genReductionStart(Merger &merger, CodeGen &codegen, 826 PatternRewriter &rewriter, 827 linalg::GenericOp op) { 828 if (codegen.redVal) 829 return codegen.redVal; // chained with previous for-loop 830 if (codegen.curVecLength > 1) { 831 // TODO: assumes + reductions for now 832 VectorType vtp = vectorType(codegen, codegen.buffers[codegen.redExp]); 833 return rewriter.create<ConstantOp>(op.getLoc(), vtp, 834 rewriter.getZeroAttr(vtp)); 835 } 836 return genTensorLoad(merger, codegen, rewriter, op, codegen.redExp); 837 } 838 839 /// Generates end of a reduction. 840 static void genReductionEnd(Merger &merger, CodeGen &codegen, 841 PatternRewriter &rewriter, linalg::GenericOp op) { 842 Value red = codegen.redVal; 843 if (!red) 844 return; 845 assert(codegen.curVecLength == 1); 846 codegen.redVal = merger.exp(codegen.redExp).val = Value(); // end chain 847 OpOperand *lhs = op.getOutputOperand(0); 848 if (auto vtp = red.getType().dyn_cast<VectorType>()) { 849 // TODO: assumes + reductions for now 850 StringAttr kind = rewriter.getStringAttr("add"); 851 Value ld = genTensorLoad(merger, codegen, rewriter, op, codegen.redExp); 852 // Integer reductions don't accept an accumulator. 853 if (vtp.getElementType().isa<IntegerType>()) { 854 red = rewriter.create<vector::ReductionOp>(op.getLoc(), ld.getType(), 855 kind, red, ValueRange{}); 856 red = rewriter.create<AddIOp>(op.getLoc(), red, ld); 857 } else { 858 red = rewriter.create<vector::ReductionOp>(op.getLoc(), ld.getType(), 859 kind, red, ld); 860 } 861 } 862 genTensorStore(merger, codegen, rewriter, op, lhs, red); 863 } 864 865 /// Recursively generates tensor expression. 866 static Value genExp(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, 867 linalg::GenericOp op, unsigned exp) { 868 if (merger.exp(exp).kind == Kind::kTensor) 869 return genTensorLoad(merger, codegen, rewriter, op, exp); 870 else if (merger.exp(exp).kind == Kind::kInvariant) 871 return genInvariantValue(merger, codegen, rewriter, exp); 872 Value v0 = genExp(merger, codegen, rewriter, op, merger.exp(exp).e0); 873 Value v1 = genExp(merger, codegen, rewriter, op, merger.exp(exp).e1); 874 switch (merger.exp(exp).kind) { 875 case Kind::kTensor: 876 case Kind::kInvariant: 877 llvm_unreachable("handled above"); 878 case Kind::kMulF: 879 return rewriter.create<MulFOp>(op.getLoc(), v0, v1); 880 case Kind::kMulI: 881 return rewriter.create<MulIOp>(op.getLoc(), v0, v1); 882 case Kind::kAddF: 883 return rewriter.create<AddFOp>(op.getLoc(), v0, v1); 884 case Kind::kAddI: 885 return rewriter.create<AddIOp>(op.getLoc(), v0, v1); 886 } 887 llvm_unreachable("unexpected expression kind"); 888 } 889 890 /// Hoists loop invariant tensor loads for which indices have been exhausted. 891 static void genInvariants(Merger &merger, CodeGen &codegen, 892 PatternRewriter &rewriter, linalg::GenericOp op, 893 unsigned exp, unsigned ldx, bool hoist) { 894 if (merger.exp(exp).kind == Kind::kTensor) { 895 // Inspect tensor indices. 896 bool atLevel = ldx == -1u; 897 OpOperand *tensor = merger.exp(exp).e0 < op.getNumInputs() 898 ? op.getInputOperand(merger.exp(exp).e0) 899 : op.getOutputOperand(0); 900 auto map = op.getTiedIndexingMap(tensor); 901 auto enc = getSparseTensorEncoding(tensor->get().getType()); 902 for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { 903 unsigned idx = map.getDimPosition(perm(enc, d)); 904 if (!codegen.loops[idx]) 905 return; // still in play 906 else if (idx == ldx) 907 atLevel = true; 908 } 909 // All exhausted at this level (atLevel denotes exactly at this level). 910 OpOperand *lhs = op.getOutputOperand(0); 911 if (lhs == tensor) { 912 codegen.redExp = hoist ? exp : -1u; 913 } else if (atLevel) { 914 merger.exp(exp).val = 915 hoist ? genTensorLoad(merger, codegen, rewriter, op, exp) : Value(); 916 } 917 } else if (merger.exp(exp).kind != Kind::kInvariant) { 918 // Traverse into the binary operations. Note that we only hoist 919 // tensor loads, since subsequent MLIR/LLVM passes know how to 920 // deal with all other kinds of derived loop invariants. 921 unsigned e0 = merger.exp(exp).e0; 922 unsigned e1 = merger.exp(exp).e1; 923 genInvariants(merger, codegen, rewriter, op, e0, ldx, hoist); 924 genInvariants(merger, codegen, rewriter, op, e1, ldx, hoist); 925 } 926 } 927 928 /// Generates initialization code for the subsequent loop sequence at 929 /// current index level. Returns true if the loop sequence needs to 930 /// maintain the universal index. 931 static bool genInit(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, 932 linalg::GenericOp op, std::vector<unsigned> &topSort, 933 unsigned at, llvm::BitVector &inits) { 934 bool needsUniv = false; 935 Location loc = op.getLoc(); 936 unsigned idx = topSort[at]; 937 938 // Initialize sparse positions. 939 for (unsigned b = 0, be = inits.size(); b < be; b++) { 940 if (inits[b]) { 941 unsigned tensor = merger.tensor(b); 942 assert(idx == merger.index(b)); 943 if (merger.isDim(b, Dim::kSparse)) { 944 // Initialize sparse index. 945 unsigned pat = at; 946 for (; pat != 0; pat--) { 947 if (codegen.pidxs[tensor][topSort[pat - 1]]) 948 break; 949 } 950 Value ptr = codegen.pointers[tensor][idx]; 951 Value one = rewriter.create<ConstantIndexOp>(loc, 1); 952 Value p0 = (pat == 0) ? rewriter.create<ConstantIndexOp>(loc, 0) 953 : codegen.pidxs[tensor][topSort[pat - 1]]; 954 codegen.pidxs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p0); 955 Value p1 = rewriter.create<AddIOp>(loc, p0, one); 956 codegen.highs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p1); 957 } else { 958 // Dense index still in play. 959 needsUniv = true; 960 } 961 } 962 } 963 964 // Initialize the universal dense index. 965 codegen.loops[idx] = rewriter.create<ConstantIndexOp>(loc, 0); 966 return needsUniv; 967 } 968 969 /// Returns vectorization strategy. Any implicit inner loop in the Linalg 970 /// operation is a candidate. Whether it is actually converted to SIMD code 971 /// depends on the requested strategy. 972 static bool isVectorFor(CodeGen &codegen, bool isInner, bool isSparse) { 973 switch (codegen.options.vectorizationStrategy) { 974 case SparseVectorizationStrategy::kNone: 975 return false; 976 case SparseVectorizationStrategy::kDenseInnerLoop: 977 return isInner && !isSparse; 978 case SparseVectorizationStrategy::kAnyStorageInnerLoop: 979 return isInner; 980 } 981 llvm_unreachable("unexpected vectorization strategy"); 982 } 983 984 /// Returns parallelization strategy. Any implicit loop in the Linalg operation 985 /// that is marked "parallel" is a candidate. Whether it is actually converted 986 /// to a parallel operation depends on the requested strategy. 987 static bool isParallelFor(CodeGen &codegen, bool isOuter, bool isReduction, 988 bool isSparse, bool isVector) { 989 switch (codegen.options.parallelizationStrategy) { 990 case SparseParallelizationStrategy::kNone: 991 return false; 992 case SparseParallelizationStrategy::kDenseOuterLoop: 993 return isOuter && !isSparse && !isReduction && !isVector; 994 case SparseParallelizationStrategy::kAnyStorageOuterLoop: 995 return isOuter && !isReduction && !isVector; 996 case SparseParallelizationStrategy::kDenseAnyLoop: 997 return !isSparse && !isReduction && !isVector; 998 case SparseParallelizationStrategy::kAnyStorageAnyLoop: 999 return !isReduction && !isVector; 1000 } 1001 llvm_unreachable("unexpected parallelization strategy"); 1002 } 1003 1004 /// Checks unit strides for dense tensors. The iteration graph may have ignored 1005 /// dense access patterns in order to avoid cycles (sparse access patterns are 1006 /// always placed innermost), but that means dense access has become strided. 1007 /// For now, we reject vectorization of such cases. 1008 /// TODO: implement strided load/stores on dense arrays 1009 static bool denseUnitStrides(Merger &merger, linalg::GenericOp op, 1010 unsigned idx) { 1011 for (OpOperand *t : op.getInputAndOutputOperands()) { 1012 if (!getSparseTensorEncoding(t->get().getType())) { 1013 auto map = op.getTiedIndexingMap(t); 1014 for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { 1015 if (map.getDimPosition(d) == idx && d != rank - 1) 1016 return false; 1017 } 1018 } 1019 } 1020 return true; 1021 } 1022 1023 /// Generates a for-loop on a single index. 1024 static Operation *genFor(Merger &merger, CodeGen &codegen, 1025 PatternRewriter &rewriter, linalg::GenericOp op, 1026 bool isOuter, bool isInner, unsigned idx, 1027 llvm::BitVector &indices) { 1028 unsigned fb = indices.find_first(); 1029 unsigned tensor = merger.tensor(fb); 1030 assert(idx == merger.index(fb)); 1031 auto iteratorTypes = op.iterator_types().getValue(); 1032 bool isReduction = linalg::isReductionIteratorType(iteratorTypes[idx]); 1033 bool isSparse = merger.isDim(fb, Dim::kSparse); 1034 bool isVector = isVectorFor(codegen, isInner, isSparse) && 1035 denseUnitStrides(merger, op, idx); 1036 bool isParallel = 1037 isParallelFor(codegen, isOuter, isReduction, isSparse, isVector); 1038 1039 // Prepare vector length. 1040 if (isVector) 1041 codegen.curVecLength = codegen.options.vectorLength; 1042 1043 // Loop bounds and increment. 1044 Location loc = op.getLoc(); 1045 Value lo = isSparse ? codegen.pidxs[tensor][idx] : codegen.loops[idx]; 1046 Value hi = isSparse ? codegen.highs[tensor][idx] : codegen.sizes[idx]; 1047 Value step = rewriter.create<ConstantIndexOp>(loc, codegen.curVecLength); 1048 1049 // Emit a parallel loop. 1050 if (isParallel) { 1051 assert(!isVector); 1052 scf::ParallelOp parOp = rewriter.create<scf::ParallelOp>(loc, lo, hi, step); 1053 if (isSparse) 1054 codegen.pidxs[tensor][idx] = parOp.getInductionVars()[0]; 1055 else 1056 codegen.loops[idx] = parOp.getInductionVars()[0]; 1057 rewriter.setInsertionPointToStart(parOp.getBody()); 1058 return parOp; 1059 } 1060 1061 // Emit a sequential loop, potentially with a scalarized reduction. 1062 bool scalarRed = isInner && codegen.redExp != -1u; 1063 SmallVector<Value, 4> operands; 1064 if (scalarRed) { 1065 Value load = genReductionStart(merger, codegen, rewriter, op); 1066 operands.push_back(load); 1067 } 1068 scf::ForOp forOp = rewriter.create<scf::ForOp>(loc, lo, hi, step, operands); 1069 if (scalarRed) { 1070 codegen.redVal = merger.exp(codegen.redExp).val = 1071 forOp.getRegionIterArgs().front(); 1072 } 1073 // Assign induction variable to sparse or dense index. 1074 Value iv = forOp.getInductionVar(); 1075 if (isSparse) 1076 codegen.pidxs[tensor][idx] = iv; 1077 else 1078 codegen.loops[idx] = iv; 1079 rewriter.setInsertionPointToStart(forOp.getBody()); 1080 // Share vector iteration mask between all subsequent loads/stores. 1081 if (isVector) 1082 codegen.curVecMask = genVectorMask(codegen, rewriter, iv, lo, hi, step); 1083 return forOp; 1084 } 1085 1086 /// Emit a while-loop for co-iteration over multiple indices. 1087 static Operation *genWhile(Merger &merger, CodeGen &codegen, 1088 PatternRewriter &rewriter, linalg::GenericOp op, 1089 unsigned idx, bool needsUniv, 1090 llvm::BitVector &indices) { 1091 SmallVector<Type, 4> types; 1092 SmallVector<Value, 4> operands; 1093 // Construct the while-loop with a parameter for each index. 1094 Type indexType = rewriter.getIndexType(); 1095 for (unsigned b = 0, be = indices.size(); b < be; b++) { 1096 if (indices[b] && merger.isDim(b, Dim::kSparse)) { 1097 unsigned tensor = merger.tensor(b); 1098 assert(idx == merger.index(b)); 1099 types.push_back(indexType); 1100 assert(codegen.pidxs[tensor][idx].getType().isa<IndexType>() && 1101 "type mismatch for sparse index"); 1102 operands.push_back(codegen.pidxs[tensor][idx]); 1103 } 1104 } 1105 if (needsUniv) { 1106 types.push_back(indexType); 1107 assert(codegen.loops[idx].getType().isa<IndexType>() && 1108 "type mismatch for universal index"); 1109 operands.push_back(codegen.loops[idx]); 1110 } 1111 Location loc = op.getLoc(); 1112 scf::WhileOp whileOp = rewriter.create<scf::WhileOp>(loc, types, operands); 1113 Block *before = rewriter.createBlock(&whileOp.before(), {}, types); 1114 Block *after = rewriter.createBlock(&whileOp.after(), {}, types); 1115 1116 // Build the "before" region, which effectively consists 1117 // of a conjunction of "i < upper" tests on all induction. 1118 rewriter.setInsertionPointToStart(&whileOp.before().front()); 1119 Value cond; 1120 unsigned o = 0; 1121 for (unsigned b = 0, be = indices.size(); b < be; b++) { 1122 if (indices[b] && merger.isDim(b, Dim::kSparse)) { 1123 unsigned tensor = merger.tensor(b); 1124 assert(idx == merger.index(b)); 1125 Value op1 = before->getArgument(o); 1126 Value op2 = codegen.highs[tensor][idx]; 1127 Value opc = rewriter.create<CmpIOp>(loc, CmpIPredicate::ult, op1, op2); 1128 cond = cond ? rewriter.create<AndOp>(loc, cond, opc) : opc; 1129 codegen.pidxs[tensor][idx] = after->getArgument(o++); 1130 } 1131 } 1132 if (needsUniv) 1133 codegen.loops[idx] = after->getArgument(o++); 1134 assert(o == operands.size()); 1135 rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments()); 1136 rewriter.setInsertionPointToStart(&whileOp.after().front()); 1137 return whileOp; 1138 } 1139 1140 /// Generates a for-loop or a while-loop, depending on whether it implements 1141 /// singleton iteration or co-iteration over the given conjunction. 1142 static Operation *genLoop(Merger &merger, CodeGen &codegen, 1143 PatternRewriter &rewriter, linalg::GenericOp op, 1144 std::vector<unsigned> &topSort, unsigned at, 1145 bool needsUniv, llvm::BitVector &indices) { 1146 unsigned idx = topSort[at]; 1147 if (indices.count() == 1) { 1148 bool isOuter = at == 0; 1149 bool isInner = at == topSort.size() - 1; 1150 return genFor(merger, codegen, rewriter, op, isOuter, isInner, idx, 1151 indices); 1152 } 1153 genReductionEnd(merger, codegen, rewriter, op); // cannot chain 1154 return genWhile(merger, codegen, rewriter, op, idx, needsUniv, indices); 1155 } 1156 1157 /// Generates the local variables for this loop, consisting of the sparse 1158 /// indices, restored universal dense index, and dense positions. 1159 static void genLocals(Merger &merger, CodeGen &codegen, 1160 PatternRewriter &rewriter, linalg::GenericOp op, 1161 std::vector<unsigned> &topSort, unsigned at, 1162 bool needsUniv, llvm::BitVector &locals) { 1163 Location loc = op.getLoc(); 1164 unsigned idx = topSort[at]; 1165 1166 // Initialize sparse indices. 1167 Value min; 1168 for (unsigned b = 0, be = locals.size(); b < be; b++) { 1169 if (locals[b] && merger.isDim(b, Dim::kSparse)) { 1170 unsigned tensor = merger.tensor(b); 1171 assert(idx == merger.index(b)); 1172 Value ptr = codegen.indices[tensor][idx]; 1173 Value s = codegen.pidxs[tensor][idx]; 1174 Value load = genLoad(codegen, rewriter, loc, ptr, s); 1175 codegen.idxs[tensor][idx] = load; 1176 if (!needsUniv) { 1177 if (min) { 1178 Value cmp = 1179 rewriter.create<CmpIOp>(loc, CmpIPredicate::ult, load, min); 1180 min = rewriter.create<SelectOp>(loc, cmp, load, min); 1181 } else { 1182 min = load; 1183 } 1184 } 1185 } 1186 } 1187 1188 // Merge dense universal index over minimum. 1189 if (min) { 1190 assert(!needsUniv); 1191 codegen.loops[idx] = min; 1192 } 1193 1194 // Initialize dense positions. 1195 for (unsigned b = 0, be = locals.size(); b < be; b++) { 1196 if (locals[b] && merger.isDim(b, Dim::kDense)) { 1197 unsigned tensor = merger.tensor(b); 1198 assert(idx == merger.index(b)); 1199 unsigned pat = at; 1200 for (; pat != 0; pat--) 1201 if (codegen.pidxs[tensor][topSort[pat - 1]]) 1202 break; 1203 Value p = (pat == 0) ? rewriter.create<ConstantIndexOp>(loc, 0) 1204 : codegen.pidxs[tensor][topSort[pat - 1]]; 1205 codegen.pidxs[tensor][idx] = genAddress( 1206 codegen, rewriter, loc, codegen.sizes[idx], p, codegen.loops[idx]); 1207 } 1208 } 1209 } 1210 1211 /// Generates the induction structure for a while-loop. 1212 static void genWhileInduction(Merger &merger, CodeGen &codegen, 1213 PatternRewriter &rewriter, linalg::GenericOp op, 1214 unsigned idx, bool needsUniv, 1215 llvm::BitVector &induction, ResultRange results) { 1216 Location loc = op.getLoc(); 1217 unsigned o = 0; 1218 SmallVector<Value, 4> operands; 1219 Value one = rewriter.create<ConstantIndexOp>(loc, 1); 1220 for (unsigned b = 0, be = induction.size(); b < be; b++) { 1221 if (induction[b] && merger.isDim(b, Dim::kSparse)) { 1222 unsigned tensor = merger.tensor(b); 1223 assert(idx == merger.index(b)); 1224 Value op1 = codegen.idxs[tensor][idx]; 1225 Value op2 = codegen.loops[idx]; 1226 Value op3 = codegen.pidxs[tensor][idx]; 1227 Value cmp = rewriter.create<CmpIOp>(loc, CmpIPredicate::eq, op1, op2); 1228 Value add = rewriter.create<AddIOp>(loc, op3, one); 1229 operands.push_back(rewriter.create<SelectOp>(loc, cmp, add, op3)); 1230 codegen.pidxs[tensor][idx] = results[o++]; 1231 } 1232 } 1233 if (needsUniv) { 1234 operands.push_back(rewriter.create<AddIOp>(loc, codegen.loops[idx], one)); 1235 codegen.loops[idx] = results[o++]; 1236 } 1237 assert(o == operands.size()); 1238 rewriter.create<scf::YieldOp>(loc, operands); 1239 } 1240 1241 /// Generates a single if-statement within a while-loop. 1242 static scf::IfOp genIf(Merger &merger, CodeGen &codegen, 1243 PatternRewriter &rewriter, linalg::GenericOp op, 1244 unsigned idx, llvm::BitVector &conditions) { 1245 Location loc = op.getLoc(); 1246 Value cond; 1247 for (unsigned b = 0, be = conditions.size(); b < be; b++) { 1248 if (conditions[b]) { 1249 unsigned tensor = merger.tensor(b); 1250 assert(idx == merger.index(b)); 1251 Value clause; 1252 if (merger.isDim(b, Dim::kSparse)) { 1253 Value op1 = codegen.idxs[tensor][idx]; 1254 Value op2 = codegen.loops[idx]; 1255 clause = rewriter.create<CmpIOp>(loc, CmpIPredicate::eq, op1, op2); 1256 } else { 1257 clause = rewriter.create<ConstantIntOp>(loc, 1, 1); // true 1258 } 1259 cond = cond ? rewriter.create<AndOp>(loc, cond, clause) : clause; 1260 } 1261 } 1262 scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, cond, /*else*/ true); 1263 rewriter.setInsertionPointToStart(&ifOp.thenRegion().front()); 1264 return ifOp; 1265 } 1266 1267 /// Recursively generates code while computing iteration lattices in order 1268 /// to manage the complexity of implementing co-iteration over unions 1269 /// and intersections of sparse iterations spaces. 1270 static void genStmt(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, 1271 linalg::GenericOp op, std::vector<unsigned> &topSort, 1272 unsigned exp, unsigned at) { 1273 // At each leaf, assign remaining tensor (sub)expression to output tensor. 1274 if (at == topSort.size()) { 1275 OpOperand *lhs = op.getOutputOperand(0); 1276 Value rhs = genExp(merger, codegen, rewriter, op, exp); 1277 genTensorStore(merger, codegen, rewriter, op, lhs, rhs); 1278 return; 1279 } 1280 assert(codegen.curVecLength == 1); 1281 1282 // Construct iteration lattices for current loop index, with L0 at top. 1283 // Then emit initialization code for the loop sequence at this level. 1284 // We maintain the universal dense index if dense indices are still 1285 // in play for a non-singleton loop sequence. 1286 Location loc = op.getLoc(); 1287 unsigned idx = topSort[at]; 1288 unsigned lts = merger.optimizeSet(buildLattices(merger, op, exp, idx)); 1289 unsigned lsize = merger.set(lts).size(); 1290 assert(lsize != 0); 1291 unsigned l0 = merger.set(lts)[0]; 1292 unsigned ldx = at == 0 ? -1u : topSort[at - 1]; 1293 genInvariants(merger, codegen, rewriter, op, exp, ldx, /*hoist=*/true); 1294 bool needsUniv = false; 1295 if (genInit(merger, codegen, rewriter, op, topSort, at, 1296 merger.lat(l0).bits)) { 1297 // Maintain the universal index only if it is actually 1298 // consumed by a subsequent lattice point. 1299 for (unsigned i = 1; i < lsize; i++) { 1300 unsigned li = merger.set(lts)[i]; 1301 if (!merger.hasAnyDimOf(merger.lat(li).simple, Dim::kSparse)) { 1302 needsUniv = true; 1303 break; 1304 } 1305 } 1306 } 1307 1308 // Emit a loop for every lattice point L0 >= Li. 1309 for (unsigned i = 0; i < lsize; i++) { 1310 unsigned li = merger.set(lts)[i]; 1311 1312 // Emit loop. 1313 codegen.curVecLength = 1; 1314 llvm::BitVector indices = merger.lat(li).simple; 1315 Operation *loop = 1316 genLoop(merger, codegen, rewriter, op, topSort, at, needsUniv, indices); 1317 genLocals(merger, codegen, rewriter, op, topSort, at, needsUniv, 1318 merger.lat(li).bits); 1319 1320 // Visit all lattices points with Li >= Lj to generate the 1321 // loop-body, possibly with if statements for coiteration. 1322 bool isWhile = dyn_cast<scf::WhileOp>(loop) != nullptr; 1323 for (unsigned j = 0; j < lsize; j++) { 1324 unsigned lj = merger.set(lts)[j]; 1325 unsigned ej = merger.lat(lj).exp; 1326 if (li == lj || merger.latGT(li, lj)) { 1327 // Recurse into body of each branch. 1328 if (isWhile) { 1329 scf::IfOp ifOp = 1330 genIf(merger, codegen, rewriter, op, idx, merger.lat(lj).simple); 1331 genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1); 1332 rewriter.setInsertionPointToStart(&ifOp.elseRegion().front()); 1333 } else { 1334 genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1); 1335 } 1336 } 1337 } 1338 1339 // Wrap-up induction and restore insertion point. 1340 if (isWhile) { 1341 scf::WhileOp whileOp = cast<scf::WhileOp>(loop); 1342 rewriter.setInsertionPointToEnd(&whileOp.after().front()); 1343 genWhileInduction(merger, codegen, rewriter, op, idx, needsUniv, 1344 merger.lat(li).bits, whileOp.results()); 1345 } else { 1346 needsUniv = false; 1347 if (codegen.redVal) { 1348 rewriter.create<scf::YieldOp>(loc, codegen.redVal); 1349 codegen.redVal = loop->getResult(0); 1350 } 1351 } 1352 rewriter.setInsertionPointAfter(loop); 1353 } 1354 1355 // Wrap-up loop sequence. 1356 codegen.curVecLength = 1; 1357 genReductionEnd(merger, codegen, rewriter, op); 1358 genInvariants(merger, codegen, rewriter, op, exp, ldx, /*hoist=*/false); 1359 codegen.loops[idx] = Value(); 1360 } 1361 1362 namespace { 1363 1364 /// Sparse rewriting rule for generic Lingalg operation. 1365 struct GenericOpSparsifier : public OpRewritePattern<linalg::GenericOp> { 1366 public: 1367 GenericOpSparsifier(MLIRContext *context, SparsificationOptions o) 1368 : OpRewritePattern<linalg::GenericOp>(context), options(o) {} 1369 1370 LogicalResult matchAndRewrite(linalg::GenericOp op, 1371 PatternRewriter &rewriter) const override { 1372 // Detects sparse annotations and translate the per-dimension sparsity 1373 // information for all tensors to loop indices in the kernel. 1374 assert(op.getNumOutputs() == 1); 1375 unsigned numTensors = op.getNumInputsAndOutputs(); 1376 unsigned numLoops = op.iterator_types().getValue().size(); 1377 Merger merger(numTensors, numLoops); 1378 if (!findSparseAnnotations(merger, op)) 1379 return failure(); 1380 1381 // Computes a topologically sorted iteration graph to ensure 1382 // tensors are visited in natural index order. Fails on cycles. 1383 // This assumes that higher-level passes have already put the 1384 // tensors in each tensor expression in a feasible order. 1385 std::vector<unsigned> topSort; 1386 if (!computeIterationGraph(merger, op, topSort, /*sparseOnly=*/false) && 1387 !computeIterationGraph(merger, op, topSort, /*sparseOnly=*/true)) 1388 return failure(); 1389 1390 // Finds the terminating yield statement and builds the tensor 1391 // expression for the Linalg operation in SSA form. 1392 Operation *yield = op.region().front().getTerminator(); 1393 Optional<unsigned> exp = buildTensorExp(merger, op, yield->getOperand(0)); 1394 if (!exp.hasValue()) 1395 return failure(); // build failure 1396 1397 // Recursively generates code. 1398 CodeGen codegen(options, numTensors, numLoops); 1399 genBuffers(merger, codegen, rewriter, op); 1400 genStmt(merger, codegen, rewriter, op, topSort, exp.getValue(), 0); 1401 Value result = rewriter.create<memref::TensorLoadOp>( 1402 op.getLoc(), codegen.buffers.back()); 1403 rewriter.replaceOp(op, result); 1404 return success(); 1405 } 1406 1407 private: 1408 /// Options to control sparse code generation. 1409 SparsificationOptions options; 1410 }; 1411 1412 } // namespace 1413 1414 /// Populates the given patterns list with rewriting rules required for 1415 /// the sparsification of linear algebra operations. 1416 void mlir::populateSparsificationPatterns( 1417 RewritePatternSet &patterns, const SparsificationOptions &options) { 1418 patterns.add<GenericOpSparsifier>(patterns.getContext(), options); 1419 } 1420