1 //===- Sparsification.cpp - Implementation of sparsification --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements converting sparse tensor types to actual sparse code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodegenUtils.h" 14 15 #include "mlir/Dialect/Affine/IR/AffineOps.h" 16 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 17 #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h" 18 #include "mlir/Dialect/Bufferization/IR/Bufferization.h" 19 #include "mlir/Dialect/Func/IR/FuncOps.h" 20 #include "mlir/Dialect/Linalg/IR/Linalg.h" 21 #include "mlir/Dialect/Linalg/Utils/Utils.h" 22 #include "mlir/Dialect/MemRef/IR/MemRef.h" 23 #include "mlir/Dialect/SCF/SCF.h" 24 #include "mlir/Dialect/SCF/Transforms.h" 25 #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h" 26 #include "mlir/Dialect/SparseTensor/Transforms/Passes.h" 27 #include "mlir/Dialect/SparseTensor/Utils/Merger.h" 28 #include "mlir/Dialect/Vector/IR/VectorOps.h" 29 #include "mlir/IR/Matchers.h" 30 #include "mlir/IR/TensorEncoding.h" 31 #include "llvm/ADT/SmallBitVector.h" 32 33 using namespace mlir; 34 using namespace mlir::sparse_tensor; 35 36 //===----------------------------------------------------------------------===// 37 // Declarations of data structures. 38 //===----------------------------------------------------------------------===// 39 40 namespace { 41 42 // Iteration graph sorting. 43 enum SortMask { kSparseOnly = 0x0, kIncludeDense = 0x1, kIncludeUndef = 0x2 }; 44 45 // Reduction kinds. 46 enum Reduction { kNoReduc, kSum, kProduct, kAnd, kOr, kXor }; 47 48 // Code generation. 49 struct CodeGen { 50 CodeGen(SparsificationOptions o, unsigned numTensors, unsigned numLoops, 51 OpOperand *op, unsigned nest) 52 : options(o), loops(numLoops), sizes(numLoops), buffers(numTensors), 53 pointers(numTensors, std::vector<Value>(numLoops)), 54 indices(numTensors, std::vector<Value>(numLoops)), 55 highs(numTensors, std::vector<Value>(numLoops)), 56 pidxs(numTensors, std::vector<Value>(numLoops)), 57 idxs(numTensors, std::vector<Value>(numLoops)), redVal(), sparseOut(op), 58 outerParNest(nest), lexIdx(), expValues(), expFilled(), expAdded(), 59 expCount(), curVecMask() {} 60 /// Sparsification options. 61 SparsificationOptions options; 62 /// Universal dense indices and upper bounds (by index). The loops array 63 /// is updated with the value of the universal dense index in the current 64 /// loop. The sizes array is set once with the inferred dimension sizes. 65 std::vector<Value> loops; 66 std::vector<Value> sizes; 67 /// Buffers for storing dense and sparse numerical values (by tensor). 68 /// This array is set once during bufferization of all tensors. 69 std::vector<Value> buffers; 70 /// Sparse storage schemes (1-D): pointers and indices (by tensor and index). 71 /// This array is set once during bufferization of all sparse tensors. 72 std::vector<std::vector<Value>> pointers; 73 std::vector<std::vector<Value>> indices; 74 /// Sparse iteration information (by tensor and index). These arrays 75 /// are updated to remain current within the current loop. 76 std::vector<std::vector<Value>> highs; 77 std::vector<std::vector<Value>> pidxs; 78 std::vector<std::vector<Value>> idxs; 79 /// Current reduction, updated during code generation. When indices of a 80 /// reduction are exhausted, all inner loops can use a scalarized reduction. 81 unsigned redExp = -1u; 82 Value redVal; 83 Reduction redKind = kNoReduc; 84 // Sparse tensor as output. Implemented either through direct injective 85 // insertion in lexicographic index order (where indices are updated 86 // in the temporary array `lexIdx`) or through access pattern expansion 87 // in the innermost loop nest (`expValues` through `expCount`). 88 OpOperand *sparseOut; 89 unsigned outerParNest; 90 Value lexIdx; 91 Value expValues; 92 Value expFilled; 93 Value expAdded; 94 Value expCount; 95 // Current vector length and mask. 96 unsigned curVecLength = 1; 97 Value curVecMask; 98 }; 99 100 } // namespace 101 102 //===----------------------------------------------------------------------===// 103 // Sparse compiler analysis methods. 104 //===----------------------------------------------------------------------===// 105 106 /// Helper method to apply dimension ordering permutation. 107 static unsigned perm(const SparseTensorEncodingAttr &enc, unsigned d) { 108 if (enc) { 109 auto order = enc.getDimOrdering(); 110 if (order) { 111 assert(order.isPermutation()); 112 return order.getDimPosition(d); 113 } 114 } 115 return d; 116 } 117 118 /// Helper method to translate dim level type to internal representation. 119 static Dim toDim(const SparseTensorEncodingAttr &enc, unsigned d) { 120 if (enc) { 121 SparseTensorEncodingAttr::DimLevelType tp = enc.getDimLevelType()[d]; 122 if (tp == SparseTensorEncodingAttr::DimLevelType::Compressed) 123 return Dim::kSparse; 124 if (tp == SparseTensorEncodingAttr::DimLevelType::Singleton) 125 return Dim::kSingle; 126 } 127 return Dim::kDense; 128 } 129 130 /// Helper method to inspect affine expressions. Rejects cases where the 131 /// same index is used more than once. Also rejects affine expressions 132 /// that are not a direct index for annotated tensors. 133 // TODO: accept more affine cases for sparse tensors 134 static bool findAffine(Merger &merger, unsigned tensor, AffineExpr a, Dim dim, 135 bool isDense) { 136 switch (a.getKind()) { 137 case AffineExprKind::DimId: { 138 unsigned idx = a.cast<AffineDimExpr>().getPosition(); 139 if (!merger.isDim(tensor, idx, Dim::kUndef)) 140 return false; // used more than once 141 merger.setDim(tensor, idx, dim); 142 return true; 143 } 144 case AffineExprKind::Add: 145 case AffineExprKind::Mul: { 146 if (!isDense) 147 return false; 148 auto binOp = a.cast<AffineBinaryOpExpr>(); 149 return findAffine(merger, tensor, binOp.getLHS(), dim, isDense) && 150 findAffine(merger, tensor, binOp.getRHS(), dim, isDense); 151 } 152 case AffineExprKind::Constant: 153 return isDense; 154 default: 155 return false; 156 } 157 } 158 159 /// Helper method to inspect sparse encodings in the tensor types. 160 /// Fills the per-dimension sparsity information for all tensors. 161 /// Returns true if the sparse annotations and affine subscript 162 /// expressions of all tensors are admissable. Returns false if 163 /// no annotations are found or inadmissable constructs occur. 164 static bool findSparseAnnotations(Merger &merger, linalg::GenericOp op) { 165 bool annotated = false; 166 for (OpOperand *t : op.getInputAndOutputOperands()) { 167 auto map = op.getTiedIndexingMap(t); 168 auto enc = getSparseTensorEncoding(t->get().getType()); 169 if (enc) 170 annotated = true; 171 assert(map.getNumResults() == op.getRank(t)); 172 for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { 173 unsigned tensor = t->getOperandNumber(); 174 AffineExpr a = map.getResult(perm(enc, d)); 175 if (!findAffine(merger, tensor, a, toDim(enc, d), !enc)) 176 return false; // inadmissable affine expression 177 } 178 } 179 return annotated; 180 } 181 182 /// A DFS helper to compute a topological sort. Note that recursion is 183 /// bounded by the number of implicit loops, which is always small. 184 /// Returns false when a cycle is detected. 185 static bool topSortDFS(unsigned i, std::vector<unsigned> &visit, 186 std::vector<unsigned> &topSort, 187 std::vector<std::vector<bool>> &adjM) { 188 if (visit[i] != 0) 189 return visit[i] != 1; // 1 denotes cycle! 190 visit[i] = 1; 191 for (unsigned j = 0, e = visit.size(); j < e; j++) 192 if (adjM[i][j]) 193 if (!topSortDFS(j, visit, topSort, adjM)) 194 return false; 195 visit[i] = 2; 196 topSort.push_back(i); 197 return true; 198 } 199 200 /// Helper method to add all constraints from the indices in one affine 201 /// expression before all indices in the other affine expression. For 202 /// example i0+i1 < i2+i3+1 yields i0<i2, i0<i3, i1<i2, and i1<i3. 203 static void addAffineOrderings(std::vector<std::vector<bool>> &adjM, 204 AffineExpr a, AffineExpr b, unsigned fidx) { 205 switch (a.getKind()) { 206 case AffineExprKind::DimId: { 207 unsigned idx = a.cast<AffineDimExpr>().getPosition(); 208 if (b) 209 addAffineOrderings(adjM, b, AffineExpr(), idx); 210 else 211 adjM[fidx][idx] = true; 212 break; 213 } 214 case AffineExprKind::Add: 215 case AffineExprKind::Mul: { 216 auto binOp = a.cast<AffineBinaryOpExpr>(); 217 addAffineOrderings(adjM, binOp.getLHS(), b, fidx); 218 addAffineOrderings(adjM, binOp.getRHS(), b, fidx); 219 break; 220 } 221 default: 222 break; 223 } 224 } 225 226 /// Computes a topologically sorted iteration graph for the linalg operation. 227 /// Ensures all tensors are visited in natural index order. This is essential 228 /// for sparse storage formats since these only support access along fixed 229 /// dimensions. Even for dense storage formats, however, the natural index 230 /// order yields innermost unit-stride access with better spatial locality. 231 static bool computeIterationGraph(Merger &merger, linalg::GenericOp op, 232 std::vector<unsigned> &topSort, 233 unsigned mask) { 234 // Set up an n x n from/to adjacency matrix of the iteration graph 235 // for the implicit loop indices i_0 .. i_n-1. 236 unsigned n = op.getNumLoops(); 237 std::vector<std::vector<bool>> adjM(n, std::vector<bool>(n, false)); 238 239 // Iterate over the indexing maps of every tensor in the tensor expression. 240 for (OpOperand *t : op.getInputAndOutputOperands()) { 241 auto map = op.getTiedIndexingMap(t); 242 auto enc = getSparseTensorEncoding(t->get().getType()); 243 assert(map.getNumDims() == n); 244 // Skip dense tensor constraints when not requested. 245 if (!(mask & SortMask::kIncludeDense) && !enc) 246 continue; 247 // Each tensor expression and optional dimension ordering (row-major 248 // by default) puts an ordering constraint on the loop indices. For 249 // example, the tensor expresion A_ijk forces the ordering i < j < k 250 // on the loop indices if no explicit dimension ordering is given. 251 for (unsigned d = 1, rank = map.getNumResults(); d < rank; d++) { 252 AffineExpr f = map.getResult(perm(enc, d - 1)); 253 AffineExpr t = map.getResult(perm(enc, d)); 254 addAffineOrderings(adjM, f, t, 0); 255 } 256 // Push unrelated loops into sparse iteration space, so these 257 // will be skipped more often. 258 if (mask & SortMask::kIncludeUndef) { 259 unsigned tensor = t->getOperandNumber(); 260 for (unsigned i = 0; i < n; i++) 261 if (merger.isDim(tensor, i, Dim::kSparse)) 262 for (unsigned j = 0; j < n; j++) 263 if (merger.isDim(tensor, j, Dim::kUndef)) 264 adjM[i][j] = true; 265 } 266 } 267 268 // Topologically sort the iteration graph to determine loop order. 269 // Report failure for a cyclic iteration graph. 270 topSort.clear(); 271 topSort.reserve(n); 272 std::vector<unsigned> visit(n, 0); 273 for (unsigned i = 0; i < n; i++) 274 if (visit[i] == 0) 275 if (!topSortDFS(i, visit, topSort, adjM)) 276 return false; // cycle! 277 std::reverse(std::begin(topSort), std::end(topSort)); 278 return true; 279 } 280 281 /// Returns true if tensor has an in-place annotation. 282 static bool isInPlace(Value val) { 283 if (auto arg = val.dyn_cast<BlockArgument>()) 284 if (auto funcOp = dyn_cast<FuncOp>(arg.getOwner()->getParentOp())) 285 if (auto attr = funcOp.getArgAttrOfType<BoolAttr>( 286 arg.getArgNumber(), 287 bufferization::BufferizableOpInterface::kInplaceableAttrName)) 288 return attr.getValue(); 289 return false; 290 } 291 292 /// Returns true if tensor materializes uninitialized into the computation. 293 static bool isMaterializing(Value val) { 294 return val.getDefiningOp<linalg::InitTensorOp>() || 295 val.getDefiningOp<InitOp>(); 296 } 297 298 /// Returns true when the tensor expression is admissable for codegen. 299 /// Since all sparse input tensors are admissable, we just need to check 300 /// whether the out tensor in the tensor expression codegen is admissable. 301 /// Sets `sparseOut` to the tensor and `outerParNest` to the outer injective 302 /// nesting depth when a "truly dynamic" sparse tensor output occurs. 303 static bool isAdmissableTensorExp(Merger &merger, linalg::GenericOp op, 304 std::vector<unsigned> &topSort, unsigned exp, 305 OpOperand **sparseOut, 306 unsigned &outerParNest) { 307 OpOperand *lhs = op.getOutputOperand(0); 308 unsigned tensor = lhs->getOperandNumber(); 309 auto enc = getSparseTensorEncoding(lhs->get().getType()); 310 // An non-annotated output tensor is assumed dense, and becomes a random 311 // access n-dim memref. Admissable since insertions cannot occur. 312 if (!enc) 313 return true; 314 // An all-dense annotated "sparse" output tensor becomes a linearized random 315 // access 1-dim memref. Also admissable since insertions cannot occur. 316 bool allDense = true; 317 auto iteratorTypes = op.iterator_types().getValue(); 318 unsigned numLoops = iteratorTypes.size(); 319 for (unsigned i = 0; i < numLoops; i++) 320 if (merger.isDim(tensor, i, Dim::kSparse)) { 321 allDense = false; 322 break; 323 } 324 if (allDense) 325 return true; 326 // A tensor expression with a sparse output tensor that changes its values 327 // but not its nonzero structure, an operation called "simply dynamic" in 328 // [Bik96,Ch9], is also admissable without special codegen, provided 329 // the tensor's underlying sparse storage scheme can be modified in place. 330 if (merger.isSingleCondition(tensor, exp) && isInPlace(lhs->get())) 331 return true; 332 // Accept "truly dynamic" if the output tensor materializes uninitialized 333 // into the computation and insertions occur in lexicographic index order. 334 if (isMaterializing(lhs->get())) { 335 unsigned nest = 0; 336 for (unsigned i = 0; i < numLoops; i++) { 337 if (isReductionIterator(iteratorTypes[topSort[i]])) 338 break; // terminate at first reduction 339 nest++; 340 } 341 // Determine admissable dynamic insertion situations: 342 // (1) fully injective, since there are no reductions, 343 // (2) admissable 1-d expansion in innermost dimension. 344 if (nest >= op.getRank(lhs) - 1) { 345 *sparseOut = lhs; 346 outerParNest = nest; 347 return true; 348 } 349 } 350 return false; 351 } 352 353 //===----------------------------------------------------------------------===// 354 // Sparse compiler synthesis methods (reductions). 355 //===----------------------------------------------------------------------===// 356 357 /// Maps reduction kind to vector::CombiningKind. 358 static vector::CombiningKind getCombiningKind(Reduction kind) { 359 switch (kind) { 360 case kNoReduc: 361 break; 362 case kSum: 363 return vector::CombiningKind::ADD; 364 case kProduct: 365 return vector::CombiningKind::MUL; 366 case kAnd: 367 return vector::CombiningKind::AND; 368 case kOr: 369 return vector::CombiningKind::OR; 370 case kXor: 371 return vector::CombiningKind::XOR; 372 } 373 llvm_unreachable("unknown reduction kind"); 374 } 375 376 /// Maps operation to reduction. 377 static Reduction getReduction(Kind kind) { 378 switch (kind) { 379 case Kind::kAddF: 380 case Kind::kAddI: 381 case Kind::kSubF: 382 case Kind::kSubI: 383 return kSum; 384 case Kind::kMulF: 385 case Kind::kMulI: 386 return kProduct; 387 case Kind::kAndI: 388 return kAnd; 389 case Kind::kOrI: 390 return kOr; 391 case Kind::kXorI: 392 return kXor; 393 default: 394 llvm_unreachable("unexpected reduction operator"); 395 } 396 } 397 398 /// Generates an initial value for a vector reduction, following the scheme 399 /// given in Chapter 5 of "The Software Vectorization Handbook", where the 400 /// initial scalar value is correctly embedded in the vector reduction value, 401 /// and a straightforward horizontal reduction will complete the operation. 402 static Value genVectorReducInit(CodeGen &codegen, PatternRewriter &rewriter, 403 Location loc, VectorType vtp) { 404 Value r = codegen.redVal; 405 switch (codegen.redKind) { 406 case kNoReduc: 407 break; 408 case kSum: 409 case kXor: 410 // Initialize reduction vector to: | 0 | .. | 0 | r | 411 return rewriter.create<vector::InsertElementOp>( 412 loc, r, constantZero(rewriter, loc, vtp), 413 constantIndex(rewriter, loc, 0)); 414 case kProduct: 415 // Initialize reduction vector to: | 1 | .. | 1 | r | 416 return rewriter.create<vector::InsertElementOp>( 417 loc, r, constantOne(rewriter, loc, vtp), 418 constantIndex(rewriter, loc, 0)); 419 case kAnd: 420 case kOr: 421 // Initialize reduction vector to: | r | .. | r | r | 422 return rewriter.create<vector::BroadcastOp>(loc, vtp, r); 423 } 424 llvm_unreachable("unknown reduction kind"); 425 } 426 427 /// Generates final value for a vector reduction. 428 static Value genVectorReducEnd(CodeGen &codegen, PatternRewriter &rewriter, 429 Location loc, VectorType vtp) { 430 vector::CombiningKind kind = getCombiningKind(codegen.redKind); 431 return rewriter.create<vector::ReductionOp>(loc, kind, codegen.redVal); 432 } 433 434 /// Updates scalarized reduction value. 435 static void updateReduc(Merger &merger, CodeGen &codegen, Value reduc) { 436 assert(codegen.redKind != kNoReduc); 437 codegen.redVal = merger.exp(codegen.redExp).val = reduc; 438 } 439 440 //===----------------------------------------------------------------------===// 441 // Sparse compiler synthesis methods (statements and expressions). 442 //===----------------------------------------------------------------------===// 443 444 /// Generates buffer for the output tensor. Note that all sparse kernels 445 /// assume that when all elements are written to (viz. x(i) = y(i) * z(i)), 446 /// the output buffer is already initialized to all zeroes and only nonzeroes 447 /// values are computed and written out. For updates (viz. x(i) += y(i) * z(i)), 448 /// only nonzeroes values are used for the updates and no assumption on the 449 /// original contents of the output buffer is necessary.. 450 static Value genOutputBuffer(CodeGen &codegen, PatternRewriter &rewriter, 451 linalg::GenericOp op, MemRefType denseTp, 452 ArrayRef<Value> args) { 453 Location loc = op.getLoc(); 454 Value tensor = op.getOutputOperand(0)->get(); 455 // The output tensor simply could materialize from the buffer that will 456 // be generated for the tensor present in the outs() clause. This has 457 // the major advantage that the sparse kernel only updates the nonzero 458 // positions for the output tensor. 459 if (isInPlace(tensor)) 460 return rewriter.create<bufferization::ToMemrefOp>(loc, denseTp, tensor); 461 // By default, a new buffer is allocated which is initialized to the 462 // tensor defined in the outs() clause. This is always correct but 463 // introduces a dense initialization component that may negatively 464 // impact the running complexity of the sparse kernel. If the tensor 465 // materializes into the computation, we need to preserve the zero 466 // initialization assumption of all sparse output buffers. 467 Value alloc = rewriter.create<memref::AllocOp>(loc, denseTp, args); 468 if (isMaterializing(tensor)) { 469 Value zero = constantZero(rewriter, loc, denseTp.getElementType()); 470 rewriter.create<linalg::FillOp>(loc, ValueRange{zero}, ValueRange{alloc}); 471 } else { 472 Value init = 473 rewriter.create<bufferization::ToMemrefOp>(loc, denseTp, tensor); 474 rewriter.create<memref::CopyOp>(loc, init, alloc); 475 } 476 return alloc; 477 } 478 479 /// Local bufferization of all dense and sparse data structures. 480 /// This code enables testing the first prototype sparse compiler. 481 // TODO: replace this with a proliferated bufferization strategy 482 static void genBuffers(Merger &merger, CodeGen &codegen, 483 PatternRewriter &rewriter, linalg::GenericOp op) { 484 Location loc = op.getLoc(); 485 assert(op.getNumInputsAndOutputs() == op.getNumInputs() + 1); 486 // For every tensor, find lower and upper bound on dimensions, set the 487 // same bounds on loop indices, and obtain dense or sparse buffer(s). 488 SmallVector<Value, 4> args; 489 for (OpOperand *t : op.getInputAndOutputOperands()) { 490 unsigned tensor = t->getOperandNumber(); 491 auto shape = op.getShape(t); 492 auto map = op.getTiedIndexingMap(t); 493 auto enc = getSparseTensorEncoding(t->get().getType()); 494 // Scan all dimensions of current tensor. 495 args.clear(); 496 for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { 497 AffineExpr a = map.getResult(perm(enc, d)); 498 if (a.getKind() != AffineExprKind::DimId) 499 continue; // compound 500 unsigned idx = a.cast<AffineDimExpr>().getPosition(); 501 // Handle sparse storage schemes. 502 if (merger.isDim(tensor, idx, Dim::kSparse)) { 503 auto dynShape = {ShapedType::kDynamicSize}; 504 auto ptrTp = 505 MemRefType::get(dynShape, getPointerOverheadType(rewriter, enc)); 506 auto indTp = 507 MemRefType::get(dynShape, getIndexOverheadType(rewriter, enc)); 508 Value dim = constantIndex(rewriter, loc, d); 509 // Generate sparse primitives to obtains pointer and indices. 510 codegen.pointers[tensor][idx] = 511 rewriter.create<ToPointersOp>(loc, ptrTp, t->get(), dim); 512 codegen.indices[tensor][idx] = 513 rewriter.create<ToIndicesOp>(loc, indTp, t->get(), dim); 514 } 515 // Find upper bound in current dimension. 516 unsigned p = perm(enc, d); 517 Value up = linalg::createOrFoldDimOp(rewriter, loc, t->get(), p); 518 if (ShapedType::isDynamic(shape[p])) 519 args.push_back(up); 520 assert(codegen.highs[tensor][idx] == nullptr); 521 codegen.sizes[idx] = codegen.highs[tensor][idx] = up; 522 } 523 // Perform the required bufferization. Dense inputs materialize 524 // from the input tensors. Dense outputs need special handling. 525 // Sparse inputs use sparse primitives to obtain the values. 526 // We also accept in-place all-dense annotated "sparse" outputs. 527 Type elementType = getElementTypeOrSelf(t->get().getType()); 528 if (!enc) { 529 // Non-annotated dense tensors. 530 auto denseTp = MemRefType::get(shape, elementType); 531 if (tensor < op.getNumInputs()) 532 codegen.buffers[tensor] = 533 rewriter.create<bufferization::ToMemrefOp>(loc, denseTp, t->get()); 534 else 535 codegen.buffers[tensor] = 536 genOutputBuffer(codegen, rewriter, op, denseTp, args); 537 } else if (t == codegen.sparseOut) { 538 // True sparse output needs a lexIdx array. 539 Value rank = constantIndex(rewriter, loc, op.getRank(t)); 540 auto dynShape = {ShapedType::kDynamicSize}; 541 auto memTp = MemRefType::get(dynShape, rewriter.getIndexType()); 542 codegen.lexIdx = rewriter.create<memref::AllocaOp>(loc, memTp, rank); 543 } else { 544 // Annotated sparse tensors. 545 auto dynShape = {ShapedType::kDynamicSize}; 546 auto sparseTp = MemRefType::get(dynShape, elementType); 547 codegen.buffers[tensor] = 548 rewriter.create<ToValuesOp>(loc, sparseTp, t->get()); 549 } 550 } 551 } 552 553 /// Constructs vector type. 554 static VectorType vectorType(CodeGen &codegen, Type etp) { 555 unsigned numScalableDims = codegen.options.enableVLAVectorization; 556 return VectorType::get(codegen.curVecLength, etp, numScalableDims); 557 } 558 559 /// Constructs vector type from pointer. 560 static VectorType vectorType(CodeGen &codegen, Value ptr) { 561 return vectorType(codegen, ptr.getType().cast<MemRefType>().getElementType()); 562 } 563 564 /// Constructs vector iteration mask. 565 static Value genVectorMask(CodeGen &codegen, PatternRewriter &rewriter, 566 Value iv, Value lo, Value hi, Value step) { 567 Location loc = iv.getLoc(); 568 VectorType mtp = vectorType(codegen, rewriter.getI1Type()); 569 // Special case if the vector length evenly divides the trip count (for 570 // example, "for i = 0, 128, 16"). A constant all-true mask is generated 571 // so that all subsequent masked memory operations are immediately folded 572 // into unconditional memory operations. 573 IntegerAttr loInt, hiInt, stepInt; 574 if (matchPattern(lo, m_Constant(&loInt)) && 575 matchPattern(hi, m_Constant(&hiInt)) && 576 matchPattern(step, m_Constant(&stepInt))) { 577 if (((hiInt.getInt() - loInt.getInt()) % stepInt.getInt()) == 0) 578 return rewriter.create<vector::BroadcastOp>( 579 loc, mtp, constantI1(rewriter, loc, true)); 580 } 581 // Otherwise, generate a vector mask that avoids overrunning the upperbound 582 // during vector execution. Here we rely on subsequent loop optimizations to 583 // avoid executing the mask in all iterations, for example, by splitting the 584 // loop into an unconditional vector loop and a scalar cleanup loop. 585 auto minMap = AffineMap::get( 586 /*dimCount=*/2, /*symbolCount=*/1, 587 {rewriter.getAffineSymbolExpr(0), 588 rewriter.getAffineDimExpr(0) - rewriter.getAffineDimExpr(1)}, 589 rewriter.getContext()); 590 Value end = 591 rewriter.createOrFold<AffineMinOp>(loc, minMap, ValueRange{hi, iv, step}); 592 return rewriter.create<vector::CreateMaskOp>(loc, mtp, end); 593 } 594 595 /// Generates a vectorized load lhs = a[ind[lo:hi]] or lhs = a[lo:hi]. 596 static Value genVectorLoad(CodeGen &codegen, PatternRewriter &rewriter, 597 Value ptr, ArrayRef<Value> args) { 598 Location loc = ptr.getLoc(); 599 VectorType vtp = vectorType(codegen, ptr); 600 Value pass = constantZero(rewriter, loc, vtp); 601 if (args.back().getType().isa<VectorType>()) { 602 SmallVector<Value, 4> scalarArgs(args.begin(), args.end()); 603 Value indexVec = args.back(); 604 scalarArgs.back() = constantIndex(rewriter, loc, 0); 605 return rewriter.create<vector::GatherOp>( 606 loc, vtp, ptr, scalarArgs, indexVec, codegen.curVecMask, pass); 607 } 608 return rewriter.create<vector::MaskedLoadOp>(loc, vtp, ptr, args, 609 codegen.curVecMask, pass); 610 } 611 612 /// Generates a vectorized store a[ind[lo:hi]] = rhs or a[lo:hi] = rhs. 613 static void genVectorStore(CodeGen &codegen, PatternRewriter &rewriter, 614 Value rhs, Value ptr, ArrayRef<Value> args) { 615 Location loc = ptr.getLoc(); 616 if (args.back().getType().isa<VectorType>()) { 617 SmallVector<Value, 4> scalarArgs(args.begin(), args.end()); 618 Value indexVec = args.back(); 619 scalarArgs.back() = constantIndex(rewriter, loc, 0); 620 rewriter.create<vector::ScatterOp>(loc, ptr, scalarArgs, indexVec, 621 codegen.curVecMask, rhs); 622 return; 623 } 624 rewriter.create<vector::MaskedStoreOp>(loc, ptr, args, codegen.curVecMask, 625 rhs); 626 } 627 628 /// Generates a vectorized invariant. Here we rely on subsequent loop 629 /// optimizations to hoist the invariant broadcast out of the vector loop. 630 static Value genVectorInvariantValue(CodeGen &codegen, 631 PatternRewriter &rewriter, Value val) { 632 VectorType vtp = vectorType(codegen, val.getType()); 633 return rewriter.create<vector::BroadcastOp>(val.getLoc(), vtp, val); 634 } 635 636 /// Generates an affine expression. 637 // 638 // TODO: generalize for sparse tensor subscripts 639 // 640 static Value genAffine(CodeGen &codegen, PatternRewriter &rewriter, 641 AffineExpr a, Location loc) { 642 switch (a.getKind()) { 643 case AffineExprKind::DimId: { 644 unsigned idx = a.cast<AffineDimExpr>().getPosition(); 645 return codegen.loops[idx]; // universal dense index 646 } 647 case AffineExprKind::Add: { 648 auto binOp = a.cast<AffineBinaryOpExpr>(); 649 return rewriter.create<arith::AddIOp>( 650 loc, genAffine(codegen, rewriter, binOp.getLHS(), loc), 651 genAffine(codegen, rewriter, binOp.getRHS(), loc)); 652 } 653 case AffineExprKind::Mul: { 654 auto binOp = a.cast<AffineBinaryOpExpr>(); 655 return rewriter.create<arith::MulIOp>( 656 loc, genAffine(codegen, rewriter, binOp.getLHS(), loc), 657 genAffine(codegen, rewriter, binOp.getRHS(), loc)); 658 } 659 case AffineExprKind::Constant: { 660 int64_t c = a.cast<AffineConstantExpr>().getValue(); 661 return constantIndex(rewriter, loc, c); 662 } 663 default: 664 llvm_unreachable("unexpected affine subscript"); 665 } 666 } 667 668 /// Generates index for load/store on sparse tensor. 669 static Value genIndex(CodeGen &codegen, linalg::GenericOp op, OpOperand *t) { 670 auto map = op.getTiedIndexingMap(t); 671 auto enc = getSparseTensorEncoding(t->get().getType()); 672 AffineExpr a = map.getResult(perm(enc, map.getNumResults() - 1)); 673 assert(a.getKind() == AffineExprKind::DimId); 674 unsigned idx = a.cast<AffineDimExpr>().getPosition(); 675 return codegen.loops[idx]; 676 } 677 678 /// Generates subscript for load/store on a dense or sparse tensor. 679 static Value genSubscript(CodeGen &codegen, PatternRewriter &rewriter, 680 linalg::GenericOp op, OpOperand *t, 681 SmallVector<Value, 4> &args) { 682 unsigned tensor = t->getOperandNumber(); 683 auto map = op.getTiedIndexingMap(t); 684 auto enc = getSparseTensorEncoding(t->get().getType()); 685 unsigned rank = map.getNumResults(); 686 if (enc) { 687 // Note that currently, all sparse subscripts are simple. 688 // TODO: accept affine too? 689 AffineExpr a = map.getResult(perm(enc, rank - 1)); 690 assert(a.getKind() == AffineExprKind::DimId); 691 unsigned idx = a.cast<AffineDimExpr>().getPosition(); 692 assert(codegen.pidxs[tensor][idx] != nullptr); 693 args.push_back(codegen.pidxs[tensor][idx]); // position index 694 } else { 695 for (unsigned d = 0; d < rank; d++) { 696 AffineExpr a = map.getResult(perm(enc, d)); 697 args.push_back(genAffine(codegen, rewriter, a, op.getLoc())); 698 } 699 } 700 return codegen.buffers[tensor]; 701 } 702 703 /// Generates insertion code to implement dynamic tensor load. 704 static Value genInsertionLoad(CodeGen &codegen, PatternRewriter &rewriter, 705 linalg::GenericOp op, OpOperand *t) { 706 Location loc = op.getLoc(); 707 // Direct lexicographic index order, tensor loads as zero. 708 if (!codegen.expValues) { 709 Type tp = getElementTypeOrSelf(t->get().getType()); 710 return constantZero(rewriter, loc, tp); 711 } 712 // Load from expanded access pattern. 713 Value index = genIndex(codegen, op, t); 714 return rewriter.create<memref::LoadOp>(loc, codegen.expValues, index); 715 } 716 717 /// Generates insertion code to implement dynamic tensor store. 718 static void genInsertionStore(CodeGen &codegen, PatternRewriter &rewriter, 719 linalg::GenericOp op, OpOperand *t, Value rhs) { 720 Location loc = op.getLoc(); 721 // Direct insertion in lexicographic index order. 722 if (!codegen.expValues) { 723 rewriter.create<LexInsertOp>(loc, t->get(), codegen.lexIdx, rhs); 724 return; 725 } 726 // Generates insertion code along expanded access pattern. 727 // if (!expFilled[i]) then 728 // expFilled[i] = true 729 // expAdded[inserts++] = i 730 // endif 731 // values[i] = rhs 732 Value index = genIndex(codegen, op, t); 733 Value fval = constantI1(rewriter, loc, false); 734 Value tval = constantI1(rewriter, loc, true); 735 // If statement. 736 Value filled = rewriter.create<memref::LoadOp>(loc, codegen.expFilled, index); 737 Value cond = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq, 738 filled, fval); 739 scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, rewriter.getIndexType(), 740 cond, /*else=*/true); 741 // True branch. 742 rewriter.setInsertionPointToStart(&ifOp.getThenRegion().front()); 743 rewriter.create<memref::StoreOp>(loc, tval, codegen.expFilled, index); 744 rewriter.create<memref::StoreOp>(loc, index, codegen.expAdded, 745 codegen.expCount); 746 Value one = constantIndex(rewriter, loc, 1); 747 Value add = rewriter.create<arith::AddIOp>(loc, codegen.expCount, one); 748 rewriter.create<scf::YieldOp>(loc, add); 749 // False branch. 750 rewriter.setInsertionPointToStart(&ifOp.getElseRegion().front()); 751 rewriter.create<scf::YieldOp>(loc, codegen.expCount); 752 rewriter.setInsertionPointAfter(ifOp); 753 // Value assignment. 754 codegen.expCount = ifOp.getResult(0); 755 rewriter.create<memref::StoreOp>(loc, rhs, codegen.expValues, index); 756 } 757 758 /// Generates a load on a dense or sparse tensor. 759 static Value genTensorLoad(Merger &merger, CodeGen &codegen, 760 PatternRewriter &rewriter, linalg::GenericOp op, 761 unsigned exp) { 762 // Test if the load was hoisted to a higher loop nest. 763 Value val = merger.exp(exp).val; 764 if (val) { 765 if (codegen.curVecLength > 1 && !val.getType().isa<VectorType>()) 766 return genVectorInvariantValue(codegen, rewriter, val); 767 return val; 768 } 769 // Load during insertion. 770 OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).tensor]; 771 if (t == codegen.sparseOut) 772 return genInsertionLoad(codegen, rewriter, op, t); 773 // Actual load. 774 SmallVector<Value, 4> args; 775 Value ptr = genSubscript(codegen, rewriter, op, t, args); 776 if (codegen.curVecLength > 1) 777 return genVectorLoad(codegen, rewriter, ptr, args); 778 return rewriter.create<memref::LoadOp>(op.getLoc(), ptr, args); 779 } 780 781 /// Generates a store on a dense or sparse tensor. 782 static void genTensorStore(Merger &merger, CodeGen &codegen, 783 PatternRewriter &rewriter, linalg::GenericOp op, 784 Value rhs) { 785 Location loc = op.getLoc(); 786 // Test if this is a scalarized reduction. 787 if (codegen.redVal) { 788 if (codegen.curVecLength > 1) 789 rhs = rewriter.create<arith::SelectOp>(loc, codegen.curVecMask, rhs, 790 codegen.redVal); 791 updateReduc(merger, codegen, rhs); 792 return; 793 } 794 // Store during insertion. 795 OpOperand *t = op.getOutputOperand(0); 796 if (t == codegen.sparseOut) { 797 genInsertionStore(codegen, rewriter, op, t, rhs); 798 return; 799 } 800 // Actual store. 801 SmallVector<Value, 4> args; 802 Value ptr = genSubscript(codegen, rewriter, op, t, args); 803 if (codegen.curVecLength > 1) 804 genVectorStore(codegen, rewriter, rhs, ptr, args); 805 else 806 rewriter.create<memref::StoreOp>(loc, rhs, ptr, args); 807 } 808 809 /// Generates a pointer/index load from the sparse storage scheme. Narrower 810 /// data types need to be zero extended before casting the value into the 811 /// index type used for looping and indexing. 812 static Value genLoad(CodeGen &codegen, PatternRewriter &rewriter, Location loc, 813 Value ptr, Value s) { 814 // See https://llvm.org/docs/GetElementPtr.html for some background on 815 // the complications described below. 816 if (codegen.curVecLength > 1) { 817 // Since the index vector is used in a subsequent gather/scatter operations, 818 // which effectively defines an unsigned pointer + signed index, we must 819 // zero extend the vector to an index width. For 8-bit and 16-bit values, 820 // an 32-bit index width suffices. For 32-bit values, zero extending the 821 // elements into 64-bit loses some performance since the 32-bit indexed 822 // gather/scatter is more efficient than the 64-bit index variant (if the 823 // negative 32-bit index space is unused, the enableSIMDIndex32 flag can 824 // preserve this performance). For 64-bit values, there is no good way 825 // to state that the indices are unsigned, with creates the potential of 826 // incorrect address calculations in the unlikely case we need such 827 // extremely large offsets. 828 Type etp = ptr.getType().cast<MemRefType>().getElementType(); 829 Value vload = genVectorLoad(codegen, rewriter, ptr, {s}); 830 if (!etp.isa<IndexType>()) { 831 if (etp.getIntOrFloatBitWidth() < 32) 832 vload = rewriter.create<arith::ExtUIOp>( 833 loc, vectorType(codegen, rewriter.getI32Type()), vload); 834 else if (etp.getIntOrFloatBitWidth() < 64 && 835 !codegen.options.enableSIMDIndex32) 836 vload = rewriter.create<arith::ExtUIOp>( 837 loc, vectorType(codegen, rewriter.getI64Type()), vload); 838 } 839 return vload; 840 } 841 // For the scalar case, we simply zero extend narrower indices into 64-bit 842 // values before casting to index without a performance penalty. Here too, 843 // however, indices that already are 64-bit, in theory, cannot express the 844 // full range as explained above. 845 Value load = rewriter.create<memref::LoadOp>(loc, ptr, s); 846 if (!load.getType().isa<IndexType>()) { 847 if (load.getType().getIntOrFloatBitWidth() < 64) 848 load = rewriter.create<arith::ExtUIOp>(loc, rewriter.getI64Type(), load); 849 load = 850 rewriter.create<arith::IndexCastOp>(loc, rewriter.getIndexType(), load); 851 } 852 return load; 853 } 854 855 /// Generates an invariant value. 856 static Value genInvariantValue(Merger &merger, CodeGen &codegen, 857 PatternRewriter &rewriter, unsigned exp) { 858 Value val = merger.exp(exp).val; 859 if (codegen.curVecLength > 1) 860 return genVectorInvariantValue(codegen, rewriter, val); 861 return val; 862 } 863 864 /// Generates an address computation "sz * p + i". 865 static Value genAddress(CodeGen &codegen, PatternRewriter &rewriter, 866 Location loc, Value size, Value p, Value i) { 867 Value mul = rewriter.create<arith::MulIOp>(loc, size, p); 868 if (auto vtp = i.getType().dyn_cast<VectorType>()) { 869 Value inv = 870 rewriter.create<arith::IndexCastOp>(loc, vtp.getElementType(), mul); 871 mul = genVectorInvariantValue(codegen, rewriter, inv); 872 } 873 return rewriter.create<arith::AddIOp>(loc, mul, i); 874 } 875 876 /// Generates an index value. 877 static Value genIndexValue(Merger &merger, CodeGen &codegen, 878 PatternRewriter &rewriter, unsigned exp, 879 unsigned ldx) { 880 unsigned idx = merger.exp(exp).index; 881 Value ival = codegen.loops[idx]; 882 Type itype = ival.getType(); 883 // During vectorization, we either encounter: 884 // (1) indices already in vector form, as in ... = ind[lo:hi], good to go, or 885 // (2) single index, as in ... = i, must convert to [i, i+1, ...] for inner i. 886 unsigned vl = codegen.curVecLength; 887 if (vl > 1 && !itype.isa<VectorType>()) { 888 Location loc = ival.getLoc(); 889 VectorType vtp = vectorType(codegen, itype); 890 ival = rewriter.create<vector::BroadcastOp>(loc, vtp, ival); 891 if (idx == ldx) { 892 SmallVector<APInt, 4> integers; 893 for (unsigned i = 0; i < vl; i++) 894 integers.push_back(APInt(/*width=*/64, i)); 895 auto values = DenseElementsAttr::get(vtp, integers); 896 Value incr = rewriter.create<arith::ConstantOp>(loc, vtp, values); 897 ival = rewriter.create<arith::AddIOp>(loc, ival, incr); 898 } 899 } 900 return ival; 901 } 902 903 /// Recursively generates tensor expression. 904 static Value genExp(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, 905 linalg::GenericOp op, unsigned exp, unsigned ldx) { 906 Location loc = op.getLoc(); 907 if (exp == -1u) 908 return Value(); 909 if (merger.exp(exp).kind == Kind::kTensor) 910 return genTensorLoad(merger, codegen, rewriter, op, exp); 911 if (merger.exp(exp).kind == Kind::kInvariant) 912 return genInvariantValue(merger, codegen, rewriter, exp); 913 if (merger.exp(exp).kind == Kind::kIndex) 914 return genIndexValue(merger, codegen, rewriter, exp, ldx); 915 Value v0 = 916 genExp(merger, codegen, rewriter, op, merger.exp(exp).children.e0, ldx); 917 Value v1 = 918 genExp(merger, codegen, rewriter, op, merger.exp(exp).children.e1, ldx); 919 return merger.buildExp(rewriter, loc, exp, v0, v1); 920 } 921 922 /// Determines if affine expression is invariant. 923 static bool isInvariantAffine(const CodeGen &codegen, AffineExpr a, 924 unsigned ldx, bool &atLevel) { 925 switch (a.getKind()) { 926 case AffineExprKind::DimId: { 927 unsigned idx = a.cast<AffineDimExpr>().getPosition(); 928 if (idx == ldx) 929 atLevel = true; 930 return codegen.loops[idx] != nullptr; // no longer in play? 931 } 932 case AffineExprKind::Add: 933 case AffineExprKind::Mul: { 934 auto binOp = a.cast<AffineBinaryOpExpr>(); 935 return isInvariantAffine(codegen, binOp.getLHS(), ldx, atLevel) && 936 isInvariantAffine(codegen, binOp.getRHS(), ldx, atLevel); 937 } 938 default: 939 return true; 940 } 941 } 942 943 /// Hoists loop invariant tensor loads for which indices have been exhausted. 944 static void genInvariants(Merger &merger, CodeGen &codegen, 945 PatternRewriter &rewriter, linalg::GenericOp op, 946 unsigned exp, unsigned ldx, bool atStart, 947 Kind last = Kind::kTensor) { 948 if (exp == -1u) 949 return; 950 if (merger.exp(exp).kind == Kind::kTensor) { 951 // Inspect tensor indices. 952 bool atLevel = ldx == -1u; 953 OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).tensor]; 954 auto map = op.getTiedIndexingMap(t); 955 auto enc = getSparseTensorEncoding(t->get().getType()); 956 for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { 957 AffineExpr a = map.getResult(perm(enc, d)); 958 if (!isInvariantAffine(codegen, a, ldx, atLevel)) 959 return; // still in play 960 } 961 // All exhausted at this level (atLevel denotes exactly at this level). 962 if (!atLevel) 963 return; 964 OpOperand *lhs = op.getOutputOperand(0); 965 if (lhs == t) { 966 // Start or end a scalarized reduction 967 if (atStart) { 968 Value load = genTensorLoad(merger, codegen, rewriter, op, exp); 969 codegen.redKind = getReduction(last); 970 codegen.redExp = exp; 971 updateReduc(merger, codegen, load); 972 } else { 973 Value redVal = codegen.redVal; 974 updateReduc(merger, codegen, Value()); 975 codegen.redExp = -1u; 976 codegen.redKind = kNoReduc; 977 genTensorStore(merger, codegen, rewriter, op, redVal); 978 } 979 } else { 980 // Start or end loop invariant hoisting of a tensor load. 981 merger.exp(exp).val = 982 atStart ? genTensorLoad(merger, codegen, rewriter, op, exp) : Value(); 983 } 984 } else if (merger.exp(exp).kind != Kind::kInvariant && 985 merger.exp(exp).kind != Kind::kIndex) { 986 // Traverse into the binary operations. Note that we only hoist 987 // tensor loads, since subsequent MLIR/LLVM passes know how to 988 // deal with all other kinds of derived loop invariants. 989 Kind last = merger.exp(exp).kind; 990 unsigned e0 = merger.exp(exp).children.e0; 991 unsigned e1 = merger.exp(exp).children.e1; 992 genInvariants(merger, codegen, rewriter, op, e0, ldx, atStart, last); 993 genInvariants(merger, codegen, rewriter, op, e1, ldx, atStart, last); 994 } 995 } 996 997 /// Generates an expanded access pattern in innermost dimension. 998 static void genExpansion(Merger &merger, CodeGen &codegen, 999 PatternRewriter &rewriter, linalg::GenericOp op, 1000 unsigned at, bool atStart) { 1001 OpOperand *lhs = codegen.sparseOut; 1002 if (!lhs || codegen.outerParNest != op.getRank(lhs) - 1 || 1003 at != codegen.outerParNest) 1004 return; // not needed at this level 1005 // Generate start or end of an expanded access pattern. 1006 Value tensor = lhs->get(); 1007 Location loc = op.getLoc(); 1008 if (atStart) { 1009 auto dynShape = {ShapedType::kDynamicSize}; 1010 Type etp = tensor.getType().cast<ShapedType>().getElementType(); 1011 Type t1 = MemRefType::get(dynShape, etp); 1012 Type t2 = MemRefType::get(dynShape, rewriter.getI1Type()); 1013 Type t3 = MemRefType::get(dynShape, rewriter.getIndexType()); 1014 Type t4 = rewriter.getIndexType(); 1015 auto res = 1016 rewriter.create<ExpandOp>(loc, TypeRange({t1, t2, t3, t4}), tensor); 1017 assert(res.getNumResults() == 4); 1018 assert(!codegen.expValues); 1019 codegen.expValues = res.getResult(0); 1020 codegen.expFilled = res.getResult(1); 1021 codegen.expAdded = res.getResult(2); 1022 codegen.expCount = res.getResult(3); 1023 } else { 1024 assert(codegen.expValues); 1025 rewriter.create<CompressOp>(loc, tensor, codegen.lexIdx, codegen.expValues, 1026 codegen.expFilled, codegen.expAdded, 1027 codegen.expCount); 1028 codegen.expValues = codegen.expFilled = codegen.expAdded = 1029 codegen.expCount = Value(); 1030 } 1031 } 1032 1033 /// Generates initialization code for the subsequent loop sequence at 1034 /// current index level. Returns true if the loop sequence needs to 1035 /// maintain the universal index. 1036 static bool genInit(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, 1037 linalg::GenericOp op, std::vector<unsigned> &topSort, 1038 unsigned at, BitVector &inits) { 1039 bool needsUniv = false; 1040 Location loc = op.getLoc(); 1041 unsigned idx = topSort[at]; 1042 1043 // Initialize sparse positions. 1044 for (unsigned b = 0, be = inits.size(); b < be; b++) { 1045 if (inits[b]) { 1046 unsigned tensor = merger.tensor(b); 1047 assert(idx == merger.index(b)); 1048 if (merger.isDim(b, Dim::kSparse)) { 1049 // Initialize sparse index. 1050 unsigned pat = at; 1051 for (; pat != 0; pat--) { 1052 if (codegen.pidxs[tensor][topSort[pat - 1]]) 1053 break; 1054 } 1055 Value ptr = codegen.pointers[tensor][idx]; 1056 Value one = constantIndex(rewriter, loc, 1); 1057 Value p0 = (pat == 0) ? constantIndex(rewriter, loc, 0) 1058 : codegen.pidxs[tensor][topSort[pat - 1]]; 1059 codegen.pidxs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p0); 1060 Value p1 = rewriter.create<arith::AddIOp>(loc, p0, one); 1061 codegen.highs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p1); 1062 } else { 1063 // Dense index still in play. 1064 needsUniv = true; 1065 } 1066 } 1067 } 1068 1069 // Initialize the universal dense index. 1070 codegen.loops[idx] = constantIndex(rewriter, loc, 0); 1071 return needsUniv; 1072 } 1073 1074 /// Returns vectorization strategy. Any implicit inner loop in the Linalg 1075 /// operation is a candidate. Whether it is actually converted to SIMD code 1076 /// depends on the requested strategy. 1077 static bool isVectorFor(CodeGen &codegen, bool isInner, bool isReduction, 1078 bool isSparse) { 1079 // Reject vectorization of sparse output, unless innermost is reduction. 1080 if (codegen.sparseOut && !isReduction) 1081 return false; 1082 // Inspect strategy. 1083 switch (codegen.options.vectorizationStrategy) { 1084 case SparseVectorizationStrategy::kNone: 1085 return false; 1086 case SparseVectorizationStrategy::kDenseInnerLoop: 1087 return isInner && !isSparse; 1088 case SparseVectorizationStrategy::kAnyStorageInnerLoop: 1089 return isInner; 1090 } 1091 llvm_unreachable("unexpected vectorization strategy"); 1092 } 1093 1094 /// Returns parallelization strategy. Any implicit loop in the Linalg operation 1095 /// that is marked "parallel" is a candidate. Whether it is actually converted 1096 /// to a parallel operation depends on the requested strategy. 1097 static bool isParallelFor(CodeGen &codegen, bool isOuter, bool isReduction, 1098 bool isSparse, bool isVector) { 1099 // Reject parallelization of sparse output. 1100 if (codegen.sparseOut) 1101 return false; 1102 // Inspect strategy. 1103 switch (codegen.options.parallelizationStrategy) { 1104 case SparseParallelizationStrategy::kNone: 1105 return false; 1106 case SparseParallelizationStrategy::kDenseOuterLoop: 1107 return isOuter && !isSparse && !isReduction && !isVector; 1108 case SparseParallelizationStrategy::kAnyStorageOuterLoop: 1109 return isOuter && !isReduction && !isVector; 1110 case SparseParallelizationStrategy::kDenseAnyLoop: 1111 return !isSparse && !isReduction && !isVector; 1112 case SparseParallelizationStrategy::kAnyStorageAnyLoop: 1113 return !isReduction && !isVector; 1114 } 1115 llvm_unreachable("unexpected parallelization strategy"); 1116 } 1117 1118 /// Checks unit stride for dense tensors. The iteration graph may have ignored 1119 /// dense access patterns in order to avoid cycles (sparse access patterns are 1120 /// always placed innermost), but that means dense access has become strided. 1121 /// This prevents effective vectorization. 1122 static bool denseUnitStrides(Merger &merger, linalg::GenericOp op, 1123 unsigned idx) { 1124 for (OpOperand *t : op.getInputAndOutputOperands()) { 1125 if (!getSparseTensorEncoding(t->get().getType())) { 1126 auto map = op.getTiedIndexingMap(t); 1127 for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { 1128 AffineExpr a = map.getResult(d); 1129 // Report non-unit stride if innermost index appears at an outer 1130 // dimension (true non-unit stride) or if the innermost index appears 1131 // in a compound subscript in the innermost dimension. Even if the 1132 // latter is unit stride, it does not play well with scatter/gather. 1133 // TODO: accept unit stride affine innermost like a[i,j+k+1]? 1134 if (a.isFunctionOfDim(idx) && 1135 ((d != rank - 1) || (a.getKind() != AffineExprKind::DimId))) 1136 return false; 1137 } 1138 } 1139 } 1140 return true; 1141 } 1142 1143 /// Generates a for-loop on a single index. 1144 static Operation *genFor(Merger &merger, CodeGen &codegen, 1145 PatternRewriter &rewriter, linalg::GenericOp op, 1146 bool isOuter, bool isInner, unsigned idx, 1147 BitVector &indices) { 1148 unsigned fb = indices.find_first(); 1149 unsigned tensor = merger.tensor(fb); 1150 assert(idx == merger.index(fb)); 1151 auto iteratorTypes = op.iterator_types().getValue(); 1152 bool isReduction = isReductionIterator(iteratorTypes[idx]); 1153 bool isSparse = merger.isDim(fb, Dim::kSparse); 1154 bool isVector = isVectorFor(codegen, isInner, isReduction, isSparse) && 1155 denseUnitStrides(merger, op, idx); 1156 bool isParallel = 1157 isParallelFor(codegen, isOuter, isReduction, isSparse, isVector); 1158 1159 // Prepare vector length. 1160 if (isVector) 1161 codegen.curVecLength = codegen.options.vectorLength; 1162 1163 // Loop bounds and increment. 1164 Location loc = op.getLoc(); 1165 Value lo = isSparse ? codegen.pidxs[tensor][idx] : codegen.loops[idx]; 1166 Value hi = isSparse ? codegen.highs[tensor][idx] : codegen.sizes[idx]; 1167 Value step = constantIndex(rewriter, loc, codegen.curVecLength); 1168 if (isVector && codegen.options.enableVLAVectorization) { 1169 Value vscale = rewriter.create<vector::VectorScaleOp>( 1170 loc, IndexType::get(rewriter.getContext())); 1171 step = rewriter.create<arith::MulIOp>(loc, vscale, step); 1172 } 1173 1174 // Emit a parallel loop. 1175 if (isParallel) { 1176 assert(!isVector); 1177 scf::ParallelOp parOp = rewriter.create<scf::ParallelOp>(loc, lo, hi, step); 1178 if (isSparse) 1179 codegen.pidxs[tensor][idx] = parOp.getInductionVars()[0]; 1180 else 1181 codegen.loops[idx] = parOp.getInductionVars()[0]; 1182 rewriter.setInsertionPointToStart(parOp.getBody()); 1183 return parOp; 1184 } 1185 1186 // Emit a sequential or vector loop. 1187 SmallVector<Value, 4> operands; 1188 if (codegen.redVal) { 1189 // In a vector loop, bring reduction into SIMD form, if not already. 1190 if (isVector && !codegen.redVal.getType().isa<VectorType>()) { 1191 VectorType vtp = vectorType(codegen, codegen.redVal.getType()); 1192 Value vred = genVectorReducInit(codegen, rewriter, loc, vtp); 1193 updateReduc(merger, codegen, vred); 1194 } 1195 operands.push_back(codegen.redVal); 1196 } 1197 if (codegen.expValues) 1198 operands.push_back(codegen.expCount); 1199 scf::ForOp forOp = rewriter.create<scf::ForOp>(loc, lo, hi, step, operands); 1200 if (codegen.redVal) 1201 updateReduc(merger, codegen, forOp.getRegionIterArgs().front()); 1202 if (codegen.expValues) 1203 codegen.expCount = forOp.getRegionIterArgs().back(); 1204 // Assign induction variable to sparse or dense index. 1205 Value iv = forOp.getInductionVar(); 1206 if (isSparse) 1207 codegen.pidxs[tensor][idx] = iv; 1208 else 1209 codegen.loops[idx] = iv; 1210 rewriter.setInsertionPointToStart(forOp.getBody()); 1211 // Share vector iteration mask between all subsequent loads/stores. 1212 if (isVector) 1213 codegen.curVecMask = genVectorMask(codegen, rewriter, iv, lo, hi, step); 1214 return forOp; 1215 } 1216 1217 /// Emit a while-loop for co-iteration over multiple indices. 1218 static Operation *genWhile(Merger &merger, CodeGen &codegen, 1219 PatternRewriter &rewriter, linalg::GenericOp op, 1220 unsigned idx, bool needsUniv, 1221 BitVector &indices) { 1222 SmallVector<Type, 4> types; 1223 SmallVector<Value, 4> operands; 1224 // Construct the while-loop with a parameter for each index. 1225 Type indexType = rewriter.getIndexType(); 1226 for (unsigned b = 0, be = indices.size(); b < be; b++) { 1227 if (indices[b] && merger.isDim(b, Dim::kSparse)) { 1228 unsigned tensor = merger.tensor(b); 1229 assert(idx == merger.index(b)); 1230 types.push_back(indexType); 1231 operands.push_back(codegen.pidxs[tensor][idx]); 1232 } 1233 } 1234 if (codegen.redVal) { 1235 types.push_back(codegen.redVal.getType()); 1236 operands.push_back(codegen.redVal); 1237 } 1238 if (codegen.expValues) { 1239 types.push_back(indexType); 1240 operands.push_back(codegen.expCount); 1241 } 1242 if (needsUniv) { 1243 types.push_back(indexType); 1244 operands.push_back(codegen.loops[idx]); 1245 } 1246 assert(types.size() == operands.size()); 1247 Location loc = op.getLoc(); 1248 scf::WhileOp whileOp = rewriter.create<scf::WhileOp>(loc, types, operands); 1249 1250 SmallVector<Location> locs(types.size(), loc); 1251 Block *before = rewriter.createBlock(&whileOp.getBefore(), {}, types, locs); 1252 Block *after = rewriter.createBlock(&whileOp.getAfter(), {}, types, locs); 1253 1254 // Build the "before" region, which effectively consists 1255 // of a conjunction of "i < upper" tests on all induction. 1256 rewriter.setInsertionPointToStart(&whileOp.getBefore().front()); 1257 Value cond; 1258 unsigned o = 0; 1259 for (unsigned b = 0, be = indices.size(); b < be; b++) { 1260 if (indices[b] && merger.isDim(b, Dim::kSparse)) { 1261 unsigned tensor = merger.tensor(b); 1262 assert(idx == merger.index(b)); 1263 Value op1 = before->getArgument(o); 1264 Value op2 = codegen.highs[tensor][idx]; 1265 Value opc = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult, 1266 op1, op2); 1267 cond = cond ? rewriter.create<arith::AndIOp>(loc, cond, opc) : opc; 1268 codegen.pidxs[tensor][idx] = after->getArgument(o++); 1269 } 1270 } 1271 if (codegen.redVal) 1272 updateReduc(merger, codegen, after->getArgument(o++)); 1273 if (codegen.expValues) 1274 codegen.expCount = after->getArgument(o++); 1275 if (needsUniv) 1276 codegen.loops[idx] = after->getArgument(o++); 1277 assert(o == operands.size()); 1278 rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments()); 1279 rewriter.setInsertionPointToStart(&whileOp.getAfter().front()); 1280 return whileOp; 1281 } 1282 1283 /// Generates a for-loop or a while-loop, depending on whether it implements 1284 /// singleton iteration or co-iteration over the given conjunction. 1285 static Operation *genLoop(Merger &merger, CodeGen &codegen, 1286 PatternRewriter &rewriter, linalg::GenericOp op, 1287 std::vector<unsigned> &topSort, unsigned at, 1288 bool needsUniv, BitVector &indices) { 1289 unsigned idx = topSort[at]; 1290 if (indices.count() == 1) { 1291 bool isOuter = at == 0; 1292 bool isInner = at == topSort.size() - 1; 1293 return genFor(merger, codegen, rewriter, op, isOuter, isInner, idx, 1294 indices); 1295 } 1296 return genWhile(merger, codegen, rewriter, op, idx, needsUniv, indices); 1297 } 1298 1299 /// Generates the local variables for this loop, consisting of the sparse 1300 /// indices, restored universal dense index, and dense positions. 1301 static void genLocals(Merger &merger, CodeGen &codegen, 1302 PatternRewriter &rewriter, linalg::GenericOp op, 1303 std::vector<unsigned> &topSort, unsigned at, 1304 bool needsUniv, BitVector &locals) { 1305 Location loc = op.getLoc(); 1306 unsigned idx = topSort[at]; 1307 1308 // Initialize sparse indices. 1309 Value min; 1310 for (unsigned b = 0, be = locals.size(); b < be; b++) { 1311 if (locals[b] && merger.isDim(b, Dim::kSparse)) { 1312 unsigned tensor = merger.tensor(b); 1313 assert(idx == merger.index(b)); 1314 Value ptr = codegen.indices[tensor][idx]; 1315 Value s = codegen.pidxs[tensor][idx]; 1316 Value load = genLoad(codegen, rewriter, loc, ptr, s); 1317 codegen.idxs[tensor][idx] = load; 1318 if (!needsUniv) { 1319 if (min) { 1320 Value cmp = rewriter.create<arith::CmpIOp>( 1321 loc, arith::CmpIPredicate::ult, load, min); 1322 min = rewriter.create<arith::SelectOp>(loc, cmp, load, min); 1323 } else { 1324 min = load; 1325 } 1326 } 1327 } 1328 } 1329 1330 // Merge dense universal index over minimum. 1331 if (min) { 1332 assert(!needsUniv); 1333 codegen.loops[idx] = min; 1334 } 1335 1336 // Initialize dense positions. Note that we generate dense indices of the 1337 // output tensor unconditionally, since they may not appear in the lattice, 1338 // but may be needed for linearized codegen. 1339 for (unsigned b = 0, be = locals.size(); b < be; b++) { 1340 if ((locals[b] || merger.isOutTensor(b, idx)) && 1341 merger.isDim(b, Dim::kDense)) { 1342 unsigned tensor = merger.tensor(b); 1343 assert(idx == merger.index(b)); 1344 unsigned pat = at; 1345 for (; pat != 0; pat--) 1346 if (codegen.pidxs[tensor][topSort[pat - 1]]) 1347 break; 1348 Value p = (pat == 0) ? constantIndex(rewriter, loc, 0) 1349 : codegen.pidxs[tensor][topSort[pat - 1]]; 1350 codegen.pidxs[tensor][idx] = genAddress( 1351 codegen, rewriter, loc, codegen.sizes[idx], p, codegen.loops[idx]); 1352 } 1353 } 1354 1355 // Move the insertion indices in lexicographic index order. During access 1356 // pattern expansion, we can skip setting the innermost dimension. 1357 if (codegen.sparseOut && !codegen.expValues) { 1358 Value pos = constantIndex(rewriter, loc, at); 1359 rewriter.create<memref::StoreOp>(loc, codegen.loops[idx], codegen.lexIdx, 1360 pos); 1361 } 1362 } 1363 1364 /// Generates the induction structure for a while-loop. 1365 static void genWhileInduction(Merger &merger, CodeGen &codegen, 1366 PatternRewriter &rewriter, linalg::GenericOp op, 1367 unsigned idx, bool needsUniv, 1368 BitVector &induction, 1369 scf::WhileOp whileOp) { 1370 Location loc = op.getLoc(); 1371 // Finalize each else branch of all if statements. 1372 if (codegen.redVal || codegen.expValues) { 1373 while (auto ifOp = dyn_cast_or_null<scf::IfOp>( 1374 rewriter.getInsertionBlock()->getParentOp())) { 1375 unsigned y = 0; 1376 SmallVector<Value, 4> yields; 1377 if (codegen.redVal) { 1378 yields.push_back(codegen.redVal); 1379 updateReduc(merger, codegen, ifOp.getResult(y++)); 1380 } 1381 if (codegen.expValues) { 1382 yields.push_back(codegen.expCount); 1383 codegen.expCount = ifOp->getResult(y++); 1384 } 1385 assert(y == yields.size()); 1386 rewriter.create<scf::YieldOp>(loc, yields); 1387 rewriter.setInsertionPointAfter(ifOp); 1388 } 1389 } 1390 rewriter.setInsertionPointToEnd(&whileOp.getAfter().front()); 1391 // Finalize the induction. Note that the induction could be performed 1392 // in the individual if-branches to avoid re-evaluating the conditions. 1393 // However, that would result in a rather elaborate forest of yield 1394 // instructions during code generation. Moreover, performing the induction 1395 // after the if-statements more closely resembles code generated by TACO. 1396 unsigned o = 0; 1397 SmallVector<Value, 4> operands; 1398 Value one = constantIndex(rewriter, loc, 1); 1399 for (unsigned b = 0, be = induction.size(); b < be; b++) { 1400 if (induction[b] && merger.isDim(b, Dim::kSparse)) { 1401 unsigned tensor = merger.tensor(b); 1402 assert(idx == merger.index(b)); 1403 Value op1 = codegen.idxs[tensor][idx]; 1404 Value op2 = codegen.loops[idx]; 1405 Value op3 = codegen.pidxs[tensor][idx]; 1406 Value cmp = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq, 1407 op1, op2); 1408 Value add = rewriter.create<arith::AddIOp>(loc, op3, one); 1409 operands.push_back(rewriter.create<arith::SelectOp>(loc, cmp, add, op3)); 1410 codegen.pidxs[tensor][idx] = whileOp->getResult(o++); 1411 } 1412 } 1413 if (codegen.redVal) { 1414 operands.push_back(codegen.redVal); 1415 updateReduc(merger, codegen, whileOp->getResult(o++)); 1416 } 1417 if (codegen.expValues) { 1418 operands.push_back(codegen.expCount); 1419 codegen.expCount = whileOp->getResult(o++); 1420 } 1421 if (needsUniv) { 1422 operands.push_back( 1423 rewriter.create<arith::AddIOp>(loc, codegen.loops[idx], one)); 1424 codegen.loops[idx] = whileOp->getResult(o++); 1425 } 1426 assert(o == operands.size()); 1427 rewriter.create<scf::YieldOp>(loc, operands); 1428 rewriter.setInsertionPointAfter(whileOp); 1429 } 1430 1431 /// Generates the induction structure for a for-loop. 1432 static void genForInduction(Merger &merger, CodeGen &codegen, 1433 PatternRewriter &rewriter, linalg::GenericOp op, 1434 Operation *loop) { 1435 Location loc = op.getLoc(); 1436 unsigned o = 0; 1437 SmallVector<Value, 4> operands; 1438 if (codegen.redVal) { 1439 operands.push_back(codegen.redVal); 1440 updateReduc(merger, codegen, loop->getResult(o++)); 1441 } 1442 if (codegen.expValues) { 1443 operands.push_back(codegen.expCount); 1444 codegen.expCount = loop->getResult(o++); 1445 } 1446 assert(o == operands.size()); 1447 if (o > 0) 1448 rewriter.create<scf::YieldOp>(loc, operands); 1449 rewriter.setInsertionPointAfter(loop); 1450 } 1451 1452 /// Generates a single if-statement within a while-loop. 1453 static scf::IfOp genIf(Merger &merger, CodeGen &codegen, 1454 PatternRewriter &rewriter, linalg::GenericOp op, 1455 unsigned idx, BitVector &conditions) { 1456 Location loc = op.getLoc(); 1457 SmallVector<Type, 4> types; 1458 Value cond; 1459 for (unsigned b = 0, be = conditions.size(); b < be; b++) { 1460 if (conditions[b]) { 1461 unsigned tensor = merger.tensor(b); 1462 assert(idx == merger.index(b)); 1463 Value clause; 1464 if (merger.isDim(b, Dim::kSparse)) { 1465 Value op1 = codegen.idxs[tensor][idx]; 1466 Value op2 = codegen.loops[idx]; 1467 clause = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq, 1468 op1, op2); 1469 } else { 1470 clause = constantI1(rewriter, loc, true); 1471 } 1472 cond = cond ? rewriter.create<arith::AndIOp>(loc, cond, clause) : clause; 1473 } 1474 } 1475 if (codegen.redVal) 1476 types.push_back(codegen.redVal.getType()); 1477 if (codegen.expValues) 1478 types.push_back(rewriter.getIndexType()); 1479 scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, types, cond, /*else=*/true); 1480 rewriter.setInsertionPointToStart(&ifOp.getThenRegion().front()); 1481 return ifOp; 1482 } 1483 1484 /// Generates end of true branch of if-statement within a while-loop. 1485 static void endIf(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, 1486 linalg::GenericOp op, scf::IfOp ifOp, Operation *loop, 1487 Value redInput, Value cntInput) { 1488 SmallVector<Value, 4> operands; 1489 if (codegen.redVal) { 1490 operands.push_back(codegen.redVal); 1491 updateReduc(merger, codegen, redInput); 1492 } 1493 if (codegen.expValues) { 1494 operands.push_back(codegen.expCount); 1495 codegen.expCount = cntInput; 1496 } 1497 if (!operands.empty()) 1498 rewriter.create<scf::YieldOp>(op.getLoc(), operands); 1499 rewriter.setInsertionPointToStart(&ifOp.getElseRegion().front()); 1500 } 1501 1502 //===----------------------------------------------------------------------===// 1503 // Sparse compiler synthesis methods (loop sequence). 1504 //===----------------------------------------------------------------------===// 1505 1506 /// Starts a loop sequence at given level. Returns true if 1507 /// the universal loop index must be maintained at this level. 1508 static bool startLoopSeq(Merger &merger, CodeGen &codegen, 1509 PatternRewriter &rewriter, linalg::GenericOp op, 1510 std::vector<unsigned> &topSort, unsigned exp, 1511 unsigned at, unsigned idx, unsigned ldx, 1512 unsigned lts) { 1513 assert(codegen.curVecLength == 1); 1514 assert(!codegen.loops[idx]); 1515 // Emit invariants at this loop sequence level. 1516 genInvariants(merger, codegen, rewriter, op, exp, ldx, /*atStart=*/true); 1517 // Emit access pattern expansion for sparse tensor output. 1518 genExpansion(merger, codegen, rewriter, op, at, /*atStart=*/true); 1519 // Emit further intitialization at this loop sequence level. 1520 unsigned l0 = merger.set(lts)[0]; 1521 bool needsUniv = 1522 genInit(merger, codegen, rewriter, op, topSort, at, merger.lat(l0).bits); 1523 // Maintain the universal index only if it is actually 1524 // consumed by a subsequent lattice point. 1525 if (needsUniv) { 1526 unsigned lsize = merger.set(lts).size(); 1527 for (unsigned i = 1; i < lsize; i++) { 1528 unsigned li = merger.set(lts)[i]; 1529 if (!merger.hasAnyDimOf(merger.lat(li).simple, Dim::kSparse)) 1530 return true; 1531 } 1532 } 1533 return false; 1534 } 1535 1536 /// Starts a single loop in current sequence. 1537 static Operation *startLoop(Merger &merger, CodeGen &codegen, 1538 PatternRewriter &rewriter, linalg::GenericOp op, 1539 std::vector<unsigned> &topSort, unsigned at, 1540 unsigned li, bool needsUniv) { 1541 assert(codegen.curVecLength == 1); 1542 // Emit the for/while-loop control. 1543 Operation *loop = genLoop(merger, codegen, rewriter, op, topSort, at, 1544 needsUniv, merger.lat(li).simple); 1545 // Emit the locals for this loop. 1546 genLocals(merger, codegen, rewriter, op, topSort, at, needsUniv, 1547 merger.lat(li).bits); 1548 return loop; 1549 } 1550 1551 /// Ends a single loop in current sequence. Returns new values for needsUniv. 1552 static bool endLoop(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, 1553 linalg::GenericOp op, Operation *loop, unsigned idx, 1554 unsigned li, bool needsUniv) { 1555 codegen.curVecLength = 1; 1556 // End a while-loop. 1557 if (auto whileOp = dyn_cast<scf::WhileOp>(loop)) { 1558 genWhileInduction(merger, codegen, rewriter, op, idx, needsUniv, 1559 merger.lat(li).bits, whileOp); 1560 return needsUniv; 1561 } 1562 // End a for-loop. 1563 genForInduction(merger, codegen, rewriter, op, loop); 1564 return false; 1565 } 1566 1567 /// Ends a loop sequence at given level. 1568 static void endLoopSeq(Merger &merger, CodeGen &codegen, 1569 PatternRewriter &rewriter, linalg::GenericOp op, 1570 unsigned exp, unsigned at, unsigned idx, unsigned ldx) { 1571 assert(codegen.curVecLength == 1); 1572 codegen.loops[idx] = Value(); 1573 // Bring a pending reduction back from SIMD form when sequence ends. 1574 if (codegen.redVal) 1575 if (auto vtp = codegen.redVal.getType().dyn_cast<VectorType>()) 1576 updateReduc(merger, codegen, 1577 genVectorReducEnd(codegen, rewriter, op.getLoc(), vtp)); 1578 // Unmark bookkeeping of invariants and loop index. 1579 genInvariants(merger, codegen, rewriter, op, exp, ldx, /*atStart=*/false); 1580 // Finalize access pattern expansion for sparse tensor output. 1581 genExpansion(merger, codegen, rewriter, op, at, /*atStart=*/false); 1582 } 1583 1584 /// Recursively generates code while computing iteration lattices in order 1585 /// to manage the complexity of implementing co-iteration over unions 1586 /// and intersections of sparse iterations spaces. 1587 static void genStmt(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, 1588 linalg::GenericOp op, std::vector<unsigned> &topSort, 1589 unsigned exp, unsigned at) { 1590 // At each leaf, assign remaining tensor (sub)expression to output tensor. 1591 if (at == topSort.size()) { 1592 unsigned ldx = topSort[at - 1]; 1593 Value rhs = genExp(merger, codegen, rewriter, op, exp, ldx); 1594 genTensorStore(merger, codegen, rewriter, op, rhs); 1595 return; 1596 } 1597 1598 // Construct iteration lattices for current loop index, with L0 at top. 1599 unsigned idx = topSort[at]; 1600 unsigned ldx = at == 0 ? -1u : topSort[at - 1]; 1601 unsigned lts = merger.optimizeSet(merger.buildLattices(exp, idx)); 1602 1603 // Start a loop sequence. 1604 bool needsUniv = startLoopSeq(merger, codegen, rewriter, op, topSort, exp, at, 1605 idx, ldx, lts); 1606 1607 // Emit a loop for every lattice point L0 >= Li in this loop sequence. 1608 unsigned lsize = merger.set(lts).size(); 1609 for (unsigned i = 0; i < lsize; i++) { 1610 // Start a loop. 1611 unsigned li = merger.set(lts)[i]; 1612 Operation *loop = 1613 startLoop(merger, codegen, rewriter, op, topSort, at, li, needsUniv); 1614 1615 // Visit all lattices points with Li >= Lj to generate the 1616 // loop-body, possibly with if statements for coiteration. 1617 Value redInput = codegen.redVal; 1618 Value cntInput = codegen.expCount; 1619 bool isWhile = dyn_cast<scf::WhileOp>(loop) != nullptr; 1620 for (unsigned j = 0; j < lsize; j++) { 1621 unsigned lj = merger.set(lts)[j]; 1622 unsigned ej = merger.lat(lj).exp; 1623 if (li == lj || merger.latGT(li, lj)) { 1624 // Recurse into body of each branch. 1625 if (isWhile) { 1626 scf::IfOp ifOp = 1627 genIf(merger, codegen, rewriter, op, idx, merger.lat(lj).simple); 1628 genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1); 1629 endIf(merger, codegen, rewriter, op, ifOp, loop, redInput, cntInput); 1630 } else { 1631 genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1); 1632 } 1633 } 1634 } 1635 1636 // End a loop. 1637 needsUniv = 1638 endLoop(merger, codegen, rewriter, op, loop, idx, li, needsUniv); 1639 } 1640 1641 // End a loop sequence. 1642 endLoopSeq(merger, codegen, rewriter, op, exp, at, idx, ldx); 1643 } 1644 1645 /// Converts the result computed by the sparse kernel into the required form. 1646 static void genResult(Merger &merger, CodeGen &codegen, 1647 PatternRewriter &rewriter, linalg::GenericOp op) { 1648 OpOperand *lhs = op.getOutputOperand(0); 1649 Type resType = lhs->get().getType(); 1650 if (getSparseTensorEncoding(resType)) { 1651 // The sparse tensor rematerializes from the original sparse tensor's 1652 // underlying sparse storage format. 1653 rewriter.replaceOpWithNewOp<LoadOp>(op, resType, lhs->get(), 1654 codegen.sparseOut == lhs); 1655 } else { 1656 // To rematerialize an non-annotated tensor, simply load it 1657 // from the bufferized value. 1658 Value val = codegen.buffers.back(); // value array 1659 rewriter.replaceOpWithNewOp<bufferization::ToTensorOp>(op, resType, val); 1660 } 1661 } 1662 1663 //===----------------------------------------------------------------------===// 1664 // Sparse compiler rewriting methods. 1665 //===----------------------------------------------------------------------===// 1666 1667 namespace { 1668 1669 /// Sparse rewriting rule for generic Lingalg operation. 1670 struct GenericOpSparsifier : public OpRewritePattern<linalg::GenericOp> { 1671 public: 1672 GenericOpSparsifier(MLIRContext *context, SparsificationOptions o) 1673 : OpRewritePattern<linalg::GenericOp>(context), options(o) {} 1674 1675 LogicalResult matchAndRewrite(linalg::GenericOp op, 1676 PatternRewriter &rewriter) const override { 1677 // Detects sparse annotations and translate the per-dimension sparsity 1678 // information for all tensors to loop indices in the kernel. 1679 assert(op.getNumOutputs() == 1); 1680 unsigned numTensors = op.getNumInputsAndOutputs(); 1681 unsigned numLoops = op.iterator_types().getValue().size(); 1682 Merger merger(numTensors, numLoops); 1683 if (!findSparseAnnotations(merger, op)) 1684 return failure(); 1685 1686 // Computes a topologically sorted iteration graph to ensure 1687 // tensors are visited in natural index order. Fails on cycles. 1688 // This assumes that higher-level passes have already put the 1689 // tensors in each tensor expression in a feasible order. 1690 std::vector<unsigned> topSort; 1691 if (!computeIterationGraph(merger, op, topSort, 1692 SortMask::kIncludeUndef | 1693 SortMask::kIncludeDense) && 1694 !computeIterationGraph(merger, op, topSort, SortMask::kIncludeUndef) && 1695 !computeIterationGraph(merger, op, topSort, SortMask::kIncludeDense) && 1696 !computeIterationGraph(merger, op, topSort, SortMask::kSparseOnly)) 1697 return failure(); 1698 1699 // Builds the tensor expression for the Linalg operation in SSA form. 1700 Optional<unsigned> optExp = merger.buildTensorExpFromLinalg(op); 1701 if (!optExp.hasValue()) 1702 return failure(); 1703 unsigned exp = optExp.getValue(); 1704 1705 // Rejects an inadmissable tensor expression. 1706 OpOperand *sparseOut = nullptr; 1707 unsigned outerParNest = 0; 1708 if (!isAdmissableTensorExp(merger, op, topSort, exp, &sparseOut, 1709 outerParNest)) 1710 return failure(); 1711 1712 // Recursively generates code. 1713 merger.setHasSparseOut(sparseOut != nullptr); 1714 CodeGen codegen(options, numTensors, numLoops, sparseOut, outerParNest); 1715 genBuffers(merger, codegen, rewriter, op); 1716 genStmt(merger, codegen, rewriter, op, topSort, exp, 0); 1717 genResult(merger, codegen, rewriter, op); 1718 return success(); 1719 } 1720 1721 private: 1722 /// Options to control sparse code generation. 1723 SparsificationOptions options; 1724 }; 1725 1726 } // namespace 1727 1728 /// Populates the given patterns list with rewriting rules required for 1729 /// the sparsification of linear algebra operations. 1730 void mlir::populateSparsificationPatterns( 1731 RewritePatternSet &patterns, const SparsificationOptions &options) { 1732 patterns.add<GenericOpSparsifier>(patterns.getContext(), options); 1733 } 1734