1 //===- Sparsification.cpp - Implementation of sparsification --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements converting sparse tensor types to actual sparse code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodegenUtils.h"
14 #include "mlir/Dialect/Affine/IR/AffineOps.h"
15 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
16 #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
17 #include "mlir/Dialect/Bufferization/IR/Bufferization.h"
18 #include "mlir/Dialect/Linalg/IR/Linalg.h"
19 #include "mlir/Dialect/Linalg/Utils/Utils.h"
20 #include "mlir/Dialect/MemRef/IR/MemRef.h"
21 #include "mlir/Dialect/SCF/SCF.h"
22 #include "mlir/Dialect/SCF/Transforms.h"
23 #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
24 #include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
25 #include "mlir/Dialect/SparseTensor/Utils/Merger.h"
26 #include "mlir/Dialect/Vector/IR/VectorOps.h"
27 #include "mlir/IR/Matchers.h"
28 #include "mlir/IR/TensorEncoding.h"
29 #include "llvm/ADT/SmallBitVector.h"
30 
31 using namespace mlir;
32 using namespace mlir::sparse_tensor;
33 
34 //===----------------------------------------------------------------------===//
35 // Declarations of data structures.
36 //===----------------------------------------------------------------------===//
37 
38 namespace {
39 
40 // Iteration graph sorting.
41 enum SortMask { kSparseOnly = 0x0, kIncludeDense = 0x1, kIncludeUndef = 0x2 };
42 
43 // Reduction kinds.
44 enum Reduction { kNoReduc, kSum, kProduct, kAnd, kOr, kXor };
45 
46 // Code generation.
47 struct CodeGen {
48   CodeGen(SparsificationOptions o, unsigned numTensors, unsigned numLoops,
49           OpOperand *op, unsigned nest)
50       : options(o), loops(numLoops), sizes(numLoops), buffers(numTensors),
51         pointers(numTensors, std::vector<Value>(numLoops)),
52         indices(numTensors, std::vector<Value>(numLoops)),
53         highs(numTensors, std::vector<Value>(numLoops)),
54         pidxs(numTensors, std::vector<Value>(numLoops)),
55         idxs(numTensors, std::vector<Value>(numLoops)), redExp(-1u), redVal(),
56         redKind(kNoReduc), sparseOut(op), outerParNest(nest), lexIdx(),
57         expValues(), expFilled(), expAdded(), expCount(), curVecLength(1),
58         curVecMask() {}
59   /// Sparsification options.
60   SparsificationOptions options;
61   /// Universal dense indices and upper bounds (by index). The loops array
62   /// is updated with the value of the universal dense index in the current
63   /// loop. The sizes array is set once with the inferred dimension sizes.
64   std::vector<Value> loops;
65   std::vector<Value> sizes;
66   /// Buffers for storing dense and sparse numerical values (by tensor).
67   /// This array is set once during bufferization of all tensors.
68   std::vector<Value> buffers;
69   /// Sparse storage schemes (1-D): pointers and indices (by tensor and index).
70   /// This array is set once during bufferization of all sparse tensors.
71   std::vector<std::vector<Value>> pointers;
72   std::vector<std::vector<Value>> indices;
73   /// Sparse iteration information (by tensor and index). These arrays
74   /// are updated to remain current within the current loop.
75   std::vector<std::vector<Value>> highs;
76   std::vector<std::vector<Value>> pidxs;
77   std::vector<std::vector<Value>> idxs;
78   /// Current reduction, updated during code generation. When indices of a
79   /// reduction are exhausted, all inner loops can use a scalarized reduction.
80   unsigned redExp;
81   Value redVal;
82   Reduction redKind;
83   // Sparse tensor as output. Implemented either through direct injective
84   // insertion in lexicographic index order (where indices are updated
85   // in the temporary array `lexIdx`) or through access pattern expansion
86   // in the innermost loop nest (`expValues` through `expCount`).
87   OpOperand *sparseOut;
88   unsigned outerParNest;
89   Value lexIdx;
90   Value expValues;
91   Value expFilled;
92   Value expAdded;
93   Value expCount;
94   // Current vector length and mask.
95   unsigned curVecLength;
96   Value curVecMask;
97 };
98 
99 } // namespace
100 
101 //===----------------------------------------------------------------------===//
102 // Sparse compiler analysis methods.
103 //===----------------------------------------------------------------------===//
104 
105 /// Helper method to apply dimension ordering permutation.
106 static unsigned perm(const SparseTensorEncodingAttr &enc, unsigned d) {
107   if (enc) {
108     auto order = enc.getDimOrdering();
109     if (order) {
110       assert(order.isPermutation());
111       return order.getDimPosition(d);
112     }
113   }
114   return d;
115 }
116 
117 /// Helper method to translate dim level type to internal representation.
118 static Dim toDim(const SparseTensorEncodingAttr &enc, unsigned d) {
119   if (enc) {
120     SparseTensorEncodingAttr::DimLevelType tp = enc.getDimLevelType()[d];
121     if (tp == SparseTensorEncodingAttr::DimLevelType::Compressed)
122       return Dim::kSparse;
123     if (tp == SparseTensorEncodingAttr::DimLevelType::Singleton)
124       return Dim::kSingle;
125   }
126   return Dim::kDense;
127 }
128 
129 /// Helper method to inspect affine expressions. Rejects cases where the
130 /// same index is used more than once. Also rejects affine expressions
131 /// that are not a direct index for annotated tensors.
132 // TODO: accept more affine cases for sparse tensors
133 static bool findAffine(Merger &merger, unsigned tensor, AffineExpr a, Dim dim,
134                        bool isDense) {
135   switch (a.getKind()) {
136   case AffineExprKind::DimId: {
137     unsigned idx = a.cast<AffineDimExpr>().getPosition();
138     if (!merger.isDim(tensor, idx, Dim::kUndef))
139       return false; // used more than once
140     merger.setDim(tensor, idx, dim);
141     return true;
142   }
143   case AffineExprKind::Add:
144   case AffineExprKind::Mul: {
145     if (!isDense)
146       return false;
147     auto binOp = a.cast<AffineBinaryOpExpr>();
148     return findAffine(merger, tensor, binOp.getLHS(), dim, isDense) &&
149            findAffine(merger, tensor, binOp.getRHS(), dim, isDense);
150   }
151   case AffineExprKind::Constant:
152     return isDense;
153   default:
154     return false;
155   }
156 }
157 
158 /// Helper method to inspect sparse encodings in the tensor types.
159 /// Fills the per-dimension sparsity information for all tensors.
160 /// Returns true if the sparse annotations and affine subscript
161 /// expressions of all tensors are admissable. Returns false if
162 /// no annotations are found or inadmissable constructs occur.
163 static bool findSparseAnnotations(Merger &merger, linalg::GenericOp op) {
164   bool annotated = false;
165   for (OpOperand *t : op.getInputAndOutputOperands()) {
166     auto map = op.getTiedIndexingMap(t);
167     auto enc = getSparseTensorEncoding(t->get().getType());
168     if (enc)
169       annotated = true;
170     assert(map.getNumResults() == op.getRank(t));
171     for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
172       unsigned tensor = t->getOperandNumber();
173       AffineExpr a = map.getResult(perm(enc, d));
174       if (!findAffine(merger, tensor, a, toDim(enc, d), !enc))
175         return false; // inadmissable affine expression
176     }
177   }
178   return annotated;
179 }
180 
181 /// A DFS helper to compute a topological sort. Note that recursion is
182 /// bounded by the number of implicit loops, which is always small.
183 /// Returns false when a cycle is detected.
184 static bool topSortDFS(unsigned i, std::vector<unsigned> &visit,
185                        std::vector<unsigned> &topSort,
186                        std::vector<std::vector<bool>> &adjM) {
187   if (visit[i] != 0)
188     return visit[i] != 1; // 1 denotes cycle!
189   visit[i] = 1;
190   for (unsigned j = 0, e = visit.size(); j < e; j++)
191     if (adjM[i][j])
192       if (!topSortDFS(j, visit, topSort, adjM))
193         return false;
194   visit[i] = 2;
195   topSort.push_back(i);
196   return true;
197 }
198 
199 /// Helper method to add all constraints from the indices in one affine
200 /// expression before all indices in the other affine expression. For
201 /// example i0+i1 < i2+i3+1 yields i0<i2, i0<i3, i1<i2, and i1<i3.
202 static void addAffineOrderings(std::vector<std::vector<bool>> &adjM,
203                                AffineExpr a, AffineExpr b, unsigned fidx) {
204   switch (a.getKind()) {
205   case AffineExprKind::DimId: {
206     unsigned idx = a.cast<AffineDimExpr>().getPosition();
207     if (b)
208       addAffineOrderings(adjM, b, AffineExpr(), idx);
209     else
210       adjM[fidx][idx] = true;
211     break;
212   }
213   case AffineExprKind::Add:
214   case AffineExprKind::Mul: {
215     auto binOp = a.cast<AffineBinaryOpExpr>();
216     addAffineOrderings(adjM, binOp.getLHS(), b, fidx);
217     addAffineOrderings(adjM, binOp.getRHS(), b, fidx);
218     break;
219   }
220   default:
221     break;
222   }
223 }
224 
225 /// Computes a topologically sorted iteration graph for the linalg operation.
226 /// Ensures all tensors are visited in natural index order. This is essential
227 /// for sparse storage formats since these only support access along fixed
228 /// dimensions. Even for dense storage formats, however, the natural index
229 /// order yields innermost unit-stride access with better spatial locality.
230 static bool computeIterationGraph(Merger &merger, linalg::GenericOp op,
231                                   std::vector<unsigned> &topSort,
232                                   unsigned mask) {
233   // Set up an n x n from/to adjacency matrix of the iteration graph
234   // for the implicit loop indices i_0 .. i_n-1.
235   unsigned n = op.getNumLoops();
236   std::vector<std::vector<bool>> adjM(n, std::vector<bool>(n, false));
237 
238   // Iterate over the indexing maps of every tensor in the tensor expression.
239   for (OpOperand *t : op.getInputAndOutputOperands()) {
240     auto map = op.getTiedIndexingMap(t);
241     auto enc = getSparseTensorEncoding(t->get().getType());
242     assert(map.getNumDims() == n);
243     // Skip dense tensor constraints when not requested.
244     if (!(mask & SortMask::kIncludeDense) && !enc)
245       continue;
246     // Each tensor expression and optional dimension ordering (row-major
247     // by default) puts an ordering constraint on the loop indices. For
248     // example, the tensor expresion A_ijk forces the ordering i < j < k
249     // on the loop indices if no explicit dimension ordering is given.
250     for (unsigned d = 1, rank = map.getNumResults(); d < rank; d++) {
251       AffineExpr f = map.getResult(perm(enc, d - 1));
252       AffineExpr t = map.getResult(perm(enc, d));
253       addAffineOrderings(adjM, f, t, 0);
254     }
255     // Push unrelated loops into sparse iteration space, so these
256     // will be skipped more often.
257     if (mask & SortMask::kIncludeUndef) {
258       unsigned tensor = t->getOperandNumber();
259       for (unsigned i = 0; i < n; i++)
260         if (merger.isDim(tensor, i, Dim::kSparse))
261           for (unsigned j = 0; j < n; j++)
262             if (merger.isDim(tensor, j, Dim::kUndef))
263               adjM[i][j] = true;
264     }
265   }
266 
267   // Topologically sort the iteration graph to determine loop order.
268   // Report failure for a cyclic iteration graph.
269   topSort.clear();
270   topSort.reserve(n);
271   std::vector<unsigned> visit(n, 0);
272   for (unsigned i = 0; i < n; i++)
273     if (visit[i] == 0)
274       if (!topSortDFS(i, visit, topSort, adjM))
275         return false; // cycle!
276   std::reverse(std::begin(topSort), std::end(topSort));
277   return true;
278 }
279 
280 /// Returns true if tensor has an in-place annotation.
281 static bool isInPlace(Value val) {
282   if (auto arg = val.dyn_cast<BlockArgument>())
283     if (auto funcOp = dyn_cast<FuncOp>(arg.getOwner()->getParentOp()))
284       if (auto attr = funcOp.getArgAttrOfType<BoolAttr>(
285               arg.getArgNumber(),
286               bufferization::BufferizableOpInterface::kInplaceableAttrName))
287         return attr.getValue();
288   return false;
289 }
290 
291 /// Returns true if tensor materializes uninitialized into the computation.
292 static bool isMaterializing(Value val) {
293   return val.getDefiningOp<linalg::InitTensorOp>() ||
294          val.getDefiningOp<InitOp>();
295 }
296 
297 /// Returns true when the tensor expression is admissable for codegen.
298 /// Since all sparse input tensors are admissable, we just need to check
299 /// whether the out tensor in the tensor expression codegen is admissable.
300 /// Sets `sparseOut` to the tensor and `outerParNest` to the outer injective
301 /// nesting depth when a "truly dynamic" sparse tensor output occurs.
302 static bool isAdmissableTensorExp(Merger &merger, linalg::GenericOp op,
303                                   std::vector<unsigned> &topSort, unsigned exp,
304                                   OpOperand **sparseOut,
305                                   unsigned &outerParNest) {
306   OpOperand *lhs = op.getOutputOperand(0);
307   unsigned tensor = lhs->getOperandNumber();
308   auto enc = getSparseTensorEncoding(lhs->get().getType());
309   // An non-annotated output tensor is assumed dense, and becomes a random
310   // access n-dim memref. Admissable since insertions cannot occur.
311   if (!enc)
312     return true;
313   // An all-dense annotated "sparse" output tensor becomes a linearized random
314   // access 1-dim memref. Also admissable since insertions cannot occur.
315   bool allDense = true;
316   auto iteratorTypes = op.iterator_types().getValue();
317   unsigned numLoops = iteratorTypes.size();
318   for (unsigned i = 0; i < numLoops; i++)
319     if (merger.isDim(tensor, i, Dim::kSparse)) {
320       allDense = false;
321       break;
322     }
323   if (allDense)
324     return true;
325   // A tensor expression with a sparse output tensor that changes its values
326   // but not its nonzero structure, an operation called "simply dynamic" in
327   // [Bik96,Ch9], is also admissable without special codegen, provided
328   // the tensor's underlying sparse storage scheme can be modified in place.
329   if (merger.isSingleCondition(tensor, exp) && isInPlace(lhs->get()))
330     return true;
331   // Accept "truly dynamic" if the output tensor materializes uninitialized
332   // into the computation and insertions occur in lexicographic index order.
333   if (isMaterializing(lhs->get())) {
334     unsigned nest = 0;
335     for (unsigned i = 0; i < numLoops; i++) {
336       if (isReductionIterator(iteratorTypes[topSort[i]]))
337         break; // terminate at first reduction
338       nest++;
339     }
340     // Determine admissable dynamic insertion situations:
341     // (1) fully injective, since there are no reductions,
342     // (2) admissable 1-d expansion in innermost dimension.
343     if (nest >= op.getRank(lhs) - 1) {
344       *sparseOut = lhs;
345       outerParNest = nest;
346       return true;
347     }
348   }
349   return false;
350 }
351 
352 //===----------------------------------------------------------------------===//
353 // Sparse compiler synthesis methods (reductions).
354 //===----------------------------------------------------------------------===//
355 
356 /// Maps reduction kind to vector::CombiningKind.
357 static vector::CombiningKind getCombiningKind(Reduction kind) {
358   switch (kind) {
359   case kNoReduc:
360     break;
361   case kSum:
362     return vector::CombiningKind::ADD;
363   case kProduct:
364     return vector::CombiningKind::MUL;
365   case kAnd:
366     return vector::CombiningKind::AND;
367   case kOr:
368     return vector::CombiningKind::OR;
369   case kXor:
370     return vector::CombiningKind::XOR;
371   }
372   llvm_unreachable("unknown reduction kind");
373 }
374 
375 /// Maps operation to reduction.
376 static Reduction getReduction(Kind kind) {
377   switch (kind) {
378   case Kind::kAddF:
379   case Kind::kAddI:
380   case Kind::kSubF:
381   case Kind::kSubI:
382     return kSum;
383   case Kind::kMulF:
384   case Kind::kMulI:
385     return kProduct;
386   case Kind::kAndI:
387     return kAnd;
388   case Kind::kOrI:
389     return kOr;
390   case Kind::kXorI:
391     return kXor;
392   default:
393     llvm_unreachable("unexpected reduction operator");
394   }
395 }
396 
397 /// Generates an initial value for a vector reduction, following the scheme
398 /// given in Chapter 5 of "The Software Vectorization Handbook", where the
399 /// initial scalar value is correctly embedded in the vector reduction value,
400 /// and a straightforward horizontal reduction will complete the operation.
401 static Value genVectorReducInit(CodeGen &codegen, PatternRewriter &rewriter,
402                                 Location loc, VectorType vtp) {
403   Value r = codegen.redVal;
404   switch (codegen.redKind) {
405   case kNoReduc:
406     break;
407   case kSum:
408   case kXor:
409     // Initialize reduction vector to: | 0 | .. | 0 | r |
410     return rewriter.create<vector::InsertElementOp>(
411         loc, r, constantZero(rewriter, loc, vtp),
412         constantIndex(rewriter, loc, 0));
413   case kProduct:
414     // Initialize reduction vector to: | 1 | .. | 1 | r |
415     return rewriter.create<vector::InsertElementOp>(
416         loc, r, constantOne(rewriter, loc, vtp),
417         constantIndex(rewriter, loc, 0));
418   case kAnd:
419   case kOr:
420     // Initialize reduction vector to: | r | .. | r | r |
421     return rewriter.create<vector::BroadcastOp>(loc, vtp, r);
422   }
423   llvm_unreachable("unknown reduction kind");
424 }
425 
426 /// Generates final value for a vector reduction.
427 static Value genVectorReducEnd(CodeGen &codegen, PatternRewriter &rewriter,
428                                Location loc, VectorType vtp) {
429   vector::CombiningKind kind = getCombiningKind(codegen.redKind);
430   return rewriter.create<vector::ReductionOp>(loc, kind, codegen.redVal);
431 }
432 
433 /// Updates scalarized reduction value.
434 static void updateReduc(Merger &merger, CodeGen &codegen, Value reduc) {
435   assert(codegen.redKind != kNoReduc);
436   codegen.redVal = merger.exp(codegen.redExp).val = reduc;
437 }
438 
439 //===----------------------------------------------------------------------===//
440 // Sparse compiler synthesis methods (statements and expressions).
441 //===----------------------------------------------------------------------===//
442 
443 /// Generates buffer for the output tensor. Note that all sparse kernels
444 /// assume that when all elements are written to (viz. x(i) = y(i) * z(i)),
445 /// the output buffer is already initialized to all zeroes and only nonzeroes
446 /// values are computed and written out. For updates (viz. x(i) += y(i) * z(i)),
447 /// only nonzeroes values are used for the updates and no assumption on the
448 /// original contents of the output buffer is necessary..
449 static Value genOutputBuffer(CodeGen &codegen, PatternRewriter &rewriter,
450                              linalg::GenericOp op, MemRefType denseTp,
451                              ArrayRef<Value> args) {
452   Location loc = op.getLoc();
453   Value tensor = op.getOutputOperand(0)->get();
454   // The output tensor simply could materialize from the buffer that will
455   // be generated for the tensor present in the outs() clause. This has
456   // the major advantage that the sparse kernel only updates the nonzero
457   // positions for the output tensor.
458   if (isInPlace(tensor))
459     return rewriter.create<bufferization::ToMemrefOp>(loc, denseTp, tensor);
460   // By default, a new buffer is allocated which is initialized to the
461   // tensor defined in the outs() clause. This is always correct but
462   // introduces a dense initialization component that may negatively
463   // impact the running complexity of the sparse kernel. If the tensor
464   // materializes into the computation, we need to preserve the zero
465   // initialization assumption of all sparse output buffers.
466   Value alloc = rewriter.create<memref::AllocOp>(loc, denseTp, args);
467   if (isMaterializing(tensor)) {
468     Value zero = constantZero(rewriter, loc, denseTp.getElementType());
469     rewriter.create<linalg::FillOp>(loc, zero, alloc);
470   } else {
471     Value init =
472         rewriter.create<bufferization::ToMemrefOp>(loc, denseTp, tensor);
473     rewriter.create<memref::CopyOp>(loc, init, alloc);
474   }
475   return alloc;
476 }
477 
478 /// Local bufferization of all dense and sparse data structures.
479 /// This code enables testing the first prototype sparse compiler.
480 // TODO: replace this with a proliferated bufferization strategy
481 static void genBuffers(Merger &merger, CodeGen &codegen,
482                        PatternRewriter &rewriter, linalg::GenericOp op) {
483   Location loc = op.getLoc();
484   assert(op.getNumInputsAndOutputs() == op.getNumInputs() + 1);
485   // For every tensor, find lower and upper bound on dimensions, set the
486   // same bounds on loop indices, and obtain dense or sparse buffer(s).
487   SmallVector<Value, 4> args;
488   for (OpOperand *t : op.getInputAndOutputOperands()) {
489     unsigned tensor = t->getOperandNumber();
490     auto shape = op.getShape(t);
491     auto map = op.getTiedIndexingMap(t);
492     auto enc = getSparseTensorEncoding(t->get().getType());
493     // Scan all dimensions of current tensor.
494     args.clear();
495     for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
496       AffineExpr a = map.getResult(perm(enc, d));
497       if (a.getKind() != AffineExprKind::DimId)
498         continue; // compound
499       unsigned idx = a.cast<AffineDimExpr>().getPosition();
500       // Handle sparse storage schemes.
501       if (merger.isDim(tensor, idx, Dim::kSparse)) {
502         auto dynShape = {ShapedType::kDynamicSize};
503         auto ptrTp =
504             MemRefType::get(dynShape, getPointerOverheadType(rewriter, enc));
505         auto indTp =
506             MemRefType::get(dynShape, getIndexOverheadType(rewriter, enc));
507         Value dim = constantIndex(rewriter, loc, d);
508         // Generate sparse primitives to obtains pointer and indices.
509         codegen.pointers[tensor][idx] =
510             rewriter.create<ToPointersOp>(loc, ptrTp, t->get(), dim);
511         codegen.indices[tensor][idx] =
512             rewriter.create<ToIndicesOp>(loc, indTp, t->get(), dim);
513       }
514       // Find upper bound in current dimension.
515       unsigned p = perm(enc, d);
516       Value up = linalg::createOrFoldDimOp(rewriter, loc, t->get(), p);
517       if (ShapedType::isDynamic(shape[p]))
518         args.push_back(up);
519       assert(codegen.highs[tensor][idx] == nullptr);
520       codegen.sizes[idx] = codegen.highs[tensor][idx] = up;
521     }
522     // Perform the required bufferization. Dense inputs materialize
523     // from the input tensors. Dense outputs need special handling.
524     // Sparse inputs use sparse primitives to obtain the values.
525     // We also accept in-place all-dense annotated "sparse" outputs.
526     Type elementType = getElementTypeOrSelf(t->get().getType());
527     if (!enc) {
528       // Non-annotated dense tensors.
529       auto denseTp = MemRefType::get(shape, elementType);
530       if (tensor < op.getNumInputs())
531         codegen.buffers[tensor] =
532             rewriter.create<bufferization::ToMemrefOp>(loc, denseTp, t->get());
533       else
534         codegen.buffers[tensor] =
535             genOutputBuffer(codegen, rewriter, op, denseTp, args);
536     } else if (t == codegen.sparseOut) {
537       // True sparse output needs a lexIdx array.
538       Value rank = constantIndex(rewriter, loc, op.getRank(t));
539       auto dynShape = {ShapedType::kDynamicSize};
540       auto memTp = MemRefType::get(dynShape, rewriter.getIndexType());
541       codegen.lexIdx = rewriter.create<memref::AllocaOp>(loc, memTp, rank);
542     } else {
543       // Annotated sparse tensors.
544       auto dynShape = {ShapedType::kDynamicSize};
545       auto sparseTp = MemRefType::get(dynShape, elementType);
546       codegen.buffers[tensor] =
547           rewriter.create<ToValuesOp>(loc, sparseTp, t->get());
548     }
549   }
550 }
551 
552 /// Constructs vector type.
553 static VectorType vectorType(CodeGen &codegen, Type etp) {
554   return VectorType::get(codegen.curVecLength, etp);
555 }
556 
557 /// Constructs vector type from pointer.
558 static VectorType vectorType(CodeGen &codegen, Value ptr) {
559   return vectorType(codegen, ptr.getType().cast<MemRefType>().getElementType());
560 }
561 
562 /// Constructs vector iteration mask.
563 static Value genVectorMask(CodeGen &codegen, PatternRewriter &rewriter,
564                            Value iv, Value lo, Value hi, Value step) {
565   Location loc = iv.getLoc();
566   VectorType mtp = vectorType(codegen, rewriter.getI1Type());
567   // Special case if the vector length evenly divides the trip count (for
568   // example, "for i = 0, 128, 16"). A constant all-true mask is generated
569   // so that all subsequent masked memory operations are immediately folded
570   // into unconditional memory operations.
571   IntegerAttr loInt, hiInt, stepInt;
572   if (matchPattern(lo, m_Constant(&loInt)) &&
573       matchPattern(hi, m_Constant(&hiInt)) &&
574       matchPattern(step, m_Constant(&stepInt))) {
575     if (((hiInt.getInt() - loInt.getInt()) % stepInt.getInt()) == 0)
576       return rewriter.create<vector::BroadcastOp>(
577           loc, mtp, constantI1(rewriter, loc, true));
578   }
579   // Otherwise, generate a vector mask that avoids overrunning the upperbound
580   // during vector execution. Here we rely on subsequent loop optimizations to
581   // avoid executing the mask in all iterations, for example, by splitting the
582   // loop into an unconditional vector loop and a scalar cleanup loop.
583   auto minMap = AffineMap::get(
584       /*dimCount=*/2, /*symbolCount=*/1,
585       {rewriter.getAffineSymbolExpr(0),
586        rewriter.getAffineDimExpr(0) - rewriter.getAffineDimExpr(1)},
587       rewriter.getContext());
588   Value end =
589       rewriter.createOrFold<AffineMinOp>(loc, minMap, ValueRange{hi, iv, step});
590   return rewriter.create<vector::CreateMaskOp>(loc, mtp, end);
591 }
592 
593 /// Generates a vectorized load lhs = a[ind[lo:hi]] or lhs = a[lo:hi].
594 static Value genVectorLoad(CodeGen &codegen, PatternRewriter &rewriter,
595                            Value ptr, ArrayRef<Value> args) {
596   Location loc = ptr.getLoc();
597   VectorType vtp = vectorType(codegen, ptr);
598   Value pass = constantZero(rewriter, loc, vtp);
599   if (args.back().getType().isa<VectorType>()) {
600     SmallVector<Value, 4> scalarArgs(args.begin(), args.end());
601     Value indexVec = args.back();
602     scalarArgs.back() = constantIndex(rewriter, loc, 0);
603     return rewriter.create<vector::GatherOp>(
604         loc, vtp, ptr, scalarArgs, indexVec, codegen.curVecMask, pass);
605   }
606   return rewriter.create<vector::MaskedLoadOp>(loc, vtp, ptr, args,
607                                                codegen.curVecMask, pass);
608 }
609 
610 /// Generates a vectorized store a[ind[lo:hi]] = rhs or a[lo:hi] = rhs.
611 static void genVectorStore(CodeGen &codegen, PatternRewriter &rewriter,
612                            Value rhs, Value ptr, ArrayRef<Value> args) {
613   Location loc = ptr.getLoc();
614   if (args.back().getType().isa<VectorType>()) {
615     SmallVector<Value, 4> scalarArgs(args.begin(), args.end());
616     Value indexVec = args.back();
617     scalarArgs.back() = constantIndex(rewriter, loc, 0);
618     rewriter.create<vector::ScatterOp>(loc, ptr, scalarArgs, indexVec,
619                                        codegen.curVecMask, rhs);
620     return;
621   }
622   rewriter.create<vector::MaskedStoreOp>(loc, ptr, args, codegen.curVecMask,
623                                          rhs);
624 }
625 
626 /// Generates a vectorized invariant. Here we rely on subsequent loop
627 /// optimizations to hoist the invariant broadcast out of the vector loop.
628 static Value genVectorInvariantValue(CodeGen &codegen,
629                                      PatternRewriter &rewriter, Value val) {
630   VectorType vtp = vectorType(codegen, val.getType());
631   return rewriter.create<vector::BroadcastOp>(val.getLoc(), vtp, val);
632 }
633 
634 /// Generates an affine expression.
635 //
636 // TODO: generalize for sparse tensor subscripts
637 //
638 static Value genAffine(CodeGen &codegen, PatternRewriter &rewriter,
639                        AffineExpr a, Location loc) {
640   switch (a.getKind()) {
641   case AffineExprKind::DimId: {
642     unsigned idx = a.cast<AffineDimExpr>().getPosition();
643     return codegen.loops[idx]; // universal dense index
644   }
645   case AffineExprKind::Add: {
646     auto binOp = a.cast<AffineBinaryOpExpr>();
647     return rewriter.create<arith::AddIOp>(
648         loc, genAffine(codegen, rewriter, binOp.getLHS(), loc),
649         genAffine(codegen, rewriter, binOp.getRHS(), loc));
650   }
651   case AffineExprKind::Mul: {
652     auto binOp = a.cast<AffineBinaryOpExpr>();
653     return rewriter.create<arith::MulIOp>(
654         loc, genAffine(codegen, rewriter, binOp.getLHS(), loc),
655         genAffine(codegen, rewriter, binOp.getRHS(), loc));
656   }
657   case AffineExprKind::Constant: {
658     int64_t c = a.cast<AffineConstantExpr>().getValue();
659     return constantIndex(rewriter, loc, c);
660   }
661   default:
662     llvm_unreachable("unexpected affine subscript");
663   }
664 }
665 
666 /// Generates index for load/store on sparse tensor.
667 static Value genIndex(CodeGen &codegen, linalg::GenericOp op, OpOperand *t) {
668   auto map = op.getTiedIndexingMap(t);
669   auto enc = getSparseTensorEncoding(t->get().getType());
670   AffineExpr a = map.getResult(perm(enc, map.getNumResults() - 1));
671   assert(a.getKind() == AffineExprKind::DimId);
672   unsigned idx = a.cast<AffineDimExpr>().getPosition();
673   return codegen.loops[idx];
674 }
675 
676 /// Generates subscript for load/store on a dense or sparse tensor.
677 static Value genSubscript(CodeGen &codegen, PatternRewriter &rewriter,
678                           linalg::GenericOp op, OpOperand *t,
679                           SmallVector<Value, 4> &args) {
680   unsigned tensor = t->getOperandNumber();
681   auto map = op.getTiedIndexingMap(t);
682   auto enc = getSparseTensorEncoding(t->get().getType());
683   unsigned rank = map.getNumResults();
684   if (enc) {
685     // Note that currently, all sparse subscripts are simple.
686     // TODO: accept affine too?
687     AffineExpr a = map.getResult(perm(enc, rank - 1));
688     assert(a.getKind() == AffineExprKind::DimId);
689     unsigned idx = a.cast<AffineDimExpr>().getPosition();
690     assert(codegen.pidxs[tensor][idx] != nullptr);
691     args.push_back(codegen.pidxs[tensor][idx]); // position index
692   } else {
693     for (unsigned d = 0; d < rank; d++) {
694       AffineExpr a = map.getResult(perm(enc, d));
695       args.push_back(genAffine(codegen, rewriter, a, op.getLoc()));
696     }
697   }
698   return codegen.buffers[tensor];
699 }
700 
701 /// Generates insertion code to implement dynamic tensor load.
702 static Value genInsertionLoad(CodeGen &codegen, PatternRewriter &rewriter,
703                               linalg::GenericOp op, OpOperand *t) {
704   Location loc = op.getLoc();
705   // Direct lexicographic index order, tensor loads as zero.
706   if (!codegen.expValues) {
707     Type tp = getElementTypeOrSelf(t->get().getType());
708     return constantZero(rewriter, loc, tp);
709   }
710   // Load from expanded access pattern.
711   Value index = genIndex(codegen, op, t);
712   return rewriter.create<memref::LoadOp>(loc, codegen.expValues, index);
713 }
714 
715 /// Generates insertion code to implement dynamic tensor store.
716 static void genInsertionStore(CodeGen &codegen, PatternRewriter &rewriter,
717                               linalg::GenericOp op, OpOperand *t, Value rhs) {
718   Location loc = op.getLoc();
719   // Direct insertion in lexicographic index order.
720   if (!codegen.expValues) {
721     rewriter.create<LexInsertOp>(loc, t->get(), codegen.lexIdx, rhs);
722     return;
723   }
724   // Generates insertion code along expanded access pattern.
725   //   if (!expFilled[i]) then
726   //     expFilled[i] = true
727   //     expAdded[inserts++] = i
728   //   endif
729   //   values[i] = rhs
730   Value index = genIndex(codegen, op, t);
731   Value fval = constantI1(rewriter, loc, false);
732   Value tval = constantI1(rewriter, loc, true);
733   // If statement.
734   Value filled = rewriter.create<memref::LoadOp>(loc, codegen.expFilled, index);
735   Value cond = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
736                                               filled, fval);
737   scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, rewriter.getIndexType(),
738                                               cond, /*else=*/true);
739   // True branch.
740   rewriter.setInsertionPointToStart(&ifOp.getThenRegion().front());
741   rewriter.create<memref::StoreOp>(loc, tval, codegen.expFilled, index);
742   rewriter.create<memref::StoreOp>(loc, index, codegen.expAdded,
743                                    codegen.expCount);
744   Value one = constantIndex(rewriter, loc, 1);
745   Value add = rewriter.create<arith::AddIOp>(loc, codegen.expCount, one);
746   rewriter.create<scf::YieldOp>(loc, add);
747   // False branch.
748   rewriter.setInsertionPointToStart(&ifOp.getElseRegion().front());
749   rewriter.create<scf::YieldOp>(loc, codegen.expCount);
750   rewriter.setInsertionPointAfter(ifOp);
751   // Value assignment.
752   codegen.expCount = ifOp.getResult(0);
753   rewriter.create<memref::StoreOp>(loc, rhs, codegen.expValues, index);
754 }
755 
756 /// Generates a load on a dense or sparse tensor.
757 static Value genTensorLoad(Merger &merger, CodeGen &codegen,
758                            PatternRewriter &rewriter, linalg::GenericOp op,
759                            unsigned exp) {
760   // Test if the load was hoisted to a higher loop nest.
761   Value val = merger.exp(exp).val;
762   if (val) {
763     if (codegen.curVecLength > 1 && !val.getType().isa<VectorType>())
764       return genVectorInvariantValue(codegen, rewriter, val);
765     return val;
766   }
767   // Load during insertion.
768   OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).tensor];
769   if (t == codegen.sparseOut)
770     return genInsertionLoad(codegen, rewriter, op, t);
771   // Actual load.
772   SmallVector<Value, 4> args;
773   Value ptr = genSubscript(codegen, rewriter, op, t, args);
774   if (codegen.curVecLength > 1)
775     return genVectorLoad(codegen, rewriter, ptr, args);
776   return rewriter.create<memref::LoadOp>(op.getLoc(), ptr, args);
777 }
778 
779 /// Generates a store on a dense or sparse tensor.
780 static void genTensorStore(Merger &merger, CodeGen &codegen,
781                            PatternRewriter &rewriter, linalg::GenericOp op,
782                            Value rhs) {
783   Location loc = op.getLoc();
784   // Test if this is a scalarized reduction.
785   if (codegen.redVal) {
786     if (codegen.curVecLength > 1)
787       rhs = rewriter.create<arith::SelectOp>(loc, codegen.curVecMask, rhs,
788                                              codegen.redVal);
789     updateReduc(merger, codegen, rhs);
790     return;
791   }
792   // Store during insertion.
793   OpOperand *t = op.getOutputOperand(0);
794   if (t == codegen.sparseOut) {
795     genInsertionStore(codegen, rewriter, op, t, rhs);
796     return;
797   }
798   // Actual store.
799   SmallVector<Value, 4> args;
800   Value ptr = genSubscript(codegen, rewriter, op, t, args);
801   if (codegen.curVecLength > 1)
802     genVectorStore(codegen, rewriter, rhs, ptr, args);
803   else
804     rewriter.create<memref::StoreOp>(loc, rhs, ptr, args);
805 }
806 
807 /// Generates a pointer/index load from the sparse storage scheme. Narrower
808 /// data types need to be zero extended before casting the value into the
809 /// index type used for looping and indexing.
810 static Value genLoad(CodeGen &codegen, PatternRewriter &rewriter, Location loc,
811                      Value ptr, Value s) {
812   // See https://llvm.org/docs/GetElementPtr.html for some background on
813   // the complications described below.
814   if (codegen.curVecLength > 1) {
815     // Since the index vector is used in a subsequent gather/scatter operations,
816     // which effectively defines an unsigned pointer + signed index, we must
817     // zero extend the vector to an index width. For 8-bit and 16-bit values,
818     // an 32-bit index width suffices. For 32-bit values, zero extending the
819     // elements into 64-bit loses some performance since the 32-bit indexed
820     // gather/scatter is more efficient than the 64-bit index variant (if the
821     // negative 32-bit index space is unused, the enableSIMDIndex32 flag can
822     // preserve this performance). For 64-bit values, there is no good way
823     // to state that the indices are unsigned, with creates the potential of
824     // incorrect address calculations in the unlikely case we need such
825     // extremely large offsets.
826     Type etp = ptr.getType().cast<MemRefType>().getElementType();
827     Value vload = genVectorLoad(codegen, rewriter, ptr, {s});
828     if (!etp.isa<IndexType>()) {
829       if (etp.getIntOrFloatBitWidth() < 32)
830         vload = rewriter.create<arith::ExtUIOp>(
831             loc, vectorType(codegen, rewriter.getI32Type()), vload);
832       else if (etp.getIntOrFloatBitWidth() < 64 &&
833                !codegen.options.enableSIMDIndex32)
834         vload = rewriter.create<arith::ExtUIOp>(
835             loc, vectorType(codegen, rewriter.getI64Type()), vload);
836     }
837     return vload;
838   }
839   // For the scalar case, we simply zero extend narrower indices into 64-bit
840   // values before casting to index without a performance penalty. Here too,
841   // however, indices that already are 64-bit, in theory, cannot express the
842   // full range as explained above.
843   Value load = rewriter.create<memref::LoadOp>(loc, ptr, s);
844   if (!load.getType().isa<IndexType>()) {
845     if (load.getType().getIntOrFloatBitWidth() < 64)
846       load = rewriter.create<arith::ExtUIOp>(loc, rewriter.getI64Type(), load);
847     load =
848         rewriter.create<arith::IndexCastOp>(loc, rewriter.getIndexType(), load);
849   }
850   return load;
851 }
852 
853 /// Generates an invariant value.
854 static Value genInvariantValue(Merger &merger, CodeGen &codegen,
855                                PatternRewriter &rewriter, unsigned exp) {
856   Value val = merger.exp(exp).val;
857   if (codegen.curVecLength > 1)
858     return genVectorInvariantValue(codegen, rewriter, val);
859   return val;
860 }
861 
862 /// Generates an address computation "sz * p + i".
863 static Value genAddress(CodeGen &codegen, PatternRewriter &rewriter,
864                         Location loc, Value size, Value p, Value i) {
865   Value mul = rewriter.create<arith::MulIOp>(loc, size, p);
866   if (auto vtp = i.getType().dyn_cast<VectorType>()) {
867     Value inv =
868         rewriter.create<arith::IndexCastOp>(loc, vtp.getElementType(), mul);
869     mul = genVectorInvariantValue(codegen, rewriter, inv);
870   }
871   return rewriter.create<arith::AddIOp>(loc, mul, i);
872 }
873 
874 /// Recursively generates tensor expression.
875 static Value genExp(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
876                     linalg::GenericOp op, unsigned exp) {
877   Location loc = op.getLoc();
878   if (exp == -1u)
879     return Value();
880   if (merger.exp(exp).kind == Kind::kTensor)
881     return genTensorLoad(merger, codegen, rewriter, op, exp);
882   if (merger.exp(exp).kind == Kind::kInvariant)
883     return genInvariantValue(merger, codegen, rewriter, exp);
884   Value v0 = genExp(merger, codegen, rewriter, op, merger.exp(exp).children.e0);
885   Value v1 = genExp(merger, codegen, rewriter, op, merger.exp(exp).children.e1);
886   return merger.buildExp(rewriter, loc, exp, v0, v1);
887 }
888 
889 /// Determines if affine expression is invariant.
890 static bool isInvariantAffine(const CodeGen &codegen, AffineExpr a,
891                               unsigned ldx, bool &atLevel) {
892   switch (a.getKind()) {
893   case AffineExprKind::DimId: {
894     unsigned idx = a.cast<AffineDimExpr>().getPosition();
895     if (idx == ldx)
896       atLevel = true;
897     return codegen.loops[idx] != nullptr; // no longer in play?
898   }
899   case AffineExprKind::Add:
900   case AffineExprKind::Mul: {
901     auto binOp = a.cast<AffineBinaryOpExpr>();
902     return isInvariantAffine(codegen, binOp.getLHS(), ldx, atLevel) &&
903            isInvariantAffine(codegen, binOp.getRHS(), ldx, atLevel);
904   }
905   default:
906     return true;
907   }
908 }
909 
910 /// Hoists loop invariant tensor loads for which indices have been exhausted.
911 static void genInvariants(Merger &merger, CodeGen &codegen,
912                           PatternRewriter &rewriter, linalg::GenericOp op,
913                           unsigned exp, unsigned ldx, bool atStart,
914                           Kind last = Kind::kTensor) {
915   if (exp == -1u)
916     return;
917   if (merger.exp(exp).kind == Kind::kTensor) {
918     // Inspect tensor indices.
919     bool atLevel = ldx == -1u;
920     OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).tensor];
921     auto map = op.getTiedIndexingMap(t);
922     auto enc = getSparseTensorEncoding(t->get().getType());
923     for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
924       AffineExpr a = map.getResult(perm(enc, d));
925       if (!isInvariantAffine(codegen, a, ldx, atLevel))
926         return; // still in play
927     }
928     // All exhausted at this level (atLevel denotes exactly at this level).
929     if (!atLevel)
930       return;
931     OpOperand *lhs = op.getOutputOperand(0);
932     if (lhs == t) {
933       // Start or end a scalarized reduction
934       if (atStart) {
935         Value load = genTensorLoad(merger, codegen, rewriter, op, exp);
936         codegen.redKind = getReduction(last);
937         codegen.redExp = exp;
938         updateReduc(merger, codegen, load);
939       } else {
940         Value redVal = codegen.redVal;
941         updateReduc(merger, codegen, Value());
942         codegen.redExp = -1u;
943         codegen.redKind = kNoReduc;
944         genTensorStore(merger, codegen, rewriter, op, redVal);
945       }
946     } else {
947       // Start or end loop invariant hoisting of a tensor load.
948       merger.exp(exp).val =
949           atStart ? genTensorLoad(merger, codegen, rewriter, op, exp) : Value();
950     }
951   } else if (merger.exp(exp).kind != Kind::kInvariant) {
952     // Traverse into the binary operations. Note that we only hoist
953     // tensor loads, since subsequent MLIR/LLVM passes know how to
954     // deal with all other kinds of derived loop invariants.
955     Kind last = merger.exp(exp).kind;
956     unsigned e0 = merger.exp(exp).children.e0;
957     unsigned e1 = merger.exp(exp).children.e1;
958     genInvariants(merger, codegen, rewriter, op, e0, ldx, atStart, last);
959     genInvariants(merger, codegen, rewriter, op, e1, ldx, atStart, last);
960   }
961 }
962 
963 /// Generates an expanded access pattern in innermost dimension.
964 static void genExpansion(Merger &merger, CodeGen &codegen,
965                          PatternRewriter &rewriter, linalg::GenericOp op,
966                          unsigned at, bool atStart) {
967   OpOperand *lhs = codegen.sparseOut;
968   if (!lhs || codegen.outerParNest != op.getRank(lhs) - 1 ||
969       at != codegen.outerParNest)
970     return; // not needed at this level
971   // Generate start or end of an expanded access pattern.
972   Value tensor = lhs->get();
973   Location loc = op.getLoc();
974   if (atStart) {
975     auto dynShape = {ShapedType::kDynamicSize};
976     Type etp = tensor.getType().cast<ShapedType>().getElementType();
977     Type t1 = MemRefType::get(dynShape, etp);
978     Type t2 = MemRefType::get(dynShape, rewriter.getI1Type());
979     Type t3 = MemRefType::get(dynShape, rewriter.getIndexType());
980     Type t4 = rewriter.getIndexType();
981     auto res =
982         rewriter.create<ExpandOp>(loc, TypeRange({t1, t2, t3, t4}), tensor);
983     assert(res.getNumResults() == 4);
984     assert(!codegen.expValues);
985     codegen.expValues = res.getResult(0);
986     codegen.expFilled = res.getResult(1);
987     codegen.expAdded = res.getResult(2);
988     codegen.expCount = res.getResult(3);
989   } else {
990     assert(codegen.expValues);
991     rewriter.create<CompressOp>(loc, tensor, codegen.lexIdx, codegen.expValues,
992                                 codegen.expFilled, codegen.expAdded,
993                                 codegen.expCount);
994     codegen.expValues = codegen.expFilled = codegen.expAdded =
995         codegen.expCount = Value();
996   }
997 }
998 
999 /// Generates initialization code for the subsequent loop sequence at
1000 /// current index level. Returns true if the loop sequence needs to
1001 /// maintain the universal index.
1002 static bool genInit(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
1003                     linalg::GenericOp op, std::vector<unsigned> &topSort,
1004                     unsigned at, BitVector &inits) {
1005   bool needsUniv = false;
1006   Location loc = op.getLoc();
1007   unsigned idx = topSort[at];
1008 
1009   // Initialize sparse positions.
1010   for (unsigned b = 0, be = inits.size(); b < be; b++) {
1011     if (inits[b]) {
1012       unsigned tensor = merger.tensor(b);
1013       assert(idx == merger.index(b));
1014       if (merger.isDim(b, Dim::kSparse)) {
1015         // Initialize sparse index.
1016         unsigned pat = at;
1017         for (; pat != 0; pat--) {
1018           if (codegen.pidxs[tensor][topSort[pat - 1]])
1019             break;
1020         }
1021         Value ptr = codegen.pointers[tensor][idx];
1022         Value one = constantIndex(rewriter, loc, 1);
1023         Value p0 = (pat == 0) ? constantIndex(rewriter, loc, 0)
1024                               : codegen.pidxs[tensor][topSort[pat - 1]];
1025         codegen.pidxs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p0);
1026         Value p1 = rewriter.create<arith::AddIOp>(loc, p0, one);
1027         codegen.highs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p1);
1028       } else {
1029         // Dense index still in play.
1030         needsUniv = true;
1031       }
1032     }
1033   }
1034 
1035   // Initialize the universal dense index.
1036   codegen.loops[idx] = constantIndex(rewriter, loc, 0);
1037   return needsUniv;
1038 }
1039 
1040 /// Returns vectorization strategy. Any implicit inner loop in the Linalg
1041 /// operation is a candidate. Whether it is actually converted to SIMD code
1042 /// depends on the requested strategy.
1043 static bool isVectorFor(CodeGen &codegen, bool isInner, bool isSparse) {
1044   switch (codegen.options.vectorizationStrategy) {
1045   case SparseVectorizationStrategy::kNone:
1046     return false;
1047   case SparseVectorizationStrategy::kDenseInnerLoop:
1048     return isInner && !isSparse;
1049   case SparseVectorizationStrategy::kAnyStorageInnerLoop:
1050     return isInner;
1051   }
1052   llvm_unreachable("unexpected vectorization strategy");
1053 }
1054 
1055 /// Returns parallelization strategy. Any implicit loop in the Linalg operation
1056 /// that is marked "parallel" is a candidate. Whether it is actually converted
1057 /// to a parallel operation depends on the requested strategy.
1058 static bool isParallelFor(CodeGen &codegen, bool isOuter, bool isReduction,
1059                           bool isSparse, bool isVector) {
1060   switch (codegen.options.parallelizationStrategy) {
1061   case SparseParallelizationStrategy::kNone:
1062     return false;
1063   case SparseParallelizationStrategy::kDenseOuterLoop:
1064     return isOuter && !isSparse && !isReduction && !isVector;
1065   case SparseParallelizationStrategy::kAnyStorageOuterLoop:
1066     return isOuter && !isReduction && !isVector;
1067   case SparseParallelizationStrategy::kDenseAnyLoop:
1068     return !isSparse && !isReduction && !isVector;
1069   case SparseParallelizationStrategy::kAnyStorageAnyLoop:
1070     return !isReduction && !isVector;
1071   }
1072   llvm_unreachable("unexpected parallelization strategy");
1073 }
1074 
1075 /// Checks unit stride for dense tensors. The iteration graph may have ignored
1076 /// dense access patterns in order to avoid cycles (sparse access patterns are
1077 /// always placed innermost), but that means dense access has become strided.
1078 /// This prevents effective vectorization.
1079 static bool denseUnitStrides(Merger &merger, linalg::GenericOp op,
1080                              unsigned idx) {
1081   for (OpOperand *t : op.getInputAndOutputOperands()) {
1082     if (!getSparseTensorEncoding(t->get().getType())) {
1083       auto map = op.getTiedIndexingMap(t);
1084       for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
1085         AffineExpr a = map.getResult(d);
1086         // Report non-unit stride if innermost index appears at an outer
1087         // dimension (true non-unit stride) or if the innermost index appears
1088         // in a compound subscript in the innermost dimension. Even if the
1089         // latter is unit stride, it does not play well with scatter/gather.
1090         // TODO: accept unit stride affine innermost like a[i,j+k+1]?
1091         if (a.isFunctionOfDim(idx) &&
1092             ((d != rank - 1) || (a.getKind() != AffineExprKind::DimId)))
1093           return false;
1094       }
1095     }
1096   }
1097   return true;
1098 }
1099 
1100 /// Generates a for-loop on a single index.
1101 static Operation *genFor(Merger &merger, CodeGen &codegen,
1102                          PatternRewriter &rewriter, linalg::GenericOp op,
1103                          bool isOuter, bool isInner, unsigned idx,
1104                          BitVector &indices) {
1105   unsigned fb = indices.find_first();
1106   unsigned tensor = merger.tensor(fb);
1107   assert(idx == merger.index(fb));
1108   auto iteratorTypes = op.iterator_types().getValue();
1109   bool isReduction = isReductionIterator(iteratorTypes[idx]);
1110   bool isSparse = merger.isDim(fb, Dim::kSparse);
1111   bool isVector = !codegen.sparseOut &&
1112                   isVectorFor(codegen, isInner, isSparse) &&
1113                   denseUnitStrides(merger, op, idx);
1114   bool isParallel =
1115       !codegen.sparseOut &&
1116       isParallelFor(codegen, isOuter, isReduction, isSparse, isVector);
1117 
1118   // Prepare vector length.
1119   if (isVector)
1120     codegen.curVecLength = codegen.options.vectorLength;
1121 
1122   // Loop bounds and increment.
1123   Location loc = op.getLoc();
1124   Value lo = isSparse ? codegen.pidxs[tensor][idx] : codegen.loops[idx];
1125   Value hi = isSparse ? codegen.highs[tensor][idx] : codegen.sizes[idx];
1126   Value step = constantIndex(rewriter, loc, codegen.curVecLength);
1127 
1128   // Emit a parallel loop.
1129   if (isParallel) {
1130     assert(!isVector);
1131     scf::ParallelOp parOp = rewriter.create<scf::ParallelOp>(loc, lo, hi, step);
1132     if (isSparse)
1133       codegen.pidxs[tensor][idx] = parOp.getInductionVars()[0];
1134     else
1135       codegen.loops[idx] = parOp.getInductionVars()[0];
1136     rewriter.setInsertionPointToStart(parOp.getBody());
1137     return parOp;
1138   }
1139 
1140   // Emit a sequential or vector loop.
1141   SmallVector<Value, 4> operands;
1142   if (codegen.redVal) {
1143     // In a vector loop, bring reduction into SIMD form, if not already.
1144     if (isVector && !codegen.redVal.getType().isa<VectorType>()) {
1145       VectorType vtp = vectorType(codegen, codegen.redVal.getType());
1146       Value vred = genVectorReducInit(codegen, rewriter, loc, vtp);
1147       updateReduc(merger, codegen, vred);
1148     }
1149     operands.push_back(codegen.redVal);
1150   }
1151   if (codegen.expValues)
1152     operands.push_back(codegen.expCount);
1153   scf::ForOp forOp = rewriter.create<scf::ForOp>(loc, lo, hi, step, operands);
1154   if (codegen.redVal)
1155     updateReduc(merger, codegen, forOp.getRegionIterArgs().front());
1156   if (codegen.expValues)
1157     codegen.expCount = forOp.getRegionIterArgs().back();
1158   // Assign induction variable to sparse or dense index.
1159   Value iv = forOp.getInductionVar();
1160   if (isSparse)
1161     codegen.pidxs[tensor][idx] = iv;
1162   else
1163     codegen.loops[idx] = iv;
1164   rewriter.setInsertionPointToStart(forOp.getBody());
1165   // Share vector iteration mask between all subsequent loads/stores.
1166   if (isVector)
1167     codegen.curVecMask = genVectorMask(codegen, rewriter, iv, lo, hi, step);
1168   return forOp;
1169 }
1170 
1171 /// Emit a while-loop for co-iteration over multiple indices.
1172 static Operation *genWhile(Merger &merger, CodeGen &codegen,
1173                            PatternRewriter &rewriter, linalg::GenericOp op,
1174                            unsigned idx, bool needsUniv,
1175                            BitVector &indices) {
1176   SmallVector<Type, 4> types;
1177   SmallVector<Value, 4> operands;
1178   // Construct the while-loop with a parameter for each index.
1179   Type indexType = rewriter.getIndexType();
1180   for (unsigned b = 0, be = indices.size(); b < be; b++) {
1181     if (indices[b] && merger.isDim(b, Dim::kSparse)) {
1182       unsigned tensor = merger.tensor(b);
1183       assert(idx == merger.index(b));
1184       types.push_back(indexType);
1185       operands.push_back(codegen.pidxs[tensor][idx]);
1186     }
1187   }
1188   if (codegen.redVal) {
1189     types.push_back(codegen.redVal.getType());
1190     operands.push_back(codegen.redVal);
1191   }
1192   if (codegen.expValues) {
1193     types.push_back(indexType);
1194     operands.push_back(codegen.expCount);
1195   }
1196   if (needsUniv) {
1197     types.push_back(indexType);
1198     operands.push_back(codegen.loops[idx]);
1199   }
1200   assert(types.size() == operands.size());
1201   Location loc = op.getLoc();
1202   scf::WhileOp whileOp = rewriter.create<scf::WhileOp>(loc, types, operands);
1203 
1204   SmallVector<Location> locs(types.size(), loc);
1205   Block *before = rewriter.createBlock(&whileOp.getBefore(), {}, types, locs);
1206   Block *after = rewriter.createBlock(&whileOp.getAfter(), {}, types, locs);
1207 
1208   // Build the "before" region, which effectively consists
1209   // of a conjunction of "i < upper" tests on all induction.
1210   rewriter.setInsertionPointToStart(&whileOp.getBefore().front());
1211   Value cond;
1212   unsigned o = 0;
1213   for (unsigned b = 0, be = indices.size(); b < be; b++) {
1214     if (indices[b] && merger.isDim(b, Dim::kSparse)) {
1215       unsigned tensor = merger.tensor(b);
1216       assert(idx == merger.index(b));
1217       Value op1 = before->getArgument(o);
1218       Value op2 = codegen.highs[tensor][idx];
1219       Value opc = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult,
1220                                                  op1, op2);
1221       cond = cond ? rewriter.create<arith::AndIOp>(loc, cond, opc) : opc;
1222       codegen.pidxs[tensor][idx] = after->getArgument(o++);
1223     }
1224   }
1225   if (codegen.redVal)
1226     updateReduc(merger, codegen, after->getArgument(o++));
1227   if (codegen.expValues)
1228     codegen.expCount = after->getArgument(o++);
1229   if (needsUniv)
1230     codegen.loops[idx] = after->getArgument(o++);
1231   assert(o == operands.size());
1232   rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments());
1233   rewriter.setInsertionPointToStart(&whileOp.getAfter().front());
1234   return whileOp;
1235 }
1236 
1237 /// Generates a for-loop or a while-loop, depending on whether it implements
1238 /// singleton iteration or co-iteration over the given conjunction.
1239 static Operation *genLoop(Merger &merger, CodeGen &codegen,
1240                           PatternRewriter &rewriter, linalg::GenericOp op,
1241                           std::vector<unsigned> &topSort, unsigned at,
1242                           bool needsUniv, BitVector &indices) {
1243   unsigned idx = topSort[at];
1244   if (indices.count() == 1) {
1245     bool isOuter = at == 0;
1246     bool isInner = at == topSort.size() - 1;
1247     return genFor(merger, codegen, rewriter, op, isOuter, isInner, idx,
1248                   indices);
1249   }
1250   return genWhile(merger, codegen, rewriter, op, idx, needsUniv, indices);
1251 }
1252 
1253 /// Generates the local variables for this loop, consisting of the sparse
1254 /// indices, restored universal dense index, and dense positions.
1255 static void genLocals(Merger &merger, CodeGen &codegen,
1256                       PatternRewriter &rewriter, linalg::GenericOp op,
1257                       std::vector<unsigned> &topSort, unsigned at,
1258                       bool needsUniv, BitVector &locals) {
1259   Location loc = op.getLoc();
1260   unsigned idx = topSort[at];
1261 
1262   // Initialize sparse indices.
1263   Value min;
1264   for (unsigned b = 0, be = locals.size(); b < be; b++) {
1265     if (locals[b] && merger.isDim(b, Dim::kSparse)) {
1266       unsigned tensor = merger.tensor(b);
1267       assert(idx == merger.index(b));
1268       Value ptr = codegen.indices[tensor][idx];
1269       Value s = codegen.pidxs[tensor][idx];
1270       Value load = genLoad(codegen, rewriter, loc, ptr, s);
1271       codegen.idxs[tensor][idx] = load;
1272       if (!needsUniv) {
1273         if (min) {
1274           Value cmp = rewriter.create<arith::CmpIOp>(
1275               loc, arith::CmpIPredicate::ult, load, min);
1276           min = rewriter.create<arith::SelectOp>(loc, cmp, load, min);
1277         } else {
1278           min = load;
1279         }
1280       }
1281     }
1282   }
1283 
1284   // Merge dense universal index over minimum.
1285   if (min) {
1286     assert(!needsUniv);
1287     codegen.loops[idx] = min;
1288   }
1289 
1290   // Initialize dense positions. Note that we generate dense indices of the
1291   // output tensor unconditionally, since they may not appear in the lattice,
1292   // but may be needed for linearized codegen.
1293   for (unsigned b = 0, be = locals.size(); b < be; b++) {
1294     if ((locals[b] || merger.isOutTensor(b, idx)) &&
1295         merger.isDim(b, Dim::kDense)) {
1296       unsigned tensor = merger.tensor(b);
1297       assert(idx == merger.index(b));
1298       unsigned pat = at;
1299       for (; pat != 0; pat--)
1300         if (codegen.pidxs[tensor][topSort[pat - 1]])
1301           break;
1302       Value p = (pat == 0) ? constantIndex(rewriter, loc, 0)
1303                            : codegen.pidxs[tensor][topSort[pat - 1]];
1304       codegen.pidxs[tensor][idx] = genAddress(
1305           codegen, rewriter, loc, codegen.sizes[idx], p, codegen.loops[idx]);
1306     }
1307   }
1308 
1309   // Move the insertion indices in lexicographic index order. During access
1310   // pattern expansion, we can skip setting the innermost dimension.
1311   if (codegen.sparseOut && !codegen.expValues) {
1312     Value pos = constantIndex(rewriter, loc, at);
1313     rewriter.create<memref::StoreOp>(loc, codegen.loops[idx], codegen.lexIdx,
1314                                      pos);
1315   }
1316 }
1317 
1318 /// Generates the induction structure for a while-loop.
1319 static void genWhileInduction(Merger &merger, CodeGen &codegen,
1320                               PatternRewriter &rewriter, linalg::GenericOp op,
1321                               unsigned idx, bool needsUniv,
1322                               BitVector &induction,
1323                               scf::WhileOp whileOp) {
1324   Location loc = op.getLoc();
1325   // Finalize each else branch of all if statements.
1326   if (codegen.redVal || codegen.expValues) {
1327     while (auto ifOp = dyn_cast_or_null<scf::IfOp>(
1328                rewriter.getInsertionBlock()->getParentOp())) {
1329       unsigned y = 0;
1330       SmallVector<Value, 4> yields;
1331       if (codegen.redVal) {
1332         yields.push_back(codegen.redVal);
1333         updateReduc(merger, codegen, ifOp.getResult(y++));
1334       }
1335       if (codegen.expValues) {
1336         yields.push_back(codegen.expCount);
1337         codegen.expCount = ifOp->getResult(y++);
1338       }
1339       assert(y == yields.size());
1340       rewriter.create<scf::YieldOp>(loc, yields);
1341       rewriter.setInsertionPointAfter(ifOp);
1342     }
1343   }
1344   rewriter.setInsertionPointToEnd(&whileOp.getAfter().front());
1345   // Finalize the induction. Note that the induction could be performed
1346   // in the individual if-branches to avoid re-evaluating the conditions.
1347   // However, that would result in a rather elaborate forest of yield
1348   // instructions during code generation. Moreover, performing the induction
1349   // after the if-statements more closely resembles code generated by TACO.
1350   unsigned o = 0;
1351   SmallVector<Value, 4> operands;
1352   Value one = constantIndex(rewriter, loc, 1);
1353   for (unsigned b = 0, be = induction.size(); b < be; b++) {
1354     if (induction[b] && merger.isDim(b, Dim::kSparse)) {
1355       unsigned tensor = merger.tensor(b);
1356       assert(idx == merger.index(b));
1357       Value op1 = codegen.idxs[tensor][idx];
1358       Value op2 = codegen.loops[idx];
1359       Value op3 = codegen.pidxs[tensor][idx];
1360       Value cmp = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
1361                                                  op1, op2);
1362       Value add = rewriter.create<arith::AddIOp>(loc, op3, one);
1363       operands.push_back(rewriter.create<arith::SelectOp>(loc, cmp, add, op3));
1364       codegen.pidxs[tensor][idx] = whileOp->getResult(o++);
1365     }
1366   }
1367   if (codegen.redVal) {
1368     operands.push_back(codegen.redVal);
1369     updateReduc(merger, codegen, whileOp->getResult(o++));
1370   }
1371   if (codegen.expValues) {
1372     operands.push_back(codegen.expCount);
1373     codegen.expCount = whileOp->getResult(o++);
1374   }
1375   if (needsUniv) {
1376     operands.push_back(
1377         rewriter.create<arith::AddIOp>(loc, codegen.loops[idx], one));
1378     codegen.loops[idx] = whileOp->getResult(o++);
1379   }
1380   assert(o == operands.size());
1381   rewriter.create<scf::YieldOp>(loc, operands);
1382   rewriter.setInsertionPointAfter(whileOp);
1383 }
1384 
1385 /// Generates the induction structure for a for-loop.
1386 static void genForInduction(Merger &merger, CodeGen &codegen,
1387                             PatternRewriter &rewriter, linalg::GenericOp op,
1388                             Operation *loop) {
1389   Location loc = op.getLoc();
1390   unsigned o = 0;
1391   SmallVector<Value, 4> operands;
1392   if (codegen.redVal) {
1393     operands.push_back(codegen.redVal);
1394     updateReduc(merger, codegen, loop->getResult(o++));
1395   }
1396   if (codegen.expValues) {
1397     operands.push_back(codegen.expCount);
1398     codegen.expCount = loop->getResult(o++);
1399   }
1400   assert(o == operands.size());
1401   if (o > 0)
1402     rewriter.create<scf::YieldOp>(loc, operands);
1403   rewriter.setInsertionPointAfter(loop);
1404 }
1405 
1406 /// Generates a single if-statement within a while-loop.
1407 static scf::IfOp genIf(Merger &merger, CodeGen &codegen,
1408                        PatternRewriter &rewriter, linalg::GenericOp op,
1409                        unsigned idx, BitVector &conditions) {
1410   Location loc = op.getLoc();
1411   SmallVector<Type, 4> types;
1412   Value cond;
1413   for (unsigned b = 0, be = conditions.size(); b < be; b++) {
1414     if (conditions[b]) {
1415       unsigned tensor = merger.tensor(b);
1416       assert(idx == merger.index(b));
1417       Value clause;
1418       if (merger.isDim(b, Dim::kSparse)) {
1419         Value op1 = codegen.idxs[tensor][idx];
1420         Value op2 = codegen.loops[idx];
1421         clause = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
1422                                                 op1, op2);
1423       } else {
1424         clause = constantI1(rewriter, loc, true);
1425       }
1426       cond = cond ? rewriter.create<arith::AndIOp>(loc, cond, clause) : clause;
1427     }
1428   }
1429   if (codegen.redVal)
1430     types.push_back(codegen.redVal.getType());
1431   if (codegen.expValues)
1432     types.push_back(rewriter.getIndexType());
1433   scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, types, cond, /*else=*/true);
1434   rewriter.setInsertionPointToStart(&ifOp.getThenRegion().front());
1435   return ifOp;
1436 }
1437 
1438 /// Generates end of true branch of if-statement within a while-loop.
1439 static void endIf(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
1440                   linalg::GenericOp op, scf::IfOp ifOp, Operation *loop,
1441                   Value redInput, Value cntInput) {
1442   SmallVector<Value, 4> operands;
1443   if (codegen.redVal) {
1444     operands.push_back(codegen.redVal);
1445     updateReduc(merger, codegen, redInput);
1446   }
1447   if (codegen.expValues) {
1448     operands.push_back(codegen.expCount);
1449     codegen.expCount = cntInput;
1450   }
1451   if (!operands.empty())
1452     rewriter.create<scf::YieldOp>(op.getLoc(), operands);
1453   rewriter.setInsertionPointToStart(&ifOp.getElseRegion().front());
1454 }
1455 
1456 //===----------------------------------------------------------------------===//
1457 // Sparse compiler synthesis methods (loop sequence).
1458 //===----------------------------------------------------------------------===//
1459 
1460 /// Starts a loop sequence at given level. Returns true if
1461 /// the universal loop index must be maintained at this level.
1462 static bool startLoopSeq(Merger &merger, CodeGen &codegen,
1463                          PatternRewriter &rewriter, linalg::GenericOp op,
1464                          std::vector<unsigned> &topSort, unsigned exp,
1465                          unsigned at, unsigned idx, unsigned ldx,
1466                          unsigned lts) {
1467   assert(codegen.curVecLength == 1);
1468   assert(!codegen.loops[idx]);
1469   // Emit invariants at this loop sequence level.
1470   genInvariants(merger, codegen, rewriter, op, exp, ldx, /*atStart=*/true);
1471   // Emit access pattern expansion for sparse tensor output.
1472   genExpansion(merger, codegen, rewriter, op, at, /*atStart=*/true);
1473   // Emit further intitialization at this loop sequence level.
1474   unsigned l0 = merger.set(lts)[0];
1475   bool needsUniv =
1476       genInit(merger, codegen, rewriter, op, topSort, at, merger.lat(l0).bits);
1477   // Maintain the universal index only if it is actually
1478   // consumed by a subsequent lattice point.
1479   if (needsUniv) {
1480     unsigned lsize = merger.set(lts).size();
1481     for (unsigned i = 1; i < lsize; i++) {
1482       unsigned li = merger.set(lts)[i];
1483       if (!merger.hasAnyDimOf(merger.lat(li).simple, Dim::kSparse))
1484         return true;
1485     }
1486   }
1487   return false;
1488 }
1489 
1490 /// Starts a single loop in current sequence.
1491 static Operation *startLoop(Merger &merger, CodeGen &codegen,
1492                             PatternRewriter &rewriter, linalg::GenericOp op,
1493                             std::vector<unsigned> &topSort, unsigned at,
1494                             unsigned li, bool needsUniv) {
1495   assert(codegen.curVecLength == 1);
1496   // Emit the for/while-loop control.
1497   Operation *loop = genLoop(merger, codegen, rewriter, op, topSort, at,
1498                             needsUniv, merger.lat(li).simple);
1499   // Emit the locals for this loop.
1500   genLocals(merger, codegen, rewriter, op, topSort, at, needsUniv,
1501             merger.lat(li).bits);
1502   return loop;
1503 }
1504 
1505 /// Ends a single loop in current sequence. Returns new values for needsUniv.
1506 static bool endLoop(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
1507                     linalg::GenericOp op, Operation *loop, unsigned idx,
1508                     unsigned li, bool needsUniv) {
1509   codegen.curVecLength = 1;
1510   // End a while-loop.
1511   if (auto whileOp = dyn_cast<scf::WhileOp>(loop)) {
1512     genWhileInduction(merger, codegen, rewriter, op, idx, needsUniv,
1513                       merger.lat(li).bits, whileOp);
1514     return needsUniv;
1515   }
1516   // End a for-loop.
1517   genForInduction(merger, codegen, rewriter, op, loop);
1518   return false;
1519 }
1520 
1521 /// Ends a loop sequence at given level.
1522 static void endLoopSeq(Merger &merger, CodeGen &codegen,
1523                        PatternRewriter &rewriter, linalg::GenericOp op,
1524                        unsigned exp, unsigned at, unsigned idx, unsigned ldx) {
1525   assert(codegen.curVecLength == 1);
1526   codegen.loops[idx] = Value();
1527   // Bring a pending reduction back from SIMD form when sequence ends.
1528   if (codegen.redVal)
1529     if (auto vtp = codegen.redVal.getType().dyn_cast<VectorType>())
1530       updateReduc(merger, codegen,
1531                   genVectorReducEnd(codegen, rewriter, op.getLoc(), vtp));
1532   // Unmark bookkeeping of invariants and loop index.
1533   genInvariants(merger, codegen, rewriter, op, exp, ldx, /*atStart=*/false);
1534   // Finalize access pattern expansion for sparse tensor output.
1535   genExpansion(merger, codegen, rewriter, op, at, /*atStart=*/false);
1536 }
1537 
1538 /// Recursively generates code while computing iteration lattices in order
1539 /// to manage the complexity of implementing co-iteration over unions
1540 /// and intersections of sparse iterations spaces.
1541 static void genStmt(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
1542                     linalg::GenericOp op, std::vector<unsigned> &topSort,
1543                     unsigned exp, unsigned at) {
1544   // At each leaf, assign remaining tensor (sub)expression to output tensor.
1545   if (at == topSort.size()) {
1546     Value rhs = genExp(merger, codegen, rewriter, op, exp);
1547     genTensorStore(merger, codegen, rewriter, op, rhs);
1548     return;
1549   }
1550 
1551   // Construct iteration lattices for current loop index, with L0 at top.
1552   unsigned idx = topSort[at];
1553   unsigned ldx = at == 0 ? -1u : topSort[at - 1];
1554   unsigned lts = merger.optimizeSet(merger.buildLattices(exp, idx));
1555 
1556   // Start a loop sequence.
1557   bool needsUniv = startLoopSeq(merger, codegen, rewriter, op, topSort, exp, at,
1558                                 idx, ldx, lts);
1559 
1560   // Emit a loop for every lattice point L0 >= Li in this loop sequence.
1561   unsigned lsize = merger.set(lts).size();
1562   for (unsigned i = 0; i < lsize; i++) {
1563     // Start a loop.
1564     unsigned li = merger.set(lts)[i];
1565     Operation *loop =
1566         startLoop(merger, codegen, rewriter, op, topSort, at, li, needsUniv);
1567 
1568     // Visit all lattices points with Li >= Lj to generate the
1569     // loop-body, possibly with if statements for coiteration.
1570     Value redInput = codegen.redVal;
1571     Value cntInput = codegen.expCount;
1572     bool isWhile = dyn_cast<scf::WhileOp>(loop) != nullptr;
1573     for (unsigned j = 0; j < lsize; j++) {
1574       unsigned lj = merger.set(lts)[j];
1575       unsigned ej = merger.lat(lj).exp;
1576       if (li == lj || merger.latGT(li, lj)) {
1577         // Recurse into body of each branch.
1578         if (isWhile) {
1579           scf::IfOp ifOp =
1580               genIf(merger, codegen, rewriter, op, idx, merger.lat(lj).simple);
1581           genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1);
1582           endIf(merger, codegen, rewriter, op, ifOp, loop, redInput, cntInput);
1583         } else {
1584           genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1);
1585         }
1586       }
1587     }
1588 
1589     // End a loop.
1590     needsUniv =
1591         endLoop(merger, codegen, rewriter, op, loop, idx, li, needsUniv);
1592   }
1593 
1594   // End a loop sequence.
1595   endLoopSeq(merger, codegen, rewriter, op, exp, at, idx, ldx);
1596 }
1597 
1598 /// Converts the result computed by the sparse kernel into the required form.
1599 static void genResult(Merger &merger, CodeGen &codegen,
1600                       PatternRewriter &rewriter, linalg::GenericOp op) {
1601   OpOperand *lhs = op.getOutputOperand(0);
1602   Type resType = lhs->get().getType();
1603   if (getSparseTensorEncoding(resType)) {
1604     // The sparse tensor rematerializes from the original sparse tensor's
1605     // underlying sparse storage format.
1606     rewriter.replaceOpWithNewOp<LoadOp>(op, resType, lhs->get(),
1607                                         codegen.sparseOut == lhs);
1608   } else {
1609     // To rematerialize an non-annotated tensor, simply load it
1610     // from the bufferized value.
1611     Value val = codegen.buffers.back(); // value array
1612     rewriter.replaceOpWithNewOp<bufferization::ToTensorOp>(op, resType, val);
1613   }
1614 }
1615 
1616 //===----------------------------------------------------------------------===//
1617 // Sparse compiler rewriting methods.
1618 //===----------------------------------------------------------------------===//
1619 
1620 namespace {
1621 
1622 /// Sparse rewriting rule for generic Lingalg operation.
1623 struct GenericOpSparsifier : public OpRewritePattern<linalg::GenericOp> {
1624 public:
1625   GenericOpSparsifier(MLIRContext *context, SparsificationOptions o)
1626       : OpRewritePattern<linalg::GenericOp>(context), options(o) {}
1627 
1628   LogicalResult matchAndRewrite(linalg::GenericOp op,
1629                                 PatternRewriter &rewriter) const override {
1630     // Detects sparse annotations and translate the per-dimension sparsity
1631     // information for all tensors to loop indices in the kernel.
1632     assert(op.getNumOutputs() == 1);
1633     unsigned numTensors = op.getNumInputsAndOutputs();
1634     unsigned numLoops = op.iterator_types().getValue().size();
1635     Merger merger(numTensors, numLoops);
1636     if (!findSparseAnnotations(merger, op))
1637       return failure();
1638 
1639     // Computes a topologically sorted iteration graph to ensure
1640     // tensors are visited in natural index order. Fails on cycles.
1641     // This assumes that higher-level passes have already put the
1642     // tensors in each tensor expression in a feasible order.
1643     std::vector<unsigned> topSort;
1644     if (!computeIterationGraph(merger, op, topSort,
1645                                SortMask::kIncludeUndef |
1646                                    SortMask::kIncludeDense) &&
1647         !computeIterationGraph(merger, op, topSort, SortMask::kIncludeUndef) &&
1648         !computeIterationGraph(merger, op, topSort, SortMask::kIncludeDense) &&
1649         !computeIterationGraph(merger, op, topSort, SortMask::kSparseOnly))
1650       return failure();
1651 
1652     // Builds the tensor expression for the Linalg operation in SSA form.
1653     Optional<unsigned> optExp = merger.buildTensorExpFromLinalg(op);
1654     if (!optExp.hasValue())
1655       return failure();
1656     unsigned exp = optExp.getValue();
1657 
1658     // Rejects an inadmissable tensor expression.
1659     OpOperand *sparseOut = nullptr;
1660     unsigned outerParNest = 0;
1661     if (!isAdmissableTensorExp(merger, op, topSort, exp, &sparseOut,
1662                                outerParNest))
1663       return failure();
1664 
1665     // Recursively generates code.
1666     merger.setHasSparseOut(sparseOut != nullptr);
1667     CodeGen codegen(options, numTensors, numLoops, sparseOut, outerParNest);
1668     genBuffers(merger, codegen, rewriter, op);
1669     genStmt(merger, codegen, rewriter, op, topSort, exp, 0);
1670     genResult(merger, codegen, rewriter, op);
1671     return success();
1672   }
1673 
1674 private:
1675   /// Options to control sparse code generation.
1676   SparsificationOptions options;
1677 };
1678 
1679 } // namespace
1680 
1681 /// Populates the given patterns list with rewriting rules required for
1682 /// the sparsification of linear algebra operations.
1683 void mlir::populateSparsificationPatterns(
1684     RewritePatternSet &patterns, const SparsificationOptions &options) {
1685   patterns.add<GenericOpSparsifier>(patterns.getContext(), options);
1686 }
1687