1 //===- Sparsification.cpp - Implementation of sparsification --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements converting sparse tensor types to actual sparse code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "mlir/Dialect/Affine/IR/AffineOps.h"
14 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
15 #include "mlir/Dialect/Linalg/ComprehensiveBufferize/BufferizableOpInterface.h"
16 #include "mlir/Dialect/Linalg/IR/LinalgOps.h"
17 #include "mlir/Dialect/Linalg/Utils/Utils.h"
18 #include "mlir/Dialect/MemRef/IR/MemRef.h"
19 #include "mlir/Dialect/SCF/SCF.h"
20 #include "mlir/Dialect/SCF/Transforms.h"
21 #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
22 #include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
23 #include "mlir/Dialect/SparseTensor/Utils/Merger.h"
24 #include "mlir/Dialect/StandardOps/IR/Ops.h"
25 #include "mlir/Dialect/Vector/VectorOps.h"
26 #include "mlir/IR/Matchers.h"
27 #include "mlir/IR/TensorEncoding.h"
28 #include "llvm/ADT/SmallBitVector.h"
29 
30 using namespace mlir;
31 using namespace mlir::sparse_tensor;
32 
33 //===----------------------------------------------------------------------===//
34 // Declarations of data structures.
35 //===----------------------------------------------------------------------===//
36 
37 namespace {
38 
39 // Iteration graph sorting.
40 enum SortMask { kSparseOnly = 0x0, kIncludeDense = 0x1, kIncludeUndef = 0x2 };
41 
42 // Reduction kinds.
43 enum Reduction { kNoReduc, kSum, kProduct, kAnd, kOr, kXor };
44 
45 // Code generation.
46 struct CodeGen {
47   CodeGen(SparsificationOptions o, unsigned numTensors, unsigned numLoops,
48           OpOperand *op)
49       : options(o), loops(numLoops), sizes(numLoops), buffers(numTensors),
50         pointers(numTensors, std::vector<Value>(numLoops)),
51         indices(numTensors, std::vector<Value>(numLoops)),
52         highs(numTensors, std::vector<Value>(numLoops)),
53         pidxs(numTensors, std::vector<Value>(numLoops)),
54         idxs(numTensors, std::vector<Value>(numLoops)), redExp(-1u), redVal(),
55         redKind(kNoReduc), sparseOut(op), lexIdx(), curVecLength(1),
56         curVecMask() {}
57   /// Sparsification options.
58   SparsificationOptions options;
59   /// Universal dense indices and upper bounds (by index). The loops array
60   /// is updated with the value of the universal dense index in the current
61   /// loop. The sizes array is set once with the inferred dimension sizes.
62   std::vector<Value> loops;
63   std::vector<Value> sizes;
64   /// Buffers for storing dense and sparse numerical values (by tensor).
65   /// This array is set once during bufferization of all tensors.
66   std::vector<Value> buffers;
67   /// Sparse storage schemes (1-D): pointers and indices (by tensor and index).
68   /// This array is set once during bufferization of all sparse tensors.
69   std::vector<std::vector<Value>> pointers;
70   std::vector<std::vector<Value>> indices;
71   /// Sparse iteration information (by tensor and index). These arrays
72   /// are updated to remain current within the current loop.
73   std::vector<std::vector<Value>> highs;
74   std::vector<std::vector<Value>> pidxs;
75   std::vector<std::vector<Value>> idxs;
76   /// Current reduction, updated during code generation. When indices of a
77   /// reduction are exhausted, all inner loops can use a scalarized reduction.
78   unsigned redExp;
79   Value redVal;
80   Reduction redKind;
81   // Sparse tensor as output.
82   OpOperand *sparseOut;
83   Value lexIdx;
84   // Current vector length and mask.
85   unsigned curVecLength;
86   Value curVecMask;
87 };
88 
89 } // namespace
90 
91 //===----------------------------------------------------------------------===//
92 // Sparse compiler analysis methods.
93 //===----------------------------------------------------------------------===//
94 
95 /// Helper method to apply dimension ordering permutation.
96 static unsigned perm(const SparseTensorEncodingAttr &enc, unsigned d) {
97   if (enc) {
98     auto order = enc.getDimOrdering();
99     if (order) {
100       assert(order.isPermutation());
101       return order.getDimPosition(d);
102     }
103   }
104   return d;
105 }
106 
107 /// Helper method to translate dim level type to internal representation.
108 static Dim toDim(const SparseTensorEncodingAttr &enc, unsigned d) {
109   if (enc) {
110     SparseTensorEncodingAttr::DimLevelType tp = enc.getDimLevelType()[d];
111     if (tp == SparseTensorEncodingAttr::DimLevelType::Compressed)
112       return Dim::kSparse;
113     if (tp == SparseTensorEncodingAttr::DimLevelType::Singleton)
114       return Dim::kSingle;
115   }
116   return Dim::kDense;
117 }
118 
119 /// Helper method to inspect affine expressions. Rejects cases where the
120 /// same index is used more than once. Also rejects affine expressions
121 /// that are not a direct index for annotated tensors.
122 // TODO: accept more affine cases for sparse tensors
123 static bool findAffine(Merger &merger, unsigned tensor, AffineExpr a, Dim dim,
124                        bool isDense) {
125   switch (a.getKind()) {
126   case AffineExprKind::DimId: {
127     unsigned idx = a.cast<AffineDimExpr>().getPosition();
128     if (!merger.isDim(tensor, idx, Dim::kUndef))
129       return false; // used more than once
130     merger.setDim(tensor, idx, dim);
131     return true;
132   }
133   case AffineExprKind::Add:
134   case AffineExprKind::Mul: {
135     if (!isDense)
136       return false;
137     auto binOp = a.cast<AffineBinaryOpExpr>();
138     return findAffine(merger, tensor, binOp.getLHS(), dim, isDense) &&
139            findAffine(merger, tensor, binOp.getRHS(), dim, isDense);
140   }
141   case AffineExprKind::Constant:
142     return isDense;
143   default:
144     return false;
145   }
146 }
147 
148 /// Helper method to inspect sparse encodings in the tensor types.
149 /// Fills the per-dimension sparsity information for all tensors.
150 /// Returns true if the sparse annotations and affine subscript
151 /// expressions of all tensors are admissable. Returns false if
152 /// no annotations are found or inadmissable constructs occur.
153 static bool findSparseAnnotations(Merger &merger, linalg::GenericOp op) {
154   bool annotated = false;
155   for (OpOperand *t : op.getInputAndOutputOperands()) {
156     auto map = op.getTiedIndexingMap(t);
157     auto enc = getSparseTensorEncoding(t->get().getType());
158     if (enc)
159       annotated = true;
160     assert(map.getNumResults() == op.getRank(t));
161     for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
162       unsigned tensor = t->getOperandNumber();
163       AffineExpr a = map.getResult(perm(enc, d));
164       if (!findAffine(merger, tensor, a, toDim(enc, d), !enc))
165         return false; // inadmissable affine expression
166     }
167   }
168   return annotated;
169 }
170 
171 /// A DFS helper to compute a topological sort. Note that recursion is
172 /// bounded by the number of implicit loops, which is always small.
173 /// Returns false when a cycle is detected.
174 static bool topSortDFS(unsigned i, std::vector<unsigned> &visit,
175                        std::vector<unsigned> &topSort,
176                        std::vector<std::vector<bool>> &adjM) {
177   if (visit[i] != 0)
178     return visit[i] != 1; // 1 denotes cycle!
179   visit[i] = 1;
180   for (unsigned j = 0, e = visit.size(); j < e; j++)
181     if (adjM[i][j])
182       if (!topSortDFS(j, visit, topSort, adjM))
183         return false;
184   visit[i] = 2;
185   topSort.push_back(i);
186   return true;
187 }
188 
189 /// Helper method to add all constraints from the indices in one affine
190 /// expression before all indices in the other affine expression. For
191 /// example i0+i1 < i2+i3+1 yields i0<i2, i0<i3, i1<i2, and i1<i3.
192 static void addAffineOrderings(std::vector<std::vector<bool>> &adjM,
193                                AffineExpr a, AffineExpr b, unsigned fidx) {
194   switch (a.getKind()) {
195   case AffineExprKind::DimId: {
196     unsigned idx = a.cast<AffineDimExpr>().getPosition();
197     if (b)
198       addAffineOrderings(adjM, b, AffineExpr(), idx);
199     else
200       adjM[fidx][idx] = true;
201     break;
202   }
203   case AffineExprKind::Add:
204   case AffineExprKind::Mul: {
205     auto binOp = a.cast<AffineBinaryOpExpr>();
206     addAffineOrderings(adjM, binOp.getLHS(), b, fidx);
207     addAffineOrderings(adjM, binOp.getRHS(), b, fidx);
208     break;
209   }
210   default:
211     break;
212   }
213 }
214 
215 /// Computes a topologically sorted iteration graph for the linalg operation.
216 /// Ensures all tensors are visited in natural index order. This is essential
217 /// for sparse storage formats since these only support access along fixed
218 /// dimensions. Even for dense storage formats, however, the natural index
219 /// order yields innermost unit-stride access with better spatial locality.
220 static bool computeIterationGraph(Merger &merger, linalg::GenericOp op,
221                                   std::vector<unsigned> &topSort,
222                                   unsigned mask) {
223   // Set up an n x n from/to adjacency matrix of the iteration graph
224   // for the implicit loop indices i_0 .. i_n-1.
225   unsigned n = op.getNumLoops();
226   std::vector<std::vector<bool>> adjM(n, std::vector<bool>(n, false));
227 
228   // Iterate over the indexing maps of every tensor in the tensor expression.
229   for (OpOperand *t : op.getInputAndOutputOperands()) {
230     auto map = op.getTiedIndexingMap(t);
231     auto enc = getSparseTensorEncoding(t->get().getType());
232     assert(map.getNumDims() == n);
233     // Skip dense tensor constraints when not requested.
234     if (!(mask & SortMask::kIncludeDense) && !enc)
235       continue;
236     // Each tensor expression and optional dimension ordering (row-major
237     // by default) puts an ordering constraint on the loop indices. For
238     // example, the tensor expresion A_ijk forces the ordering i < j < k
239     // on the loop indices if no explicit dimension ordering is given.
240     for (unsigned d = 1, rank = map.getNumResults(); d < rank; d++) {
241       AffineExpr f = map.getResult(perm(enc, d - 1));
242       AffineExpr t = map.getResult(perm(enc, d));
243       addAffineOrderings(adjM, f, t, 0);
244     }
245     // Push unrelated loops into sparse iteration space, so these
246     // will be skipped more often.
247     if (mask & SortMask::kIncludeUndef) {
248       unsigned tensor = t->getOperandNumber();
249       for (unsigned i = 0; i < n; i++)
250         if (merger.isDim(tensor, i, Dim::kSparse))
251           for (unsigned j = 0; j < n; j++)
252             if (merger.isDim(tensor, j, Dim::kUndef))
253               adjM[i][j] = true;
254     }
255   }
256 
257   // Topologically sort the iteration graph to determine loop order.
258   // Report failure for a cyclic iteration graph.
259   topSort.clear();
260   topSort.reserve(n);
261   std::vector<unsigned> visit(n, 0);
262   for (unsigned i = 0; i < n; i++)
263     if (visit[i] == 0)
264       if (!topSortDFS(i, visit, topSort, adjM))
265         return false; // cycle!
266   std::reverse(std::begin(topSort), std::end(topSort));
267   return true;
268 }
269 
270 /// Returns true if tensor has an in-place annotation.
271 static bool isInPlace(Value val) {
272   if (auto arg = val.dyn_cast<BlockArgument>())
273     if (auto funcOp = dyn_cast<FuncOp>(arg.getOwner()->getParentOp()))
274       if (auto attr = funcOp.getArgAttrOfType<BoolAttr>(
275               arg.getArgNumber(),
276               linalg::comprehensive_bufferize::BufferizableOpInterface::
277                   kInplaceableAttrName))
278         return attr.getValue();
279   return false;
280 }
281 
282 /// Returns true if tensor materializes uninitialized into the computation.
283 static bool isMaterializing(Value val) {
284   return val.getDefiningOp<linalg::InitTensorOp>() ||
285          val.getDefiningOp<InitOp>();
286 }
287 
288 /// Returns true when the tensor expression is admissable for codegen.
289 /// Since all sparse input tensors are admissable, we just need to check
290 /// whether the output tensor in the tensor expression codegen is admissable.
291 /// Sets `sparseOut` when a "truly dynamic" sparse tensor output occurs.
292 static bool isAdmissableTensorExp(Merger &merger, linalg::GenericOp op,
293                                   unsigned exp, OpOperand **sparseOut) {
294   OpOperand *lhs = op.getOutputOperand(0);
295   unsigned tensor = lhs->getOperandNumber();
296   auto enc = getSparseTensorEncoding(lhs->get().getType());
297   // An non-annotated output tensor is assumed dense, and becomes a random
298   // access n-dim memref. Admissable since insertions cannot occur.
299   if (!enc)
300     return true;
301   // An all-dense annotated "sparse" output tensor becomes a linearized random
302   // access 1-dim memref. Also admissable since insertions cannot occur.
303   bool allDense = true;
304   unsigned numLoops = op.iterator_types().getValue().size();
305   for (unsigned i = 0; i < numLoops; i++)
306     if (merger.isDim(tensor, i, Dim::kSparse)) {
307       allDense = false;
308       break;
309     }
310   if (allDense)
311     return true;
312   // A tensor expression with a sparse output tensor that changes its values
313   // but not its nonzero structure, an operation called "simply dynamic" in
314   // [Bik96,Ch9], is also admissable without special codegen, provided
315   // the tensor's underlying sparse storage scheme can be modified in place.
316   if (merger.isConjunction(tensor, exp) && isInPlace(lhs->get()))
317     return true;
318   // Accept "truly dynamic" if the output tensor materializes uninitialized
319   // into the computation and insertions occur in lexicographic index order.
320   if (isMaterializing(lhs->get())) {
321     // In this first sparse tensor output implementation, this is enforced by
322     // rejecting any reduction loops (since the sparse parallel loops give a
323     // lexicographically sorted and injective view into that tensor).
324     // TODO: generalize to include reductions
325     for (auto attr : op.iterator_types())
326       if (isReductionIterator(attr))
327         return false;
328     // TODO: generalize support lib beyond vectors
329     if (op.iterator_types().size() != 1)
330       return false;
331     *sparseOut = lhs;
332     return true;
333   }
334   return false;
335 }
336 
337 //===----------------------------------------------------------------------===//
338 // Sparse compiler synthesis methods (reductions).
339 //===----------------------------------------------------------------------===//
340 
341 /// Maps reduction kind to name encoding.
342 static StringRef getReductionName(Reduction kind) {
343   switch (kind) {
344   case kNoReduc:
345     break;
346   case kSum:
347     return "add";
348   case kProduct:
349     return "mul";
350   case kAnd:
351     return "and";
352   case kOr:
353     return "or";
354   case kXor:
355     return "xor";
356   }
357   llvm_unreachable("unknown reduction kind");
358 }
359 
360 /// Maps operation to reduction.
361 static Reduction getReduction(Kind kind) {
362   switch (kind) {
363   case Kind::kAddF:
364   case Kind::kAddI:
365   case Kind::kSubF:
366   case Kind::kSubI:
367     return kSum;
368   case Kind::kMulF:
369   case Kind::kMulI:
370     return kProduct;
371   case Kind::kAndI:
372     return kAnd;
373   case Kind::kOrI:
374     return kOr;
375   case Kind::kXorI:
376     return kXor;
377   default:
378     llvm_unreachable("unexpected reduction operator");
379   }
380 }
381 
382 /// Generates an initial value for a vector reduction, following the scheme
383 /// given in Chapter 5 of "The Software Vectorization Handbook", where the
384 /// initial scalar value is correctly embedded in the vector reduction value,
385 /// and a straightforward horizontal reduction will complete the operation.
386 static Value genVectorReducInit(CodeGen &codegen, PatternRewriter &rewriter,
387                                 Location loc, VectorType vtp) {
388   Value r = codegen.redVal;
389   switch (codegen.redKind) {
390   case kNoReduc:
391     break;
392   case kSum:
393   case kXor: {
394     // Initialize reduction vector to: | 0 | .. | 0 | r |
395     Attribute zero = rewriter.getZeroAttr(vtp);
396     Value vec = rewriter.create<arith::ConstantOp>(loc, vtp, zero);
397     return rewriter.create<vector::InsertElementOp>(loc, r, vec, 0);
398   }
399   case kProduct: {
400     // Initialize reduction vector to: | 1 | .. | 1 | r |
401     Type etp = vtp.getElementType();
402     Attribute one;
403     if (etp.isa<FloatType>())
404       one = rewriter.getFloatAttr(etp, 1.0);
405     else
406       one = rewriter.getIntegerAttr(etp, 1);
407     Value vec = rewriter.create<arith::ConstantOp>(
408         loc, vtp, DenseElementsAttr::get(vtp, one));
409     return rewriter.create<vector::InsertElementOp>(loc, r, vec, 0);
410   }
411   case kAnd:
412   case kOr:
413     // Initialize reduction vector to: | r | .. | r | r |
414     return rewriter.create<vector::BroadcastOp>(loc, vtp, r);
415   }
416   llvm_unreachable("unknown reduction kind");
417 }
418 
419 /// Generates final value for a vector reduction.
420 static Value genVectorReducEnd(CodeGen &codegen, PatternRewriter &rewriter,
421                                Location loc, VectorType vtp) {
422   StringRef name = getReductionName(codegen.redKind);
423   StringAttr kind = rewriter.getStringAttr(name);
424   return rewriter.create<vector::ReductionOp>(loc, vtp.getElementType(), kind,
425                                               codegen.redVal, ValueRange{});
426 }
427 
428 /// Updates scalarized reduction value.
429 static void updateReduc(Merger &merger, CodeGen &codegen, Value reduc) {
430   assert(codegen.redKind != kNoReduc);
431   codegen.redVal = merger.exp(codegen.redExp).val = reduc;
432 }
433 
434 //===----------------------------------------------------------------------===//
435 // Sparse compiler synthesis methods (statements and expressions).
436 //===----------------------------------------------------------------------===//
437 
438 /// Maps sparse integer option to actual integral storage type.
439 static Type genIntType(PatternRewriter &rewriter, unsigned width) {
440   if (width == 0)
441     return rewriter.getIndexType();
442   return rewriter.getIntegerType(width);
443 }
444 
445 /// Generates buffer for the output tensor. Note that all sparse kernels
446 /// assume that when all elements are written to (viz. x(i) = y(i) * z(i)),
447 /// the output buffer is already initialized to all zeroes and only nonzeroes
448 /// values are computed and written out. For updates (viz. x(i) += y(i) * z(i)),
449 /// only nonzeroes values are used for the updates and no assumption on the
450 /// original contents of the output buffer is necessary..
451 static Value genOutputBuffer(CodeGen &codegen, PatternRewriter &rewriter,
452                              linalg::GenericOp op, MemRefType denseTp,
453                              ArrayRef<Value> args) {
454   Location loc = op.getLoc();
455   Value tensor = op.getOutputOperand(0)->get();
456   // The output tensor simply could materialize from the buffer that will
457   // be generated for the tensor present in the outs() clause. This has
458   // the major advantage that the sparse kernel only updates the nonzero
459   // positions for the output tensor.
460   if (isInPlace(tensor))
461     return rewriter.create<memref::BufferCastOp>(loc, denseTp, tensor);
462   // By default, a new buffer is allocated which is initialized to the
463   // tensor defined in the outs() clause. This is always correct but
464   // introduces a dense initialization component that may negatively
465   // impact the running complexity of the sparse kernel. If the tensor
466   // materializes into the computation, we need to preserve the zero
467   // initialization assumption of all sparse output buffers.
468   if (isMaterializing(tensor)) {
469     Type tp = denseTp.getElementType();
470     Value alloc = rewriter.create<memref::AllocOp>(loc, denseTp, args);
471     Value zero =
472         rewriter.create<arith::ConstantOp>(loc, tp, rewriter.getZeroAttr(tp));
473     rewriter.create<linalg::FillOp>(loc, zero, alloc);
474     return alloc;
475   }
476   Value init = rewriter.create<memref::BufferCastOp>(loc, denseTp, tensor);
477   Value alloc = rewriter.create<memref::AllocOp>(loc, denseTp, args);
478   rewriter.create<memref::CopyOp>(loc, init, alloc);
479   return alloc;
480 }
481 
482 /// Local bufferization of all dense and sparse data structures.
483 /// This code enables testing the first prototype sparse compiler.
484 // TODO: replace this with a proliferated bufferization strategy
485 static void genBuffers(Merger &merger, CodeGen &codegen,
486                        PatternRewriter &rewriter, linalg::GenericOp op) {
487   Location loc = op.getLoc();
488   assert(op.getNumInputsAndOutputs() == op.getNumInputs() + 1);
489   // For every tensor, find lower and upper bound on dimensions, set the
490   // same bounds on loop indices, and obtain dense or sparse buffer(s).
491   SmallVector<Value, 4> args;
492   for (OpOperand *t : op.getInputAndOutputOperands()) {
493     unsigned tensor = t->getOperandNumber();
494     auto shape = op.getShape(t);
495     auto map = op.getTiedIndexingMap(t);
496     auto enc = getSparseTensorEncoding(t->get().getType());
497     // Scan all dimensions of current tensor.
498     args.clear();
499     for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
500       AffineExpr a = map.getResult(perm(enc, d));
501       if (a.getKind() != AffineExprKind::DimId)
502         continue; // compound
503       unsigned idx = a.cast<AffineDimExpr>().getPosition();
504       // Handle sparse storage schemes.
505       if (merger.isDim(tensor, idx, Dim::kSparse)) {
506         auto dynShape = {ShapedType::kDynamicSize};
507         auto ptrTp = MemRefType::get(
508             dynShape, genIntType(rewriter, enc.getPointerBitWidth()));
509         auto indTp = MemRefType::get(
510             dynShape, genIntType(rewriter, enc.getIndexBitWidth()));
511         Value dim = rewriter.create<arith::ConstantIndexOp>(loc, d);
512         // Generate sparse primitives to obtains pointer and indices.
513         codegen.pointers[tensor][idx] =
514             rewriter.create<ToPointersOp>(loc, ptrTp, t->get(), dim);
515         codegen.indices[tensor][idx] =
516             rewriter.create<ToIndicesOp>(loc, indTp, t->get(), dim);
517       }
518       // Find upper bound in current dimension.
519       unsigned p = perm(enc, d);
520       Value up = linalg::createOrFoldDimOp(rewriter, loc, t->get(), p);
521       if (shape[p] == MemRefType::kDynamicSize)
522         args.push_back(up);
523       assert(codegen.highs[tensor][idx] == nullptr);
524       codegen.sizes[idx] = codegen.highs[tensor][idx] = up;
525     }
526     // Perform the required bufferization. Dense inputs materialize
527     // from the input tensors. Dense outputs need special handling.
528     // Sparse inputs use sparse primitives to obtain the values.
529     // We also accept in-place all-dense annotated "sparse" outputs.
530     Type elementType = getElementTypeOrSelf(t->get().getType());
531     if (!enc) {
532       // Non-annotated dense tensors.
533       auto denseTp = MemRefType::get(shape, elementType);
534       if (tensor < op.getNumInputs())
535         codegen.buffers[tensor] =
536             rewriter.create<memref::BufferCastOp>(loc, denseTp, t->get());
537       else
538         codegen.buffers[tensor] =
539             genOutputBuffer(codegen, rewriter, op, denseTp, args);
540     } else if (t == codegen.sparseOut) {
541       // True sparse output needs a lexIdx array.
542       Value rank = rewriter.create<arith::ConstantIndexOp>(loc, op.getRank(t));
543       auto dynShape = {ShapedType::kDynamicSize};
544       auto memTp = MemRefType::get(dynShape, rewriter.getIndexType());
545       codegen.lexIdx = rewriter.create<memref::AllocaOp>(loc, memTp, rank);
546     } else {
547       // Annotated sparse tensors.
548       auto dynShape = {ShapedType::kDynamicSize};
549       auto sparseTp = MemRefType::get(dynShape, elementType);
550       codegen.buffers[tensor] =
551           rewriter.create<ToValuesOp>(loc, sparseTp, t->get());
552     }
553   }
554 }
555 
556 /// Constructs vector type.
557 static VectorType vectorType(CodeGen &codegen, Type etp) {
558   return VectorType::get(codegen.curVecLength, etp);
559 }
560 
561 /// Constructs vector type from pointer.
562 static VectorType vectorType(CodeGen &codegen, Value ptr) {
563   return vectorType(codegen, ptr.getType().cast<MemRefType>().getElementType());
564 }
565 
566 /// Constructs vector iteration mask.
567 static Value genVectorMask(CodeGen &codegen, PatternRewriter &rewriter,
568                            Value iv, Value lo, Value hi, Value step) {
569   Location loc = iv.getLoc();
570   VectorType mtp = vectorType(codegen, genIntType(rewriter, 1));
571   // Special case if the vector length evenly divides the trip count (for
572   // example, "for i = 0, 128, 16"). A constant all-true mask is generated
573   // so that all subsequent masked memory operations are immediately folded
574   // into unconditional memory operations.
575   IntegerAttr loInt, hiInt, stepInt;
576   if (matchPattern(lo, m_Constant(&loInt)) &&
577       matchPattern(hi, m_Constant(&hiInt)) &&
578       matchPattern(step, m_Constant(&stepInt))) {
579     if (((hiInt.getInt() - loInt.getInt()) % stepInt.getInt()) == 0)
580       return rewriter.create<vector::BroadcastOp>(
581           loc, mtp, rewriter.create<arith::ConstantIntOp>(loc, 1, 1));
582   }
583   // Otherwise, generate a vector mask that avoids overrunning the upperbound
584   // during vector execution. Here we rely on subsequent loop optimizations to
585   // avoid executing the mask in all iterations, for example, by splitting the
586   // loop into an unconditional vector loop and a scalar cleanup loop.
587   auto minMap = AffineMap::get(
588       /*dimCount=*/2, /*symbolCount=*/1,
589       {rewriter.getAffineSymbolExpr(0),
590        rewriter.getAffineDimExpr(0) - rewriter.getAffineDimExpr(1)},
591       rewriter.getContext());
592   Value end =
593       rewriter.createOrFold<AffineMinOp>(loc, minMap, ValueRange{hi, iv, step});
594   return rewriter.create<vector::CreateMaskOp>(loc, mtp, end);
595 }
596 
597 /// Generates a vectorized load lhs = a[ind[lo:hi]] or lhs = a[lo:hi].
598 static Value genVectorLoad(CodeGen &codegen, PatternRewriter &rewriter,
599                            Value ptr, ArrayRef<Value> args) {
600   Location loc = ptr.getLoc();
601   VectorType vtp = vectorType(codegen, ptr);
602   Value pass =
603       rewriter.create<arith::ConstantOp>(loc, vtp, rewriter.getZeroAttr(vtp));
604   if (args.back().getType().isa<VectorType>()) {
605     SmallVector<Value, 4> scalarArgs(args.begin(), args.end());
606     Value indexVec = args.back();
607     scalarArgs.back() = rewriter.create<arith::ConstantIndexOp>(loc, 0);
608     return rewriter.create<vector::GatherOp>(
609         loc, vtp, ptr, scalarArgs, indexVec, codegen.curVecMask, pass);
610   }
611   return rewriter.create<vector::MaskedLoadOp>(loc, vtp, ptr, args,
612                                                codegen.curVecMask, pass);
613 }
614 
615 /// Generates a vectorized store a[ind[lo:hi]] = rhs or a[lo:hi] = rhs.
616 static void genVectorStore(CodeGen &codegen, PatternRewriter &rewriter,
617                            Value rhs, Value ptr, ArrayRef<Value> args) {
618   Location loc = ptr.getLoc();
619   if (args.back().getType().isa<VectorType>()) {
620     SmallVector<Value, 4> scalarArgs(args.begin(), args.end());
621     Value indexVec = args.back();
622     scalarArgs.back() = rewriter.create<arith::ConstantIndexOp>(loc, 0);
623     rewriter.create<vector::ScatterOp>(loc, ptr, scalarArgs, indexVec,
624                                        codegen.curVecMask, rhs);
625     return;
626   }
627   rewriter.create<vector::MaskedStoreOp>(loc, ptr, args, codegen.curVecMask,
628                                          rhs);
629 }
630 
631 /// Generates a vectorized invariant. Here we rely on subsequent loop
632 /// optimizations to hoist the invariant broadcast out of the vector loop.
633 static Value genVectorInvariantValue(CodeGen &codegen,
634                                      PatternRewriter &rewriter, Value val) {
635   VectorType vtp = vectorType(codegen, val.getType());
636   return rewriter.create<vector::BroadcastOp>(val.getLoc(), vtp, val);
637 }
638 
639 /// Generates an affine expression.
640 //
641 // TODO: generalize for sparse tensor subscripts
642 //
643 static Value genAffine(CodeGen &codegen, PatternRewriter &rewriter,
644                        AffineExpr a, Location loc) {
645   switch (a.getKind()) {
646   case AffineExprKind::DimId: {
647     unsigned idx = a.cast<AffineDimExpr>().getPosition();
648     return codegen.loops[idx]; // universal dense index
649   }
650   case AffineExprKind::Add: {
651     auto binOp = a.cast<AffineBinaryOpExpr>();
652     return rewriter.create<arith::AddIOp>(
653         loc, genAffine(codegen, rewriter, binOp.getLHS(), loc),
654         genAffine(codegen, rewriter, binOp.getRHS(), loc));
655   }
656   case AffineExprKind::Mul: {
657     auto binOp = a.cast<AffineBinaryOpExpr>();
658     return rewriter.create<arith::MulIOp>(
659         loc, genAffine(codegen, rewriter, binOp.getLHS(), loc),
660         genAffine(codegen, rewriter, binOp.getRHS(), loc));
661   }
662   case AffineExprKind::Constant: {
663     int64_t c = a.cast<AffineConstantExpr>().getValue();
664     return rewriter.create<arith::ConstantIndexOp>(loc, c);
665   }
666   default:
667     llvm_unreachable("unexpected affine subscript");
668   }
669 }
670 
671 /// Generates subscript for load/store on a dense or sparse tensor.
672 static Value genSubscript(CodeGen &codegen, PatternRewriter &rewriter,
673                           linalg::GenericOp op, OpOperand *t,
674                           SmallVector<Value, 4> &args) {
675   unsigned tensor = t->getOperandNumber();
676   auto map = op.getTiedIndexingMap(t);
677   auto enc = getSparseTensorEncoding(t->get().getType());
678   unsigned rank = map.getNumResults();
679   if (enc) {
680     // Note that currently, all sparse subscripts are simple.
681     // TODO: accept affine too?
682     AffineExpr a = map.getResult(perm(enc, rank - 1));
683     assert(a.getKind() == AffineExprKind::DimId);
684     unsigned idx = a.cast<AffineDimExpr>().getPosition();
685     assert(codegen.pidxs[tensor][idx] != nullptr);
686     args.push_back(codegen.pidxs[tensor][idx]); // position index
687   } else {
688     for (unsigned d = 0; d < rank; d++) {
689       AffineExpr a = map.getResult(perm(enc, d));
690       args.push_back(genAffine(codegen, rewriter, a, op.getLoc()));
691     }
692   }
693   return codegen.buffers[tensor];
694 }
695 
696 /// Generates a load on a dense or sparse tensor.
697 static Value genTensorLoad(Merger &merger, CodeGen &codegen,
698                            PatternRewriter &rewriter, linalg::GenericOp op,
699                            unsigned exp) {
700   // Test if the load was hoisted to a higher loop nest.
701   Value val = merger.exp(exp).val;
702   if (val) {
703     if (codegen.curVecLength > 1 && !val.getType().isa<VectorType>())
704       return genVectorInvariantValue(codegen, rewriter, val);
705     return val;
706   }
707   // Actual load.
708   SmallVector<Value, 4> args;
709   OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).tensor];
710   Value ptr = genSubscript(codegen, rewriter, op, t, args);
711   if (codegen.curVecLength > 1)
712     return genVectorLoad(codegen, rewriter, ptr, args);
713   return rewriter.create<memref::LoadOp>(op.getLoc(), ptr, args);
714 }
715 
716 /// Generates a store on a dense or sparse tensor.
717 static void genTensorStore(Merger &merger, CodeGen &codegen,
718                            PatternRewriter &rewriter, linalg::GenericOp op,
719                            Value rhs) {
720   Location loc = op.getLoc();
721   // Test if this is a scalarized reduction.
722   if (codegen.redVal) {
723     if (codegen.curVecLength > 1)
724       rhs = rewriter.create<SelectOp>(loc, codegen.curVecMask, rhs,
725                                       codegen.redVal);
726     updateReduc(merger, codegen, rhs);
727     return;
728   }
729   // Insertion.
730   OpOperand *t = op.getOutputOperand(0);
731   if (t == codegen.sparseOut) {
732     rewriter.create<LexInsertOp>(loc, t->get(), codegen.lexIdx, rhs);
733     return;
734   }
735   // Actual store.
736   SmallVector<Value, 4> args;
737   Value ptr = genSubscript(codegen, rewriter, op, t, args);
738   if (codegen.curVecLength > 1)
739     genVectorStore(codegen, rewriter, rhs, ptr, args);
740   else
741     rewriter.create<memref::StoreOp>(loc, rhs, ptr, args);
742 }
743 
744 /// Generates a pointer/index load from the sparse storage scheme. Narrower
745 /// data types need to be zero extended before casting the value into the
746 /// index type used for looping and indexing.
747 static Value genLoad(CodeGen &codegen, PatternRewriter &rewriter, Location loc,
748                      Value ptr, Value s) {
749   // See https://llvm.org/docs/GetElementPtr.html for some background on
750   // the complications described below.
751   if (codegen.curVecLength > 1) {
752     // Since the index vector is used in a subsequent gather/scatter operations,
753     // which effectively defines an unsigned pointer + signed index, we must
754     // zero extend the vector to an index width. For 8-bit and 16-bit values,
755     // an 32-bit index width suffices. For 32-bit values, zero extending the
756     // elements into 64-bit loses some performance since the 32-bit indexed
757     // gather/scatter is more efficient than the 64-bit index variant (if the
758     // negative 32-bit index space is unused, the enableSIMDIndex32 flag can
759     // preserve this performance). For 64-bit values, there is no good way
760     // to state that the indices are unsigned, with creates the potential of
761     // incorrect address calculations in the unlikely case we need such
762     // extremely large offsets.
763     Type etp = ptr.getType().cast<MemRefType>().getElementType();
764     Value vload = genVectorLoad(codegen, rewriter, ptr, {s});
765     if (!etp.isa<IndexType>()) {
766       if (etp.getIntOrFloatBitWidth() < 32)
767         vload = rewriter.create<arith::ExtUIOp>(
768             loc, vload, vectorType(codegen, genIntType(rewriter, 32)));
769       else if (etp.getIntOrFloatBitWidth() < 64 &&
770                !codegen.options.enableSIMDIndex32)
771         vload = rewriter.create<arith::ExtUIOp>(
772             loc, vload, vectorType(codegen, genIntType(rewriter, 64)));
773     }
774     return vload;
775   }
776   // For the scalar case, we simply zero extend narrower indices into 64-bit
777   // values before casting to index without a performance penalty. Here too,
778   // however, indices that already are 64-bit, in theory, cannot express the
779   // full range as explained above.
780   Value load = rewriter.create<memref::LoadOp>(loc, ptr, s);
781   if (!load.getType().isa<IndexType>()) {
782     if (load.getType().getIntOrFloatBitWidth() < 64)
783       load =
784           rewriter.create<arith::ExtUIOp>(loc, load, genIntType(rewriter, 64));
785     load =
786         rewriter.create<arith::IndexCastOp>(loc, load, rewriter.getIndexType());
787   }
788   return load;
789 }
790 
791 /// Generates an invariant value.
792 static Value genInvariantValue(Merger &merger, CodeGen &codegen,
793                                PatternRewriter &rewriter, unsigned exp) {
794   Value val = merger.exp(exp).val;
795   if (codegen.curVecLength > 1)
796     return genVectorInvariantValue(codegen, rewriter, val);
797   return val;
798 }
799 
800 /// Generates an address computation "sz * p + i".
801 static Value genAddress(CodeGen &codegen, PatternRewriter &rewriter,
802                         Location loc, Value size, Value p, Value i) {
803   Value mul = rewriter.create<arith::MulIOp>(loc, size, p);
804   if (auto vtp = i.getType().dyn_cast<VectorType>()) {
805     Value inv =
806         rewriter.create<arith::IndexCastOp>(loc, mul, vtp.getElementType());
807     mul = genVectorInvariantValue(codegen, rewriter, inv);
808   }
809   return rewriter.create<arith::AddIOp>(loc, mul, i);
810 }
811 
812 /// Recursively generates tensor expression.
813 static Value genExp(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
814                     linalg::GenericOp op, unsigned exp) {
815   Location loc = op.getLoc();
816   if (exp == -1u)
817     return Value();
818   if (merger.exp(exp).kind == Kind::kTensor)
819     return genTensorLoad(merger, codegen, rewriter, op, exp);
820   if (merger.exp(exp).kind == Kind::kInvariant)
821     return genInvariantValue(merger, codegen, rewriter, exp);
822   Value v0 = genExp(merger, codegen, rewriter, op, merger.exp(exp).children.e0);
823   Value v1 = genExp(merger, codegen, rewriter, op, merger.exp(exp).children.e1);
824   return merger.buildExp(rewriter, loc, exp, v0, v1);
825 }
826 
827 /// Determines if affine expression is invariant.
828 static bool isInvariantAffine(const CodeGen &codegen, AffineExpr a,
829                               unsigned ldx, bool &atLevel) {
830   switch (a.getKind()) {
831   case AffineExprKind::DimId: {
832     unsigned idx = a.cast<AffineDimExpr>().getPosition();
833     if (idx == ldx)
834       atLevel = true;
835     return codegen.loops[idx] != nullptr; // no longer in play?
836   }
837   case AffineExprKind::Add:
838   case AffineExprKind::Mul: {
839     auto binOp = a.cast<AffineBinaryOpExpr>();
840     return isInvariantAffine(codegen, binOp.getLHS(), ldx, atLevel) &&
841            isInvariantAffine(codegen, binOp.getRHS(), ldx, atLevel);
842   }
843   default:
844     return true;
845   }
846 }
847 
848 /// Hoists loop invariant tensor loads for which indices have been exhausted.
849 static void genInvariants(Merger &merger, CodeGen &codegen,
850                           PatternRewriter &rewriter, linalg::GenericOp op,
851                           unsigned exp, unsigned ldx, bool atStart,
852                           Kind last = Kind::kTensor) {
853   if (exp == -1u)
854     return;
855   if (merger.exp(exp).kind == Kind::kTensor) {
856     // Inspect tensor indices.
857     bool atLevel = ldx == -1u;
858     OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).tensor];
859     auto map = op.getTiedIndexingMap(t);
860     auto enc = getSparseTensorEncoding(t->get().getType());
861     for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
862       AffineExpr a = map.getResult(perm(enc, d));
863       if (!isInvariantAffine(codegen, a, ldx, atLevel))
864         return; // still in play
865     }
866     // All exhausted at this level (atLevel denotes exactly at this level).
867     if (!atLevel)
868       return;
869     OpOperand *lhs = op.getOutputOperand(0);
870     if (lhs == t) {
871       // Start or end a scalarized reduction
872       if (atStart) {
873         Value load = genTensorLoad(merger, codegen, rewriter, op, exp);
874         codegen.redKind = getReduction(last);
875         codegen.redExp = exp;
876         updateReduc(merger, codegen, load);
877       } else {
878         Value redVal = codegen.redVal;
879         updateReduc(merger, codegen, Value());
880         codegen.redExp = -1u;
881         codegen.redKind = kNoReduc;
882         genTensorStore(merger, codegen, rewriter, op, redVal);
883       }
884     } else {
885       // Start or end loop invariant hoisting of a tensor load.
886       merger.exp(exp).val =
887           atStart ? genTensorLoad(merger, codegen, rewriter, op, exp) : Value();
888     }
889   } else if (merger.exp(exp).kind != Kind::kInvariant) {
890     // Traverse into the binary operations. Note that we only hoist
891     // tensor loads, since subsequent MLIR/LLVM passes know how to
892     // deal with all other kinds of derived loop invariants.
893     Kind last = merger.exp(exp).kind;
894     unsigned e0 = merger.exp(exp).children.e0;
895     unsigned e1 = merger.exp(exp).children.e1;
896     genInvariants(merger, codegen, rewriter, op, e0, ldx, atStart, last);
897     genInvariants(merger, codegen, rewriter, op, e1, ldx, atStart, last);
898   }
899 }
900 
901 /// Generates initialization code for the subsequent loop sequence at
902 /// current index level. Returns true if the loop sequence needs to
903 /// maintain the universal index.
904 static bool genInit(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
905                     linalg::GenericOp op, std::vector<unsigned> &topSort,
906                     unsigned at, llvm::BitVector &inits) {
907   bool needsUniv = false;
908   Location loc = op.getLoc();
909   unsigned idx = topSort[at];
910 
911   // Initialize sparse positions.
912   for (unsigned b = 0, be = inits.size(); b < be; b++) {
913     if (inits[b]) {
914       unsigned tensor = merger.tensor(b);
915       assert(idx == merger.index(b));
916       if (merger.isDim(b, Dim::kSparse)) {
917         // Initialize sparse index.
918         unsigned pat = at;
919         for (; pat != 0; pat--) {
920           if (codegen.pidxs[tensor][topSort[pat - 1]])
921             break;
922         }
923         Value ptr = codegen.pointers[tensor][idx];
924         Value one = rewriter.create<arith::ConstantIndexOp>(loc, 1);
925         Value p0 = (pat == 0) ? rewriter.create<arith::ConstantIndexOp>(loc, 0)
926                               : codegen.pidxs[tensor][topSort[pat - 1]];
927         codegen.pidxs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p0);
928         Value p1 = rewriter.create<arith::AddIOp>(loc, p0, one);
929         codegen.highs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p1);
930       } else {
931         // Dense index still in play.
932         needsUniv = true;
933       }
934     }
935   }
936 
937   // Initialize the universal dense index.
938   codegen.loops[idx] = rewriter.create<arith::ConstantIndexOp>(loc, 0);
939   return needsUniv;
940 }
941 
942 /// Returns vectorization strategy. Any implicit inner loop in the Linalg
943 /// operation is a candidate. Whether it is actually converted to SIMD code
944 /// depends on the requested strategy.
945 static bool isVectorFor(CodeGen &codegen, bool isInner, bool isSparse) {
946   switch (codegen.options.vectorizationStrategy) {
947   case SparseVectorizationStrategy::kNone:
948     return false;
949   case SparseVectorizationStrategy::kDenseInnerLoop:
950     return isInner && !isSparse;
951   case SparseVectorizationStrategy::kAnyStorageInnerLoop:
952     return isInner;
953   }
954   llvm_unreachable("unexpected vectorization strategy");
955 }
956 
957 /// Returns parallelization strategy. Any implicit loop in the Linalg operation
958 /// that is marked "parallel" is a candidate. Whether it is actually converted
959 /// to a parallel operation depends on the requested strategy.
960 static bool isParallelFor(CodeGen &codegen, bool isOuter, bool isReduction,
961                           bool isSparse, bool isVector) {
962   switch (codegen.options.parallelizationStrategy) {
963   case SparseParallelizationStrategy::kNone:
964     return false;
965   case SparseParallelizationStrategy::kDenseOuterLoop:
966     return isOuter && !isSparse && !isReduction && !isVector;
967   case SparseParallelizationStrategy::kAnyStorageOuterLoop:
968     return isOuter && !isReduction && !isVector;
969   case SparseParallelizationStrategy::kDenseAnyLoop:
970     return !isSparse && !isReduction && !isVector;
971   case SparseParallelizationStrategy::kAnyStorageAnyLoop:
972     return !isReduction && !isVector;
973   }
974   llvm_unreachable("unexpected parallelization strategy");
975 }
976 
977 /// Checks unit stride for dense tensors. The iteration graph may have ignored
978 /// dense access patterns in order to avoid cycles (sparse access patterns are
979 /// always placed innermost), but that means dense access has become strided.
980 /// This prevents effective vectorization.
981 static bool denseUnitStrides(Merger &merger, linalg::GenericOp op,
982                              unsigned idx) {
983   for (OpOperand *t : op.getInputAndOutputOperands()) {
984     if (!getSparseTensorEncoding(t->get().getType())) {
985       auto map = op.getTiedIndexingMap(t);
986       for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
987         AffineExpr a = map.getResult(d);
988         // Report non-unit stride if innermost index appears at an outer
989         // dimension (true non-unit stride) or if the innermost index appears
990         // in a compound subscript in the innermost dimension. Even if the
991         // latter is unit stride, it does not play well with scatter/gather.
992         // TODO: accept unit stride affine innermost like a[i,j+k+1]?
993         if (a.isFunctionOfDim(idx) &&
994             ((d != rank - 1) || (a.getKind() != AffineExprKind::DimId)))
995           return false;
996       }
997     }
998   }
999   return true;
1000 }
1001 
1002 /// Generates a for-loop on a single index.
1003 static Operation *genFor(Merger &merger, CodeGen &codegen,
1004                          PatternRewriter &rewriter, linalg::GenericOp op,
1005                          bool isOuter, bool isInner, unsigned idx,
1006                          llvm::BitVector &indices) {
1007   unsigned fb = indices.find_first();
1008   unsigned tensor = merger.tensor(fb);
1009   assert(idx == merger.index(fb));
1010   auto iteratorTypes = op.iterator_types().getValue();
1011   bool isReduction = isReductionIterator(iteratorTypes[idx]);
1012   bool isSparse = merger.isDim(fb, Dim::kSparse);
1013   bool isVector = !codegen.sparseOut &&
1014                   isVectorFor(codegen, isInner, isSparse) &&
1015                   denseUnitStrides(merger, op, idx);
1016   bool isParallel =
1017       !codegen.sparseOut &&
1018       isParallelFor(codegen, isOuter, isReduction, isSparse, isVector);
1019 
1020   // Prepare vector length.
1021   if (isVector)
1022     codegen.curVecLength = codegen.options.vectorLength;
1023 
1024   // Loop bounds and increment.
1025   Location loc = op.getLoc();
1026   Value lo = isSparse ? codegen.pidxs[tensor][idx] : codegen.loops[idx];
1027   Value hi = isSparse ? codegen.highs[tensor][idx] : codegen.sizes[idx];
1028   Value step =
1029       rewriter.create<arith::ConstantIndexOp>(loc, codegen.curVecLength);
1030 
1031   // Emit a parallel loop.
1032   if (isParallel) {
1033     assert(!isVector);
1034     scf::ParallelOp parOp = rewriter.create<scf::ParallelOp>(loc, lo, hi, step);
1035     if (isSparse)
1036       codegen.pidxs[tensor][idx] = parOp.getInductionVars()[0];
1037     else
1038       codegen.loops[idx] = parOp.getInductionVars()[0];
1039     rewriter.setInsertionPointToStart(parOp.getBody());
1040     return parOp;
1041   }
1042 
1043   // Emit a sequential or vector loop.
1044   SmallVector<Value, 4> operands;
1045   if (codegen.redVal) {
1046     // In a vector loop, bring reduction into SIMD form, if not already.
1047     if (isVector && !codegen.redVal.getType().isa<VectorType>()) {
1048       VectorType vtp = vectorType(codegen, codegen.redVal.getType());
1049       Value vred = genVectorReducInit(codegen, rewriter, loc, vtp);
1050       updateReduc(merger, codegen, vred);
1051     }
1052     operands.push_back(codegen.redVal);
1053   }
1054   scf::ForOp forOp = rewriter.create<scf::ForOp>(loc, lo, hi, step, operands);
1055   if (codegen.redVal)
1056     updateReduc(merger, codegen, forOp.getRegionIterArgs().front());
1057   // Assign induction variable to sparse or dense index.
1058   Value iv = forOp.getInductionVar();
1059   if (isSparse)
1060     codegen.pidxs[tensor][idx] = iv;
1061   else
1062     codegen.loops[idx] = iv;
1063   rewriter.setInsertionPointToStart(forOp.getBody());
1064   // Share vector iteration mask between all subsequent loads/stores.
1065   if (isVector)
1066     codegen.curVecMask = genVectorMask(codegen, rewriter, iv, lo, hi, step);
1067   return forOp;
1068 }
1069 
1070 /// Emit a while-loop for co-iteration over multiple indices.
1071 static Operation *genWhile(Merger &merger, CodeGen &codegen,
1072                            PatternRewriter &rewriter, linalg::GenericOp op,
1073                            unsigned idx, bool needsUniv,
1074                            llvm::BitVector &indices) {
1075   SmallVector<Type, 4> types;
1076   SmallVector<Value, 4> operands;
1077   // Construct the while-loop with a parameter for each index.
1078   Type indexType = rewriter.getIndexType();
1079   for (unsigned b = 0, be = indices.size(); b < be; b++) {
1080     if (indices[b] && merger.isDim(b, Dim::kSparse)) {
1081       unsigned tensor = merger.tensor(b);
1082       assert(idx == merger.index(b));
1083       types.push_back(indexType);
1084       operands.push_back(codegen.pidxs[tensor][idx]);
1085     }
1086   }
1087   if (codegen.redVal) {
1088     types.push_back(codegen.redVal.getType());
1089     operands.push_back(codegen.redVal);
1090   }
1091   if (needsUniv) {
1092     types.push_back(indexType);
1093     operands.push_back(codegen.loops[idx]);
1094   }
1095   assert(types.size() == operands.size());
1096   Location loc = op.getLoc();
1097   scf::WhileOp whileOp = rewriter.create<scf::WhileOp>(loc, types, operands);
1098   Block *before = rewriter.createBlock(&whileOp.before(), {}, types);
1099   Block *after = rewriter.createBlock(&whileOp.after(), {}, types);
1100 
1101   // Build the "before" region, which effectively consists
1102   // of a conjunction of "i < upper" tests on all induction.
1103   rewriter.setInsertionPointToStart(&whileOp.before().front());
1104   Value cond;
1105   unsigned o = 0;
1106   for (unsigned b = 0, be = indices.size(); b < be; b++) {
1107     if (indices[b] && merger.isDim(b, Dim::kSparse)) {
1108       unsigned tensor = merger.tensor(b);
1109       assert(idx == merger.index(b));
1110       Value op1 = before->getArgument(o);
1111       Value op2 = codegen.highs[tensor][idx];
1112       Value opc = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult,
1113                                                  op1, op2);
1114       cond = cond ? rewriter.create<arith::AndIOp>(loc, cond, opc) : opc;
1115       codegen.pidxs[tensor][idx] = after->getArgument(o++);
1116     }
1117   }
1118   if (codegen.redVal)
1119     updateReduc(merger, codegen, after->getArgument(o++));
1120   if (needsUniv)
1121     codegen.loops[idx] = after->getArgument(o++);
1122   assert(o == operands.size());
1123   rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments());
1124   rewriter.setInsertionPointToStart(&whileOp.after().front());
1125   return whileOp;
1126 }
1127 
1128 /// Generates a for-loop or a while-loop, depending on whether it implements
1129 /// singleton iteration or co-iteration over the given conjunction.
1130 static Operation *genLoop(Merger &merger, CodeGen &codegen,
1131                           PatternRewriter &rewriter, linalg::GenericOp op,
1132                           std::vector<unsigned> &topSort, unsigned at,
1133                           bool needsUniv, llvm::BitVector &indices) {
1134   unsigned idx = topSort[at];
1135   if (indices.count() == 1) {
1136     bool isOuter = at == 0;
1137     bool isInner = at == topSort.size() - 1;
1138     return genFor(merger, codegen, rewriter, op, isOuter, isInner, idx,
1139                   indices);
1140   }
1141   return genWhile(merger, codegen, rewriter, op, idx, needsUniv, indices);
1142 }
1143 
1144 /// Generates the local variables for this loop, consisting of the sparse
1145 /// indices, restored universal dense index, and dense positions.
1146 static void genLocals(Merger &merger, CodeGen &codegen,
1147                       PatternRewriter &rewriter, linalg::GenericOp op,
1148                       std::vector<unsigned> &topSort, unsigned at,
1149                       bool needsUniv, llvm::BitVector &locals) {
1150   Location loc = op.getLoc();
1151   unsigned idx = topSort[at];
1152 
1153   // Initialize sparse indices.
1154   Value min;
1155   for (unsigned b = 0, be = locals.size(); b < be; b++) {
1156     if (locals[b] && merger.isDim(b, Dim::kSparse)) {
1157       unsigned tensor = merger.tensor(b);
1158       assert(idx == merger.index(b));
1159       Value ptr = codegen.indices[tensor][idx];
1160       Value s = codegen.pidxs[tensor][idx];
1161       Value load = genLoad(codegen, rewriter, loc, ptr, s);
1162       codegen.idxs[tensor][idx] = load;
1163       if (!needsUniv) {
1164         if (min) {
1165           Value cmp = rewriter.create<arith::CmpIOp>(
1166               loc, arith::CmpIPredicate::ult, load, min);
1167           min = rewriter.create<SelectOp>(loc, cmp, load, min);
1168         } else {
1169           min = load;
1170         }
1171       }
1172     }
1173   }
1174 
1175   // Merge dense universal index over minimum.
1176   if (min) {
1177     assert(!needsUniv);
1178     codegen.loops[idx] = min;
1179   }
1180 
1181   // Initialize dense positions. Note that we generate dense indices of the
1182   // output tensor unconditionally, since they may not appear in the lattice,
1183   // but may be needed for linearized codegen.
1184   for (unsigned b = 0, be = locals.size(); b < be; b++) {
1185     if ((locals[b] || merger.isOutTensor(b, idx)) &&
1186         merger.isDim(b, Dim::kDense)) {
1187       unsigned tensor = merger.tensor(b);
1188       assert(idx == merger.index(b));
1189       unsigned pat = at;
1190       for (; pat != 0; pat--)
1191         if (codegen.pidxs[tensor][topSort[pat - 1]])
1192           break;
1193       Value p = (pat == 0) ? rewriter.create<arith::ConstantIndexOp>(loc, 0)
1194                            : codegen.pidxs[tensor][topSort[pat - 1]];
1195       codegen.pidxs[tensor][idx] = genAddress(
1196           codegen, rewriter, loc, codegen.sizes[idx], p, codegen.loops[idx]);
1197     }
1198   }
1199 
1200   // Move the insertion indices in lexicographic index order.
1201   if (codegen.sparseOut) {
1202     Value pos = rewriter.create<arith::ConstantIndexOp>(loc, at);
1203     rewriter.create<memref::StoreOp>(loc, codegen.loops[idx], codegen.lexIdx,
1204                                      pos);
1205   }
1206 }
1207 
1208 /// Generates the induction structure for a while-loop.
1209 static void genWhileInduction(Merger &merger, CodeGen &codegen,
1210                               PatternRewriter &rewriter, linalg::GenericOp op,
1211                               unsigned idx, bool needsUniv,
1212                               llvm::BitVector &induction,
1213                               scf::WhileOp whileOp) {
1214   Location loc = op.getLoc();
1215   // Finalize each else branch of all if statements.
1216   if (codegen.redVal) {
1217     while (auto ifOp = dyn_cast_or_null<scf::IfOp>(
1218                rewriter.getInsertionBlock()->getParentOp())) {
1219       rewriter.create<scf::YieldOp>(loc, codegen.redVal);
1220       updateReduc(merger, codegen, ifOp.getResult(0));
1221       rewriter.setInsertionPointAfter(ifOp);
1222     }
1223   }
1224   rewriter.setInsertionPointToEnd(&whileOp.after().front());
1225   // Finalize the induction. Note that the induction could be performed
1226   // in the individual if-branches to avoid re-evaluating the conditions.
1227   // However, that would result in a rather elaborate forest of yield
1228   // instructions during code generation. Moreover, performing the induction
1229   // after the if-statements more closely resembles code generated by TACO.
1230   unsigned o = 0;
1231   SmallVector<Value, 4> operands;
1232   Value one = rewriter.create<arith::ConstantIndexOp>(loc, 1);
1233   for (unsigned b = 0, be = induction.size(); b < be; b++) {
1234     if (induction[b] && merger.isDim(b, Dim::kSparse)) {
1235       unsigned tensor = merger.tensor(b);
1236       assert(idx == merger.index(b));
1237       Value op1 = codegen.idxs[tensor][idx];
1238       Value op2 = codegen.loops[idx];
1239       Value op3 = codegen.pidxs[tensor][idx];
1240       Value cmp = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
1241                                                  op1, op2);
1242       Value add = rewriter.create<arith::AddIOp>(loc, op3, one);
1243       operands.push_back(rewriter.create<SelectOp>(loc, cmp, add, op3));
1244       codegen.pidxs[tensor][idx] = whileOp->getResult(o++);
1245     }
1246   }
1247   if (codegen.redVal) {
1248     operands.push_back(codegen.redVal);
1249     updateReduc(merger, codegen, whileOp->getResult(o++));
1250   }
1251   if (needsUniv) {
1252     operands.push_back(
1253         rewriter.create<arith::AddIOp>(loc, codegen.loops[idx], one));
1254     codegen.loops[idx] = whileOp->getResult(o++);
1255   }
1256   assert(o == operands.size());
1257   rewriter.create<scf::YieldOp>(loc, operands);
1258   rewriter.setInsertionPointAfter(whileOp);
1259 }
1260 
1261 /// Generates the induction structure for a for-loop.
1262 static void genForInduction(Merger &merger, CodeGen &codegen,
1263                             PatternRewriter &rewriter, linalg::GenericOp op,
1264                             Operation *loop) {
1265   Location loc = op.getLoc();
1266   unsigned o = 0;
1267   SmallVector<Value, 4> operands;
1268   if (codegen.redVal) {
1269     operands.push_back(codegen.redVal);
1270     updateReduc(merger, codegen, loop->getResult(o++));
1271   }
1272   assert(o == operands.size());
1273   if (o > 0)
1274     rewriter.create<scf::YieldOp>(loc, operands);
1275   rewriter.setInsertionPointAfter(loop);
1276 }
1277 
1278 /// Generates a single if-statement within a while-loop.
1279 static scf::IfOp genIf(Merger &merger, CodeGen &codegen,
1280                        PatternRewriter &rewriter, linalg::GenericOp op,
1281                        unsigned idx, llvm::BitVector &conditions) {
1282   Location loc = op.getLoc();
1283   SmallVector<Type, 4> types;
1284   Value cond;
1285   for (unsigned b = 0, be = conditions.size(); b < be; b++) {
1286     if (conditions[b]) {
1287       unsigned tensor = merger.tensor(b);
1288       assert(idx == merger.index(b));
1289       Value clause;
1290       if (merger.isDim(b, Dim::kSparse)) {
1291         Value op1 = codegen.idxs[tensor][idx];
1292         Value op2 = codegen.loops[idx];
1293         clause = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
1294                                                 op1, op2);
1295       } else {
1296         clause = rewriter.create<arith::ConstantIntOp>(loc, 1, 1); // true
1297       }
1298       cond = cond ? rewriter.create<arith::AndIOp>(loc, cond, clause) : clause;
1299     }
1300   }
1301   if (codegen.redVal)
1302     types.push_back(codegen.redVal.getType());
1303   scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, types, cond, /*else=*/true);
1304   rewriter.setInsertionPointToStart(&ifOp.thenRegion().front());
1305   return ifOp;
1306 }
1307 
1308 /// Generates end of true branch of if-statement within a while-loop.
1309 static void endIf(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
1310                   linalg::GenericOp op, scf::IfOp ifOp, Value ifInput) {
1311   if (codegen.redVal) {
1312     rewriter.create<scf::YieldOp>(op.getLoc(), codegen.redVal);
1313     updateReduc(merger, codegen, ifInput);
1314   }
1315   rewriter.setInsertionPointToStart(&ifOp.elseRegion().front());
1316 }
1317 
1318 //===----------------------------------------------------------------------===//
1319 // Sparse compiler synthesis methods (loop sequence).
1320 //===----------------------------------------------------------------------===//
1321 
1322 /// Starts a loop sequence at given level. Returns true if
1323 /// the universal loop index must be maintained at this level.
1324 static bool startLoopSeq(Merger &merger, CodeGen &codegen,
1325                          PatternRewriter &rewriter, linalg::GenericOp op,
1326                          std::vector<unsigned> &topSort, unsigned exp,
1327                          unsigned at, unsigned idx, unsigned ldx,
1328                          unsigned lts) {
1329   assert(codegen.curVecLength == 1);
1330   assert(!codegen.loops[idx]);
1331   // Emit invariants at this loop sequence level.
1332   genInvariants(merger, codegen, rewriter, op, exp, ldx, /*atStart=*/true);
1333   // Emit further intitialization at this loop sequence level.
1334   unsigned l0 = merger.set(lts)[0];
1335   bool needsUniv =
1336       genInit(merger, codegen, rewriter, op, topSort, at, merger.lat(l0).bits);
1337   // Maintain the universal index only if it is actually
1338   // consumed by a subsequent lattice point.
1339   if (needsUniv) {
1340     unsigned lsize = merger.set(lts).size();
1341     for (unsigned i = 1; i < lsize; i++) {
1342       unsigned li = merger.set(lts)[i];
1343       if (!merger.hasAnyDimOf(merger.lat(li).simple, Dim::kSparse))
1344         return true;
1345     }
1346   }
1347   return false;
1348 }
1349 
1350 /// Starts a single loop in current sequence.
1351 static Operation *startLoop(Merger &merger, CodeGen &codegen,
1352                             PatternRewriter &rewriter, linalg::GenericOp op,
1353                             std::vector<unsigned> &topSort, unsigned at,
1354                             unsigned li, bool needsUniv) {
1355   assert(codegen.curVecLength == 1);
1356   // Emit the for/while-loop control.
1357   Operation *loop = genLoop(merger, codegen, rewriter, op, topSort, at,
1358                             needsUniv, merger.lat(li).simple);
1359   // Emit the locals for this loop.
1360   genLocals(merger, codegen, rewriter, op, topSort, at, needsUniv,
1361             merger.lat(li).bits);
1362   return loop;
1363 }
1364 
1365 /// Ends a single loop in current sequence. Returns new values for needsUniv.
1366 static bool endLoop(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
1367                     linalg::GenericOp op, Operation *loop, unsigned idx,
1368                     unsigned li, bool needsUniv) {
1369   codegen.curVecLength = 1;
1370   // End a while-loop.
1371   if (auto whileOp = dyn_cast<scf::WhileOp>(loop)) {
1372     genWhileInduction(merger, codegen, rewriter, op, idx, needsUniv,
1373                       merger.lat(li).bits, whileOp);
1374     return needsUniv;
1375   }
1376   // End a for-loop.
1377   genForInduction(merger, codegen, rewriter, op, loop);
1378   return false;
1379 }
1380 
1381 /// Ends a loop sequence at given level.
1382 static void endLoopSeq(Merger &merger, CodeGen &codegen,
1383                        PatternRewriter &rewriter, linalg::GenericOp op,
1384                        unsigned exp, unsigned idx, unsigned ldx) {
1385   assert(codegen.curVecLength == 1);
1386   codegen.loops[idx] = Value();
1387   // Bring a pending reduction back from SIMD form when sequence ends.
1388   if (codegen.redVal)
1389     if (auto vtp = codegen.redVal.getType().dyn_cast<VectorType>())
1390       updateReduc(merger, codegen,
1391                   genVectorReducEnd(codegen, rewriter, op.getLoc(), vtp));
1392   // Unmark bookkeeping of invariants and loop index.
1393   genInvariants(merger, codegen, rewriter, op, exp, ldx, /*atStart=*/false);
1394 }
1395 
1396 /// Recursively generates code while computing iteration lattices in order
1397 /// to manage the complexity of implementing co-iteration over unions
1398 /// and intersections of sparse iterations spaces.
1399 static void genStmt(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
1400                     linalg::GenericOp op, std::vector<unsigned> &topSort,
1401                     unsigned exp, unsigned at) {
1402   // At each leaf, assign remaining tensor (sub)expression to output tensor.
1403   if (at == topSort.size()) {
1404     Value rhs = genExp(merger, codegen, rewriter, op, exp);
1405     genTensorStore(merger, codegen, rewriter, op, rhs);
1406     return;
1407   }
1408 
1409   // Construct iteration lattices for current loop index, with L0 at top.
1410   unsigned idx = topSort[at];
1411   unsigned ldx = at == 0 ? -1u : topSort[at - 1];
1412   unsigned lts = merger.optimizeSet(merger.buildLattices(exp, idx));
1413 
1414   // Start a loop sequence.
1415   bool needsUniv = startLoopSeq(merger, codegen, rewriter, op, topSort, exp, at,
1416                                 idx, ldx, lts);
1417 
1418   // Emit a loop for every lattice point L0 >= Li in this loop sequence.
1419   unsigned lsize = merger.set(lts).size();
1420   for (unsigned i = 0; i < lsize; i++) {
1421     // Start a loop.
1422     unsigned li = merger.set(lts)[i];
1423     Operation *loop =
1424         startLoop(merger, codegen, rewriter, op, topSort, at, li, needsUniv);
1425 
1426     // Visit all lattices points with Li >= Lj to generate the
1427     // loop-body, possibly with if statements for coiteration.
1428     Value ifInput = codegen.redVal;
1429     bool isWhile = dyn_cast<scf::WhileOp>(loop) != nullptr;
1430     for (unsigned j = 0; j < lsize; j++) {
1431       unsigned lj = merger.set(lts)[j];
1432       unsigned ej = merger.lat(lj).exp;
1433       if (li == lj || merger.latGT(li, lj)) {
1434         // Recurse into body of each branch.
1435         if (isWhile) {
1436           scf::IfOp ifOp =
1437               genIf(merger, codegen, rewriter, op, idx, merger.lat(lj).simple);
1438           genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1);
1439           endIf(merger, codegen, rewriter, op, ifOp, ifInput);
1440         } else {
1441           genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1);
1442         }
1443       }
1444     }
1445 
1446     // End a loop.
1447     needsUniv =
1448         endLoop(merger, codegen, rewriter, op, loop, idx, li, needsUniv);
1449   }
1450 
1451   // End a loop sequence.
1452   endLoopSeq(merger, codegen, rewriter, op, exp, idx, ldx);
1453 }
1454 
1455 /// Converts the result computed by the sparse kernel into the required form.
1456 static void genResult(Merger &merger, CodeGen &codegen,
1457                       PatternRewriter &rewriter, linalg::GenericOp op) {
1458   OpOperand *lhs = op.getOutputOperand(0);
1459   Type resType = lhs->get().getType();
1460   Value result;
1461   if (getSparseTensorEncoding(resType)) {
1462     // The sparse tensor rematerializes from the original sparse tensor's
1463     // underlying sparse storage format.
1464     rewriter.replaceOpWithNewOp<LoadOp>(op, resType, lhs->get(),
1465                                         codegen.sparseOut == lhs);
1466   } else {
1467     // To rematerialize an non-annotated tensor, simply load it
1468     // from the bufferized value.
1469     Value val = codegen.buffers.back(); // value array
1470     rewriter.replaceOpWithNewOp<memref::TensorLoadOp>(op, resType, val);
1471   }
1472 }
1473 
1474 //===----------------------------------------------------------------------===//
1475 // Sparse compiler rewriting methods.
1476 //===----------------------------------------------------------------------===//
1477 
1478 namespace {
1479 
1480 /// Sparse rewriting rule for generic Lingalg operation.
1481 struct GenericOpSparsifier : public OpRewritePattern<linalg::GenericOp> {
1482 public:
1483   GenericOpSparsifier(MLIRContext *context, SparsificationOptions o)
1484       : OpRewritePattern<linalg::GenericOp>(context), options(o) {}
1485 
1486   LogicalResult matchAndRewrite(linalg::GenericOp op,
1487                                 PatternRewriter &rewriter) const override {
1488     // Detects sparse annotations and translate the per-dimension sparsity
1489     // information for all tensors to loop indices in the kernel.
1490     assert(op.getNumOutputs() == 1);
1491     unsigned numTensors = op.getNumInputsAndOutputs();
1492     unsigned numLoops = op.iterator_types().getValue().size();
1493     Merger merger(numTensors, numLoops);
1494     if (!findSparseAnnotations(merger, op))
1495       return failure();
1496 
1497     // Computes a topologically sorted iteration graph to ensure
1498     // tensors are visited in natural index order. Fails on cycles.
1499     // This assumes that higher-level passes have already put the
1500     // tensors in each tensor expression in a feasible order.
1501     std::vector<unsigned> topSort;
1502     if (!computeIterationGraph(merger, op, topSort,
1503                                SortMask::kIncludeUndef |
1504                                    SortMask::kIncludeDense) &&
1505         !computeIterationGraph(merger, op, topSort, SortMask::kIncludeUndef) &&
1506         !computeIterationGraph(merger, op, topSort, SortMask::kIncludeDense) &&
1507         !computeIterationGraph(merger, op, topSort, SortMask::kSparseOnly))
1508       return failure();
1509 
1510     // Builds the tensor expression for the Linalg operation in SSA form.
1511     Optional<unsigned> optExp = merger.buildTensorExpFromLinalg(op);
1512     if (!optExp.hasValue())
1513       return failure();
1514     unsigned exp = optExp.getValue();
1515 
1516     // Rejects an inadmissable tensor expression.
1517     OpOperand *sparseOut = nullptr;
1518     if (!isAdmissableTensorExp(merger, op, exp, &sparseOut))
1519       return failure();
1520 
1521     // Recursively generates code.
1522     CodeGen codegen(options, numTensors, numLoops, sparseOut);
1523     genBuffers(merger, codegen, rewriter, op);
1524     genStmt(merger, codegen, rewriter, op, topSort, exp, 0);
1525     genResult(merger, codegen, rewriter, op);
1526     return success();
1527   }
1528 
1529 private:
1530   /// Options to control sparse code generation.
1531   SparsificationOptions options;
1532 };
1533 
1534 } // namespace
1535 
1536 /// Populates the given patterns list with rewriting rules required for
1537 /// the sparsification of linear algebra operations.
1538 void mlir::populateSparsificationPatterns(
1539     RewritePatternSet &patterns, const SparsificationOptions &options) {
1540   patterns.add<GenericOpSparsifier>(patterns.getContext(), options);
1541 }
1542