1 //===- Sparsification.cpp - Implementation of sparsification --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements lowering sparse tensor types to actual sparse code. 10 // 11 // The concept of letting a compiler generate sparse code automatically was 12 // pioneered for dense linear algebra code in Fortran by [Bik96] in MT1 and 13 // formalized to tensor algebra by [Kjolstad17,20] for the Sparse Tensor 14 // Algebra Compiler (TACO). The implementation in this file closely follows 15 // the "sparse iteration theory" that forms the foundation of TACO. A rewriting 16 // rule is applied to each tensor expression in linalg (MLIR's tensor index 17 // notation) where the sparsity of tensors is indicated with annotation using 18 // a per-dimension specification of sparse/dense storage together with a 19 // specification of the order on the dimensions. Subsequently, a topologically 20 // sorted iteration graph, reflecting the required order on indices with respect 21 // to the dimensions of each tensor, is constructed to ensure that all tensors 22 // are visited in natural index order. Next, iteration lattices are constructed 23 // for the tensor expression for every index in topological order. Each 24 // iteration lattice point consists of a conjunction of tensor indices together 25 // with a tensor (sub)expression that needs to be evaluated for that 26 // conjunction. Within the lattice, iteration points are ordered according to 27 // the way indices are exhausted. As such these iteration lattices drive actual 28 // sparse code generation, which consists of a tedious but relatively 29 // straightforward one-to-one mapping from iteration lattices to combinations 30 // of for-loops, while-loops, and if-statements. 31 // 32 // [Bik96] Aart J.C. Bik. Compiler Support for Sparse Matrix Computations. 33 // PhD thesis, Leiden University, May 1996 (aartbik.com/sparse.php). 34 // [Kjolstad17] Fredrik Berg Kjolstad, Shoaib Ashraf Kamil, Stephen Chou, 35 // David Lugato, and Saman Amarasinghe. The Tensor Algebra Compiler. 36 // Proceedings of the ACM on Programming Languages, October 2017. 37 // [Kjolstad20] Fredrik Berg Kjolstad. Sparse Tensor Algebra Compilation. 38 // PhD thesis, MIT, February, 2020 (tensor-compiler.org). 39 // 40 // Implementation detail: We use llvm::SmallVector for vectors with 41 // variable lengths and std::vector for vectors with fixed lengths. 42 //===----------------------------------------------------------------------===// 43 44 #include "mlir/Dialect/Linalg/IR/LinalgOps.h" 45 #include "mlir/Dialect/Linalg/Utils/Utils.h" 46 #include "mlir/Dialect/SCF/SCF.h" 47 #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h" 48 #include "mlir/Dialect/SparseTensor/Transforms/Passes.h" 49 #include "mlir/Dialect/StandardOps/IR/Ops.h" 50 #include "mlir/Dialect/Vector/VectorOps.h" 51 #include "mlir/IR/Matchers.h" 52 #include "mlir/IR/TensorEncoding.h" 53 #include "llvm/ADT/SmallBitVector.h" 54 55 using namespace mlir; 56 using namespace mlir::sparse_tensor; 57 58 namespace { 59 60 enum class Kind { kTensor, kInvariant, kMulF, kMulI, kAddF, kAddI }; 61 enum class Dim { kSparse, kDense, kSingle, kUndef }; 62 63 /// Tensor expression. Represents a MLIR expression in tensor index notation. 64 /// For tensors, e0 denotes the tensor index. For invariants, the IR value is 65 /// stored directly. For binary operations, e0 and e1 denote the index of the 66 /// children tensor expressions. 67 struct TensorExp { 68 TensorExp(Kind k, unsigned x, unsigned y, Value v) 69 : kind(k), e0(x), e1(y), val(v) { 70 assert((kind == Kind::kTensor && e0 != -1u && e1 == -1u && !val) || 71 (kind == Kind::kInvariant && e0 == -1u && e1 == -1u && val) || 72 (kind >= Kind::kMulF && e0 != -1u && e1 != -1u && !val)); 73 } 74 Kind kind; 75 /// Indices of children expression(s). 76 unsigned e0; 77 unsigned e1; 78 /// Direct link to IR for an invariant. During code generation, 79 /// field is used to cache "hoisted" loop invariant tensor loads. 80 Value val; 81 }; 82 83 /// Lattice point. Each lattice point consists of a conjunction of tensor 84 /// loop indices (encoded in a bitvector) and the index of the corresponding 85 /// tensor expression. 86 struct LatPoint { 87 LatPoint(unsigned n, unsigned e, unsigned b) : bits(n, false), exp(e) { 88 bits.set(b); 89 } 90 LatPoint(const llvm::BitVector &b, unsigned e) : bits(b), exp(e) {} 91 /// Conjunction of tensor loop indices as bitvector. This represents 92 /// all indices involved in the tensor expression 93 llvm::BitVector bits; 94 /// Simplified conjunction of tensor loop indices as bitvector. This 95 /// represents a simplified condition under which this tensor expression 96 /// must execute. Pre-computed during codegen to avoid repeated eval. 97 llvm::BitVector simple; 98 /// Index of the tensor expresssion. 99 unsigned exp; 100 }; 101 102 /// A class to handle all iteration lattice operations. This class abstracts 103 /// away from some implementation details of storing iteration lattices and 104 /// tensor expressions. This allows for fine-tuning performance characteristics 105 /// independently from the basic algorithm if bottlenecks are identified. 106 class Merger { 107 public: 108 /// Constructs a merger for the given number of tensors and loops. The 109 /// user supplies the number of tensors involved in the kernel, with the 110 /// last tensor in this set denoting the output tensor. The merger adds an 111 /// additional synthetic tensor at the end of this set to represent all 112 /// invariant expressions in the kernel. 113 Merger(unsigned t, unsigned l) 114 : outTensor(t - 1), numTensors(t + 1), numLoops(l), 115 dims(t + 1, std::vector<Dim>(l, Dim::kUndef)) {} 116 117 /// Adds a tensor expression. Returns its index. 118 unsigned addExp(Kind k, unsigned e0, unsigned e1 = -1u, Value v = Value()) { 119 unsigned e = tensorExps.size(); 120 tensorExps.push_back(TensorExp(k, e0, e1, v)); 121 return e; 122 } 123 unsigned addExp(Kind k, Value v) { return addExp(k, -1u, -1u, v); } 124 125 /// Adds an iteration lattice point. Returns its index. 126 unsigned addLat(unsigned t, unsigned i, unsigned e) { 127 assert(t < numTensors && i < numLoops); 128 unsigned p = latPoints.size(); 129 latPoints.push_back(LatPoint(numLoops * numTensors, e, numTensors * i + t)); 130 return p; 131 } 132 133 /// Adds a new, initially empty, set. Returns its index. 134 unsigned addSet() { 135 unsigned s = latSets.size(); 136 latSets.emplace_back(SmallVector<unsigned, 16>()); 137 return s; 138 } 139 140 /// Computes a single conjunction of two lattice points by taking the "union" 141 /// of loop indices (effectively constructing a larger "intersection" of those 142 /// indices) with a newly constructed tensor (sub)expression of given kind. 143 /// Returns the index of the new lattice point. 144 unsigned conjLatPoint(Kind kind, unsigned p0, unsigned p1) { 145 unsigned p = latPoints.size(); 146 llvm::BitVector nb = llvm::BitVector(latPoints[p0].bits); 147 nb |= latPoints[p1].bits; 148 unsigned e = addExp(kind, latPoints[p0].exp, latPoints[p1].exp); 149 latPoints.push_back(LatPoint(nb, e)); 150 return p; 151 } 152 153 /// Conjunctive merge of two lattice sets L0 and L1 is conjunction of 154 /// cartesian product. Returns the index of the new set. 155 unsigned takeConj(Kind kind, unsigned s0, unsigned s1) { 156 unsigned s = addSet(); 157 for (unsigned p0 : latSets[s0]) 158 for (unsigned p1 : latSets[s1]) 159 latSets[s].push_back(conjLatPoint(kind, p0, p1)); 160 return s; 161 } 162 163 /// Disjunctive merge of two lattice sets L0 and L1 is (L0 /\_op L1, L0, L1). 164 /// Returns the index of the new set. 165 unsigned takeDisj(Kind kind, unsigned s0, unsigned s1) { 166 unsigned s = takeConj(kind, s0, s1); 167 for (unsigned p : latSets[s0]) 168 latSets[s].push_back(p); 169 for (unsigned p : latSets[s1]) 170 latSets[s].push_back(p); 171 return s; 172 } 173 174 /// Optimizes the iteration lattice points in the given set. This 175 /// method should be called right before code generation to avoid 176 /// generating redundant loops and conditions. 177 unsigned optimizeSet(unsigned s0) { 178 unsigned s = addSet(); 179 assert(latSets[s0].size() != 0); 180 unsigned p0 = latSets[s0][0]; 181 for (unsigned p1 : latSets[s0]) { 182 bool add = true; 183 if (p0 != p1) { 184 // Is this a straightforward copy? 185 unsigned e = latPoints[p1].exp; 186 if (exp(e).kind == Kind::kTensor && exp(e).e0 == outTensor) 187 continue; 188 // Conjunction already covered? 189 for (unsigned p2 : latSets[s]) { 190 assert(!latGT(p1, p2)); // Lj => Li would be bad 191 if (onlyDenseDiff(p2, p1)) { 192 add = false; 193 break; 194 } 195 } 196 assert(!add || latGT(p0, p1)); 197 } 198 if (add) 199 latSets[s].push_back(p1); 200 } 201 for (unsigned p : latSets[s]) 202 latPoints[p].simple = simplifyCond(s, p); 203 return s; 204 } 205 206 /// Simplifies the conditions in a conjunction of a given lattice point 207 /// within the given set using just two basic rules: 208 /// (1) multiple dense conditions are reduced to single dense, and 209 /// (2) a *singleton* sparse/dense is reduced to sparse/random access. 210 llvm::BitVector simplifyCond(unsigned s, unsigned p0) { 211 // First determine if this lattice point is a *singleton*, i.e., 212 // the last point in a lattice, no other is less than this one. 213 bool isSingleton = true; 214 for (unsigned p1 : latSets[s]) { 215 if (p0 != p1 && latGT(p0, p1)) { 216 isSingleton = false; 217 break; 218 } 219 } 220 // Now apply the two basic rules. 221 llvm::BitVector simple = latPoints[p0].bits; 222 bool reset = isSingleton && hasAnyDimOf(simple, Dim::kSparse); 223 for (unsigned b = 0, be = simple.size(); b < be; b++) { 224 if (simple[b] && !isDim(b, Dim::kSparse)) { 225 if (reset) 226 simple.reset(b); 227 reset = true; 228 } 229 } 230 return simple; 231 } 232 233 /// Returns true if Li > Lj. 234 bool latGT(unsigned i, unsigned j) const { 235 const llvm::BitVector &bitsi = latPoints[i].bits; 236 const llvm::BitVector &bitsj = latPoints[j].bits; 237 assert(bitsi.size() == bitsj.size()); 238 if (bitsi.count() > bitsj.count()) { 239 for (unsigned b = 0, be = bitsj.size(); b < be; b++) 240 if (bitsj[b] && !bitsi[b]) 241 return false; 242 return true; 243 } 244 return false; 245 } 246 247 /// Returns true if Li and Lj only differ in dense. 248 bool onlyDenseDiff(unsigned i, unsigned j) { 249 llvm::BitVector tmp = latPoints[j].bits; 250 tmp ^= latPoints[i].bits; 251 return !hasAnyDimOf(tmp, Dim::kSparse); 252 } 253 254 /// Bit translation. 255 unsigned tensor(unsigned b) const { return b % numTensors; } 256 unsigned index(unsigned b) const { return b / numTensors; } 257 258 /// Returns true if bit corresponds to queried dim. 259 bool isDim(unsigned b, Dim d) const { return isDim(tensor(b), index(b), d); } 260 261 /// Returns true if bit corresponds to index of output tensor. 262 bool isOutTensor(unsigned b, unsigned i) const { 263 return tensor(b) == outTensor && index(b) == i; 264 } 265 266 /// Returns true if tensor access at given index has queried dim. 267 bool isDim(unsigned t, unsigned i, Dim d) const { 268 assert(t < numTensors && i < numLoops); 269 return dims[t][i] == d; 270 } 271 272 /// Returns true if any set bit corresponds to queried dim. 273 bool hasAnyDimOf(const llvm::BitVector &bits, Dim d) const { 274 for (unsigned b = 0, be = bits.size(); b < be; b++) 275 if (bits[b] && isDim(b, d)) 276 return true; 277 return false; 278 } 279 280 /// Setter 281 void setDim(unsigned t, unsigned i, Dim d) { dims[t][i] = d; } 282 283 /// Getters. 284 TensorExp &exp(unsigned e) { return tensorExps[e]; } 285 LatPoint &lat(unsigned l) { return latPoints[l]; } 286 SmallVector<unsigned, 16> &set(unsigned s) { return latSets[s]; } 287 288 private: 289 const unsigned outTensor; 290 const unsigned numTensors; 291 const unsigned numLoops; 292 293 std::vector<std::vector<Dim>> dims; 294 llvm::SmallVector<TensorExp, 32> tensorExps; 295 llvm::SmallVector<LatPoint, 16> latPoints; 296 llvm::SmallVector<SmallVector<unsigned, 16>, 8> latSets; 297 }; 298 299 // Code generation. 300 struct CodeGen { 301 CodeGen(SparsificationOptions o, unsigned numTensors, unsigned numLoops) 302 : options(o), loops(numLoops), sizes(numLoops), buffers(numTensors), 303 pointers(numTensors, std::vector<Value>(numLoops)), 304 indices(numTensors, std::vector<Value>(numLoops)), 305 highs(numTensors, std::vector<Value>(numLoops)), 306 pidxs(numTensors, std::vector<Value>(numLoops)), 307 idxs(numTensors, std::vector<Value>(numLoops)), redExp(-1u), redVal(), 308 curVecLength(1), curVecMask() {} 309 /// Sparsification options. 310 SparsificationOptions options; 311 /// Universal dense indices and upper bounds (by index). The loops array 312 /// is updated with the value of the universal dense index in the current 313 /// loop. The sizes array is set once with the inferred dimension sizes. 314 std::vector<Value> loops; 315 std::vector<Value> sizes; 316 /// Buffers for storing dense and sparse numerical values (by tensor). 317 /// This array is set once during bufferization of all tensors. 318 std::vector<Value> buffers; 319 /// Sparse storage schemes (1-D): pointers and indices (by tensor and index). 320 /// This array is set once during bufferization of all sparse tensors. 321 std::vector<std::vector<Value>> pointers; 322 std::vector<std::vector<Value>> indices; 323 /// Sparse iteration information (by tensor and index). These arrays 324 /// are updated to remain current within the current loop. 325 std::vector<std::vector<Value>> highs; 326 std::vector<std::vector<Value>> pidxs; 327 std::vector<std::vector<Value>> idxs; 328 /// Current reduction, updated during code generation. When indices of a 329 /// reduction are exhausted, all inner loops can "scalarize" the reduction. 330 // TODO: currently only done for (a chain of) innermost for-loops, where it 331 // is most effective; we could generalize to more outer and while-loops. 332 unsigned redExp; 333 Value redVal; 334 // Current vector length and mask. 335 unsigned curVecLength; 336 Value curVecMask; 337 }; 338 339 } // namespace 340 341 // Helper method to apply dimension ordering permutation. 342 static unsigned perm(SparseTensorEncodingAttr &enc, unsigned d) { 343 if (enc) { 344 auto order = enc.getDimOrdering(); 345 if (order) { 346 assert(order.isPermutation()); 347 return order.getDimPosition(d); 348 } 349 } 350 return d; 351 } 352 353 // Helper method to translate dim level type to internal representation. 354 static Dim toDim(SparseTensorEncodingAttr &enc, unsigned d) { 355 if (enc) { 356 SparseTensorEncodingAttr::DimLevelType tp = enc.getDimLevelType()[d]; 357 if (tp == SparseTensorEncodingAttr::DimLevelType::Compressed) 358 return Dim::kSparse; 359 if (tp == SparseTensorEncodingAttr::DimLevelType::Singleton) 360 return Dim::kSingle; 361 } 362 return Dim::kDense; 363 } 364 365 /// Helper method to inspect sparse encodings in the tensor types. 366 /// Fills the per-dimension sparsity information for all tensors. 367 static bool findSparseAnnotations(Merger &merger, linalg::GenericOp op) { 368 bool annotated = false; 369 OpOperand *lhs = op.getOutputOperand(0); 370 for (OpOperand *t : op.getInputAndOutputOperands()) { 371 auto map = op.getTiedIndexingMap(t); 372 if (!map.isProjectedPermutation()) 373 return false; 374 auto enc = getSparseTensorEncoding(t->get().getType()); 375 if (enc) 376 annotated = true; 377 assert(map.getNumResults() == op.getRank(t)); 378 for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { 379 unsigned idx = map.getDimPosition(perm(enc, d)); 380 Dim dim = toDim(enc, d); 381 merger.setDim(t->getOperandNumber(), idx, toDim(enc, d)); 382 // Accept only all-dense annotated "sparse" output. 383 // TODO: support truly sparse outputs too 384 if (t == lhs && dim != Dim::kDense) 385 return false; 386 } 387 } 388 return annotated; 389 } 390 391 /// A DFS helper to compute a topological sort. Note that recursion is 392 /// bounded by the number of implicit loops, which is always small. 393 /// Returns false when a cycle is detected. 394 static bool topSortDFS(unsigned i, std::vector<unsigned> &visit, 395 std::vector<unsigned> &topSort, 396 std::vector<std::vector<bool>> &adjM) { 397 if (visit[i] != 0) 398 return visit[i] != 1; // 1 denotes cycle! 399 visit[i] = 1; 400 for (unsigned j = 0, e = visit.size(); j < e; j++) 401 if (adjM[i][j]) 402 if (!topSortDFS(j, visit, topSort, adjM)) 403 return false; 404 visit[i] = 2; 405 topSort.push_back(i); 406 return true; 407 } 408 409 /// Computes a topologically sorted iteration graph for the linalg operation. 410 /// Ensures all tensors are visited in natural index order. This is essential 411 /// for sparse storage formats since these only support access along fixed 412 /// dimensions. Even for dense storage formats, however, the natural index 413 /// order yields innermost unit-stride access with better spatial locality. 414 static bool computeIterationGraph(Merger &merger, linalg::GenericOp op, 415 std::vector<unsigned> &topSort, 416 bool sparseOnly) { 417 // Set up an n x n from/to adjacency matrix of the iteration graph 418 // for the implicit loop indices i_0 .. i_n-1. 419 unsigned n = op.getNumLoops(); 420 std::vector<std::vector<bool>> adjM(n, std::vector<bool>(n, false)); 421 422 // Iterate over the indexing maps of every tensor in the tensor expression. 423 for (OpOperand *t : op.getInputAndOutputOperands()) { 424 auto map = op.getTiedIndexingMap(t); 425 auto enc = getSparseTensorEncoding(t->get().getType()); 426 assert(map.getNumDims() == n); 427 // Skip dense tensor constraints when sparse only is requested. 428 if (sparseOnly && !enc) 429 continue; 430 // Each tensor expression and optional dimension ordering (row-major 431 // by default) puts an ordering constraint on the loop indices. For 432 // example, the tensor expresion A_ijk forces the ordering i < j < k 433 // on the loop indices if no explicit dimension ordering is given. 434 for (unsigned d = 1, rank = map.getNumResults(); d < rank; d++) { 435 unsigned f = map.getDimPosition(perm(enc, d - 1)); 436 unsigned t = map.getDimPosition(perm(enc, d)); 437 adjM[f][t] = true; 438 } 439 } 440 441 // Topologically sort the iteration graph to determine loop order. 442 // Report failure for a cyclic iteration graph. 443 topSort.clear(); 444 topSort.reserve(n); 445 std::vector<unsigned> visit(n, 0); 446 for (unsigned i = 0; i < n; i++) 447 if (visit[i] == 0) 448 if (!topSortDFS(i, visit, topSort, adjM)) 449 return false; // cycle! 450 std::reverse(std::begin(topSort), std::end(topSort)); 451 return true; 452 } 453 454 /// Traverses the SSA tree (possibly a DAG) to build a tensor expression. 455 /// This simplifies constructing (sub)expressions during iteration lattice 456 /// building (compared to using the SSA representation everywhere). 457 static Optional<unsigned> buildTensorExp(Merger &merger, linalg::GenericOp op, 458 Value val) { 459 if (auto arg = val.dyn_cast<BlockArgument>()) { 460 unsigned argN = arg.getArgNumber(); 461 // Any argument of the generic op that is not marked as a scalar 462 // argument is considered a tensor, indexed by the implicit loop 463 // bounds. This includes rank-0 tensor arguments. 464 if (arg.getOwner()->getParentOp() == op) { 465 OpOperand *t = op.getInputAndOutputOperands()[argN]; 466 if (!op.isScalar(t)) 467 return merger.addExp(Kind::kTensor, argN); 468 val = t->get(); // get scalar value 469 } 470 // Any other argument (marked as scalar argument for the generic op 471 // or belonging to an enveloping op) is considered invariant. 472 return merger.addExp(Kind::kInvariant, val); 473 } 474 Operation *def = val.getDefiningOp(); 475 if (def->getBlock() != &op.region().front()) { 476 // Something defined outside is invariant. 477 return merger.addExp(Kind::kInvariant, val); 478 } else if (def->getNumOperands() == 2) { 479 // Construct binary operations if subexpressions could be built. 480 auto x = buildTensorExp(merger, op, def->getOperand(0)); 481 auto y = buildTensorExp(merger, op, def->getOperand(1)); 482 if (x.hasValue() && y.hasValue()) { 483 unsigned e0 = x.getValue(); 484 unsigned e1 = y.getValue(); 485 if (isa<MulFOp>(def)) 486 return merger.addExp(Kind::kMulF, e0, e1); 487 if (isa<MulIOp>(def)) 488 return merger.addExp(Kind::kMulI, e0, e1); 489 if (isa<AddFOp>(def)) 490 return merger.addExp(Kind::kAddF, e0, e1); 491 if (isa<AddIOp>(def)) 492 return merger.addExp(Kind::kAddI, e0, e1); 493 } 494 } 495 // Cannot build (yet). 496 return None; 497 } 498 499 /// Builds the iteration lattices in a bottom-up traversal given the remaining 500 /// tensor (sub)expression and the next loop index in the iteration graph. 501 static unsigned buildLattices(Merger &merger, linalg::GenericOp op, 502 unsigned exp, unsigned idx) { 503 Kind kind = merger.exp(exp).kind; 504 if (kind == Kind::kTensor || kind == Kind::kInvariant) { 505 // Either the index is really used in the tensor expression, or it is 506 // set to the undefined index in that dimension. An invariant expression 507 // is set to a synthetic tensor with undefined indices only. 508 unsigned s = merger.addSet(); 509 unsigned t = kind == Kind::kTensor ? merger.exp(exp).e0 510 : op.getNumInputsAndOutputs(); 511 merger.set(s).push_back(merger.addLat(t, idx, exp)); 512 return s; 513 } 514 unsigned s0 = buildLattices(merger, op, merger.exp(exp).e0, idx); 515 unsigned s1 = buildLattices(merger, op, merger.exp(exp).e1, idx); 516 switch (kind) { 517 case Kind::kTensor: 518 case Kind::kInvariant: 519 llvm_unreachable("handled above"); 520 case Kind::kMulF: 521 case Kind::kMulI: 522 return merger.takeConj(kind, s0, s1); 523 case Kind::kAddF: 524 case Kind::kAddI: 525 return merger.takeDisj(kind, s0, s1); 526 } 527 llvm_unreachable("unexpected expression kind"); 528 } 529 530 /// Maps sparse integer option to actual integral storage type. 531 static Type genIntType(PatternRewriter &rewriter, unsigned width) { 532 if (width == 0) 533 return rewriter.getIndexType(); 534 return rewriter.getIntegerType(width); 535 } 536 537 /// Detects in-place annotation on tensor argument. 538 static bool getInPlace(Value val) { 539 if (auto arg = val.dyn_cast<BlockArgument>()) 540 if (auto funcOp = dyn_cast<FuncOp>(arg.getOwner()->getParentOp())) 541 if (auto attr = funcOp.getArgAttrOfType<BoolAttr>( 542 arg.getArgNumber(), linalg::LinalgDialect::kInplaceableAttrName)) 543 return attr.getValue(); 544 return false; 545 } 546 547 /// Generates buffer for the output tensor. 548 static Value genOutputBuffer(CodeGen &codegen, PatternRewriter &rewriter, 549 linalg::GenericOp op, MemRefType denseTp, 550 ArrayRef<Value> args) { 551 Location loc = op.getLoc(); 552 Value tensor = op.getOutputOperand(0)->get(); 553 // The output tensor simply could materialize from the buffer that will 554 // be generated for the tensor present in the outs() clause. This has 555 // the major advantage that the sparse kernel only updates the nonzero 556 // positions for the output tensor. 557 if (getInPlace(tensor)) 558 return rewriter.create<memref::BufferCastOp>(loc, denseTp, tensor); 559 // By default, a new buffer is allocated which is initialized to the 560 // tensor defined in the outs() clause. This is always correct but 561 // introduces a dense initialization component that may negatively 562 // impact the running complexity of the sparse kernel. 563 Value init = rewriter.create<memref::BufferCastOp>(loc, denseTp, tensor); 564 Value alloc = rewriter.create<memref::AllocOp>(loc, denseTp, args); 565 rewriter.create<linalg::CopyOp>(loc, init, alloc); 566 return alloc; 567 } 568 569 /// Local bufferization of all dense and sparse data structures. 570 /// This code enables testing the first prototype sparse compiler. 571 // TODO: replace this with a proliferated bufferization strategy 572 static bool genBuffers(Merger &merger, CodeGen &codegen, 573 PatternRewriter &rewriter, linalg::GenericOp op) { 574 Location loc = op.getLoc(); 575 assert(op.getNumInputsAndOutputs() == op.getNumInputs() + 1); 576 // For every tensor, find lower and upper bound on dimensions, set the 577 // same bounds on loop indices, and obtain dense or sparse buffer(s). 578 SmallVector<Value, 4> args; 579 for (OpOperand *t : op.getInputAndOutputOperands()) { 580 unsigned tensor = t->getOperandNumber(); 581 auto shape = op.getShape(t); 582 auto map = op.getTiedIndexingMap(t); 583 auto enc = getSparseTensorEncoding(t->get().getType()); 584 // Scan all dimensions of current tensor. 585 args.clear(); 586 for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { 587 unsigned idx = map.getDimPosition(perm(enc, d)); 588 // Handle sparse storage schemes. 589 if (merger.isDim(tensor, idx, Dim::kSparse)) { 590 auto dynShape = {ShapedType::kDynamicSize}; 591 auto ptrTp = MemRefType::get( 592 dynShape, genIntType(rewriter, enc.getPointerBitWidth())); 593 auto indTp = MemRefType::get( 594 dynShape, genIntType(rewriter, enc.getIndexBitWidth())); 595 Value dim = rewriter.create<ConstantIndexOp>(loc, d); 596 // Generate sparse primitives to obtains pointer and indices. 597 codegen.pointers[tensor][idx] = 598 rewriter.create<ToPointersOp>(loc, ptrTp, t->get(), dim); 599 codegen.indices[tensor][idx] = 600 rewriter.create<ToIndicesOp>(loc, indTp, t->get(), dim); 601 } 602 // Find lower and upper bound in current dimension. 603 Value up; 604 if (shape[d] == MemRefType::kDynamicSize) { 605 up = rewriter.create<memref::DimOp>(loc, t->get(), d); 606 args.push_back(up); 607 } else { 608 up = rewriter.create<ConstantIndexOp>(loc, shape[d]); 609 } 610 codegen.sizes[idx] = codegen.highs[tensor][idx] = up; 611 } 612 // Perform the required bufferization. Dense inputs materialize 613 // from the input tensors. Dense outputs need special handling. 614 // Sparse inputs use sparse primitives to obtain the values. 615 // We also accept in-place all-dense annotated "sparse" outputs. 616 Type elementType = getElementTypeOrSelf(t->get().getType()); 617 if (!enc) { 618 // Non-annotated dense tensors. 619 auto denseTp = MemRefType::get(shape, elementType); 620 if (tensor < op.getNumInputs()) 621 codegen.buffers[tensor] = 622 rewriter.create<memref::BufferCastOp>(loc, denseTp, t->get()); 623 else 624 codegen.buffers[tensor] = 625 genOutputBuffer(codegen, rewriter, op, denseTp, args); 626 } else { 627 // Annotated sparse tensors. 628 if (tensor == op.getNumInputs() && !getInPlace(t->get())) 629 return false; // reject output if not in-place 630 auto dynShape = {ShapedType::kDynamicSize}; 631 auto sparseTp = MemRefType::get(dynShape, elementType); 632 codegen.buffers[tensor] = 633 rewriter.create<ToValuesOp>(loc, sparseTp, t->get()); 634 } 635 } 636 return true; 637 } 638 639 /// Constructs vector type. 640 static VectorType vectorType(CodeGen &codegen, Type etp) { 641 return VectorType::get(codegen.curVecLength, etp); 642 } 643 644 /// Constructs vector type from pointer. 645 static VectorType vectorType(CodeGen &codegen, Value ptr) { 646 return vectorType(codegen, ptr.getType().cast<MemRefType>().getElementType()); 647 } 648 649 /// Constructs vector iteration mask. 650 static Value genVectorMask(CodeGen &codegen, PatternRewriter &rewriter, 651 Value iv, Value lo, Value hi, Value step) { 652 Location loc = iv.getLoc(); 653 VectorType mtp = vectorType(codegen, rewriter.getIntegerType(1)); 654 // Special case if the vector length evenly divides the trip count (for 655 // example, "for i = 0, 128, 16"). A constant all-true mask is generated 656 // so that all subsequent masked memory operations are immediately folded 657 // into unconditional memory operations. 658 IntegerAttr loInt, hiInt, stepInt; 659 if (matchPattern(lo, m_Constant(&loInt)) && 660 matchPattern(hi, m_Constant(&hiInt)) && 661 matchPattern(step, m_Constant(&stepInt))) { 662 if (((hiInt.getInt() - loInt.getInt()) % stepInt.getInt()) == 0) 663 return rewriter.create<vector::BroadcastOp>( 664 loc, mtp, rewriter.create<ConstantIntOp>(loc, 1, 1)); 665 } 666 // Otherwise, generate a vector mask that avoids overrunning the upperbound 667 // during vector execution. Here we rely on subsequent loop optimizations to 668 // avoid executing the mask in all iterations, for example, by splitting the 669 // loop into an unconditional vector loop and a scalar cleanup loop. 670 Value end = rewriter.create<SubIOp>(loc, hi, iv); 671 return rewriter.create<vector::CreateMaskOp>(loc, mtp, end); 672 } 673 674 /// Generates a vectorized load lhs = a[ind[lo:hi]] or lhs = a[lo:hi]. 675 static Value genVectorLoad(CodeGen &codegen, PatternRewriter &rewriter, 676 Value ptr, ArrayRef<Value> args) { 677 Location loc = ptr.getLoc(); 678 VectorType vtp = vectorType(codegen, ptr); 679 Value pass = rewriter.create<ConstantOp>(loc, vtp, rewriter.getZeroAttr(vtp)); 680 if (args.back().getType().isa<VectorType>()) { 681 SmallVector<Value, 4> scalarArgs(args.begin(), args.end()); 682 Value indexVec = args.back(); 683 scalarArgs.back() = rewriter.create<ConstantIndexOp>(loc, 0); 684 return rewriter.create<vector::GatherOp>( 685 loc, vtp, ptr, scalarArgs, indexVec, codegen.curVecMask, pass); 686 } 687 return rewriter.create<vector::MaskedLoadOp>(loc, vtp, ptr, args, 688 codegen.curVecMask, pass); 689 } 690 691 /// Generates a vectorized store a[ind[lo:hi]] = rhs or a[lo:hi] = rhs. 692 static void genVectorStore(CodeGen &codegen, PatternRewriter &rewriter, 693 Value rhs, Value ptr, ArrayRef<Value> args) { 694 Location loc = ptr.getLoc(); 695 if (args.back().getType().isa<VectorType>()) { 696 SmallVector<Value, 4> scalarArgs(args.begin(), args.end()); 697 Value indexVec = args.back(); 698 scalarArgs.back() = rewriter.create<ConstantIndexOp>(loc, 0); 699 rewriter.create<vector::ScatterOp>(loc, ptr, scalarArgs, indexVec, 700 codegen.curVecMask, rhs); 701 return; 702 } 703 rewriter.create<vector::MaskedStoreOp>(loc, ptr, args, codegen.curVecMask, 704 rhs); 705 } 706 707 /// Generates a vectorized invariant. Here we rely on subsequent loop 708 /// optimizations to hoist the invariant broadcast out of the vector loop. 709 static Value genVectorInvariantValue(CodeGen &codegen, 710 PatternRewriter &rewriter, Value val) { 711 VectorType vtp = vectorType(codegen, val.getType()); 712 return rewriter.create<vector::BroadcastOp>(val.getLoc(), vtp, val); 713 } 714 715 /// Generates a load on a dense or sparse tensor. 716 static Value genTensorLoad(Merger &merger, CodeGen &codegen, 717 PatternRewriter &rewriter, linalg::GenericOp op, 718 unsigned exp) { 719 // Test if the load was hoisted to a higher loop nest. 720 Value val = merger.exp(exp).val; 721 if (val) { 722 if (codegen.curVecLength > 1 && !val.getType().isa<VectorType>()) 723 return genVectorInvariantValue(codegen, rewriter, val); 724 return val; 725 } 726 // Actual load. 727 SmallVector<Value, 4> args; 728 OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).e0]; 729 unsigned tensor = t->getOperandNumber(); 730 auto map = op.getTiedIndexingMap(t); 731 auto enc = getSparseTensorEncoding(t->get().getType()); 732 unsigned rank = map.getNumResults(); 733 if (enc) { 734 unsigned idx = map.getDimPosition(perm(enc, rank - 1)); 735 assert(codegen.pidxs[tensor][idx] != nullptr); 736 args.push_back(codegen.pidxs[tensor][idx]); // position index 737 } else { 738 for (unsigned d = 0; d < rank; d++) { 739 unsigned idx = map.getDimPosition(d); 740 args.push_back(codegen.loops[idx]); // universal dense index 741 } 742 } 743 Location loc = op.getLoc(); 744 Value ptr = codegen.buffers[tensor]; 745 if (codegen.curVecLength > 1) 746 return genVectorLoad(codegen, rewriter, ptr, args); 747 return rewriter.create<memref::LoadOp>(loc, ptr, args); 748 } 749 750 /// Generates a store on a dense or sparse tensor. 751 static void genTensorStore(Merger &merger, CodeGen &codegen, 752 PatternRewriter &rewriter, linalg::GenericOp op, 753 OpOperand *t, Value rhs) { 754 Location loc = op.getLoc(); 755 // Test if this is a scalarized reduction. 756 OpOperand *lhs = op.getOutputOperand(0); 757 if (lhs == t && codegen.redVal) { 758 if (codegen.curVecLength > 1) 759 rhs = rewriter.create<SelectOp>(loc, codegen.curVecMask, rhs, 760 codegen.redVal); 761 codegen.redVal = rhs; 762 return; 763 } 764 // Actual store. 765 SmallVector<Value, 4> args; 766 unsigned tensor = t->getOperandNumber(); 767 auto map = op.getTiedIndexingMap(t); 768 auto enc = getSparseTensorEncoding(t->get().getType()); 769 unsigned rank = map.getNumResults(); 770 if (enc) { 771 unsigned idx = map.getDimPosition(perm(enc, rank - 1)); 772 assert(codegen.pidxs[tensor][idx] != nullptr); 773 args.push_back(codegen.pidxs[tensor][idx]); // position index 774 } else { 775 for (unsigned d = 0; d < rank; d++) { 776 unsigned idx = map.getDimPosition(d); 777 args.push_back(codegen.loops[idx]); // universal dense index 778 } 779 } 780 Value ptr = codegen.buffers[tensor]; 781 if (codegen.curVecLength > 1) 782 genVectorStore(codegen, rewriter, rhs, ptr, args); 783 else 784 rewriter.create<memref::StoreOp>(loc, rhs, ptr, args); 785 } 786 787 /// Generates a pointer/index load from the sparse storage scheme. Narrower 788 /// data types need to be zero extended before casting the value into the 789 /// index type used for looping and indexing. 790 static Value genLoad(CodeGen &codegen, PatternRewriter &rewriter, Location loc, 791 Value ptr, Value s) { 792 // See https://llvm.org/docs/GetElementPtr.html for some background on 793 // the complications described below. 794 if (codegen.curVecLength > 1) { 795 // Since the index vector is used in a subsequent gather/scatter operations, 796 // which effectively defines an unsigned pointer + signed index, we must 797 // zero extend the vector to an index width. For 8-bit and 16-bit values, 798 // an 32-bit index width suffices. For 32-bit values, zero extending the 799 // elements into 64-bit loses some performance since the 32-bit indexed 800 // gather/scatter is more efficient than the 64-bit index variant (if the 801 // negative 32-bit index space is unused, the enableSIMDIndex32 flag can 802 // preserve this performance). For 64-bit values, there is no good way 803 // to state that the indices are unsigned, with creates the potential of 804 // incorrect address calculations in the unlikely case we need such 805 // extremely large offsets. 806 Type etp = ptr.getType().cast<MemRefType>().getElementType(); 807 Value vload = genVectorLoad(codegen, rewriter, ptr, {s}); 808 if (!etp.isa<IndexType>()) { 809 if (etp.getIntOrFloatBitWidth() < 32) 810 vload = rewriter.create<ZeroExtendIOp>( 811 loc, vload, vectorType(codegen, rewriter.getIntegerType(32))); 812 else if (etp.getIntOrFloatBitWidth() < 64 && 813 !codegen.options.enableSIMDIndex32) 814 vload = rewriter.create<ZeroExtendIOp>( 815 loc, vload, vectorType(codegen, rewriter.getIntegerType(64))); 816 } 817 return vload; 818 } 819 // For the scalar case, we simply zero extend narrower indices into 64-bit 820 // values before casting to index without a performance penalty. Here too, 821 // however, indices that already are 64-bit, in theory, cannot express the 822 // full range as explained above. 823 Value load = rewriter.create<memref::LoadOp>(loc, ptr, s); 824 if (!load.getType().isa<IndexType>()) { 825 if (load.getType().getIntOrFloatBitWidth() < 64) 826 load = rewriter.create<ZeroExtendIOp>(loc, load, 827 rewriter.getIntegerType(64)); 828 load = rewriter.create<IndexCastOp>(loc, load, rewriter.getIndexType()); 829 } 830 return load; 831 } 832 833 /// Generates an invariant value. 834 static Value genInvariantValue(Merger &merger, CodeGen &codegen, 835 PatternRewriter &rewriter, unsigned exp) { 836 Value val = merger.exp(exp).val; 837 if (codegen.curVecLength > 1) 838 return genVectorInvariantValue(codegen, rewriter, val); 839 return val; 840 } 841 842 /// Generates an address computation "sz * p + i". 843 static Value genAddress(CodeGen &codegen, PatternRewriter &rewriter, 844 Location loc, Value size, Value p, Value i) { 845 Value mul = rewriter.create<MulIOp>(loc, size, p); 846 if (auto vtp = i.getType().dyn_cast<VectorType>()) { 847 Value inv = rewriter.create<IndexCastOp>(loc, mul, vtp.getElementType()); 848 mul = genVectorInvariantValue(codegen, rewriter, inv); 849 } 850 return rewriter.create<AddIOp>(loc, mul, i); 851 } 852 853 /// Generates start of a reduction. 854 static Value genReductionStart(Merger &merger, CodeGen &codegen, 855 PatternRewriter &rewriter, 856 linalg::GenericOp op) { 857 if (codegen.redVal) 858 return codegen.redVal; // chained with previous for-loop 859 if (codegen.curVecLength > 1) { 860 // TODO: assumes + reductions for now 861 VectorType vtp = vectorType(codegen, codegen.buffers[codegen.redExp]); 862 return rewriter.create<ConstantOp>(op.getLoc(), vtp, 863 rewriter.getZeroAttr(vtp)); 864 } 865 return genTensorLoad(merger, codegen, rewriter, op, codegen.redExp); 866 } 867 868 /// Generates end of a reduction. 869 static void genReductionEnd(Merger &merger, CodeGen &codegen, 870 PatternRewriter &rewriter, linalg::GenericOp op) { 871 Value red = codegen.redVal; 872 if (!red) 873 return; 874 assert(codegen.curVecLength == 1); 875 codegen.redVal = merger.exp(codegen.redExp).val = Value(); // end chain 876 OpOperand *lhs = op.getOutputOperand(0); 877 if (auto vtp = red.getType().dyn_cast<VectorType>()) { 878 // TODO: assumes + reductions for now 879 StringAttr kind = rewriter.getStringAttr("add"); 880 Value ld = genTensorLoad(merger, codegen, rewriter, op, codegen.redExp); 881 // Integer reductions don't accept an accumulator. 882 if (vtp.getElementType().isa<IntegerType>()) { 883 red = rewriter.create<vector::ReductionOp>(op.getLoc(), ld.getType(), 884 kind, red, ValueRange{}); 885 red = rewriter.create<AddIOp>(op.getLoc(), red, ld); 886 } else { 887 red = rewriter.create<vector::ReductionOp>(op.getLoc(), ld.getType(), 888 kind, red, ld); 889 } 890 } 891 genTensorStore(merger, codegen, rewriter, op, lhs, red); 892 } 893 894 /// Recursively generates tensor expression. 895 static Value genExp(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, 896 linalg::GenericOp op, unsigned exp) { 897 if (merger.exp(exp).kind == Kind::kTensor) 898 return genTensorLoad(merger, codegen, rewriter, op, exp); 899 else if (merger.exp(exp).kind == Kind::kInvariant) 900 return genInvariantValue(merger, codegen, rewriter, exp); 901 Value v0 = genExp(merger, codegen, rewriter, op, merger.exp(exp).e0); 902 Value v1 = genExp(merger, codegen, rewriter, op, merger.exp(exp).e1); 903 switch (merger.exp(exp).kind) { 904 case Kind::kTensor: 905 case Kind::kInvariant: 906 llvm_unreachable("handled above"); 907 case Kind::kMulF: 908 return rewriter.create<MulFOp>(op.getLoc(), v0, v1); 909 case Kind::kMulI: 910 return rewriter.create<MulIOp>(op.getLoc(), v0, v1); 911 case Kind::kAddF: 912 return rewriter.create<AddFOp>(op.getLoc(), v0, v1); 913 case Kind::kAddI: 914 return rewriter.create<AddIOp>(op.getLoc(), v0, v1); 915 } 916 llvm_unreachable("unexpected expression kind"); 917 } 918 919 /// Hoists loop invariant tensor loads for which indices have been exhausted. 920 static void genInvariants(Merger &merger, CodeGen &codegen, 921 PatternRewriter &rewriter, linalg::GenericOp op, 922 unsigned exp, unsigned ldx, bool hoist) { 923 if (merger.exp(exp).kind == Kind::kTensor) { 924 // Inspect tensor indices. 925 bool atLevel = ldx == -1u; 926 OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).e0]; 927 auto map = op.getTiedIndexingMap(t); 928 auto enc = getSparseTensorEncoding(t->get().getType()); 929 for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { 930 unsigned idx = map.getDimPosition(perm(enc, d)); 931 if (!codegen.loops[idx]) 932 return; // still in play 933 else if (idx == ldx) 934 atLevel = true; 935 } 936 // All exhausted at this level (atLevel denotes exactly at this level). 937 OpOperand *lhs = op.getOutputOperand(0); 938 if (lhs == t) { 939 codegen.redExp = hoist ? exp : -1u; 940 } else if (atLevel) { 941 merger.exp(exp).val = 942 hoist ? genTensorLoad(merger, codegen, rewriter, op, exp) : Value(); 943 } 944 } else if (merger.exp(exp).kind != Kind::kInvariant) { 945 // Traverse into the binary operations. Note that we only hoist 946 // tensor loads, since subsequent MLIR/LLVM passes know how to 947 // deal with all other kinds of derived loop invariants. 948 unsigned e0 = merger.exp(exp).e0; 949 unsigned e1 = merger.exp(exp).e1; 950 genInvariants(merger, codegen, rewriter, op, e0, ldx, hoist); 951 genInvariants(merger, codegen, rewriter, op, e1, ldx, hoist); 952 } 953 } 954 955 /// Generates initialization code for the subsequent loop sequence at 956 /// current index level. Returns true if the loop sequence needs to 957 /// maintain the universal index. 958 static bool genInit(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, 959 linalg::GenericOp op, std::vector<unsigned> &topSort, 960 unsigned at, llvm::BitVector &inits) { 961 bool needsUniv = false; 962 Location loc = op.getLoc(); 963 unsigned idx = topSort[at]; 964 965 // Initialize sparse positions. 966 for (unsigned b = 0, be = inits.size(); b < be; b++) { 967 if (inits[b]) { 968 unsigned tensor = merger.tensor(b); 969 assert(idx == merger.index(b)); 970 if (merger.isDim(b, Dim::kSparse)) { 971 // Initialize sparse index. 972 unsigned pat = at; 973 for (; pat != 0; pat--) { 974 if (codegen.pidxs[tensor][topSort[pat - 1]]) 975 break; 976 } 977 Value ptr = codegen.pointers[tensor][idx]; 978 Value one = rewriter.create<ConstantIndexOp>(loc, 1); 979 Value p0 = (pat == 0) ? rewriter.create<ConstantIndexOp>(loc, 0) 980 : codegen.pidxs[tensor][topSort[pat - 1]]; 981 codegen.pidxs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p0); 982 Value p1 = rewriter.create<AddIOp>(loc, p0, one); 983 codegen.highs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p1); 984 } else { 985 // Dense index still in play. 986 needsUniv = true; 987 } 988 } 989 } 990 991 // Initialize the universal dense index. 992 codegen.loops[idx] = rewriter.create<ConstantIndexOp>(loc, 0); 993 return needsUniv; 994 } 995 996 /// Returns vectorization strategy. Any implicit inner loop in the Linalg 997 /// operation is a candidate. Whether it is actually converted to SIMD code 998 /// depends on the requested strategy. 999 static bool isVectorFor(CodeGen &codegen, bool isInner, bool isSparse) { 1000 switch (codegen.options.vectorizationStrategy) { 1001 case SparseVectorizationStrategy::kNone: 1002 return false; 1003 case SparseVectorizationStrategy::kDenseInnerLoop: 1004 return isInner && !isSparse; 1005 case SparseVectorizationStrategy::kAnyStorageInnerLoop: 1006 return isInner; 1007 } 1008 llvm_unreachable("unexpected vectorization strategy"); 1009 } 1010 1011 /// Returns parallelization strategy. Any implicit loop in the Linalg operation 1012 /// that is marked "parallel" is a candidate. Whether it is actually converted 1013 /// to a parallel operation depends on the requested strategy. 1014 static bool isParallelFor(CodeGen &codegen, bool isOuter, bool isReduction, 1015 bool isSparse, bool isVector) { 1016 switch (codegen.options.parallelizationStrategy) { 1017 case SparseParallelizationStrategy::kNone: 1018 return false; 1019 case SparseParallelizationStrategy::kDenseOuterLoop: 1020 return isOuter && !isSparse && !isReduction && !isVector; 1021 case SparseParallelizationStrategy::kAnyStorageOuterLoop: 1022 return isOuter && !isReduction && !isVector; 1023 case SparseParallelizationStrategy::kDenseAnyLoop: 1024 return !isSparse && !isReduction && !isVector; 1025 case SparseParallelizationStrategy::kAnyStorageAnyLoop: 1026 return !isReduction && !isVector; 1027 } 1028 llvm_unreachable("unexpected parallelization strategy"); 1029 } 1030 1031 /// Checks unit strides for dense tensors. The iteration graph may have ignored 1032 /// dense access patterns in order to avoid cycles (sparse access patterns are 1033 /// always placed innermost), but that means dense access has become strided. 1034 /// For now, we reject vectorization of such cases. 1035 /// TODO: implement strided load/stores on dense arrays 1036 static bool denseUnitStrides(Merger &merger, linalg::GenericOp op, 1037 unsigned idx) { 1038 for (OpOperand *t : op.getInputAndOutputOperands()) { 1039 if (!getSparseTensorEncoding(t->get().getType())) { 1040 auto map = op.getTiedIndexingMap(t); 1041 for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { 1042 if (map.getDimPosition(d) == idx && d != rank - 1) 1043 return false; 1044 } 1045 } 1046 } 1047 return true; 1048 } 1049 1050 /// Generates a for-loop on a single index. 1051 static Operation *genFor(Merger &merger, CodeGen &codegen, 1052 PatternRewriter &rewriter, linalg::GenericOp op, 1053 bool isOuter, bool isInner, unsigned idx, 1054 llvm::BitVector &indices) { 1055 unsigned fb = indices.find_first(); 1056 unsigned tensor = merger.tensor(fb); 1057 assert(idx == merger.index(fb)); 1058 auto iteratorTypes = op.iterator_types().getValue(); 1059 bool isReduction = linalg::isReductionIteratorType(iteratorTypes[idx]); 1060 bool isSparse = merger.isDim(fb, Dim::kSparse); 1061 bool isVector = isVectorFor(codegen, isInner, isSparse) && 1062 denseUnitStrides(merger, op, idx); 1063 bool isParallel = 1064 isParallelFor(codegen, isOuter, isReduction, isSparse, isVector); 1065 1066 // Prepare vector length. 1067 if (isVector) 1068 codegen.curVecLength = codegen.options.vectorLength; 1069 1070 // Loop bounds and increment. 1071 Location loc = op.getLoc(); 1072 Value lo = isSparse ? codegen.pidxs[tensor][idx] : codegen.loops[idx]; 1073 Value hi = isSparse ? codegen.highs[tensor][idx] : codegen.sizes[idx]; 1074 Value step = rewriter.create<ConstantIndexOp>(loc, codegen.curVecLength); 1075 1076 // Emit a parallel loop. 1077 if (isParallel) { 1078 assert(!isVector); 1079 scf::ParallelOp parOp = rewriter.create<scf::ParallelOp>(loc, lo, hi, step); 1080 if (isSparse) 1081 codegen.pidxs[tensor][idx] = parOp.getInductionVars()[0]; 1082 else 1083 codegen.loops[idx] = parOp.getInductionVars()[0]; 1084 rewriter.setInsertionPointToStart(parOp.getBody()); 1085 return parOp; 1086 } 1087 1088 // Emit a sequential loop, potentially with a scalarized reduction. 1089 bool scalarRed = isInner && codegen.redExp != -1u; 1090 SmallVector<Value, 4> operands; 1091 if (scalarRed) { 1092 Value load = genReductionStart(merger, codegen, rewriter, op); 1093 operands.push_back(load); 1094 } 1095 scf::ForOp forOp = rewriter.create<scf::ForOp>(loc, lo, hi, step, operands); 1096 if (scalarRed) { 1097 codegen.redVal = merger.exp(codegen.redExp).val = 1098 forOp.getRegionIterArgs().front(); 1099 } 1100 // Assign induction variable to sparse or dense index. 1101 Value iv = forOp.getInductionVar(); 1102 if (isSparse) 1103 codegen.pidxs[tensor][idx] = iv; 1104 else 1105 codegen.loops[idx] = iv; 1106 rewriter.setInsertionPointToStart(forOp.getBody()); 1107 // Share vector iteration mask between all subsequent loads/stores. 1108 if (isVector) 1109 codegen.curVecMask = genVectorMask(codegen, rewriter, iv, lo, hi, step); 1110 return forOp; 1111 } 1112 1113 /// Emit a while-loop for co-iteration over multiple indices. 1114 static Operation *genWhile(Merger &merger, CodeGen &codegen, 1115 PatternRewriter &rewriter, linalg::GenericOp op, 1116 unsigned idx, bool needsUniv, 1117 llvm::BitVector &indices) { 1118 SmallVector<Type, 4> types; 1119 SmallVector<Value, 4> operands; 1120 // Construct the while-loop with a parameter for each index. 1121 Type indexType = rewriter.getIndexType(); 1122 for (unsigned b = 0, be = indices.size(); b < be; b++) { 1123 if (indices[b] && merger.isDim(b, Dim::kSparse)) { 1124 unsigned tensor = merger.tensor(b); 1125 assert(idx == merger.index(b)); 1126 types.push_back(indexType); 1127 assert(codegen.pidxs[tensor][idx].getType().isa<IndexType>() && 1128 "type mismatch for sparse index"); 1129 operands.push_back(codegen.pidxs[tensor][idx]); 1130 } 1131 } 1132 if (needsUniv) { 1133 types.push_back(indexType); 1134 assert(codegen.loops[idx].getType().isa<IndexType>() && 1135 "type mismatch for universal index"); 1136 operands.push_back(codegen.loops[idx]); 1137 } 1138 Location loc = op.getLoc(); 1139 scf::WhileOp whileOp = rewriter.create<scf::WhileOp>(loc, types, operands); 1140 Block *before = rewriter.createBlock(&whileOp.before(), {}, types); 1141 Block *after = rewriter.createBlock(&whileOp.after(), {}, types); 1142 1143 // Build the "before" region, which effectively consists 1144 // of a conjunction of "i < upper" tests on all induction. 1145 rewriter.setInsertionPointToStart(&whileOp.before().front()); 1146 Value cond; 1147 unsigned o = 0; 1148 for (unsigned b = 0, be = indices.size(); b < be; b++) { 1149 if (indices[b] && merger.isDim(b, Dim::kSparse)) { 1150 unsigned tensor = merger.tensor(b); 1151 assert(idx == merger.index(b)); 1152 Value op1 = before->getArgument(o); 1153 Value op2 = codegen.highs[tensor][idx]; 1154 Value opc = rewriter.create<CmpIOp>(loc, CmpIPredicate::ult, op1, op2); 1155 cond = cond ? rewriter.create<AndOp>(loc, cond, opc) : opc; 1156 codegen.pidxs[tensor][idx] = after->getArgument(o++); 1157 } 1158 } 1159 if (needsUniv) 1160 codegen.loops[idx] = after->getArgument(o++); 1161 assert(o == operands.size()); 1162 rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments()); 1163 rewriter.setInsertionPointToStart(&whileOp.after().front()); 1164 return whileOp; 1165 } 1166 1167 /// Generates a for-loop or a while-loop, depending on whether it implements 1168 /// singleton iteration or co-iteration over the given conjunction. 1169 static Operation *genLoop(Merger &merger, CodeGen &codegen, 1170 PatternRewriter &rewriter, linalg::GenericOp op, 1171 std::vector<unsigned> &topSort, unsigned at, 1172 bool needsUniv, llvm::BitVector &indices) { 1173 unsigned idx = topSort[at]; 1174 if (indices.count() == 1) { 1175 bool isOuter = at == 0; 1176 bool isInner = at == topSort.size() - 1; 1177 return genFor(merger, codegen, rewriter, op, isOuter, isInner, idx, 1178 indices); 1179 } 1180 genReductionEnd(merger, codegen, rewriter, op); // cannot chain 1181 return genWhile(merger, codegen, rewriter, op, idx, needsUniv, indices); 1182 } 1183 1184 /// Generates the local variables for this loop, consisting of the sparse 1185 /// indices, restored universal dense index, and dense positions. 1186 static void genLocals(Merger &merger, CodeGen &codegen, 1187 PatternRewriter &rewriter, linalg::GenericOp op, 1188 std::vector<unsigned> &topSort, unsigned at, 1189 bool needsUniv, llvm::BitVector &locals) { 1190 Location loc = op.getLoc(); 1191 unsigned idx = topSort[at]; 1192 1193 // Initialize sparse indices. 1194 Value min; 1195 for (unsigned b = 0, be = locals.size(); b < be; b++) { 1196 if (locals[b] && merger.isDim(b, Dim::kSparse)) { 1197 unsigned tensor = merger.tensor(b); 1198 assert(idx == merger.index(b)); 1199 Value ptr = codegen.indices[tensor][idx]; 1200 Value s = codegen.pidxs[tensor][idx]; 1201 Value load = genLoad(codegen, rewriter, loc, ptr, s); 1202 codegen.idxs[tensor][idx] = load; 1203 if (!needsUniv) { 1204 if (min) { 1205 Value cmp = 1206 rewriter.create<CmpIOp>(loc, CmpIPredicate::ult, load, min); 1207 min = rewriter.create<SelectOp>(loc, cmp, load, min); 1208 } else { 1209 min = load; 1210 } 1211 } 1212 } 1213 } 1214 1215 // Merge dense universal index over minimum. 1216 if (min) { 1217 assert(!needsUniv); 1218 codegen.loops[idx] = min; 1219 } 1220 1221 // Initialize dense positions. Note that we generate dense indices of the 1222 // output tensor unconditionally, since they may not appear in the lattice, 1223 // but may be needed for linearized codegen. 1224 for (unsigned b = 0, be = locals.size(); b < be; b++) { 1225 if ((locals[b] || merger.isOutTensor(b, idx)) && 1226 merger.isDim(b, Dim::kDense)) { 1227 unsigned tensor = merger.tensor(b); 1228 assert(idx == merger.index(b)); 1229 unsigned pat = at; 1230 for (; pat != 0; pat--) 1231 if (codegen.pidxs[tensor][topSort[pat - 1]]) 1232 break; 1233 Value p = (pat == 0) ? rewriter.create<ConstantIndexOp>(loc, 0) 1234 : codegen.pidxs[tensor][topSort[pat - 1]]; 1235 codegen.pidxs[tensor][idx] = genAddress( 1236 codegen, rewriter, loc, codegen.sizes[idx], p, codegen.loops[idx]); 1237 } 1238 } 1239 } 1240 1241 /// Generates the induction structure for a while-loop. 1242 static void genWhileInduction(Merger &merger, CodeGen &codegen, 1243 PatternRewriter &rewriter, linalg::GenericOp op, 1244 unsigned idx, bool needsUniv, 1245 llvm::BitVector &induction, ResultRange results) { 1246 Location loc = op.getLoc(); 1247 unsigned o = 0; 1248 SmallVector<Value, 4> operands; 1249 Value one = rewriter.create<ConstantIndexOp>(loc, 1); 1250 for (unsigned b = 0, be = induction.size(); b < be; b++) { 1251 if (induction[b] && merger.isDim(b, Dim::kSparse)) { 1252 unsigned tensor = merger.tensor(b); 1253 assert(idx == merger.index(b)); 1254 Value op1 = codegen.idxs[tensor][idx]; 1255 Value op2 = codegen.loops[idx]; 1256 Value op3 = codegen.pidxs[tensor][idx]; 1257 Value cmp = rewriter.create<CmpIOp>(loc, CmpIPredicate::eq, op1, op2); 1258 Value add = rewriter.create<AddIOp>(loc, op3, one); 1259 operands.push_back(rewriter.create<SelectOp>(loc, cmp, add, op3)); 1260 codegen.pidxs[tensor][idx] = results[o++]; 1261 } 1262 } 1263 if (needsUniv) { 1264 operands.push_back(rewriter.create<AddIOp>(loc, codegen.loops[idx], one)); 1265 codegen.loops[idx] = results[o++]; 1266 } 1267 assert(o == operands.size()); 1268 rewriter.create<scf::YieldOp>(loc, operands); 1269 } 1270 1271 /// Generates a single if-statement within a while-loop. 1272 static scf::IfOp genIf(Merger &merger, CodeGen &codegen, 1273 PatternRewriter &rewriter, linalg::GenericOp op, 1274 unsigned idx, llvm::BitVector &conditions) { 1275 Location loc = op.getLoc(); 1276 Value cond; 1277 for (unsigned b = 0, be = conditions.size(); b < be; b++) { 1278 if (conditions[b]) { 1279 unsigned tensor = merger.tensor(b); 1280 assert(idx == merger.index(b)); 1281 Value clause; 1282 if (merger.isDim(b, Dim::kSparse)) { 1283 Value op1 = codegen.idxs[tensor][idx]; 1284 Value op2 = codegen.loops[idx]; 1285 clause = rewriter.create<CmpIOp>(loc, CmpIPredicate::eq, op1, op2); 1286 } else { 1287 clause = rewriter.create<ConstantIntOp>(loc, 1, 1); // true 1288 } 1289 cond = cond ? rewriter.create<AndOp>(loc, cond, clause) : clause; 1290 } 1291 } 1292 scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, cond, /*else*/ true); 1293 rewriter.setInsertionPointToStart(&ifOp.thenRegion().front()); 1294 return ifOp; 1295 } 1296 1297 /// Recursively generates code while computing iteration lattices in order 1298 /// to manage the complexity of implementing co-iteration over unions 1299 /// and intersections of sparse iterations spaces. 1300 static void genStmt(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, 1301 linalg::GenericOp op, std::vector<unsigned> &topSort, 1302 unsigned exp, unsigned at) { 1303 // At each leaf, assign remaining tensor (sub)expression to output tensor. 1304 if (at == topSort.size()) { 1305 OpOperand *lhs = op.getOutputOperand(0); 1306 Value rhs = genExp(merger, codegen, rewriter, op, exp); 1307 genTensorStore(merger, codegen, rewriter, op, lhs, rhs); 1308 return; 1309 } 1310 assert(codegen.curVecLength == 1); 1311 1312 // Construct iteration lattices for current loop index, with L0 at top. 1313 // Then emit initialization code for the loop sequence at this level. 1314 // We maintain the universal dense index if dense indices are still 1315 // in play for a non-singleton loop sequence. 1316 Location loc = op.getLoc(); 1317 unsigned idx = topSort[at]; 1318 unsigned lts = merger.optimizeSet(buildLattices(merger, op, exp, idx)); 1319 unsigned lsize = merger.set(lts).size(); 1320 assert(lsize != 0); 1321 unsigned l0 = merger.set(lts)[0]; 1322 unsigned ldx = at == 0 ? -1u : topSort[at - 1]; 1323 genInvariants(merger, codegen, rewriter, op, exp, ldx, /*hoist=*/true); 1324 bool needsUniv = false; 1325 if (genInit(merger, codegen, rewriter, op, topSort, at, 1326 merger.lat(l0).bits)) { 1327 // Maintain the universal index only if it is actually 1328 // consumed by a subsequent lattice point. 1329 for (unsigned i = 1; i < lsize; i++) { 1330 unsigned li = merger.set(lts)[i]; 1331 if (!merger.hasAnyDimOf(merger.lat(li).simple, Dim::kSparse)) { 1332 needsUniv = true; 1333 break; 1334 } 1335 } 1336 } 1337 1338 // Emit a loop for every lattice point L0 >= Li. 1339 for (unsigned i = 0; i < lsize; i++) { 1340 unsigned li = merger.set(lts)[i]; 1341 1342 // Emit loop. 1343 codegen.curVecLength = 1; 1344 llvm::BitVector indices = merger.lat(li).simple; 1345 Operation *loop = 1346 genLoop(merger, codegen, rewriter, op, topSort, at, needsUniv, indices); 1347 genLocals(merger, codegen, rewriter, op, topSort, at, needsUniv, 1348 merger.lat(li).bits); 1349 1350 // Visit all lattices points with Li >= Lj to generate the 1351 // loop-body, possibly with if statements for coiteration. 1352 bool isWhile = dyn_cast<scf::WhileOp>(loop) != nullptr; 1353 for (unsigned j = 0; j < lsize; j++) { 1354 unsigned lj = merger.set(lts)[j]; 1355 unsigned ej = merger.lat(lj).exp; 1356 if (li == lj || merger.latGT(li, lj)) { 1357 // Recurse into body of each branch. 1358 if (isWhile) { 1359 scf::IfOp ifOp = 1360 genIf(merger, codegen, rewriter, op, idx, merger.lat(lj).simple); 1361 genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1); 1362 rewriter.setInsertionPointToStart(&ifOp.elseRegion().front()); 1363 } else { 1364 genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1); 1365 } 1366 } 1367 } 1368 1369 // Wrap-up induction and restore insertion point. 1370 if (isWhile) { 1371 scf::WhileOp whileOp = cast<scf::WhileOp>(loop); 1372 rewriter.setInsertionPointToEnd(&whileOp.after().front()); 1373 genWhileInduction(merger, codegen, rewriter, op, idx, needsUniv, 1374 merger.lat(li).bits, whileOp.results()); 1375 } else { 1376 needsUniv = false; 1377 if (codegen.redVal) { 1378 rewriter.create<scf::YieldOp>(loc, codegen.redVal); 1379 codegen.redVal = loop->getResult(0); 1380 } 1381 } 1382 rewriter.setInsertionPointAfter(loop); 1383 } 1384 1385 // Wrap-up loop sequence. 1386 codegen.curVecLength = 1; 1387 genReductionEnd(merger, codegen, rewriter, op); 1388 genInvariants(merger, codegen, rewriter, op, exp, ldx, /*hoist=*/false); 1389 codegen.loops[idx] = Value(); 1390 } 1391 1392 /// Converts the result computed by the sparse kernel into the required form. 1393 static void genResult(CodeGen &codegen, PatternRewriter &rewriter, 1394 linalg::GenericOp op) { 1395 RankedTensorType resType = op.getOutputTensorTypes()[0]; 1396 Value result = codegen.buffers.back(); 1397 if (getSparseTensorEncoding(resType)) 1398 result = rewriter.create<ToTensorOp>(op.getLoc(), resType, result); 1399 else 1400 result = 1401 rewriter.create<memref::TensorLoadOp>(op.getLoc(), resType, result); 1402 rewriter.replaceOp(op, result); 1403 } 1404 1405 namespace { 1406 1407 /// Sparse rewriting rule for generic Lingalg operation. 1408 struct GenericOpSparsifier : public OpRewritePattern<linalg::GenericOp> { 1409 public: 1410 GenericOpSparsifier(MLIRContext *context, SparsificationOptions o) 1411 : OpRewritePattern<linalg::GenericOp>(context), options(o) {} 1412 1413 LogicalResult matchAndRewrite(linalg::GenericOp op, 1414 PatternRewriter &rewriter) const override { 1415 // Detects sparse annotations and translate the per-dimension sparsity 1416 // information for all tensors to loop indices in the kernel. 1417 assert(op.getNumOutputs() == 1); 1418 unsigned numTensors = op.getNumInputsAndOutputs(); 1419 unsigned numLoops = op.iterator_types().getValue().size(); 1420 Merger merger(numTensors, numLoops); 1421 if (!findSparseAnnotations(merger, op)) 1422 return failure(); 1423 1424 // Computes a topologically sorted iteration graph to ensure 1425 // tensors are visited in natural index order. Fails on cycles. 1426 // This assumes that higher-level passes have already put the 1427 // tensors in each tensor expression in a feasible order. 1428 std::vector<unsigned> topSort; 1429 if (!computeIterationGraph(merger, op, topSort, /*sparseOnly=*/false) && 1430 !computeIterationGraph(merger, op, topSort, /*sparseOnly=*/true)) 1431 return failure(); 1432 1433 // Finds the terminating yield statement and builds the tensor 1434 // expression for the Linalg operation in SSA form. 1435 Operation *yield = op.region().front().getTerminator(); 1436 Optional<unsigned> exp = buildTensorExp(merger, op, yield->getOperand(0)); 1437 if (!exp.hasValue()) 1438 return failure(); // build failure 1439 1440 // Recursively generates code. 1441 CodeGen codegen(options, numTensors, numLoops); 1442 if (!genBuffers(merger, codegen, rewriter, op)) 1443 return failure(); // could not bufferize 1444 genStmt(merger, codegen, rewriter, op, topSort, exp.getValue(), 0); 1445 genResult(codegen, rewriter, op); 1446 return success(); 1447 } 1448 1449 private: 1450 /// Options to control sparse code generation. 1451 SparsificationOptions options; 1452 }; 1453 1454 } // namespace 1455 1456 /// Populates the given patterns list with rewriting rules required for 1457 /// the sparsification of linear algebra operations. 1458 void mlir::populateSparsificationPatterns( 1459 RewritePatternSet &patterns, const SparsificationOptions &options) { 1460 patterns.add<GenericOpSparsifier>(patterns.getContext(), options); 1461 } 1462