1 //===- Sparsification.cpp - Implementation of sparsification --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements converting sparse tensor types to actual sparse code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodegenUtils.h"
14 #include "mlir/Dialect/Affine/IR/AffineOps.h"
15 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
16 #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
17 #include "mlir/Dialect/Bufferization/IR/Bufferization.h"
18 #include "mlir/Dialect/Linalg/IR/Linalg.h"
19 #include "mlir/Dialect/Linalg/Utils/Utils.h"
20 #include "mlir/Dialect/MemRef/IR/MemRef.h"
21 #include "mlir/Dialect/SCF/SCF.h"
22 #include "mlir/Dialect/SCF/Transforms.h"
23 #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
24 #include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
25 #include "mlir/Dialect/SparseTensor/Utils/Merger.h"
26 #include "mlir/Dialect/StandardOps/IR/Ops.h"
27 #include "mlir/Dialect/Vector/IR/VectorOps.h"
28 #include "mlir/IR/Matchers.h"
29 #include "mlir/IR/TensorEncoding.h"
30 #include "llvm/ADT/SmallBitVector.h"
31 
32 using namespace mlir;
33 using namespace mlir::sparse_tensor;
34 
35 //===----------------------------------------------------------------------===//
36 // Declarations of data structures.
37 //===----------------------------------------------------------------------===//
38 
39 namespace {
40 
41 // Iteration graph sorting.
42 enum SortMask { kSparseOnly = 0x0, kIncludeDense = 0x1, kIncludeUndef = 0x2 };
43 
44 // Reduction kinds.
45 enum Reduction { kNoReduc, kSum, kProduct, kAnd, kOr, kXor };
46 
47 // Code generation.
48 struct CodeGen {
49   CodeGen(SparsificationOptions o, unsigned numTensors, unsigned numLoops,
50           OpOperand *op, unsigned nest)
51       : options(o), loops(numLoops), sizes(numLoops), buffers(numTensors),
52         pointers(numTensors, std::vector<Value>(numLoops)),
53         indices(numTensors, std::vector<Value>(numLoops)),
54         highs(numTensors, std::vector<Value>(numLoops)),
55         pidxs(numTensors, std::vector<Value>(numLoops)),
56         idxs(numTensors, std::vector<Value>(numLoops)), redExp(-1u), redVal(),
57         redKind(kNoReduc), sparseOut(op), outerParNest(nest), lexIdx(),
58         expValues(), expFilled(), expAdded(), expCount(), curVecLength(1),
59         curVecMask() {}
60   /// Sparsification options.
61   SparsificationOptions options;
62   /// Universal dense indices and upper bounds (by index). The loops array
63   /// is updated with the value of the universal dense index in the current
64   /// loop. The sizes array is set once with the inferred dimension sizes.
65   std::vector<Value> loops;
66   std::vector<Value> sizes;
67   /// Buffers for storing dense and sparse numerical values (by tensor).
68   /// This array is set once during bufferization of all tensors.
69   std::vector<Value> buffers;
70   /// Sparse storage schemes (1-D): pointers and indices (by tensor and index).
71   /// This array is set once during bufferization of all sparse tensors.
72   std::vector<std::vector<Value>> pointers;
73   std::vector<std::vector<Value>> indices;
74   /// Sparse iteration information (by tensor and index). These arrays
75   /// are updated to remain current within the current loop.
76   std::vector<std::vector<Value>> highs;
77   std::vector<std::vector<Value>> pidxs;
78   std::vector<std::vector<Value>> idxs;
79   /// Current reduction, updated during code generation. When indices of a
80   /// reduction are exhausted, all inner loops can use a scalarized reduction.
81   unsigned redExp;
82   Value redVal;
83   Reduction redKind;
84   // Sparse tensor as output. Implemented either through direct injective
85   // insertion in lexicographic index order (where indices are updated
86   // in the temporary array `lexIdx`) or through access pattern expansion
87   // in the innermost loop nest (`expValues` through `expCount`).
88   OpOperand *sparseOut;
89   unsigned outerParNest;
90   Value lexIdx;
91   Value expValues;
92   Value expFilled;
93   Value expAdded;
94   Value expCount;
95   // Current vector length and mask.
96   unsigned curVecLength;
97   Value curVecMask;
98 };
99 
100 } // namespace
101 
102 //===----------------------------------------------------------------------===//
103 // Sparse compiler analysis methods.
104 //===----------------------------------------------------------------------===//
105 
106 /// Helper method to apply dimension ordering permutation.
107 static unsigned perm(const SparseTensorEncodingAttr &enc, unsigned d) {
108   if (enc) {
109     auto order = enc.getDimOrdering();
110     if (order) {
111       assert(order.isPermutation());
112       return order.getDimPosition(d);
113     }
114   }
115   return d;
116 }
117 
118 /// Helper method to translate dim level type to internal representation.
119 static Dim toDim(const SparseTensorEncodingAttr &enc, unsigned d) {
120   if (enc) {
121     SparseTensorEncodingAttr::DimLevelType tp = enc.getDimLevelType()[d];
122     if (tp == SparseTensorEncodingAttr::DimLevelType::Compressed)
123       return Dim::kSparse;
124     if (tp == SparseTensorEncodingAttr::DimLevelType::Singleton)
125       return Dim::kSingle;
126   }
127   return Dim::kDense;
128 }
129 
130 /// Helper method to inspect affine expressions. Rejects cases where the
131 /// same index is used more than once. Also rejects affine expressions
132 /// that are not a direct index for annotated tensors.
133 // TODO: accept more affine cases for sparse tensors
134 static bool findAffine(Merger &merger, unsigned tensor, AffineExpr a, Dim dim,
135                        bool isDense) {
136   switch (a.getKind()) {
137   case AffineExprKind::DimId: {
138     unsigned idx = a.cast<AffineDimExpr>().getPosition();
139     if (!merger.isDim(tensor, idx, Dim::kUndef))
140       return false; // used more than once
141     merger.setDim(tensor, idx, dim);
142     return true;
143   }
144   case AffineExprKind::Add:
145   case AffineExprKind::Mul: {
146     if (!isDense)
147       return false;
148     auto binOp = a.cast<AffineBinaryOpExpr>();
149     return findAffine(merger, tensor, binOp.getLHS(), dim, isDense) &&
150            findAffine(merger, tensor, binOp.getRHS(), dim, isDense);
151   }
152   case AffineExprKind::Constant:
153     return isDense;
154   default:
155     return false;
156   }
157 }
158 
159 /// Helper method to inspect sparse encodings in the tensor types.
160 /// Fills the per-dimension sparsity information for all tensors.
161 /// Returns true if the sparse annotations and affine subscript
162 /// expressions of all tensors are admissable. Returns false if
163 /// no annotations are found or inadmissable constructs occur.
164 static bool findSparseAnnotations(Merger &merger, linalg::GenericOp op) {
165   bool annotated = false;
166   for (OpOperand *t : op.getInputAndOutputOperands()) {
167     auto map = op.getTiedIndexingMap(t);
168     auto enc = getSparseTensorEncoding(t->get().getType());
169     if (enc)
170       annotated = true;
171     assert(map.getNumResults() == op.getRank(t));
172     for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
173       unsigned tensor = t->getOperandNumber();
174       AffineExpr a = map.getResult(perm(enc, d));
175       if (!findAffine(merger, tensor, a, toDim(enc, d), !enc))
176         return false; // inadmissable affine expression
177     }
178   }
179   return annotated;
180 }
181 
182 /// A DFS helper to compute a topological sort. Note that recursion is
183 /// bounded by the number of implicit loops, which is always small.
184 /// Returns false when a cycle is detected.
185 static bool topSortDFS(unsigned i, std::vector<unsigned> &visit,
186                        std::vector<unsigned> &topSort,
187                        std::vector<std::vector<bool>> &adjM) {
188   if (visit[i] != 0)
189     return visit[i] != 1; // 1 denotes cycle!
190   visit[i] = 1;
191   for (unsigned j = 0, e = visit.size(); j < e; j++)
192     if (adjM[i][j])
193       if (!topSortDFS(j, visit, topSort, adjM))
194         return false;
195   visit[i] = 2;
196   topSort.push_back(i);
197   return true;
198 }
199 
200 /// Helper method to add all constraints from the indices in one affine
201 /// expression before all indices in the other affine expression. For
202 /// example i0+i1 < i2+i3+1 yields i0<i2, i0<i3, i1<i2, and i1<i3.
203 static void addAffineOrderings(std::vector<std::vector<bool>> &adjM,
204                                AffineExpr a, AffineExpr b, unsigned fidx) {
205   switch (a.getKind()) {
206   case AffineExprKind::DimId: {
207     unsigned idx = a.cast<AffineDimExpr>().getPosition();
208     if (b)
209       addAffineOrderings(adjM, b, AffineExpr(), idx);
210     else
211       adjM[fidx][idx] = true;
212     break;
213   }
214   case AffineExprKind::Add:
215   case AffineExprKind::Mul: {
216     auto binOp = a.cast<AffineBinaryOpExpr>();
217     addAffineOrderings(adjM, binOp.getLHS(), b, fidx);
218     addAffineOrderings(adjM, binOp.getRHS(), b, fidx);
219     break;
220   }
221   default:
222     break;
223   }
224 }
225 
226 /// Computes a topologically sorted iteration graph for the linalg operation.
227 /// Ensures all tensors are visited in natural index order. This is essential
228 /// for sparse storage formats since these only support access along fixed
229 /// dimensions. Even for dense storage formats, however, the natural index
230 /// order yields innermost unit-stride access with better spatial locality.
231 static bool computeIterationGraph(Merger &merger, linalg::GenericOp op,
232                                   std::vector<unsigned> &topSort,
233                                   unsigned mask) {
234   // Set up an n x n from/to adjacency matrix of the iteration graph
235   // for the implicit loop indices i_0 .. i_n-1.
236   unsigned n = op.getNumLoops();
237   std::vector<std::vector<bool>> adjM(n, std::vector<bool>(n, false));
238 
239   // Iterate over the indexing maps of every tensor in the tensor expression.
240   for (OpOperand *t : op.getInputAndOutputOperands()) {
241     auto map = op.getTiedIndexingMap(t);
242     auto enc = getSparseTensorEncoding(t->get().getType());
243     assert(map.getNumDims() == n);
244     // Skip dense tensor constraints when not requested.
245     if (!(mask & SortMask::kIncludeDense) && !enc)
246       continue;
247     // Each tensor expression and optional dimension ordering (row-major
248     // by default) puts an ordering constraint on the loop indices. For
249     // example, the tensor expresion A_ijk forces the ordering i < j < k
250     // on the loop indices if no explicit dimension ordering is given.
251     for (unsigned d = 1, rank = map.getNumResults(); d < rank; d++) {
252       AffineExpr f = map.getResult(perm(enc, d - 1));
253       AffineExpr t = map.getResult(perm(enc, d));
254       addAffineOrderings(adjM, f, t, 0);
255     }
256     // Push unrelated loops into sparse iteration space, so these
257     // will be skipped more often.
258     if (mask & SortMask::kIncludeUndef) {
259       unsigned tensor = t->getOperandNumber();
260       for (unsigned i = 0; i < n; i++)
261         if (merger.isDim(tensor, i, Dim::kSparse))
262           for (unsigned j = 0; j < n; j++)
263             if (merger.isDim(tensor, j, Dim::kUndef))
264               adjM[i][j] = true;
265     }
266   }
267 
268   // Topologically sort the iteration graph to determine loop order.
269   // Report failure for a cyclic iteration graph.
270   topSort.clear();
271   topSort.reserve(n);
272   std::vector<unsigned> visit(n, 0);
273   for (unsigned i = 0; i < n; i++)
274     if (visit[i] == 0)
275       if (!topSortDFS(i, visit, topSort, adjM))
276         return false; // cycle!
277   std::reverse(std::begin(topSort), std::end(topSort));
278   return true;
279 }
280 
281 /// Returns true if tensor has an in-place annotation.
282 static bool isInPlace(Value val) {
283   if (auto arg = val.dyn_cast<BlockArgument>())
284     if (auto funcOp = dyn_cast<FuncOp>(arg.getOwner()->getParentOp()))
285       if (auto attr = funcOp.getArgAttrOfType<BoolAttr>(
286               arg.getArgNumber(),
287               bufferization::BufferizableOpInterface::kInplaceableAttrName))
288         return attr.getValue();
289   return false;
290 }
291 
292 /// Returns true if tensor materializes uninitialized into the computation.
293 static bool isMaterializing(Value val) {
294   return val.getDefiningOp<linalg::InitTensorOp>() ||
295          val.getDefiningOp<InitOp>();
296 }
297 
298 /// Returns true when the tensor expression is admissable for codegen.
299 /// Since all sparse input tensors are admissable, we just need to check
300 /// whether the out tensor in the tensor expression codegen is admissable.
301 /// Sets `sparseOut` to the tensor and `outerParNest` to the outer injective
302 /// nesting depth when a "truly dynamic" sparse tensor output occurs.
303 static bool isAdmissableTensorExp(Merger &merger, linalg::GenericOp op,
304                                   std::vector<unsigned> &topSort, unsigned exp,
305                                   OpOperand **sparseOut,
306                                   unsigned &outerParNest) {
307   OpOperand *lhs = op.getOutputOperand(0);
308   unsigned tensor = lhs->getOperandNumber();
309   auto enc = getSparseTensorEncoding(lhs->get().getType());
310   // An non-annotated output tensor is assumed dense, and becomes a random
311   // access n-dim memref. Admissable since insertions cannot occur.
312   if (!enc)
313     return true;
314   // An all-dense annotated "sparse" output tensor becomes a linearized random
315   // access 1-dim memref. Also admissable since insertions cannot occur.
316   bool allDense = true;
317   auto iteratorTypes = op.iterator_types().getValue();
318   unsigned numLoops = iteratorTypes.size();
319   for (unsigned i = 0; i < numLoops; i++)
320     if (merger.isDim(tensor, i, Dim::kSparse)) {
321       allDense = false;
322       break;
323     }
324   if (allDense)
325     return true;
326   // A tensor expression with a sparse output tensor that changes its values
327   // but not its nonzero structure, an operation called "simply dynamic" in
328   // [Bik96,Ch9], is also admissable without special codegen, provided
329   // the tensor's underlying sparse storage scheme can be modified in place.
330   if (merger.isSingleCondition(tensor, exp) && isInPlace(lhs->get()))
331     return true;
332   // Accept "truly dynamic" if the output tensor materializes uninitialized
333   // into the computation and insertions occur in lexicographic index order.
334   if (isMaterializing(lhs->get())) {
335     unsigned nest = 0;
336     for (unsigned i = 0; i < numLoops; i++) {
337       if (isReductionIterator(iteratorTypes[topSort[i]]))
338         break; // terminate at first reduction
339       nest++;
340     }
341     // Determine admissable dynamic insertion situations:
342     // (1) fully injective, since there are no reductions,
343     // (2) admissable 1-d expansion in innermost dimension.
344     if (nest >= op.getRank(lhs) - 1) {
345       *sparseOut = lhs;
346       outerParNest = nest;
347       return true;
348     }
349   }
350   return false;
351 }
352 
353 //===----------------------------------------------------------------------===//
354 // Sparse compiler synthesis methods (reductions).
355 //===----------------------------------------------------------------------===//
356 
357 /// Maps reduction kind to vector::CombiningKind.
358 static vector::CombiningKind getCombiningKind(Reduction kind) {
359   switch (kind) {
360   case kNoReduc:
361     break;
362   case kSum:
363     return vector::CombiningKind::ADD;
364   case kProduct:
365     return vector::CombiningKind::MUL;
366   case kAnd:
367     return vector::CombiningKind::AND;
368   case kOr:
369     return vector::CombiningKind::OR;
370   case kXor:
371     return vector::CombiningKind::XOR;
372   }
373   llvm_unreachable("unknown reduction kind");
374 }
375 
376 /// Maps operation to reduction.
377 static Reduction getReduction(Kind kind) {
378   switch (kind) {
379   case Kind::kAddF:
380   case Kind::kAddI:
381   case Kind::kSubF:
382   case Kind::kSubI:
383     return kSum;
384   case Kind::kMulF:
385   case Kind::kMulI:
386     return kProduct;
387   case Kind::kAndI:
388     return kAnd;
389   case Kind::kOrI:
390     return kOr;
391   case Kind::kXorI:
392     return kXor;
393   default:
394     llvm_unreachable("unexpected reduction operator");
395   }
396 }
397 
398 /// Generates an initial value for a vector reduction, following the scheme
399 /// given in Chapter 5 of "The Software Vectorization Handbook", where the
400 /// initial scalar value is correctly embedded in the vector reduction value,
401 /// and a straightforward horizontal reduction will complete the operation.
402 static Value genVectorReducInit(CodeGen &codegen, PatternRewriter &rewriter,
403                                 Location loc, VectorType vtp) {
404   Value r = codegen.redVal;
405   switch (codegen.redKind) {
406   case kNoReduc:
407     break;
408   case kSum:
409   case kXor:
410     // Initialize reduction vector to: | 0 | .. | 0 | r |
411     return rewriter.create<vector::InsertElementOp>(
412         loc, r, constantZero(rewriter, loc, vtp),
413         constantIndex(rewriter, loc, 0));
414   case kProduct:
415     // Initialize reduction vector to: | 1 | .. | 1 | r |
416     return rewriter.create<vector::InsertElementOp>(
417         loc, r, constantOne(rewriter, loc, vtp),
418         constantIndex(rewriter, loc, 0));
419   case kAnd:
420   case kOr:
421     // Initialize reduction vector to: | r | .. | r | r |
422     return rewriter.create<vector::BroadcastOp>(loc, vtp, r);
423   }
424   llvm_unreachable("unknown reduction kind");
425 }
426 
427 /// Generates final value for a vector reduction.
428 static Value genVectorReducEnd(CodeGen &codegen, PatternRewriter &rewriter,
429                                Location loc, VectorType vtp) {
430   vector::CombiningKind kind = getCombiningKind(codegen.redKind);
431   return rewriter.create<vector::ReductionOp>(loc, kind, codegen.redVal);
432 }
433 
434 /// Updates scalarized reduction value.
435 static void updateReduc(Merger &merger, CodeGen &codegen, Value reduc) {
436   assert(codegen.redKind != kNoReduc);
437   codegen.redVal = merger.exp(codegen.redExp).val = reduc;
438 }
439 
440 //===----------------------------------------------------------------------===//
441 // Sparse compiler synthesis methods (statements and expressions).
442 //===----------------------------------------------------------------------===//
443 
444 /// Generates buffer for the output tensor. Note that all sparse kernels
445 /// assume that when all elements are written to (viz. x(i) = y(i) * z(i)),
446 /// the output buffer is already initialized to all zeroes and only nonzeroes
447 /// values are computed and written out. For updates (viz. x(i) += y(i) * z(i)),
448 /// only nonzeroes values are used for the updates and no assumption on the
449 /// original contents of the output buffer is necessary..
450 static Value genOutputBuffer(CodeGen &codegen, PatternRewriter &rewriter,
451                              linalg::GenericOp op, MemRefType denseTp,
452                              ArrayRef<Value> args) {
453   Location loc = op.getLoc();
454   Value tensor = op.getOutputOperand(0)->get();
455   // The output tensor simply could materialize from the buffer that will
456   // be generated for the tensor present in the outs() clause. This has
457   // the major advantage that the sparse kernel only updates the nonzero
458   // positions for the output tensor.
459   if (isInPlace(tensor))
460     return rewriter.create<bufferization::ToMemrefOp>(loc, denseTp, tensor);
461   // By default, a new buffer is allocated which is initialized to the
462   // tensor defined in the outs() clause. This is always correct but
463   // introduces a dense initialization component that may negatively
464   // impact the running complexity of the sparse kernel. If the tensor
465   // materializes into the computation, we need to preserve the zero
466   // initialization assumption of all sparse output buffers.
467   if (isMaterializing(tensor)) {
468     Value alloc = rewriter.create<memref::AllocOp>(loc, denseTp, args);
469     Value zero = constantZero(rewriter, loc, denseTp.getElementType());
470     rewriter.create<linalg::FillOp>(loc, zero, alloc);
471     return alloc;
472   }
473   Value init = rewriter.create<bufferization::ToMemrefOp>(loc, denseTp, tensor);
474   Value alloc = rewriter.create<memref::AllocOp>(loc, denseTp, args);
475   rewriter.create<memref::CopyOp>(loc, init, alloc);
476   return alloc;
477 }
478 
479 /// Local bufferization of all dense and sparse data structures.
480 /// This code enables testing the first prototype sparse compiler.
481 // TODO: replace this with a proliferated bufferization strategy
482 static void genBuffers(Merger &merger, CodeGen &codegen,
483                        PatternRewriter &rewriter, linalg::GenericOp op) {
484   Location loc = op.getLoc();
485   assert(op.getNumInputsAndOutputs() == op.getNumInputs() + 1);
486   // For every tensor, find lower and upper bound on dimensions, set the
487   // same bounds on loop indices, and obtain dense or sparse buffer(s).
488   SmallVector<Value, 4> args;
489   for (OpOperand *t : op.getInputAndOutputOperands()) {
490     unsigned tensor = t->getOperandNumber();
491     auto shape = op.getShape(t);
492     auto map = op.getTiedIndexingMap(t);
493     auto enc = getSparseTensorEncoding(t->get().getType());
494     // Scan all dimensions of current tensor.
495     args.clear();
496     for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
497       AffineExpr a = map.getResult(perm(enc, d));
498       if (a.getKind() != AffineExprKind::DimId)
499         continue; // compound
500       unsigned idx = a.cast<AffineDimExpr>().getPosition();
501       // Handle sparse storage schemes.
502       if (merger.isDim(tensor, idx, Dim::kSparse)) {
503         auto dynShape = {ShapedType::kDynamicSize};
504         auto ptrTp =
505             MemRefType::get(dynShape, getPointerOverheadType(rewriter, enc));
506         auto indTp =
507             MemRefType::get(dynShape, getIndexOverheadType(rewriter, enc));
508         Value dim = constantIndex(rewriter, loc, d);
509         // Generate sparse primitives to obtains pointer and indices.
510         codegen.pointers[tensor][idx] =
511             rewriter.create<ToPointersOp>(loc, ptrTp, t->get(), dim);
512         codegen.indices[tensor][idx] =
513             rewriter.create<ToIndicesOp>(loc, indTp, t->get(), dim);
514       }
515       // Find upper bound in current dimension.
516       unsigned p = perm(enc, d);
517       Value up = linalg::createOrFoldDimOp(rewriter, loc, t->get(), p);
518       if (ShapedType::isDynamic(shape[p]))
519         args.push_back(up);
520       assert(codegen.highs[tensor][idx] == nullptr);
521       codegen.sizes[idx] = codegen.highs[tensor][idx] = up;
522     }
523     // Perform the required bufferization. Dense inputs materialize
524     // from the input tensors. Dense outputs need special handling.
525     // Sparse inputs use sparse primitives to obtain the values.
526     // We also accept in-place all-dense annotated "sparse" outputs.
527     Type elementType = getElementTypeOrSelf(t->get().getType());
528     if (!enc) {
529       // Non-annotated dense tensors.
530       auto denseTp = MemRefType::get(shape, elementType);
531       if (tensor < op.getNumInputs())
532         codegen.buffers[tensor] =
533             rewriter.create<bufferization::ToMemrefOp>(loc, denseTp, t->get());
534       else
535         codegen.buffers[tensor] =
536             genOutputBuffer(codegen, rewriter, op, denseTp, args);
537     } else if (t == codegen.sparseOut) {
538       // True sparse output needs a lexIdx array.
539       Value rank = constantIndex(rewriter, loc, op.getRank(t));
540       auto dynShape = {ShapedType::kDynamicSize};
541       auto memTp = MemRefType::get(dynShape, rewriter.getIndexType());
542       codegen.lexIdx = rewriter.create<memref::AllocaOp>(loc, memTp, rank);
543     } else {
544       // Annotated sparse tensors.
545       auto dynShape = {ShapedType::kDynamicSize};
546       auto sparseTp = MemRefType::get(dynShape, elementType);
547       codegen.buffers[tensor] =
548           rewriter.create<ToValuesOp>(loc, sparseTp, t->get());
549     }
550   }
551 }
552 
553 /// Constructs vector type.
554 static VectorType vectorType(CodeGen &codegen, Type etp) {
555   return VectorType::get(codegen.curVecLength, etp);
556 }
557 
558 /// Constructs vector type from pointer.
559 static VectorType vectorType(CodeGen &codegen, Value ptr) {
560   return vectorType(codegen, ptr.getType().cast<MemRefType>().getElementType());
561 }
562 
563 /// Constructs vector iteration mask.
564 static Value genVectorMask(CodeGen &codegen, PatternRewriter &rewriter,
565                            Value iv, Value lo, Value hi, Value step) {
566   Location loc = iv.getLoc();
567   VectorType mtp = vectorType(codegen, rewriter.getI1Type());
568   // Special case if the vector length evenly divides the trip count (for
569   // example, "for i = 0, 128, 16"). A constant all-true mask is generated
570   // so that all subsequent masked memory operations are immediately folded
571   // into unconditional memory operations.
572   IntegerAttr loInt, hiInt, stepInt;
573   if (matchPattern(lo, m_Constant(&loInt)) &&
574       matchPattern(hi, m_Constant(&hiInt)) &&
575       matchPattern(step, m_Constant(&stepInt))) {
576     if (((hiInt.getInt() - loInt.getInt()) % stepInt.getInt()) == 0)
577       return rewriter.create<vector::BroadcastOp>(
578           loc, mtp, constantI1(rewriter, loc, true));
579   }
580   // Otherwise, generate a vector mask that avoids overrunning the upperbound
581   // during vector execution. Here we rely on subsequent loop optimizations to
582   // avoid executing the mask in all iterations, for example, by splitting the
583   // loop into an unconditional vector loop and a scalar cleanup loop.
584   auto minMap = AffineMap::get(
585       /*dimCount=*/2, /*symbolCount=*/1,
586       {rewriter.getAffineSymbolExpr(0),
587        rewriter.getAffineDimExpr(0) - rewriter.getAffineDimExpr(1)},
588       rewriter.getContext());
589   Value end =
590       rewriter.createOrFold<AffineMinOp>(loc, minMap, ValueRange{hi, iv, step});
591   return rewriter.create<vector::CreateMaskOp>(loc, mtp, end);
592 }
593 
594 /// Generates a vectorized load lhs = a[ind[lo:hi]] or lhs = a[lo:hi].
595 static Value genVectorLoad(CodeGen &codegen, PatternRewriter &rewriter,
596                            Value ptr, ArrayRef<Value> args) {
597   Location loc = ptr.getLoc();
598   VectorType vtp = vectorType(codegen, ptr);
599   Value pass = constantZero(rewriter, loc, vtp);
600   if (args.back().getType().isa<VectorType>()) {
601     SmallVector<Value, 4> scalarArgs(args.begin(), args.end());
602     Value indexVec = args.back();
603     scalarArgs.back() = constantIndex(rewriter, loc, 0);
604     return rewriter.create<vector::GatherOp>(
605         loc, vtp, ptr, scalarArgs, indexVec, codegen.curVecMask, pass);
606   }
607   return rewriter.create<vector::MaskedLoadOp>(loc, vtp, ptr, args,
608                                                codegen.curVecMask, pass);
609 }
610 
611 /// Generates a vectorized store a[ind[lo:hi]] = rhs or a[lo:hi] = rhs.
612 static void genVectorStore(CodeGen &codegen, PatternRewriter &rewriter,
613                            Value rhs, Value ptr, ArrayRef<Value> args) {
614   Location loc = ptr.getLoc();
615   if (args.back().getType().isa<VectorType>()) {
616     SmallVector<Value, 4> scalarArgs(args.begin(), args.end());
617     Value indexVec = args.back();
618     scalarArgs.back() = constantIndex(rewriter, loc, 0);
619     rewriter.create<vector::ScatterOp>(loc, ptr, scalarArgs, indexVec,
620                                        codegen.curVecMask, rhs);
621     return;
622   }
623   rewriter.create<vector::MaskedStoreOp>(loc, ptr, args, codegen.curVecMask,
624                                          rhs);
625 }
626 
627 /// Generates a vectorized invariant. Here we rely on subsequent loop
628 /// optimizations to hoist the invariant broadcast out of the vector loop.
629 static Value genVectorInvariantValue(CodeGen &codegen,
630                                      PatternRewriter &rewriter, Value val) {
631   VectorType vtp = vectorType(codegen, val.getType());
632   return rewriter.create<vector::BroadcastOp>(val.getLoc(), vtp, val);
633 }
634 
635 /// Generates an affine expression.
636 //
637 // TODO: generalize for sparse tensor subscripts
638 //
639 static Value genAffine(CodeGen &codegen, PatternRewriter &rewriter,
640                        AffineExpr a, Location loc) {
641   switch (a.getKind()) {
642   case AffineExprKind::DimId: {
643     unsigned idx = a.cast<AffineDimExpr>().getPosition();
644     return codegen.loops[idx]; // universal dense index
645   }
646   case AffineExprKind::Add: {
647     auto binOp = a.cast<AffineBinaryOpExpr>();
648     return rewriter.create<arith::AddIOp>(
649         loc, genAffine(codegen, rewriter, binOp.getLHS(), loc),
650         genAffine(codegen, rewriter, binOp.getRHS(), loc));
651   }
652   case AffineExprKind::Mul: {
653     auto binOp = a.cast<AffineBinaryOpExpr>();
654     return rewriter.create<arith::MulIOp>(
655         loc, genAffine(codegen, rewriter, binOp.getLHS(), loc),
656         genAffine(codegen, rewriter, binOp.getRHS(), loc));
657   }
658   case AffineExprKind::Constant: {
659     int64_t c = a.cast<AffineConstantExpr>().getValue();
660     return constantIndex(rewriter, loc, c);
661   }
662   default:
663     llvm_unreachable("unexpected affine subscript");
664   }
665 }
666 
667 /// Generates index for load/store on sparse tensor.
668 static Value genIndex(CodeGen &codegen, linalg::GenericOp op, OpOperand *t) {
669   auto map = op.getTiedIndexingMap(t);
670   auto enc = getSparseTensorEncoding(t->get().getType());
671   AffineExpr a = map.getResult(perm(enc, map.getNumResults() - 1));
672   assert(a.getKind() == AffineExprKind::DimId);
673   unsigned idx = a.cast<AffineDimExpr>().getPosition();
674   return codegen.loops[idx];
675 }
676 
677 /// Generates subscript for load/store on a dense or sparse tensor.
678 static Value genSubscript(CodeGen &codegen, PatternRewriter &rewriter,
679                           linalg::GenericOp op, OpOperand *t,
680                           SmallVector<Value, 4> &args) {
681   unsigned tensor = t->getOperandNumber();
682   auto map = op.getTiedIndexingMap(t);
683   auto enc = getSparseTensorEncoding(t->get().getType());
684   unsigned rank = map.getNumResults();
685   if (enc) {
686     // Note that currently, all sparse subscripts are simple.
687     // TODO: accept affine too?
688     AffineExpr a = map.getResult(perm(enc, rank - 1));
689     assert(a.getKind() == AffineExprKind::DimId);
690     unsigned idx = a.cast<AffineDimExpr>().getPosition();
691     assert(codegen.pidxs[tensor][idx] != nullptr);
692     args.push_back(codegen.pidxs[tensor][idx]); // position index
693   } else {
694     for (unsigned d = 0; d < rank; d++) {
695       AffineExpr a = map.getResult(perm(enc, d));
696       args.push_back(genAffine(codegen, rewriter, a, op.getLoc()));
697     }
698   }
699   return codegen.buffers[tensor];
700 }
701 
702 /// Generates insertion code to implement dynamic tensor load.
703 static Value genInsertionLoad(CodeGen &codegen, PatternRewriter &rewriter,
704                               linalg::GenericOp op, OpOperand *t) {
705   Location loc = op.getLoc();
706   // Direct lexicographic index order, tensor loads as zero.
707   if (!codegen.expValues) {
708     Type tp = getElementTypeOrSelf(t->get().getType());
709     return constantZero(rewriter, loc, tp);
710   }
711   // Load from expanded access pattern.
712   Value index = genIndex(codegen, op, t);
713   return rewriter.create<memref::LoadOp>(loc, codegen.expValues, index);
714 }
715 
716 /// Generates insertion code to implement dynamic tensor store.
717 static void genInsertionStore(CodeGen &codegen, PatternRewriter &rewriter,
718                               linalg::GenericOp op, OpOperand *t, Value rhs) {
719   Location loc = op.getLoc();
720   // Direct insertion in lexicographic index order.
721   if (!codegen.expValues) {
722     rewriter.create<LexInsertOp>(loc, t->get(), codegen.lexIdx, rhs);
723     return;
724   }
725   // Generates insertion code along expanded access pattern.
726   //   if (!expFilled[i]) then
727   //     expFilled[i] = true
728   //     expAdded[inserts++] = i
729   //   endif
730   //   values[i] = rhs
731   Value index = genIndex(codegen, op, t);
732   Value fval = constantI1(rewriter, loc, false);
733   Value tval = constantI1(rewriter, loc, true);
734   // If statement.
735   Value filled = rewriter.create<memref::LoadOp>(loc, codegen.expFilled, index);
736   Value cond = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
737                                               filled, fval);
738   scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, rewriter.getIndexType(),
739                                               cond, /*else=*/true);
740   // True branch.
741   rewriter.setInsertionPointToStart(&ifOp.getThenRegion().front());
742   rewriter.create<memref::StoreOp>(loc, tval, codegen.expFilled, index);
743   rewriter.create<memref::StoreOp>(loc, index, codegen.expAdded,
744                                    codegen.expCount);
745   Value one = constantIndex(rewriter, loc, 1);
746   Value add = rewriter.create<arith::AddIOp>(loc, codegen.expCount, one);
747   rewriter.create<scf::YieldOp>(loc, add);
748   // False branch.
749   rewriter.setInsertionPointToStart(&ifOp.getElseRegion().front());
750   rewriter.create<scf::YieldOp>(loc, codegen.expCount);
751   rewriter.setInsertionPointAfter(ifOp);
752   // Value assignment.
753   codegen.expCount = ifOp.getResult(0);
754   rewriter.create<memref::StoreOp>(loc, rhs, codegen.expValues, index);
755 }
756 
757 /// Generates a load on a dense or sparse tensor.
758 static Value genTensorLoad(Merger &merger, CodeGen &codegen,
759                            PatternRewriter &rewriter, linalg::GenericOp op,
760                            unsigned exp) {
761   // Test if the load was hoisted to a higher loop nest.
762   Value val = merger.exp(exp).val;
763   if (val) {
764     if (codegen.curVecLength > 1 && !val.getType().isa<VectorType>())
765       return genVectorInvariantValue(codegen, rewriter, val);
766     return val;
767   }
768   // Load during insertion.
769   OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).tensor];
770   if (t == codegen.sparseOut)
771     return genInsertionLoad(codegen, rewriter, op, t);
772   // Actual load.
773   SmallVector<Value, 4> args;
774   Value ptr = genSubscript(codegen, rewriter, op, t, args);
775   if (codegen.curVecLength > 1)
776     return genVectorLoad(codegen, rewriter, ptr, args);
777   return rewriter.create<memref::LoadOp>(op.getLoc(), ptr, args);
778 }
779 
780 /// Generates a store on a dense or sparse tensor.
781 static void genTensorStore(Merger &merger, CodeGen &codegen,
782                            PatternRewriter &rewriter, linalg::GenericOp op,
783                            Value rhs) {
784   Location loc = op.getLoc();
785   // Test if this is a scalarized reduction.
786   if (codegen.redVal) {
787     if (codegen.curVecLength > 1)
788       rhs = rewriter.create<arith::SelectOp>(loc, codegen.curVecMask, rhs,
789                                              codegen.redVal);
790     updateReduc(merger, codegen, rhs);
791     return;
792   }
793   // Store during insertion.
794   OpOperand *t = op.getOutputOperand(0);
795   if (t == codegen.sparseOut) {
796     genInsertionStore(codegen, rewriter, op, t, rhs);
797     return;
798   }
799   // Actual store.
800   SmallVector<Value, 4> args;
801   Value ptr = genSubscript(codegen, rewriter, op, t, args);
802   if (codegen.curVecLength > 1)
803     genVectorStore(codegen, rewriter, rhs, ptr, args);
804   else
805     rewriter.create<memref::StoreOp>(loc, rhs, ptr, args);
806 }
807 
808 /// Generates a pointer/index load from the sparse storage scheme. Narrower
809 /// data types need to be zero extended before casting the value into the
810 /// index type used for looping and indexing.
811 static Value genLoad(CodeGen &codegen, PatternRewriter &rewriter, Location loc,
812                      Value ptr, Value s) {
813   // See https://llvm.org/docs/GetElementPtr.html for some background on
814   // the complications described below.
815   if (codegen.curVecLength > 1) {
816     // Since the index vector is used in a subsequent gather/scatter operations,
817     // which effectively defines an unsigned pointer + signed index, we must
818     // zero extend the vector to an index width. For 8-bit and 16-bit values,
819     // an 32-bit index width suffices. For 32-bit values, zero extending the
820     // elements into 64-bit loses some performance since the 32-bit indexed
821     // gather/scatter is more efficient than the 64-bit index variant (if the
822     // negative 32-bit index space is unused, the enableSIMDIndex32 flag can
823     // preserve this performance). For 64-bit values, there is no good way
824     // to state that the indices are unsigned, with creates the potential of
825     // incorrect address calculations in the unlikely case we need such
826     // extremely large offsets.
827     Type etp = ptr.getType().cast<MemRefType>().getElementType();
828     Value vload = genVectorLoad(codegen, rewriter, ptr, {s});
829     if (!etp.isa<IndexType>()) {
830       if (etp.getIntOrFloatBitWidth() < 32)
831         vload = rewriter.create<arith::ExtUIOp>(
832             loc, vectorType(codegen, rewriter.getI32Type()), vload);
833       else if (etp.getIntOrFloatBitWidth() < 64 &&
834                !codegen.options.enableSIMDIndex32)
835         vload = rewriter.create<arith::ExtUIOp>(
836             loc, vectorType(codegen, rewriter.getI64Type()), vload);
837     }
838     return vload;
839   }
840   // For the scalar case, we simply zero extend narrower indices into 64-bit
841   // values before casting to index without a performance penalty. Here too,
842   // however, indices that already are 64-bit, in theory, cannot express the
843   // full range as explained above.
844   Value load = rewriter.create<memref::LoadOp>(loc, ptr, s);
845   if (!load.getType().isa<IndexType>()) {
846     if (load.getType().getIntOrFloatBitWidth() < 64)
847       load = rewriter.create<arith::ExtUIOp>(loc, rewriter.getI64Type(), load);
848     load =
849         rewriter.create<arith::IndexCastOp>(loc, rewriter.getIndexType(), load);
850   }
851   return load;
852 }
853 
854 /// Generates an invariant value.
855 static Value genInvariantValue(Merger &merger, CodeGen &codegen,
856                                PatternRewriter &rewriter, unsigned exp) {
857   Value val = merger.exp(exp).val;
858   if (codegen.curVecLength > 1)
859     return genVectorInvariantValue(codegen, rewriter, val);
860   return val;
861 }
862 
863 /// Generates an address computation "sz * p + i".
864 static Value genAddress(CodeGen &codegen, PatternRewriter &rewriter,
865                         Location loc, Value size, Value p, Value i) {
866   Value mul = rewriter.create<arith::MulIOp>(loc, size, p);
867   if (auto vtp = i.getType().dyn_cast<VectorType>()) {
868     Value inv =
869         rewriter.create<arith::IndexCastOp>(loc, vtp.getElementType(), mul);
870     mul = genVectorInvariantValue(codegen, rewriter, inv);
871   }
872   return rewriter.create<arith::AddIOp>(loc, mul, i);
873 }
874 
875 /// Recursively generates tensor expression.
876 static Value genExp(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
877                     linalg::GenericOp op, unsigned exp) {
878   Location loc = op.getLoc();
879   if (exp == -1u)
880     return Value();
881   if (merger.exp(exp).kind == Kind::kTensor)
882     return genTensorLoad(merger, codegen, rewriter, op, exp);
883   if (merger.exp(exp).kind == Kind::kInvariant)
884     return genInvariantValue(merger, codegen, rewriter, exp);
885   Value v0 = genExp(merger, codegen, rewriter, op, merger.exp(exp).children.e0);
886   Value v1 = genExp(merger, codegen, rewriter, op, merger.exp(exp).children.e1);
887   return merger.buildExp(rewriter, loc, exp, v0, v1);
888 }
889 
890 /// Determines if affine expression is invariant.
891 static bool isInvariantAffine(const CodeGen &codegen, AffineExpr a,
892                               unsigned ldx, bool &atLevel) {
893   switch (a.getKind()) {
894   case AffineExprKind::DimId: {
895     unsigned idx = a.cast<AffineDimExpr>().getPosition();
896     if (idx == ldx)
897       atLevel = true;
898     return codegen.loops[idx] != nullptr; // no longer in play?
899   }
900   case AffineExprKind::Add:
901   case AffineExprKind::Mul: {
902     auto binOp = a.cast<AffineBinaryOpExpr>();
903     return isInvariantAffine(codegen, binOp.getLHS(), ldx, atLevel) &&
904            isInvariantAffine(codegen, binOp.getRHS(), ldx, atLevel);
905   }
906   default:
907     return true;
908   }
909 }
910 
911 /// Hoists loop invariant tensor loads for which indices have been exhausted.
912 static void genInvariants(Merger &merger, CodeGen &codegen,
913                           PatternRewriter &rewriter, linalg::GenericOp op,
914                           unsigned exp, unsigned ldx, bool atStart,
915                           Kind last = Kind::kTensor) {
916   if (exp == -1u)
917     return;
918   if (merger.exp(exp).kind == Kind::kTensor) {
919     // Inspect tensor indices.
920     bool atLevel = ldx == -1u;
921     OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).tensor];
922     auto map = op.getTiedIndexingMap(t);
923     auto enc = getSparseTensorEncoding(t->get().getType());
924     for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
925       AffineExpr a = map.getResult(perm(enc, d));
926       if (!isInvariantAffine(codegen, a, ldx, atLevel))
927         return; // still in play
928     }
929     // All exhausted at this level (atLevel denotes exactly at this level).
930     if (!atLevel)
931       return;
932     OpOperand *lhs = op.getOutputOperand(0);
933     if (lhs == t) {
934       // Start or end a scalarized reduction
935       if (atStart) {
936         Value load = genTensorLoad(merger, codegen, rewriter, op, exp);
937         codegen.redKind = getReduction(last);
938         codegen.redExp = exp;
939         updateReduc(merger, codegen, load);
940       } else {
941         Value redVal = codegen.redVal;
942         updateReduc(merger, codegen, Value());
943         codegen.redExp = -1u;
944         codegen.redKind = kNoReduc;
945         genTensorStore(merger, codegen, rewriter, op, redVal);
946       }
947     } else {
948       // Start or end loop invariant hoisting of a tensor load.
949       merger.exp(exp).val =
950           atStart ? genTensorLoad(merger, codegen, rewriter, op, exp) : Value();
951     }
952   } else if (merger.exp(exp).kind != Kind::kInvariant) {
953     // Traverse into the binary operations. Note that we only hoist
954     // tensor loads, since subsequent MLIR/LLVM passes know how to
955     // deal with all other kinds of derived loop invariants.
956     Kind last = merger.exp(exp).kind;
957     unsigned e0 = merger.exp(exp).children.e0;
958     unsigned e1 = merger.exp(exp).children.e1;
959     genInvariants(merger, codegen, rewriter, op, e0, ldx, atStart, last);
960     genInvariants(merger, codegen, rewriter, op, e1, ldx, atStart, last);
961   }
962 }
963 
964 /// Generates an expanded access pattern in innermost dimension.
965 static void genExpansion(Merger &merger, CodeGen &codegen,
966                          PatternRewriter &rewriter, linalg::GenericOp op,
967                          unsigned at, bool atStart) {
968   OpOperand *lhs = codegen.sparseOut;
969   if (!lhs || codegen.outerParNest != op.getRank(lhs) - 1 ||
970       at != codegen.outerParNest)
971     return; // not needed at this level
972   // Generate start or end of an expanded access pattern.
973   Value tensor = lhs->get();
974   Location loc = op.getLoc();
975   if (atStart) {
976     auto dynShape = {ShapedType::kDynamicSize};
977     Type etp = tensor.getType().cast<ShapedType>().getElementType();
978     Type t1 = MemRefType::get(dynShape, etp);
979     Type t2 = MemRefType::get(dynShape, rewriter.getI1Type());
980     Type t3 = MemRefType::get(dynShape, rewriter.getIndexType());
981     Type t4 = rewriter.getIndexType();
982     auto res =
983         rewriter.create<ExpandOp>(loc, TypeRange({t1, t2, t3, t4}), tensor);
984     assert(res.getNumResults() == 4);
985     assert(!codegen.expValues);
986     codegen.expValues = res.getResult(0);
987     codegen.expFilled = res.getResult(1);
988     codegen.expAdded = res.getResult(2);
989     codegen.expCount = res.getResult(3);
990   } else {
991     assert(codegen.expValues);
992     rewriter.create<CompressOp>(loc, tensor, codegen.lexIdx, codegen.expValues,
993                                 codegen.expFilled, codegen.expAdded,
994                                 codegen.expCount);
995     codegen.expValues = codegen.expFilled = codegen.expAdded =
996         codegen.expCount = Value();
997   }
998 }
999 
1000 /// Generates initialization code for the subsequent loop sequence at
1001 /// current index level. Returns true if the loop sequence needs to
1002 /// maintain the universal index.
1003 static bool genInit(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
1004                     linalg::GenericOp op, std::vector<unsigned> &topSort,
1005                     unsigned at, BitVector &inits) {
1006   bool needsUniv = false;
1007   Location loc = op.getLoc();
1008   unsigned idx = topSort[at];
1009 
1010   // Initialize sparse positions.
1011   for (unsigned b = 0, be = inits.size(); b < be; b++) {
1012     if (inits[b]) {
1013       unsigned tensor = merger.tensor(b);
1014       assert(idx == merger.index(b));
1015       if (merger.isDim(b, Dim::kSparse)) {
1016         // Initialize sparse index.
1017         unsigned pat = at;
1018         for (; pat != 0; pat--) {
1019           if (codegen.pidxs[tensor][topSort[pat - 1]])
1020             break;
1021         }
1022         Value ptr = codegen.pointers[tensor][idx];
1023         Value one = constantIndex(rewriter, loc, 1);
1024         Value p0 = (pat == 0) ? constantIndex(rewriter, loc, 0)
1025                               : codegen.pidxs[tensor][topSort[pat - 1]];
1026         codegen.pidxs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p0);
1027         Value p1 = rewriter.create<arith::AddIOp>(loc, p0, one);
1028         codegen.highs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p1);
1029       } else {
1030         // Dense index still in play.
1031         needsUniv = true;
1032       }
1033     }
1034   }
1035 
1036   // Initialize the universal dense index.
1037   codegen.loops[idx] = constantIndex(rewriter, loc, 0);
1038   return needsUniv;
1039 }
1040 
1041 /// Returns vectorization strategy. Any implicit inner loop in the Linalg
1042 /// operation is a candidate. Whether it is actually converted to SIMD code
1043 /// depends on the requested strategy.
1044 static bool isVectorFor(CodeGen &codegen, bool isInner, bool isSparse) {
1045   switch (codegen.options.vectorizationStrategy) {
1046   case SparseVectorizationStrategy::kNone:
1047     return false;
1048   case SparseVectorizationStrategy::kDenseInnerLoop:
1049     return isInner && !isSparse;
1050   case SparseVectorizationStrategy::kAnyStorageInnerLoop:
1051     return isInner;
1052   }
1053   llvm_unreachable("unexpected vectorization strategy");
1054 }
1055 
1056 /// Returns parallelization strategy. Any implicit loop in the Linalg operation
1057 /// that is marked "parallel" is a candidate. Whether it is actually converted
1058 /// to a parallel operation depends on the requested strategy.
1059 static bool isParallelFor(CodeGen &codegen, bool isOuter, bool isReduction,
1060                           bool isSparse, bool isVector) {
1061   switch (codegen.options.parallelizationStrategy) {
1062   case SparseParallelizationStrategy::kNone:
1063     return false;
1064   case SparseParallelizationStrategy::kDenseOuterLoop:
1065     return isOuter && !isSparse && !isReduction && !isVector;
1066   case SparseParallelizationStrategy::kAnyStorageOuterLoop:
1067     return isOuter && !isReduction && !isVector;
1068   case SparseParallelizationStrategy::kDenseAnyLoop:
1069     return !isSparse && !isReduction && !isVector;
1070   case SparseParallelizationStrategy::kAnyStorageAnyLoop:
1071     return !isReduction && !isVector;
1072   }
1073   llvm_unreachable("unexpected parallelization strategy");
1074 }
1075 
1076 /// Checks unit stride for dense tensors. The iteration graph may have ignored
1077 /// dense access patterns in order to avoid cycles (sparse access patterns are
1078 /// always placed innermost), but that means dense access has become strided.
1079 /// This prevents effective vectorization.
1080 static bool denseUnitStrides(Merger &merger, linalg::GenericOp op,
1081                              unsigned idx) {
1082   for (OpOperand *t : op.getInputAndOutputOperands()) {
1083     if (!getSparseTensorEncoding(t->get().getType())) {
1084       auto map = op.getTiedIndexingMap(t);
1085       for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
1086         AffineExpr a = map.getResult(d);
1087         // Report non-unit stride if innermost index appears at an outer
1088         // dimension (true non-unit stride) or if the innermost index appears
1089         // in a compound subscript in the innermost dimension. Even if the
1090         // latter is unit stride, it does not play well with scatter/gather.
1091         // TODO: accept unit stride affine innermost like a[i,j+k+1]?
1092         if (a.isFunctionOfDim(idx) &&
1093             ((d != rank - 1) || (a.getKind() != AffineExprKind::DimId)))
1094           return false;
1095       }
1096     }
1097   }
1098   return true;
1099 }
1100 
1101 /// Generates a for-loop on a single index.
1102 static Operation *genFor(Merger &merger, CodeGen &codegen,
1103                          PatternRewriter &rewriter, linalg::GenericOp op,
1104                          bool isOuter, bool isInner, unsigned idx,
1105                          BitVector &indices) {
1106   unsigned fb = indices.find_first();
1107   unsigned tensor = merger.tensor(fb);
1108   assert(idx == merger.index(fb));
1109   auto iteratorTypes = op.iterator_types().getValue();
1110   bool isReduction = isReductionIterator(iteratorTypes[idx]);
1111   bool isSparse = merger.isDim(fb, Dim::kSparse);
1112   bool isVector = !codegen.sparseOut &&
1113                   isVectorFor(codegen, isInner, isSparse) &&
1114                   denseUnitStrides(merger, op, idx);
1115   bool isParallel =
1116       !codegen.sparseOut &&
1117       isParallelFor(codegen, isOuter, isReduction, isSparse, isVector);
1118 
1119   // Prepare vector length.
1120   if (isVector)
1121     codegen.curVecLength = codegen.options.vectorLength;
1122 
1123   // Loop bounds and increment.
1124   Location loc = op.getLoc();
1125   Value lo = isSparse ? codegen.pidxs[tensor][idx] : codegen.loops[idx];
1126   Value hi = isSparse ? codegen.highs[tensor][idx] : codegen.sizes[idx];
1127   Value step = constantIndex(rewriter, loc, codegen.curVecLength);
1128 
1129   // Emit a parallel loop.
1130   if (isParallel) {
1131     assert(!isVector);
1132     scf::ParallelOp parOp = rewriter.create<scf::ParallelOp>(loc, lo, hi, step);
1133     if (isSparse)
1134       codegen.pidxs[tensor][idx] = parOp.getInductionVars()[0];
1135     else
1136       codegen.loops[idx] = parOp.getInductionVars()[0];
1137     rewriter.setInsertionPointToStart(parOp.getBody());
1138     return parOp;
1139   }
1140 
1141   // Emit a sequential or vector loop.
1142   SmallVector<Value, 4> operands;
1143   if (codegen.redVal) {
1144     // In a vector loop, bring reduction into SIMD form, if not already.
1145     if (isVector && !codegen.redVal.getType().isa<VectorType>()) {
1146       VectorType vtp = vectorType(codegen, codegen.redVal.getType());
1147       Value vred = genVectorReducInit(codegen, rewriter, loc, vtp);
1148       updateReduc(merger, codegen, vred);
1149     }
1150     operands.push_back(codegen.redVal);
1151   }
1152   if (codegen.expValues)
1153     operands.push_back(codegen.expCount);
1154   scf::ForOp forOp = rewriter.create<scf::ForOp>(loc, lo, hi, step, operands);
1155   if (codegen.redVal)
1156     updateReduc(merger, codegen, forOp.getRegionIterArgs().front());
1157   if (codegen.expValues)
1158     codegen.expCount = forOp.getRegionIterArgs().back();
1159   // Assign induction variable to sparse or dense index.
1160   Value iv = forOp.getInductionVar();
1161   if (isSparse)
1162     codegen.pidxs[tensor][idx] = iv;
1163   else
1164     codegen.loops[idx] = iv;
1165   rewriter.setInsertionPointToStart(forOp.getBody());
1166   // Share vector iteration mask between all subsequent loads/stores.
1167   if (isVector)
1168     codegen.curVecMask = genVectorMask(codegen, rewriter, iv, lo, hi, step);
1169   return forOp;
1170 }
1171 
1172 /// Emit a while-loop for co-iteration over multiple indices.
1173 static Operation *genWhile(Merger &merger, CodeGen &codegen,
1174                            PatternRewriter &rewriter, linalg::GenericOp op,
1175                            unsigned idx, bool needsUniv,
1176                            BitVector &indices) {
1177   SmallVector<Type, 4> types;
1178   SmallVector<Value, 4> operands;
1179   // Construct the while-loop with a parameter for each index.
1180   Type indexType = rewriter.getIndexType();
1181   for (unsigned b = 0, be = indices.size(); b < be; b++) {
1182     if (indices[b] && merger.isDim(b, Dim::kSparse)) {
1183       unsigned tensor = merger.tensor(b);
1184       assert(idx == merger.index(b));
1185       types.push_back(indexType);
1186       operands.push_back(codegen.pidxs[tensor][idx]);
1187     }
1188   }
1189   if (codegen.redVal) {
1190     types.push_back(codegen.redVal.getType());
1191     operands.push_back(codegen.redVal);
1192   }
1193   if (codegen.expValues) {
1194     types.push_back(indexType);
1195     operands.push_back(codegen.expCount);
1196   }
1197   if (needsUniv) {
1198     types.push_back(indexType);
1199     operands.push_back(codegen.loops[idx]);
1200   }
1201   assert(types.size() == operands.size());
1202   Location loc = op.getLoc();
1203   scf::WhileOp whileOp = rewriter.create<scf::WhileOp>(loc, types, operands);
1204 
1205   SmallVector<Location> locs(types.size(), loc);
1206   Block *before = rewriter.createBlock(&whileOp.getBefore(), {}, types, locs);
1207   Block *after = rewriter.createBlock(&whileOp.getAfter(), {}, types, locs);
1208 
1209   // Build the "before" region, which effectively consists
1210   // of a conjunction of "i < upper" tests on all induction.
1211   rewriter.setInsertionPointToStart(&whileOp.getBefore().front());
1212   Value cond;
1213   unsigned o = 0;
1214   for (unsigned b = 0, be = indices.size(); b < be; b++) {
1215     if (indices[b] && merger.isDim(b, Dim::kSparse)) {
1216       unsigned tensor = merger.tensor(b);
1217       assert(idx == merger.index(b));
1218       Value op1 = before->getArgument(o);
1219       Value op2 = codegen.highs[tensor][idx];
1220       Value opc = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult,
1221                                                  op1, op2);
1222       cond = cond ? rewriter.create<arith::AndIOp>(loc, cond, opc) : opc;
1223       codegen.pidxs[tensor][idx] = after->getArgument(o++);
1224     }
1225   }
1226   if (codegen.redVal)
1227     updateReduc(merger, codegen, after->getArgument(o++));
1228   if (codegen.expValues)
1229     codegen.expCount = after->getArgument(o++);
1230   if (needsUniv)
1231     codegen.loops[idx] = after->getArgument(o++);
1232   assert(o == operands.size());
1233   rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments());
1234   rewriter.setInsertionPointToStart(&whileOp.getAfter().front());
1235   return whileOp;
1236 }
1237 
1238 /// Generates a for-loop or a while-loop, depending on whether it implements
1239 /// singleton iteration or co-iteration over the given conjunction.
1240 static Operation *genLoop(Merger &merger, CodeGen &codegen,
1241                           PatternRewriter &rewriter, linalg::GenericOp op,
1242                           std::vector<unsigned> &topSort, unsigned at,
1243                           bool needsUniv, BitVector &indices) {
1244   unsigned idx = topSort[at];
1245   if (indices.count() == 1) {
1246     bool isOuter = at == 0;
1247     bool isInner = at == topSort.size() - 1;
1248     return genFor(merger, codegen, rewriter, op, isOuter, isInner, idx,
1249                   indices);
1250   }
1251   return genWhile(merger, codegen, rewriter, op, idx, needsUniv, indices);
1252 }
1253 
1254 /// Generates the local variables for this loop, consisting of the sparse
1255 /// indices, restored universal dense index, and dense positions.
1256 static void genLocals(Merger &merger, CodeGen &codegen,
1257                       PatternRewriter &rewriter, linalg::GenericOp op,
1258                       std::vector<unsigned> &topSort, unsigned at,
1259                       bool needsUniv, BitVector &locals) {
1260   Location loc = op.getLoc();
1261   unsigned idx = topSort[at];
1262 
1263   // Initialize sparse indices.
1264   Value min;
1265   for (unsigned b = 0, be = locals.size(); b < be; b++) {
1266     if (locals[b] && merger.isDim(b, Dim::kSparse)) {
1267       unsigned tensor = merger.tensor(b);
1268       assert(idx == merger.index(b));
1269       Value ptr = codegen.indices[tensor][idx];
1270       Value s = codegen.pidxs[tensor][idx];
1271       Value load = genLoad(codegen, rewriter, loc, ptr, s);
1272       codegen.idxs[tensor][idx] = load;
1273       if (!needsUniv) {
1274         if (min) {
1275           Value cmp = rewriter.create<arith::CmpIOp>(
1276               loc, arith::CmpIPredicate::ult, load, min);
1277           min = rewriter.create<arith::SelectOp>(loc, cmp, load, min);
1278         } else {
1279           min = load;
1280         }
1281       }
1282     }
1283   }
1284 
1285   // Merge dense universal index over minimum.
1286   if (min) {
1287     assert(!needsUniv);
1288     codegen.loops[idx] = min;
1289   }
1290 
1291   // Initialize dense positions. Note that we generate dense indices of the
1292   // output tensor unconditionally, since they may not appear in the lattice,
1293   // but may be needed for linearized codegen.
1294   for (unsigned b = 0, be = locals.size(); b < be; b++) {
1295     if ((locals[b] || merger.isOutTensor(b, idx)) &&
1296         merger.isDim(b, Dim::kDense)) {
1297       unsigned tensor = merger.tensor(b);
1298       assert(idx == merger.index(b));
1299       unsigned pat = at;
1300       for (; pat != 0; pat--)
1301         if (codegen.pidxs[tensor][topSort[pat - 1]])
1302           break;
1303       Value p = (pat == 0) ? constantIndex(rewriter, loc, 0)
1304                            : codegen.pidxs[tensor][topSort[pat - 1]];
1305       codegen.pidxs[tensor][idx] = genAddress(
1306           codegen, rewriter, loc, codegen.sizes[idx], p, codegen.loops[idx]);
1307     }
1308   }
1309 
1310   // Move the insertion indices in lexicographic index order. During access
1311   // pattern expansion, we can skip setting the innermost dimension.
1312   if (codegen.sparseOut && !codegen.expValues) {
1313     Value pos = constantIndex(rewriter, loc, at);
1314     rewriter.create<memref::StoreOp>(loc, codegen.loops[idx], codegen.lexIdx,
1315                                      pos);
1316   }
1317 }
1318 
1319 /// Generates the induction structure for a while-loop.
1320 static void genWhileInduction(Merger &merger, CodeGen &codegen,
1321                               PatternRewriter &rewriter, linalg::GenericOp op,
1322                               unsigned idx, bool needsUniv,
1323                               BitVector &induction,
1324                               scf::WhileOp whileOp) {
1325   Location loc = op.getLoc();
1326   // Finalize each else branch of all if statements.
1327   if (codegen.redVal || codegen.expValues) {
1328     while (auto ifOp = dyn_cast_or_null<scf::IfOp>(
1329                rewriter.getInsertionBlock()->getParentOp())) {
1330       unsigned y = 0;
1331       SmallVector<Value, 4> yields;
1332       if (codegen.redVal) {
1333         yields.push_back(codegen.redVal);
1334         updateReduc(merger, codegen, ifOp.getResult(y++));
1335       }
1336       if (codegen.expValues) {
1337         yields.push_back(codegen.expCount);
1338         codegen.expCount = ifOp->getResult(y++);
1339       }
1340       assert(y == yields.size());
1341       rewriter.create<scf::YieldOp>(loc, yields);
1342       rewriter.setInsertionPointAfter(ifOp);
1343     }
1344   }
1345   rewriter.setInsertionPointToEnd(&whileOp.getAfter().front());
1346   // Finalize the induction. Note that the induction could be performed
1347   // in the individual if-branches to avoid re-evaluating the conditions.
1348   // However, that would result in a rather elaborate forest of yield
1349   // instructions during code generation. Moreover, performing the induction
1350   // after the if-statements more closely resembles code generated by TACO.
1351   unsigned o = 0;
1352   SmallVector<Value, 4> operands;
1353   Value one = constantIndex(rewriter, loc, 1);
1354   for (unsigned b = 0, be = induction.size(); b < be; b++) {
1355     if (induction[b] && merger.isDim(b, Dim::kSparse)) {
1356       unsigned tensor = merger.tensor(b);
1357       assert(idx == merger.index(b));
1358       Value op1 = codegen.idxs[tensor][idx];
1359       Value op2 = codegen.loops[idx];
1360       Value op3 = codegen.pidxs[tensor][idx];
1361       Value cmp = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
1362                                                  op1, op2);
1363       Value add = rewriter.create<arith::AddIOp>(loc, op3, one);
1364       operands.push_back(rewriter.create<arith::SelectOp>(loc, cmp, add, op3));
1365       codegen.pidxs[tensor][idx] = whileOp->getResult(o++);
1366     }
1367   }
1368   if (codegen.redVal) {
1369     operands.push_back(codegen.redVal);
1370     updateReduc(merger, codegen, whileOp->getResult(o++));
1371   }
1372   if (codegen.expValues) {
1373     operands.push_back(codegen.expCount);
1374     codegen.expCount = whileOp->getResult(o++);
1375   }
1376   if (needsUniv) {
1377     operands.push_back(
1378         rewriter.create<arith::AddIOp>(loc, codegen.loops[idx], one));
1379     codegen.loops[idx] = whileOp->getResult(o++);
1380   }
1381   assert(o == operands.size());
1382   rewriter.create<scf::YieldOp>(loc, operands);
1383   rewriter.setInsertionPointAfter(whileOp);
1384 }
1385 
1386 /// Generates the induction structure for a for-loop.
1387 static void genForInduction(Merger &merger, CodeGen &codegen,
1388                             PatternRewriter &rewriter, linalg::GenericOp op,
1389                             Operation *loop) {
1390   Location loc = op.getLoc();
1391   unsigned o = 0;
1392   SmallVector<Value, 4> operands;
1393   if (codegen.redVal) {
1394     operands.push_back(codegen.redVal);
1395     updateReduc(merger, codegen, loop->getResult(o++));
1396   }
1397   if (codegen.expValues) {
1398     operands.push_back(codegen.expCount);
1399     codegen.expCount = loop->getResult(o++);
1400   }
1401   assert(o == operands.size());
1402   if (o > 0)
1403     rewriter.create<scf::YieldOp>(loc, operands);
1404   rewriter.setInsertionPointAfter(loop);
1405 }
1406 
1407 /// Generates a single if-statement within a while-loop.
1408 static scf::IfOp genIf(Merger &merger, CodeGen &codegen,
1409                        PatternRewriter &rewriter, linalg::GenericOp op,
1410                        unsigned idx, BitVector &conditions) {
1411   Location loc = op.getLoc();
1412   SmallVector<Type, 4> types;
1413   Value cond;
1414   for (unsigned b = 0, be = conditions.size(); b < be; b++) {
1415     if (conditions[b]) {
1416       unsigned tensor = merger.tensor(b);
1417       assert(idx == merger.index(b));
1418       Value clause;
1419       if (merger.isDim(b, Dim::kSparse)) {
1420         Value op1 = codegen.idxs[tensor][idx];
1421         Value op2 = codegen.loops[idx];
1422         clause = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
1423                                                 op1, op2);
1424       } else {
1425         clause = constantI1(rewriter, loc, true);
1426       }
1427       cond = cond ? rewriter.create<arith::AndIOp>(loc, cond, clause) : clause;
1428     }
1429   }
1430   if (codegen.redVal)
1431     types.push_back(codegen.redVal.getType());
1432   if (codegen.expValues)
1433     types.push_back(rewriter.getIndexType());
1434   scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, types, cond, /*else=*/true);
1435   rewriter.setInsertionPointToStart(&ifOp.getThenRegion().front());
1436   return ifOp;
1437 }
1438 
1439 /// Generates end of true branch of if-statement within a while-loop.
1440 static void endIf(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
1441                   linalg::GenericOp op, scf::IfOp ifOp, Operation *loop,
1442                   Value redInput, Value cntInput) {
1443   SmallVector<Value, 4> operands;
1444   if (codegen.redVal) {
1445     operands.push_back(codegen.redVal);
1446     updateReduc(merger, codegen, redInput);
1447   }
1448   if (codegen.expValues) {
1449     operands.push_back(codegen.expCount);
1450     codegen.expCount = cntInput;
1451   }
1452   if (!operands.empty())
1453     rewriter.create<scf::YieldOp>(op.getLoc(), operands);
1454   rewriter.setInsertionPointToStart(&ifOp.getElseRegion().front());
1455 }
1456 
1457 //===----------------------------------------------------------------------===//
1458 // Sparse compiler synthesis methods (loop sequence).
1459 //===----------------------------------------------------------------------===//
1460 
1461 /// Starts a loop sequence at given level. Returns true if
1462 /// the universal loop index must be maintained at this level.
1463 static bool startLoopSeq(Merger &merger, CodeGen &codegen,
1464                          PatternRewriter &rewriter, linalg::GenericOp op,
1465                          std::vector<unsigned> &topSort, unsigned exp,
1466                          unsigned at, unsigned idx, unsigned ldx,
1467                          unsigned lts) {
1468   assert(codegen.curVecLength == 1);
1469   assert(!codegen.loops[idx]);
1470   // Emit invariants at this loop sequence level.
1471   genInvariants(merger, codegen, rewriter, op, exp, ldx, /*atStart=*/true);
1472   // Emit access pattern expansion for sparse tensor output.
1473   genExpansion(merger, codegen, rewriter, op, at, /*atStart=*/true);
1474   // Emit further intitialization at this loop sequence level.
1475   unsigned l0 = merger.set(lts)[0];
1476   bool needsUniv =
1477       genInit(merger, codegen, rewriter, op, topSort, at, merger.lat(l0).bits);
1478   // Maintain the universal index only if it is actually
1479   // consumed by a subsequent lattice point.
1480   if (needsUniv) {
1481     unsigned lsize = merger.set(lts).size();
1482     for (unsigned i = 1; i < lsize; i++) {
1483       unsigned li = merger.set(lts)[i];
1484       if (!merger.hasAnyDimOf(merger.lat(li).simple, Dim::kSparse))
1485         return true;
1486     }
1487   }
1488   return false;
1489 }
1490 
1491 /// Starts a single loop in current sequence.
1492 static Operation *startLoop(Merger &merger, CodeGen &codegen,
1493                             PatternRewriter &rewriter, linalg::GenericOp op,
1494                             std::vector<unsigned> &topSort, unsigned at,
1495                             unsigned li, bool needsUniv) {
1496   assert(codegen.curVecLength == 1);
1497   // Emit the for/while-loop control.
1498   Operation *loop = genLoop(merger, codegen, rewriter, op, topSort, at,
1499                             needsUniv, merger.lat(li).simple);
1500   // Emit the locals for this loop.
1501   genLocals(merger, codegen, rewriter, op, topSort, at, needsUniv,
1502             merger.lat(li).bits);
1503   return loop;
1504 }
1505 
1506 /// Ends a single loop in current sequence. Returns new values for needsUniv.
1507 static bool endLoop(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
1508                     linalg::GenericOp op, Operation *loop, unsigned idx,
1509                     unsigned li, bool needsUniv) {
1510   codegen.curVecLength = 1;
1511   // End a while-loop.
1512   if (auto whileOp = dyn_cast<scf::WhileOp>(loop)) {
1513     genWhileInduction(merger, codegen, rewriter, op, idx, needsUniv,
1514                       merger.lat(li).bits, whileOp);
1515     return needsUniv;
1516   }
1517   // End a for-loop.
1518   genForInduction(merger, codegen, rewriter, op, loop);
1519   return false;
1520 }
1521 
1522 /// Ends a loop sequence at given level.
1523 static void endLoopSeq(Merger &merger, CodeGen &codegen,
1524                        PatternRewriter &rewriter, linalg::GenericOp op,
1525                        unsigned exp, unsigned at, unsigned idx, unsigned ldx) {
1526   assert(codegen.curVecLength == 1);
1527   codegen.loops[idx] = Value();
1528   // Bring a pending reduction back from SIMD form when sequence ends.
1529   if (codegen.redVal)
1530     if (auto vtp = codegen.redVal.getType().dyn_cast<VectorType>())
1531       updateReduc(merger, codegen,
1532                   genVectorReducEnd(codegen, rewriter, op.getLoc(), vtp));
1533   // Unmark bookkeeping of invariants and loop index.
1534   genInvariants(merger, codegen, rewriter, op, exp, ldx, /*atStart=*/false);
1535   // Finalize access pattern expansion for sparse tensor output.
1536   genExpansion(merger, codegen, rewriter, op, at, /*atStart=*/false);
1537 }
1538 
1539 /// Recursively generates code while computing iteration lattices in order
1540 /// to manage the complexity of implementing co-iteration over unions
1541 /// and intersections of sparse iterations spaces.
1542 static void genStmt(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
1543                     linalg::GenericOp op, std::vector<unsigned> &topSort,
1544                     unsigned exp, unsigned at) {
1545   // At each leaf, assign remaining tensor (sub)expression to output tensor.
1546   if (at == topSort.size()) {
1547     Value rhs = genExp(merger, codegen, rewriter, op, exp);
1548     genTensorStore(merger, codegen, rewriter, op, rhs);
1549     return;
1550   }
1551 
1552   // Construct iteration lattices for current loop index, with L0 at top.
1553   unsigned idx = topSort[at];
1554   unsigned ldx = at == 0 ? -1u : topSort[at - 1];
1555   unsigned lts = merger.optimizeSet(merger.buildLattices(exp, idx));
1556 
1557   // Start a loop sequence.
1558   bool needsUniv = startLoopSeq(merger, codegen, rewriter, op, topSort, exp, at,
1559                                 idx, ldx, lts);
1560 
1561   // Emit a loop for every lattice point L0 >= Li in this loop sequence.
1562   unsigned lsize = merger.set(lts).size();
1563   for (unsigned i = 0; i < lsize; i++) {
1564     // Start a loop.
1565     unsigned li = merger.set(lts)[i];
1566     Operation *loop =
1567         startLoop(merger, codegen, rewriter, op, topSort, at, li, needsUniv);
1568 
1569     // Visit all lattices points with Li >= Lj to generate the
1570     // loop-body, possibly with if statements for coiteration.
1571     Value redInput = codegen.redVal;
1572     Value cntInput = codegen.expCount;
1573     bool isWhile = dyn_cast<scf::WhileOp>(loop) != nullptr;
1574     for (unsigned j = 0; j < lsize; j++) {
1575       unsigned lj = merger.set(lts)[j];
1576       unsigned ej = merger.lat(lj).exp;
1577       if (li == lj || merger.latGT(li, lj)) {
1578         // Recurse into body of each branch.
1579         if (isWhile) {
1580           scf::IfOp ifOp =
1581               genIf(merger, codegen, rewriter, op, idx, merger.lat(lj).simple);
1582           genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1);
1583           endIf(merger, codegen, rewriter, op, ifOp, loop, redInput, cntInput);
1584         } else {
1585           genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1);
1586         }
1587       }
1588     }
1589 
1590     // End a loop.
1591     needsUniv =
1592         endLoop(merger, codegen, rewriter, op, loop, idx, li, needsUniv);
1593   }
1594 
1595   // End a loop sequence.
1596   endLoopSeq(merger, codegen, rewriter, op, exp, at, idx, ldx);
1597 }
1598 
1599 /// Converts the result computed by the sparse kernel into the required form.
1600 static void genResult(Merger &merger, CodeGen &codegen,
1601                       PatternRewriter &rewriter, linalg::GenericOp op) {
1602   OpOperand *lhs = op.getOutputOperand(0);
1603   Type resType = lhs->get().getType();
1604   if (getSparseTensorEncoding(resType)) {
1605     // The sparse tensor rematerializes from the original sparse tensor's
1606     // underlying sparse storage format.
1607     rewriter.replaceOpWithNewOp<LoadOp>(op, resType, lhs->get(),
1608                                         codegen.sparseOut == lhs);
1609   } else {
1610     // To rematerialize an non-annotated tensor, simply load it
1611     // from the bufferized value.
1612     Value val = codegen.buffers.back(); // value array
1613     rewriter.replaceOpWithNewOp<bufferization::ToTensorOp>(op, resType, val);
1614   }
1615 }
1616 
1617 //===----------------------------------------------------------------------===//
1618 // Sparse compiler rewriting methods.
1619 //===----------------------------------------------------------------------===//
1620 
1621 namespace {
1622 
1623 /// Sparse rewriting rule for generic Lingalg operation.
1624 struct GenericOpSparsifier : public OpRewritePattern<linalg::GenericOp> {
1625 public:
1626   GenericOpSparsifier(MLIRContext *context, SparsificationOptions o)
1627       : OpRewritePattern<linalg::GenericOp>(context), options(o) {}
1628 
1629   LogicalResult matchAndRewrite(linalg::GenericOp op,
1630                                 PatternRewriter &rewriter) const override {
1631     // Detects sparse annotations and translate the per-dimension sparsity
1632     // information for all tensors to loop indices in the kernel.
1633     assert(op.getNumOutputs() == 1);
1634     unsigned numTensors = op.getNumInputsAndOutputs();
1635     unsigned numLoops = op.iterator_types().getValue().size();
1636     Merger merger(numTensors, numLoops);
1637     if (!findSparseAnnotations(merger, op))
1638       return failure();
1639 
1640     // Computes a topologically sorted iteration graph to ensure
1641     // tensors are visited in natural index order. Fails on cycles.
1642     // This assumes that higher-level passes have already put the
1643     // tensors in each tensor expression in a feasible order.
1644     std::vector<unsigned> topSort;
1645     if (!computeIterationGraph(merger, op, topSort,
1646                                SortMask::kIncludeUndef |
1647                                    SortMask::kIncludeDense) &&
1648         !computeIterationGraph(merger, op, topSort, SortMask::kIncludeUndef) &&
1649         !computeIterationGraph(merger, op, topSort, SortMask::kIncludeDense) &&
1650         !computeIterationGraph(merger, op, topSort, SortMask::kSparseOnly))
1651       return failure();
1652 
1653     // Builds the tensor expression for the Linalg operation in SSA form.
1654     Optional<unsigned> optExp = merger.buildTensorExpFromLinalg(op);
1655     if (!optExp.hasValue())
1656       return failure();
1657     unsigned exp = optExp.getValue();
1658 
1659     // Rejects an inadmissable tensor expression.
1660     OpOperand *sparseOut = nullptr;
1661     unsigned outerParNest = 0;
1662     if (!isAdmissableTensorExp(merger, op, topSort, exp, &sparseOut,
1663                                outerParNest))
1664       return failure();
1665 
1666     // Recursively generates code.
1667     merger.setHasSparseOut(sparseOut != nullptr);
1668     CodeGen codegen(options, numTensors, numLoops, sparseOut, outerParNest);
1669     genBuffers(merger, codegen, rewriter, op);
1670     genStmt(merger, codegen, rewriter, op, topSort, exp, 0);
1671     genResult(merger, codegen, rewriter, op);
1672     return success();
1673   }
1674 
1675 private:
1676   /// Options to control sparse code generation.
1677   SparsificationOptions options;
1678 };
1679 
1680 } // namespace
1681 
1682 /// Populates the given patterns list with rewriting rules required for
1683 /// the sparsification of linear algebra operations.
1684 void mlir::populateSparsificationPatterns(
1685     RewritePatternSet &patterns, const SparsificationOptions &options) {
1686   patterns.add<GenericOpSparsifier>(patterns.getContext(), options);
1687 }
1688