1 //===- Sparsification.cpp - Implementation of sparsification --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements converting sparse tensor types to actual sparse code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodegenUtils.h"
14 
15 #include "mlir/Dialect/Affine/IR/AffineOps.h"
16 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
17 #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
18 #include "mlir/Dialect/Bufferization/IR/Bufferization.h"
19 #include "mlir/Dialect/Func/IR/FuncOps.h"
20 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
21 #include "mlir/Dialect/Linalg/IR/Linalg.h"
22 #include "mlir/Dialect/Linalg/Utils/Utils.h"
23 #include "mlir/Dialect/MemRef/IR/MemRef.h"
24 #include "mlir/Dialect/SCF/SCF.h"
25 #include "mlir/Dialect/SCF/Transforms.h"
26 #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
27 #include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
28 #include "mlir/Dialect/SparseTensor/Utils/Merger.h"
29 #include "mlir/Dialect/Vector/IR/VectorOps.h"
30 #include "mlir/IR/Matchers.h"
31 #include "mlir/IR/TensorEncoding.h"
32 #include "llvm/ADT/SmallBitVector.h"
33 
34 using namespace mlir;
35 using namespace mlir::sparse_tensor;
36 
37 //===----------------------------------------------------------------------===//
38 // Declarations of data structures.
39 //===----------------------------------------------------------------------===//
40 
41 namespace {
42 
43 // Iteration graph sorting.
44 enum SortMask { kSparseOnly = 0x0, kIncludeDense = 0x1, kIncludeUndef = 0x2 };
45 
46 // Reduction kinds.
47 enum Reduction { kNoReduc, kSum, kProduct, kAnd, kOr, kXor };
48 
49 // Code generation.
50 struct CodeGen {
51   CodeGen(SparsificationOptions o, unsigned numTensors, unsigned numLoops,
52           OpOperand *op, unsigned nest)
53       : options(o), loops(numLoops), sizes(numLoops), buffers(numTensors),
54         pointers(numTensors, std::vector<Value>(numLoops)),
55         indices(numTensors, std::vector<Value>(numLoops)),
56         highs(numTensors, std::vector<Value>(numLoops)),
57         pidxs(numTensors, std::vector<Value>(numLoops)),
58         idxs(numTensors, std::vector<Value>(numLoops)), redVal(), sparseOut(op),
59         outerParNest(nest), lexIdx(), expValues(), expFilled(), expAdded(),
60         expCount(), curVecMask() {}
61   /// Sparsification options.
62   SparsificationOptions options;
63   /// Universal dense indices and upper bounds (by index). The loops array
64   /// is updated with the value of the universal dense index in the current
65   /// loop. The sizes array is set once with the inferred dimension sizes.
66   std::vector<Value> loops;
67   std::vector<Value> sizes;
68   /// Buffers for storing dense and sparse numerical values (by tensor).
69   /// This array is set once during bufferization of all tensors.
70   std::vector<Value> buffers;
71   /// Sparse storage schemes (1-D): pointers and indices (by tensor and index).
72   /// This array is set once during bufferization of all sparse tensors.
73   std::vector<std::vector<Value>> pointers;
74   std::vector<std::vector<Value>> indices;
75   /// Sparse iteration information (by tensor and index). These arrays
76   /// are updated to remain current within the current loop.
77   std::vector<std::vector<Value>> highs;
78   std::vector<std::vector<Value>> pidxs;
79   std::vector<std::vector<Value>> idxs;
80   /// Current reduction, updated during code generation. When indices of a
81   /// reduction are exhausted, all inner loops can use a scalarized reduction.
82   unsigned redExp = -1u;
83   Value redVal;
84   Reduction redKind = kNoReduc;
85   // Sparse tensor as output. Implemented either through direct injective
86   // insertion in lexicographic index order (where indices are updated
87   // in the temporary array `lexIdx`) or through access pattern expansion
88   // in the innermost loop nest (`expValues` through `expCount`).
89   OpOperand *sparseOut;
90   unsigned outerParNest;
91   Value lexIdx;
92   Value expValues;
93   Value expFilled;
94   Value expAdded;
95   Value expCount;
96   // Current vector length and mask.
97   unsigned curVecLength = 1;
98   Value curVecMask;
99 };
100 
101 } // namespace
102 
103 //===----------------------------------------------------------------------===//
104 // Sparse compiler analysis methods.
105 //===----------------------------------------------------------------------===//
106 
107 /// Helper method to apply dimension ordering permutation.
108 static unsigned perm(const SparseTensorEncodingAttr &enc, unsigned d) {
109   if (enc) {
110     auto order = enc.getDimOrdering();
111     if (order) {
112       assert(order.isPermutation());
113       return order.getDimPosition(d);
114     }
115   }
116   return d;
117 }
118 
119 /// Helper method to translate dim level type to internal representation.
120 static Dim toDim(const SparseTensorEncodingAttr &enc, unsigned d) {
121   if (enc) {
122     SparseTensorEncodingAttr::DimLevelType tp = enc.getDimLevelType()[d];
123     if (tp == SparseTensorEncodingAttr::DimLevelType::Compressed)
124       return Dim::kSparse;
125     if (tp == SparseTensorEncodingAttr::DimLevelType::Singleton)
126       return Dim::kSingle;
127   }
128   return Dim::kDense;
129 }
130 
131 /// Helper method to inspect affine expressions. Rejects cases where the
132 /// same index is used more than once. Also rejects affine expressions
133 /// that are not a direct index for annotated tensors.
134 // TODO: accept more affine cases for sparse tensors
135 static bool findAffine(Merger &merger, unsigned tensor, AffineExpr a, Dim dim,
136                        bool isDense) {
137   switch (a.getKind()) {
138   case AffineExprKind::DimId: {
139     unsigned idx = a.cast<AffineDimExpr>().getPosition();
140     if (!merger.isDim(tensor, idx, Dim::kUndef))
141       return false; // used more than once
142     merger.setDim(tensor, idx, dim);
143     return true;
144   }
145   case AffineExprKind::Add:
146   case AffineExprKind::Mul: {
147     if (!isDense)
148       return false;
149     auto binOp = a.cast<AffineBinaryOpExpr>();
150     return findAffine(merger, tensor, binOp.getLHS(), dim, isDense) &&
151            findAffine(merger, tensor, binOp.getRHS(), dim, isDense);
152   }
153   case AffineExprKind::Constant:
154     return isDense;
155   default:
156     return false;
157   }
158 }
159 
160 /// Helper method to inspect sparse encodings in the tensor types.
161 /// Fills the per-dimension sparsity information for all tensors.
162 /// Returns true if the sparse annotations and affine subscript
163 /// expressions of all tensors are admissable. Returns false if
164 /// no annotations are found or inadmissable constructs occur.
165 static bool findSparseAnnotations(Merger &merger, linalg::GenericOp op) {
166   bool annotated = false;
167   for (OpOperand *t : op.getInputAndOutputOperands()) {
168     auto map = op.getTiedIndexingMap(t);
169     auto enc = getSparseTensorEncoding(t->get().getType());
170     if (enc)
171       annotated = true;
172     assert(map.getNumResults() == op.getRank(t));
173     for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
174       unsigned tensor = t->getOperandNumber();
175       AffineExpr a = map.getResult(perm(enc, d));
176       if (!findAffine(merger, tensor, a, toDim(enc, d), !enc))
177         return false; // inadmissable affine expression
178     }
179   }
180   return annotated;
181 }
182 
183 /// A DFS helper to compute a topological sort. Note that recursion is
184 /// bounded by the number of implicit loops, which is always small.
185 /// Returns false when a cycle is detected.
186 static bool topSortDFS(unsigned i, std::vector<unsigned> &visit,
187                        std::vector<unsigned> &topSort,
188                        std::vector<std::vector<bool>> &adjM) {
189   if (visit[i] != 0)
190     return visit[i] != 1; // 1 denotes cycle!
191   visit[i] = 1;
192   for (unsigned j = 0, e = visit.size(); j < e; j++)
193     if (adjM[i][j])
194       if (!topSortDFS(j, visit, topSort, adjM))
195         return false;
196   visit[i] = 2;
197   topSort.push_back(i);
198   return true;
199 }
200 
201 /// Helper method to add all constraints from the indices in one affine
202 /// expression before all indices in the other affine expression. For
203 /// example i0+i1 < i2+i3+1 yields i0<i2, i0<i3, i1<i2, and i1<i3.
204 static void addAffineOrderings(std::vector<std::vector<bool>> &adjM,
205                                AffineExpr a, AffineExpr b, unsigned fidx) {
206   switch (a.getKind()) {
207   case AffineExprKind::DimId: {
208     unsigned idx = a.cast<AffineDimExpr>().getPosition();
209     if (b)
210       addAffineOrderings(adjM, b, AffineExpr(), idx);
211     else
212       adjM[fidx][idx] = true;
213     break;
214   }
215   case AffineExprKind::Add:
216   case AffineExprKind::Mul: {
217     auto binOp = a.cast<AffineBinaryOpExpr>();
218     addAffineOrderings(adjM, binOp.getLHS(), b, fidx);
219     addAffineOrderings(adjM, binOp.getRHS(), b, fidx);
220     break;
221   }
222   default:
223     break;
224   }
225 }
226 
227 /// Computes a topologically sorted iteration graph for the linalg operation.
228 /// Ensures all tensors are visited in natural index order. This is essential
229 /// for sparse storage formats since these only support access along fixed
230 /// dimensions. Even for dense storage formats, however, the natural index
231 /// order yields innermost unit-stride access with better spatial locality.
232 static bool computeIterationGraph(Merger &merger, linalg::GenericOp op,
233                                   std::vector<unsigned> &topSort,
234                                   unsigned mask) {
235   // Set up an n x n from/to adjacency matrix of the iteration graph
236   // for the implicit loop indices i_0 .. i_n-1.
237   unsigned n = op.getNumLoops();
238   std::vector<std::vector<bool>> adjM(n, std::vector<bool>(n, false));
239 
240   // Iterate over the indexing maps of every tensor in the tensor expression.
241   for (OpOperand *t : op.getInputAndOutputOperands()) {
242     auto map = op.getTiedIndexingMap(t);
243     auto enc = getSparseTensorEncoding(t->get().getType());
244     assert(map.getNumDims() == n);
245     // Skip dense tensor constraints when not requested.
246     if (!(mask & SortMask::kIncludeDense) && !enc)
247       continue;
248     // Each tensor expression and optional dimension ordering (row-major
249     // by default) puts an ordering constraint on the loop indices. For
250     // example, the tensor expresion A_ijk forces the ordering i < j < k
251     // on the loop indices if no explicit dimension ordering is given.
252     for (unsigned d = 1, rank = map.getNumResults(); d < rank; d++) {
253       AffineExpr f = map.getResult(perm(enc, d - 1));
254       AffineExpr t = map.getResult(perm(enc, d));
255       addAffineOrderings(adjM, f, t, 0);
256     }
257     // Push unrelated loops into sparse iteration space, so these
258     // will be skipped more often.
259     if (mask & SortMask::kIncludeUndef) {
260       unsigned tensor = t->getOperandNumber();
261       for (unsigned i = 0; i < n; i++)
262         if (merger.isDim(tensor, i, Dim::kSparse))
263           for (unsigned j = 0; j < n; j++)
264             if (merger.isDim(tensor, j, Dim::kUndef))
265               adjM[i][j] = true;
266     }
267   }
268 
269   // Topologically sort the iteration graph to determine loop order.
270   // Report failure for a cyclic iteration graph.
271   topSort.clear();
272   topSort.reserve(n);
273   std::vector<unsigned> visit(n, 0);
274   for (unsigned i = 0; i < n; i++)
275     if (visit[i] == 0)
276       if (!topSortDFS(i, visit, topSort, adjM))
277         return false; // cycle!
278   std::reverse(std::begin(topSort), std::end(topSort));
279   return true;
280 }
281 
282 /// Returns true if tensor has an in-place annotation.
283 static bool isInPlace(Value val) {
284   if (auto arg = val.dyn_cast<BlockArgument>())
285     if (auto funcOp = dyn_cast<func::FuncOp>(arg.getOwner()->getParentOp()))
286       if (auto attr = funcOp.getArgAttrOfType<BoolAttr>(
287               arg.getArgNumber(),
288               bufferization::BufferizableOpInterface::kInplaceableAttrName))
289         return attr.getValue();
290   return false;
291 }
292 
293 /// Returns true if tensor materializes uninitialized into the computation.
294 static bool isMaterializing(Value val) {
295   return val.getDefiningOp<linalg::InitTensorOp>() ||
296          val.getDefiningOp<InitOp>();
297 }
298 
299 /// Returns true when the tensor expression is admissable for codegen.
300 /// Since all sparse input tensors are admissable, we just need to check
301 /// whether the out tensor in the tensor expression codegen is admissable.
302 /// Sets `sparseOut` to the tensor and `outerParNest` to the outer injective
303 /// nesting depth when a "truly dynamic" sparse tensor output occurs.
304 static bool isAdmissableTensorExp(Merger &merger, linalg::GenericOp op,
305                                   std::vector<unsigned> &topSort, unsigned exp,
306                                   OpOperand **sparseOut,
307                                   unsigned &outerParNest) {
308   OpOperand *lhs = op.getOutputOperand(0);
309   unsigned tensor = lhs->getOperandNumber();
310   auto enc = getSparseTensorEncoding(lhs->get().getType());
311   // An non-annotated output tensor is assumed dense, and becomes a random
312   // access n-dim memref. Admissable since insertions cannot occur.
313   if (!enc)
314     return true;
315   // An all-dense annotated "sparse" output tensor becomes a linearized random
316   // access 1-dim memref. Also admissable since insertions cannot occur.
317   bool allDense = true;
318   auto iteratorTypes = op.iterator_types().getValue();
319   unsigned numLoops = iteratorTypes.size();
320   for (unsigned i = 0; i < numLoops; i++)
321     if (merger.isDim(tensor, i, Dim::kSparse)) {
322       allDense = false;
323       break;
324     }
325   if (allDense)
326     return true;
327   // A tensor expression with a sparse output tensor that changes its values
328   // but not its nonzero structure, an operation called "simply dynamic" in
329   // [Bik96,Ch9], is also admissable without special codegen, provided
330   // the tensor's underlying sparse storage scheme can be modified in place.
331   if (merger.isSingleCondition(tensor, exp) && isInPlace(lhs->get()))
332     return true;
333   // Accept "truly dynamic" if the output tensor materializes uninitialized
334   // into the computation and insertions occur in lexicographic index order.
335   if (isMaterializing(lhs->get())) {
336     unsigned nest = 0;
337     for (unsigned i = 0; i < numLoops; i++) {
338       if (isReductionIterator(iteratorTypes[topSort[i]]))
339         break; // terminate at first reduction
340       nest++;
341     }
342     // Determine admissable dynamic insertion situations:
343     // (1) fully injective, since there are no reductions,
344     // (2) admissable 1-d expansion in innermost dimension.
345     if (nest >= op.getRank(lhs) - 1) {
346       *sparseOut = lhs;
347       outerParNest = nest;
348       return true;
349     }
350   }
351   return false;
352 }
353 
354 //===----------------------------------------------------------------------===//
355 // Sparse compiler synthesis methods (reductions).
356 //===----------------------------------------------------------------------===//
357 
358 /// Maps reduction kind to vector::CombiningKind.
359 static vector::CombiningKind getCombiningKind(Reduction kind) {
360   switch (kind) {
361   case kNoReduc:
362     break;
363   case kSum:
364     return vector::CombiningKind::ADD;
365   case kProduct:
366     return vector::CombiningKind::MUL;
367   case kAnd:
368     return vector::CombiningKind::AND;
369   case kOr:
370     return vector::CombiningKind::OR;
371   case kXor:
372     return vector::CombiningKind::XOR;
373   }
374   llvm_unreachable("unknown reduction kind");
375 }
376 
377 /// Maps operation to reduction.
378 static Reduction getReduction(Kind kind) {
379   switch (kind) {
380   case Kind::kAddF:
381   case Kind::kAddC:
382   case Kind::kAddI:
383   case Kind::kSubF:
384   case Kind::kSubC:
385   case Kind::kSubI:
386     return kSum;
387   case Kind::kMulF:
388   case Kind::kMulC:
389   case Kind::kMulI:
390     return kProduct;
391   case Kind::kAndI:
392     return kAnd;
393   case Kind::kOrI:
394     return kOr;
395   case Kind::kXorI:
396     return kXor;
397   default:
398     llvm_unreachable("unexpected reduction operator");
399   }
400 }
401 
402 /// Generates an initial value for a vector reduction, following the scheme
403 /// given in Chapter 5 of "The Software Vectorization Handbook", where the
404 /// initial scalar value is correctly embedded in the vector reduction value,
405 /// and a straightforward horizontal reduction will complete the operation.
406 static Value genVectorReducInit(CodeGen &codegen, OpBuilder &builder,
407                                 Location loc, VectorType vtp) {
408   Value r = codegen.redVal;
409   switch (codegen.redKind) {
410   case kNoReduc:
411     break;
412   case kSum:
413   case kXor:
414     // Initialize reduction vector to: | 0 | .. | 0 | r |
415     return builder.create<vector::InsertElementOp>(
416         loc, r, constantZero(builder, loc, vtp),
417         constantIndex(builder, loc, 0));
418   case kProduct:
419     // Initialize reduction vector to: | 1 | .. | 1 | r |
420     return builder.create<vector::InsertElementOp>(
421         loc, r, constantOne(builder, loc, vtp), constantIndex(builder, loc, 0));
422   case kAnd:
423   case kOr:
424     // Initialize reduction vector to: | r | .. | r | r |
425     return builder.create<vector::BroadcastOp>(loc, vtp, r);
426   }
427   llvm_unreachable("unknown reduction kind");
428 }
429 
430 /// Generates final value for a vector reduction.
431 static Value genVectorReducEnd(CodeGen &codegen, OpBuilder &builder,
432                                Location loc, VectorType vtp) {
433   vector::CombiningKind kind = getCombiningKind(codegen.redKind);
434   return builder.create<vector::ReductionOp>(loc, kind, codegen.redVal);
435 }
436 
437 /// Updates scalarized reduction value.
438 static void updateReduc(Merger &merger, CodeGen &codegen, Value reduc) {
439   assert(codegen.redKind != kNoReduc);
440   codegen.redVal = merger.exp(codegen.redExp).val = reduc;
441 }
442 
443 //===----------------------------------------------------------------------===//
444 // Sparse compiler synthesis methods (statements and expressions).
445 //===----------------------------------------------------------------------===//
446 
447 /// Generates buffer for the output tensor. Note that all sparse kernels
448 /// assume that when all elements are written to (viz. x(i) = y(i) * z(i)),
449 /// the output buffer is already initialized to all zeroes and only nonzeroes
450 /// values are computed and written out. For updates (viz. x(i) += y(i) * z(i)),
451 /// only nonzeroes values are used for the updates and no assumption on the
452 /// original contents of the output buffer is necessary..
453 static Value genOutputBuffer(CodeGen &codegen, OpBuilder &builder,
454                              linalg::GenericOp op, MemRefType denseTp,
455                              ArrayRef<Value> args) {
456   Location loc = op.getLoc();
457   Value tensor = op.getOutputOperand(0)->get();
458   // The output tensor simply could materialize from the buffer that will
459   // be generated for the tensor present in the outs() clause. This has
460   // the major advantage that the sparse kernel only updates the nonzero
461   // positions for the output tensor.
462   if (isInPlace(tensor))
463     return builder.create<bufferization::ToMemrefOp>(loc, denseTp, tensor);
464   // By default, a new buffer is allocated which is initialized to the
465   // tensor defined in the outs() clause. This is always correct but
466   // introduces a dense initialization component that may negatively
467   // impact the running complexity of the sparse kernel. If the tensor
468   // materializes into the computation, we need to preserve the zero
469   // initialization assumption of all sparse output buffers.
470   Value alloc = builder.create<memref::AllocOp>(loc, denseTp, args);
471   if (isMaterializing(tensor)) {
472     Value zero = constantZero(builder, loc, denseTp.getElementType());
473     builder.create<linalg::FillOp>(loc, ValueRange{zero}, ValueRange{alloc});
474   } else {
475     Value init =
476         builder.create<bufferization::ToMemrefOp>(loc, denseTp, tensor);
477     builder.create<memref::CopyOp>(loc, init, alloc);
478   }
479   return alloc;
480 }
481 
482 /// Local bufferization of all dense and sparse data structures.
483 /// This code enables testing the first prototype sparse compiler.
484 // TODO: replace this with a proliferated bufferization strategy
485 static void genBuffers(Merger &merger, CodeGen &codegen, OpBuilder &builder,
486                        linalg::GenericOp op) {
487   Location loc = op.getLoc();
488   assert(op.getNumInputsAndOutputs() == op.getNumInputs() + 1);
489   // For every tensor, find lower and upper bound on dimensions, set the
490   // same bounds on loop indices, and obtain dense or sparse buffer(s).
491   SmallVector<Value, 4> args;
492   for (OpOperand *t : op.getInputAndOutputOperands()) {
493     unsigned tensor = t->getOperandNumber();
494     auto shape = op.getShape(t);
495     auto map = op.getTiedIndexingMap(t);
496     auto enc = getSparseTensorEncoding(t->get().getType());
497     // Scan all dimensions of current tensor.
498     args.clear();
499     for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
500       AffineExpr a = map.getResult(perm(enc, d));
501       if (a.getKind() != AffineExprKind::DimId)
502         continue; // compound
503       unsigned idx = a.cast<AffineDimExpr>().getPosition();
504       // Handle sparse storage schemes.
505       if (merger.isDim(tensor, idx, Dim::kSparse)) {
506         auto dynShape = {ShapedType::kDynamicSize};
507         auto ptrTp =
508             MemRefType::get(dynShape, getPointerOverheadType(builder, enc));
509         auto indTp =
510             MemRefType::get(dynShape, getIndexOverheadType(builder, enc));
511         Value dim = constantIndex(builder, loc, d);
512         // Generate sparse primitives to obtains pointer and indices.
513         codegen.pointers[tensor][idx] =
514             builder.create<ToPointersOp>(loc, ptrTp, t->get(), dim);
515         codegen.indices[tensor][idx] =
516             builder.create<ToIndicesOp>(loc, indTp, t->get(), dim);
517       }
518       // Find upper bound in current dimension.
519       unsigned p = perm(enc, d);
520       Value up = linalg::createOrFoldDimOp(builder, loc, t->get(), p);
521       if (ShapedType::isDynamic(shape[p]))
522         args.push_back(up);
523       assert(codegen.highs[tensor][idx] == nullptr);
524       codegen.sizes[idx] = codegen.highs[tensor][idx] = up;
525     }
526     // Perform the required bufferization. Dense inputs materialize
527     // from the input tensors. Dense outputs need special handling.
528     // Sparse inputs use sparse primitives to obtain the values.
529     // We also accept in-place all-dense annotated "sparse" outputs.
530     Type elementType = getElementTypeOrSelf(t->get().getType());
531     if (!enc) {
532       // Non-annotated dense tensors.
533       auto denseTp = MemRefType::get(shape, elementType);
534       if (tensor < op.getNumInputs())
535         codegen.buffers[tensor] =
536             builder.create<bufferization::ToMemrefOp>(loc, denseTp, t->get());
537       else
538         codegen.buffers[tensor] =
539             genOutputBuffer(codegen, builder, op, denseTp, args);
540     } else if (t == codegen.sparseOut) {
541       // True sparse output needs a lexIdx array.
542       Value rank = constantIndex(builder, loc, op.getRank(t));
543       auto dynShape = {ShapedType::kDynamicSize};
544       auto memTp = MemRefType::get(dynShape, builder.getIndexType());
545       codegen.lexIdx = builder.create<memref::AllocaOp>(loc, memTp, rank);
546     } else {
547       // Annotated sparse tensors.
548       auto dynShape = {ShapedType::kDynamicSize};
549       auto sparseTp = MemRefType::get(dynShape, elementType);
550       codegen.buffers[tensor] =
551           builder.create<ToValuesOp>(loc, sparseTp, t->get());
552     }
553   }
554 }
555 
556 /// Constructs vector type.
557 static VectorType vectorType(CodeGen &codegen, Type etp) {
558   unsigned numScalableDims = codegen.options.enableVLAVectorization;
559   return VectorType::get(codegen.curVecLength, etp, numScalableDims);
560 }
561 
562 /// Constructs vector type from pointer.
563 static VectorType vectorType(CodeGen &codegen, Value ptr) {
564   return vectorType(codegen, ptr.getType().cast<MemRefType>().getElementType());
565 }
566 
567 /// Constructs vector iteration mask.
568 static Value genVectorMask(CodeGen &codegen, OpBuilder &builder, Value iv,
569                            Value lo, Value hi, Value step) {
570   Location loc = iv.getLoc();
571   VectorType mtp = vectorType(codegen, builder.getI1Type());
572   // Special case if the vector length evenly divides the trip count (for
573   // example, "for i = 0, 128, 16"). A constant all-true mask is generated
574   // so that all subsequent masked memory operations are immediately folded
575   // into unconditional memory operations.
576   IntegerAttr loInt, hiInt, stepInt;
577   if (matchPattern(lo, m_Constant(&loInt)) &&
578       matchPattern(hi, m_Constant(&hiInt)) &&
579       matchPattern(step, m_Constant(&stepInt))) {
580     if (((hiInt.getInt() - loInt.getInt()) % stepInt.getInt()) == 0)
581       return builder.create<vector::BroadcastOp>(
582           loc, mtp, constantI1(builder, loc, true));
583   }
584   // Otherwise, generate a vector mask that avoids overrunning the upperbound
585   // during vector execution. Here we rely on subsequent loop optimizations to
586   // avoid executing the mask in all iterations, for example, by splitting the
587   // loop into an unconditional vector loop and a scalar cleanup loop.
588   auto minMap = AffineMap::get(
589       /*dimCount=*/2, /*symbolCount=*/1,
590       {builder.getAffineSymbolExpr(0),
591        builder.getAffineDimExpr(0) - builder.getAffineDimExpr(1)},
592       builder.getContext());
593   Value end =
594       builder.createOrFold<AffineMinOp>(loc, minMap, ValueRange{hi, iv, step});
595   return builder.create<vector::CreateMaskOp>(loc, mtp, end);
596 }
597 
598 /// Generates a vectorized load lhs = a[ind[lo:hi]] or lhs = a[lo:hi].
599 static Value genVectorLoad(CodeGen &codegen, OpBuilder &builder, Value ptr,
600                            ArrayRef<Value> args) {
601   Location loc = ptr.getLoc();
602   VectorType vtp = vectorType(codegen, ptr);
603   Value pass = constantZero(builder, loc, vtp);
604   if (args.back().getType().isa<VectorType>()) {
605     SmallVector<Value, 4> scalarArgs(args.begin(), args.end());
606     Value indexVec = args.back();
607     scalarArgs.back() = constantIndex(builder, loc, 0);
608     return builder.create<vector::GatherOp>(loc, vtp, ptr, scalarArgs, indexVec,
609                                             codegen.curVecMask, pass);
610   }
611   return builder.create<vector::MaskedLoadOp>(loc, vtp, ptr, args,
612                                               codegen.curVecMask, pass);
613 }
614 
615 /// Generates a vectorized store a[ind[lo:hi]] = rhs or a[lo:hi] = rhs.
616 static void genVectorStore(CodeGen &codegen, OpBuilder &builder, Value rhs,
617                            Value ptr, ArrayRef<Value> args) {
618   Location loc = ptr.getLoc();
619   if (args.back().getType().isa<VectorType>()) {
620     SmallVector<Value, 4> scalarArgs(args.begin(), args.end());
621     Value indexVec = args.back();
622     scalarArgs.back() = constantIndex(builder, loc, 0);
623     builder.create<vector::ScatterOp>(loc, ptr, scalarArgs, indexVec,
624                                       codegen.curVecMask, rhs);
625     return;
626   }
627   builder.create<vector::MaskedStoreOp>(loc, ptr, args, codegen.curVecMask,
628                                         rhs);
629 }
630 
631 /// Generates a vectorized invariant. Here we rely on subsequent loop
632 /// optimizations to hoist the invariant broadcast out of the vector loop.
633 static Value genVectorInvariantValue(CodeGen &codegen, OpBuilder &builder,
634                                      Value val) {
635   VectorType vtp = vectorType(codegen, val.getType());
636   return builder.create<vector::BroadcastOp>(val.getLoc(), vtp, val);
637 }
638 
639 /// Generates an affine expression.
640 //
641 // TODO: generalize for sparse tensor subscripts
642 //
643 static Value genAffine(CodeGen &codegen, OpBuilder &builder, AffineExpr a,
644                        Location loc) {
645   switch (a.getKind()) {
646   case AffineExprKind::DimId: {
647     unsigned idx = a.cast<AffineDimExpr>().getPosition();
648     return codegen.loops[idx]; // universal dense index
649   }
650   case AffineExprKind::Add: {
651     auto binOp = a.cast<AffineBinaryOpExpr>();
652     return builder.create<arith::AddIOp>(
653         loc, genAffine(codegen, builder, binOp.getLHS(), loc),
654         genAffine(codegen, builder, binOp.getRHS(), loc));
655   }
656   case AffineExprKind::Mul: {
657     auto binOp = a.cast<AffineBinaryOpExpr>();
658     return builder.create<arith::MulIOp>(
659         loc, genAffine(codegen, builder, binOp.getLHS(), loc),
660         genAffine(codegen, builder, binOp.getRHS(), loc));
661   }
662   case AffineExprKind::Constant: {
663     int64_t c = a.cast<AffineConstantExpr>().getValue();
664     return constantIndex(builder, loc, c);
665   }
666   default:
667     llvm_unreachable("unexpected affine subscript");
668   }
669 }
670 
671 /// Generates index for load/store on sparse tensor.
672 static Value genIndex(CodeGen &codegen, linalg::GenericOp op, OpOperand *t) {
673   auto map = op.getTiedIndexingMap(t);
674   auto enc = getSparseTensorEncoding(t->get().getType());
675   AffineExpr a = map.getResult(perm(enc, map.getNumResults() - 1));
676   assert(a.getKind() == AffineExprKind::DimId);
677   unsigned idx = a.cast<AffineDimExpr>().getPosition();
678   return codegen.loops[idx];
679 }
680 
681 /// Generates subscript for load/store on a dense or sparse tensor.
682 static Value genSubscript(CodeGen &codegen, OpBuilder &builder,
683                           linalg::GenericOp op, OpOperand *t,
684                           SmallVector<Value, 4> &args) {
685   unsigned tensor = t->getOperandNumber();
686   auto map = op.getTiedIndexingMap(t);
687   auto enc = getSparseTensorEncoding(t->get().getType());
688   unsigned rank = map.getNumResults();
689   if (enc) {
690     // Note that currently, all sparse subscripts are simple.
691     // TODO: accept affine too?
692     AffineExpr a = map.getResult(perm(enc, rank - 1));
693     assert(a.getKind() == AffineExprKind::DimId);
694     unsigned idx = a.cast<AffineDimExpr>().getPosition();
695     assert(codegen.pidxs[tensor][idx] != nullptr);
696     args.push_back(codegen.pidxs[tensor][idx]); // position index
697   } else {
698     for (unsigned d = 0; d < rank; d++) {
699       AffineExpr a = map.getResult(perm(enc, d));
700       args.push_back(genAffine(codegen, builder, a, op.getLoc()));
701     }
702   }
703   return codegen.buffers[tensor];
704 }
705 
706 /// Generates insertion code to implement dynamic tensor load.
707 static Value genInsertionLoad(CodeGen &codegen, OpBuilder &builder,
708                               linalg::GenericOp op, OpOperand *t) {
709   Location loc = op.getLoc();
710   // Direct lexicographic index order, tensor loads as zero.
711   if (!codegen.expValues) {
712     Type tp = getElementTypeOrSelf(t->get().getType());
713     return constantZero(builder, loc, tp);
714   }
715   // Load from expanded access pattern.
716   Value index = genIndex(codegen, op, t);
717   return builder.create<memref::LoadOp>(loc, codegen.expValues, index);
718 }
719 
720 /// Generates insertion code to implement dynamic tensor store.
721 static void genInsertionStore(CodeGen &codegen, OpBuilder &builder,
722                               linalg::GenericOp op, OpOperand *t, Value rhs) {
723   Location loc = op.getLoc();
724   // Direct insertion in lexicographic index order.
725   if (!codegen.expValues) {
726     builder.create<LexInsertOp>(loc, t->get(), codegen.lexIdx, rhs);
727     return;
728   }
729   // Generates insertion code along expanded access pattern.
730   //   if (!expFilled[i]) then
731   //     expFilled[i] = true
732   //     expAdded[inserts++] = i
733   //   endif
734   //   values[i] = rhs
735   Value index = genIndex(codegen, op, t);
736   Value fval = constantI1(builder, loc, false);
737   Value tval = constantI1(builder, loc, true);
738   // If statement.
739   Value filled = builder.create<memref::LoadOp>(loc, codegen.expFilled, index);
740   Value cond = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
741                                              filled, fval);
742   scf::IfOp ifOp = builder.create<scf::IfOp>(loc, builder.getIndexType(), cond,
743                                              /*else=*/true);
744   // True branch.
745   builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
746   builder.create<memref::StoreOp>(loc, tval, codegen.expFilled, index);
747   builder.create<memref::StoreOp>(loc, index, codegen.expAdded,
748                                   codegen.expCount);
749   Value one = constantIndex(builder, loc, 1);
750   Value add = builder.create<arith::AddIOp>(loc, codegen.expCount, one);
751   builder.create<scf::YieldOp>(loc, add);
752   // False branch.
753   builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
754   builder.create<scf::YieldOp>(loc, codegen.expCount);
755   builder.setInsertionPointAfter(ifOp);
756   // Value assignment.
757   codegen.expCount = ifOp.getResult(0);
758   builder.create<memref::StoreOp>(loc, rhs, codegen.expValues, index);
759 }
760 
761 /// Generates a load on a dense or sparse tensor.
762 static Value genTensorLoad(Merger &merger, CodeGen &codegen, OpBuilder &builder,
763                            linalg::GenericOp op, unsigned exp) {
764   // Test if the load was hoisted to a higher loop nest.
765   Value val = merger.exp(exp).val;
766   if (val) {
767     if (codegen.curVecLength > 1 && !val.getType().isa<VectorType>())
768       return genVectorInvariantValue(codegen, builder, val);
769     return val;
770   }
771   // Load during insertion.
772   OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).tensor];
773   if (t == codegen.sparseOut)
774     return genInsertionLoad(codegen, builder, op, t);
775   // Actual load.
776   SmallVector<Value, 4> args;
777   Value ptr = genSubscript(codegen, builder, op, t, args);
778   if (codegen.curVecLength > 1)
779     return genVectorLoad(codegen, builder, ptr, args);
780   return builder.create<memref::LoadOp>(op.getLoc(), ptr, args);
781 }
782 
783 /// Generates a store on a dense or sparse tensor.
784 static void genTensorStore(Merger &merger, CodeGen &codegen, OpBuilder &builder,
785                            linalg::GenericOp op, unsigned exp, Value rhs) {
786   Location loc = op.getLoc();
787   // Test if this is a scalarized reduction.
788   if (codegen.redVal) {
789     if (codegen.curVecLength > 1)
790       rhs = builder.create<arith::SelectOp>(loc, codegen.curVecMask, rhs,
791                                             codegen.redVal);
792     updateReduc(merger, codegen, rhs);
793     return;
794   }
795   // Store during insertion.
796   OpOperand *t = op.getOutputOperand(0);
797   if (t == codegen.sparseOut) {
798     if (!rhs) {
799       // Only unary and binary are allowed to return uninitialized rhs
800       // to indicate missing output.
801       assert(merger.exp(exp).kind == kUnary || merger.exp(exp).kind == kBinary);
802     } else {
803       genInsertionStore(codegen, builder, op, t, rhs);
804     }
805     return;
806   }
807   // Actual store.
808   SmallVector<Value, 4> args;
809   Value ptr = genSubscript(codegen, builder, op, t, args);
810   if (codegen.curVecLength > 1)
811     genVectorStore(codegen, builder, rhs, ptr, args);
812   else
813     builder.create<memref::StoreOp>(loc, rhs, ptr, args);
814 }
815 
816 /// Generates a pointer/index load from the sparse storage scheme. Narrower
817 /// data types need to be zero extended before casting the value into the
818 /// index type used for looping and indexing.
819 static Value genLoad(CodeGen &codegen, OpBuilder &builder, Location loc,
820                      Value ptr, Value s) {
821   // See https://llvm.org/docs/GetElementPtr.html for some background on
822   // the complications described below.
823   if (codegen.curVecLength > 1) {
824     // Since the index vector is used in a subsequent gather/scatter operations,
825     // which effectively defines an unsigned pointer + signed index, we must
826     // zero extend the vector to an index width. For 8-bit and 16-bit values,
827     // an 32-bit index width suffices. For 32-bit values, zero extending the
828     // elements into 64-bit loses some performance since the 32-bit indexed
829     // gather/scatter is more efficient than the 64-bit index variant (if the
830     // negative 32-bit index space is unused, the enableSIMDIndex32 flag can
831     // preserve this performance). For 64-bit values, there is no good way
832     // to state that the indices are unsigned, with creates the potential of
833     // incorrect address calculations in the unlikely case we need such
834     // extremely large offsets.
835     Type etp = ptr.getType().cast<MemRefType>().getElementType();
836     Value vload = genVectorLoad(codegen, builder, ptr, {s});
837     if (!etp.isa<IndexType>()) {
838       if (etp.getIntOrFloatBitWidth() < 32)
839         vload = builder.create<arith::ExtUIOp>(
840             loc, vectorType(codegen, builder.getI32Type()), vload);
841       else if (etp.getIntOrFloatBitWidth() < 64 &&
842                !codegen.options.enableSIMDIndex32)
843         vload = builder.create<arith::ExtUIOp>(
844             loc, vectorType(codegen, builder.getI64Type()), vload);
845     }
846     return vload;
847   }
848   // For the scalar case, we simply zero extend narrower indices into 64-bit
849   // values before casting to index without a performance penalty. Here too,
850   // however, indices that already are 64-bit, in theory, cannot express the
851   // full range as explained above.
852   Value load = builder.create<memref::LoadOp>(loc, ptr, s);
853   if (!load.getType().isa<IndexType>()) {
854     if (load.getType().getIntOrFloatBitWidth() < 64)
855       load = builder.create<arith::ExtUIOp>(loc, builder.getI64Type(), load);
856     load =
857         builder.create<arith::IndexCastOp>(loc, builder.getIndexType(), load);
858   }
859   return load;
860 }
861 
862 /// Generates an invariant value.
863 static Value genInvariantValue(Merger &merger, CodeGen &codegen,
864                                OpBuilder &builder, unsigned exp) {
865   Value val = merger.exp(exp).val;
866   if (codegen.curVecLength > 1)
867     return genVectorInvariantValue(codegen, builder, val);
868   return val;
869 }
870 
871 /// Generates an address computation "sz * p + i".
872 static Value genAddress(CodeGen &codegen, OpBuilder &builder, Location loc,
873                         Value size, Value p, Value i) {
874   Value mul = builder.create<arith::MulIOp>(loc, size, p);
875   if (auto vtp = i.getType().dyn_cast<VectorType>()) {
876     Value inv =
877         builder.create<arith::IndexCastOp>(loc, vtp.getElementType(), mul);
878     mul = genVectorInvariantValue(codegen, builder, inv);
879   }
880   return builder.create<arith::AddIOp>(loc, mul, i);
881 }
882 
883 /// Generates an index value.
884 static Value genIndexValue(Merger &merger, CodeGen &codegen, OpBuilder &builder,
885                            unsigned exp, unsigned ldx) {
886   unsigned idx = merger.exp(exp).index;
887   Value ival = codegen.loops[idx];
888   Type itype = ival.getType();
889   // During vectorization, we either encounter:
890   // (1) indices already in vector form, as in ... = ind[lo:hi], good to go, or
891   // (2) single index, as in ... = i, must convert to [i, i+1, ...] for inner i.
892   unsigned vl = codegen.curVecLength;
893   if (vl > 1 && !itype.isa<VectorType>()) {
894     Location loc = ival.getLoc();
895     VectorType vtp = vectorType(codegen, itype);
896     ival = builder.create<vector::BroadcastOp>(loc, vtp, ival);
897     if (idx == ldx) {
898       Value incr;
899       if (vtp.isScalable()) {
900         Type stepvty = vectorType(codegen, builder.getI64Type());
901         Value stepv = builder.create<LLVM::StepVectorOp>(loc, stepvty);
902         incr = builder.create<arith::IndexCastOp>(loc, vtp, stepv);
903       } else {
904         SmallVector<APInt, 4> integers;
905         for (unsigned i = 0; i < vl; i++)
906           integers.push_back(APInt(/*width=*/64, i));
907         auto values = DenseElementsAttr::get(vtp, integers);
908         incr = builder.create<arith::ConstantOp>(loc, vtp, values);
909       }
910       ival = builder.create<arith::AddIOp>(loc, ival, incr);
911     }
912   }
913   return ival;
914 }
915 
916 /// Recursively generates tensor expression.
917 static Value genExp(Merger &merger, CodeGen &codegen, RewriterBase &rewriter,
918                     linalg::GenericOp op, unsigned exp, unsigned ldx) {
919   Location loc = op.getLoc();
920   if (exp == -1u)
921     return Value();
922   if (merger.exp(exp).kind == Kind::kTensor)
923     return genTensorLoad(merger, codegen, rewriter, op, exp);
924   if (merger.exp(exp).kind == Kind::kInvariant)
925     return genInvariantValue(merger, codegen, rewriter, exp);
926   if (merger.exp(exp).kind == Kind::kIndex)
927     return genIndexValue(merger, codegen, rewriter, exp, ldx);
928   Value v0 =
929       genExp(merger, codegen, rewriter, op, merger.exp(exp).children.e0, ldx);
930   Value v1 =
931       genExp(merger, codegen, rewriter, op, merger.exp(exp).children.e1, ldx);
932   return merger.buildExp(rewriter, loc, exp, v0, v1);
933 }
934 
935 /// Determines if affine expression is invariant.
936 static bool isInvariantAffine(const CodeGen &codegen, AffineExpr a,
937                               unsigned ldx, bool &atLevel) {
938   switch (a.getKind()) {
939   case AffineExprKind::DimId: {
940     unsigned idx = a.cast<AffineDimExpr>().getPosition();
941     if (idx == ldx)
942       atLevel = true;
943     return codegen.loops[idx] != nullptr; // no longer in play?
944   }
945   case AffineExprKind::Add:
946   case AffineExprKind::Mul: {
947     auto binOp = a.cast<AffineBinaryOpExpr>();
948     return isInvariantAffine(codegen, binOp.getLHS(), ldx, atLevel) &&
949            isInvariantAffine(codegen, binOp.getRHS(), ldx, atLevel);
950   }
951   default:
952     return true;
953   }
954 }
955 
956 /// Hoists loop invariant tensor loads for which indices have been exhausted.
957 static void genInvariants(Merger &merger, CodeGen &codegen, OpBuilder &builder,
958                           linalg::GenericOp op, unsigned exp, unsigned ldx,
959                           bool atStart, Kind last = Kind::kTensor) {
960   if (exp == -1u)
961     return;
962   if (merger.exp(exp).kind == Kind::kTensor) {
963     // Inspect tensor indices.
964     bool atLevel = ldx == -1u;
965     OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).tensor];
966     auto map = op.getTiedIndexingMap(t);
967     auto enc = getSparseTensorEncoding(t->get().getType());
968     for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
969       AffineExpr a = map.getResult(perm(enc, d));
970       if (!isInvariantAffine(codegen, a, ldx, atLevel))
971         return; // still in play
972     }
973     // All exhausted at this level (atLevel denotes exactly at this level).
974     if (!atLevel)
975       return;
976     OpOperand *lhs = op.getOutputOperand(0);
977     if (lhs == t) {
978       // Start or end a scalarized reduction
979       if (atStart) {
980         Value load = genTensorLoad(merger, codegen, builder, op, exp);
981         codegen.redKind = getReduction(last);
982         codegen.redExp = exp;
983         updateReduc(merger, codegen, load);
984       } else {
985         Value redVal = codegen.redVal;
986         updateReduc(merger, codegen, Value());
987         codegen.redExp = -1u;
988         codegen.redKind = kNoReduc;
989         genTensorStore(merger, codegen, builder, op, exp, redVal);
990       }
991     } else {
992       // Start or end loop invariant hoisting of a tensor load.
993       merger.exp(exp).val =
994           atStart ? genTensorLoad(merger, codegen, builder, op, exp) : Value();
995     }
996   } else if (merger.exp(exp).kind != Kind::kInvariant &&
997              merger.exp(exp).kind != Kind::kIndex) {
998     // Traverse into the binary operations. Note that we only hoist
999     // tensor loads, since subsequent MLIR/LLVM passes know how to
1000     // deal with all other kinds of derived loop invariants.
1001     Kind last = merger.exp(exp).kind;
1002     unsigned e0 = merger.exp(exp).children.e0;
1003     unsigned e1 = merger.exp(exp).children.e1;
1004     genInvariants(merger, codegen, builder, op, e0, ldx, atStart, last);
1005     genInvariants(merger, codegen, builder, op, e1, ldx, atStart, last);
1006   }
1007 }
1008 
1009 /// Generates an expanded access pattern in innermost dimension.
1010 static void genExpansion(Merger &merger, CodeGen &codegen, OpBuilder &builder,
1011                          linalg::GenericOp op, unsigned at, bool atStart) {
1012   OpOperand *lhs = codegen.sparseOut;
1013   if (!lhs || codegen.outerParNest != op.getRank(lhs) - 1 ||
1014       at != codegen.outerParNest)
1015     return; // not needed at this level
1016   // Generate start or end of an expanded access pattern.
1017   Value tensor = lhs->get();
1018   Location loc = op.getLoc();
1019   if (atStart) {
1020     auto dynShape = {ShapedType::kDynamicSize};
1021     Type etp = tensor.getType().cast<ShapedType>().getElementType();
1022     Type t1 = MemRefType::get(dynShape, etp);
1023     Type t2 = MemRefType::get(dynShape, builder.getI1Type());
1024     Type t3 = MemRefType::get(dynShape, builder.getIndexType());
1025     Type t4 = builder.getIndexType();
1026     auto res =
1027         builder.create<ExpandOp>(loc, TypeRange({t1, t2, t3, t4}), tensor);
1028     assert(res.getNumResults() == 4);
1029     assert(!codegen.expValues);
1030     codegen.expValues = res.getResult(0);
1031     codegen.expFilled = res.getResult(1);
1032     codegen.expAdded = res.getResult(2);
1033     codegen.expCount = res.getResult(3);
1034   } else {
1035     assert(codegen.expValues);
1036     builder.create<CompressOp>(loc, tensor, codegen.lexIdx, codegen.expValues,
1037                                codegen.expFilled, codegen.expAdded,
1038                                codegen.expCount);
1039     codegen.expValues = codegen.expFilled = codegen.expAdded =
1040         codegen.expCount = Value();
1041   }
1042 }
1043 
1044 /// Generates initialization code for the subsequent loop sequence at
1045 /// current index level. Returns true if the loop sequence needs to
1046 /// maintain the universal index.
1047 static bool genInit(Merger &merger, CodeGen &codegen, OpBuilder &builder,
1048                     linalg::GenericOp op, std::vector<unsigned> &topSort,
1049                     unsigned at, BitVector &inits) {
1050   bool needsUniv = false;
1051   Location loc = op.getLoc();
1052   unsigned idx = topSort[at];
1053 
1054   // Initialize sparse positions.
1055   for (unsigned b = 0, be = inits.size(); b < be; b++) {
1056     if (inits[b]) {
1057       unsigned tensor = merger.tensor(b);
1058       assert(idx == merger.index(b));
1059       if (merger.isDim(b, Dim::kSparse)) {
1060         // Initialize sparse index.
1061         unsigned pat = at;
1062         for (; pat != 0; pat--) {
1063           if (codegen.pidxs[tensor][topSort[pat - 1]])
1064             break;
1065         }
1066         Value ptr = codegen.pointers[tensor][idx];
1067         Value one = constantIndex(builder, loc, 1);
1068         Value p0 = (pat == 0) ? constantIndex(builder, loc, 0)
1069                               : codegen.pidxs[tensor][topSort[pat - 1]];
1070         codegen.pidxs[tensor][idx] = genLoad(codegen, builder, loc, ptr, p0);
1071         Value p1 = builder.create<arith::AddIOp>(loc, p0, one);
1072         codegen.highs[tensor][idx] = genLoad(codegen, builder, loc, ptr, p1);
1073       } else {
1074         // Dense index still in play.
1075         needsUniv = true;
1076       }
1077     }
1078   }
1079 
1080   // Initialize the universal dense index.
1081   codegen.loops[idx] = constantIndex(builder, loc, 0);
1082   return needsUniv;
1083 }
1084 
1085 /// Returns vectorization strategy. Any implicit inner loop in the Linalg
1086 /// operation is a candidate. Whether it is actually converted to SIMD code
1087 /// depends on the requested strategy.
1088 static bool isVectorFor(CodeGen &codegen, bool isInner, bool isReduction,
1089                         bool isSparse) {
1090   // Reject vectorization of sparse output, unless innermost is reduction.
1091   if (codegen.sparseOut && !isReduction)
1092     return false;
1093   // Inspect strategy.
1094   switch (codegen.options.vectorizationStrategy) {
1095   case SparseVectorizationStrategy::kNone:
1096     return false;
1097   case SparseVectorizationStrategy::kDenseInnerLoop:
1098     return isInner && !isSparse;
1099   case SparseVectorizationStrategy::kAnyStorageInnerLoop:
1100     return isInner;
1101   }
1102   llvm_unreachable("unexpected vectorization strategy");
1103 }
1104 
1105 /// Returns parallelization strategy. Any implicit loop in the Linalg operation
1106 /// that is marked "parallel" is a candidate. Whether it is actually converted
1107 /// to a parallel operation depends on the requested strategy.
1108 static bool isParallelFor(CodeGen &codegen, bool isOuter, bool isReduction,
1109                           bool isSparse, bool isVector) {
1110   // Reject parallelization of sparse output.
1111   if (codegen.sparseOut)
1112     return false;
1113   // Inspect strategy.
1114   switch (codegen.options.parallelizationStrategy) {
1115   case SparseParallelizationStrategy::kNone:
1116     return false;
1117   case SparseParallelizationStrategy::kDenseOuterLoop:
1118     return isOuter && !isSparse && !isReduction && !isVector;
1119   case SparseParallelizationStrategy::kAnyStorageOuterLoop:
1120     return isOuter && !isReduction && !isVector;
1121   case SparseParallelizationStrategy::kDenseAnyLoop:
1122     return !isSparse && !isReduction && !isVector;
1123   case SparseParallelizationStrategy::kAnyStorageAnyLoop:
1124     return !isReduction && !isVector;
1125   }
1126   llvm_unreachable("unexpected parallelization strategy");
1127 }
1128 
1129 /// Checks unit stride for dense tensors. The iteration graph may have ignored
1130 /// dense access patterns in order to avoid cycles (sparse access patterns are
1131 /// always placed innermost), but that means dense access has become strided.
1132 /// This prevents effective vectorization.
1133 static bool denseUnitStrides(Merger &merger, linalg::GenericOp op,
1134                              unsigned idx) {
1135   for (OpOperand *t : op.getInputAndOutputOperands()) {
1136     if (!getSparseTensorEncoding(t->get().getType())) {
1137       auto map = op.getTiedIndexingMap(t);
1138       for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
1139         AffineExpr a = map.getResult(d);
1140         // Report non-unit stride if innermost index appears at an outer
1141         // dimension (true non-unit stride) or if the innermost index appears
1142         // in a compound subscript in the innermost dimension. Even if the
1143         // latter is unit stride, it does not play well with scatter/gather.
1144         // TODO: accept unit stride affine innermost like a[i,j+k+1]?
1145         if (a.isFunctionOfDim(idx) &&
1146             ((d != rank - 1) || (a.getKind() != AffineExprKind::DimId)))
1147           return false;
1148       }
1149     }
1150   }
1151   return true;
1152 }
1153 
1154 /// Generates a for-loop on a single index.
1155 static Operation *genFor(Merger &merger, CodeGen &codegen, OpBuilder &builder,
1156                          linalg::GenericOp op, bool isOuter, bool isInner,
1157                          unsigned idx, BitVector &indices) {
1158   unsigned fb = indices.find_first();
1159   unsigned tensor = merger.tensor(fb);
1160   assert(idx == merger.index(fb));
1161   auto iteratorTypes = op.iterator_types().getValue();
1162   bool isReduction = isReductionIterator(iteratorTypes[idx]);
1163   bool isSparse = merger.isDim(fb, Dim::kSparse);
1164   bool isVector = isVectorFor(codegen, isInner, isReduction, isSparse) &&
1165                   denseUnitStrides(merger, op, idx);
1166   bool isParallel =
1167       isParallelFor(codegen, isOuter, isReduction, isSparse, isVector);
1168 
1169   // Prepare vector length.
1170   if (isVector)
1171     codegen.curVecLength = codegen.options.vectorLength;
1172 
1173   // Loop bounds and increment.
1174   Location loc = op.getLoc();
1175   Value lo = isSparse ? codegen.pidxs[tensor][idx] : codegen.loops[idx];
1176   Value hi = isSparse ? codegen.highs[tensor][idx] : codegen.sizes[idx];
1177   Value step = constantIndex(builder, loc, codegen.curVecLength);
1178   if (isVector && codegen.options.enableVLAVectorization) {
1179     Value vscale = builder.create<vector::VectorScaleOp>(
1180         loc, IndexType::get(builder.getContext()));
1181     step = builder.create<arith::MulIOp>(loc, vscale, step);
1182   }
1183 
1184   // Emit a parallel loop.
1185   if (isParallel) {
1186     assert(!isVector);
1187     scf::ParallelOp parOp = builder.create<scf::ParallelOp>(loc, lo, hi, step);
1188     if (isSparse)
1189       codegen.pidxs[tensor][idx] = parOp.getInductionVars()[0];
1190     else
1191       codegen.loops[idx] = parOp.getInductionVars()[0];
1192     builder.setInsertionPointToStart(parOp.getBody());
1193     return parOp;
1194   }
1195 
1196   // Emit a sequential or vector loop.
1197   SmallVector<Value, 4> operands;
1198   if (codegen.redVal) {
1199     // In a vector loop, bring reduction into SIMD form, if not already.
1200     if (isVector && !codegen.redVal.getType().isa<VectorType>()) {
1201       VectorType vtp = vectorType(codegen, codegen.redVal.getType());
1202       Value vred = genVectorReducInit(codegen, builder, loc, vtp);
1203       updateReduc(merger, codegen, vred);
1204     }
1205     operands.push_back(codegen.redVal);
1206   }
1207   if (codegen.expValues)
1208     operands.push_back(codegen.expCount);
1209   scf::ForOp forOp = builder.create<scf::ForOp>(loc, lo, hi, step, operands);
1210   if (codegen.redVal)
1211     updateReduc(merger, codegen, forOp.getRegionIterArgs().front());
1212   if (codegen.expValues)
1213     codegen.expCount = forOp.getRegionIterArgs().back();
1214   // Assign induction variable to sparse or dense index.
1215   Value iv = forOp.getInductionVar();
1216   if (isSparse)
1217     codegen.pidxs[tensor][idx] = iv;
1218   else
1219     codegen.loops[idx] = iv;
1220   builder.setInsertionPointToStart(forOp.getBody());
1221   // Share vector iteration mask between all subsequent loads/stores.
1222   if (isVector)
1223     codegen.curVecMask = genVectorMask(codegen, builder, iv, lo, hi, step);
1224   return forOp;
1225 }
1226 
1227 /// Emit a while-loop for co-iteration over multiple indices.
1228 static Operation *genWhile(Merger &merger, CodeGen &codegen, OpBuilder &builder,
1229                            linalg::GenericOp op, unsigned idx, bool needsUniv,
1230                            BitVector &indices) {
1231   SmallVector<Type, 4> types;
1232   SmallVector<Value, 4> operands;
1233   // Construct the while-loop with a parameter for each index.
1234   Type indexType = builder.getIndexType();
1235   for (unsigned b = 0, be = indices.size(); b < be; b++) {
1236     if (indices[b] && merger.isDim(b, Dim::kSparse)) {
1237       unsigned tensor = merger.tensor(b);
1238       assert(idx == merger.index(b));
1239       types.push_back(indexType);
1240       operands.push_back(codegen.pidxs[tensor][idx]);
1241     }
1242   }
1243   if (codegen.redVal) {
1244     types.push_back(codegen.redVal.getType());
1245     operands.push_back(codegen.redVal);
1246   }
1247   if (codegen.expValues) {
1248     types.push_back(indexType);
1249     operands.push_back(codegen.expCount);
1250   }
1251   if (needsUniv) {
1252     types.push_back(indexType);
1253     operands.push_back(codegen.loops[idx]);
1254   }
1255   assert(types.size() == operands.size());
1256   Location loc = op.getLoc();
1257   scf::WhileOp whileOp = builder.create<scf::WhileOp>(loc, types, operands);
1258 
1259   SmallVector<Location> locs(types.size(), loc);
1260   Block *before = builder.createBlock(&whileOp.getBefore(), {}, types, locs);
1261   Block *after = builder.createBlock(&whileOp.getAfter(), {}, types, locs);
1262 
1263   // Build the "before" region, which effectively consists
1264   // of a conjunction of "i < upper" tests on all induction.
1265   builder.setInsertionPointToStart(&whileOp.getBefore().front());
1266   Value cond;
1267   unsigned o = 0;
1268   for (unsigned b = 0, be = indices.size(); b < be; b++) {
1269     if (indices[b] && merger.isDim(b, Dim::kSparse)) {
1270       unsigned tensor = merger.tensor(b);
1271       assert(idx == merger.index(b));
1272       Value op1 = before->getArgument(o);
1273       Value op2 = codegen.highs[tensor][idx];
1274       Value opc = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult,
1275                                                 op1, op2);
1276       cond = cond ? builder.create<arith::AndIOp>(loc, cond, opc) : opc;
1277       codegen.pidxs[tensor][idx] = after->getArgument(o++);
1278     }
1279   }
1280   if (codegen.redVal)
1281     updateReduc(merger, codegen, after->getArgument(o++));
1282   if (codegen.expValues)
1283     codegen.expCount = after->getArgument(o++);
1284   if (needsUniv)
1285     codegen.loops[idx] = after->getArgument(o++);
1286   assert(o == operands.size());
1287   builder.create<scf::ConditionOp>(loc, cond, before->getArguments());
1288   builder.setInsertionPointToStart(&whileOp.getAfter().front());
1289   return whileOp;
1290 }
1291 
1292 /// Generates a for-loop or a while-loop, depending on whether it implements
1293 /// singleton iteration or co-iteration over the given conjunction.
1294 static Operation *genLoop(Merger &merger, CodeGen &codegen, OpBuilder &builder,
1295                           linalg::GenericOp op, std::vector<unsigned> &topSort,
1296                           unsigned at, bool needsUniv, BitVector &indices) {
1297   unsigned idx = topSort[at];
1298   if (indices.count() == 1) {
1299     bool isOuter = at == 0;
1300     bool isInner = at == topSort.size() - 1;
1301     return genFor(merger, codegen, builder, op, isOuter, isInner, idx, indices);
1302   }
1303   return genWhile(merger, codegen, builder, op, idx, needsUniv, indices);
1304 }
1305 
1306 /// Generates the local variables for this loop, consisting of the sparse
1307 /// indices, restored universal dense index, and dense positions.
1308 static void genLocals(Merger &merger, CodeGen &codegen, OpBuilder &builder,
1309                       linalg::GenericOp op, std::vector<unsigned> &topSort,
1310                       unsigned at, bool needsUniv, BitVector &locals) {
1311   Location loc = op.getLoc();
1312   unsigned idx = topSort[at];
1313 
1314   // Initialize sparse indices.
1315   Value min;
1316   for (unsigned b = 0, be = locals.size(); b < be; b++) {
1317     if (locals[b] && merger.isDim(b, Dim::kSparse)) {
1318       unsigned tensor = merger.tensor(b);
1319       assert(idx == merger.index(b));
1320       Value ptr = codegen.indices[tensor][idx];
1321       Value s = codegen.pidxs[tensor][idx];
1322       Value load = genLoad(codegen, builder, loc, ptr, s);
1323       codegen.idxs[tensor][idx] = load;
1324       if (!needsUniv) {
1325         if (min) {
1326           Value cmp = builder.create<arith::CmpIOp>(
1327               loc, arith::CmpIPredicate::ult, load, min);
1328           min = builder.create<arith::SelectOp>(loc, cmp, load, min);
1329         } else {
1330           min = load;
1331         }
1332       }
1333     }
1334   }
1335 
1336   // Merge dense universal index over minimum.
1337   if (min) {
1338     assert(!needsUniv);
1339     codegen.loops[idx] = min;
1340   }
1341 
1342   // Initialize dense positions. Note that we generate dense indices of the
1343   // output tensor unconditionally, since they may not appear in the lattice,
1344   // but may be needed for linearized codegen.
1345   for (unsigned b = 0, be = locals.size(); b < be; b++) {
1346     if ((locals[b] || merger.isOutTensor(b, idx)) &&
1347         merger.isDim(b, Dim::kDense)) {
1348       unsigned tensor = merger.tensor(b);
1349       assert(idx == merger.index(b));
1350       unsigned pat = at;
1351       for (; pat != 0; pat--)
1352         if (codegen.pidxs[tensor][topSort[pat - 1]])
1353           break;
1354       Value p = (pat == 0) ? constantIndex(builder, loc, 0)
1355                            : codegen.pidxs[tensor][topSort[pat - 1]];
1356       codegen.pidxs[tensor][idx] = genAddress(
1357           codegen, builder, loc, codegen.sizes[idx], p, codegen.loops[idx]);
1358     }
1359   }
1360 
1361   // Move the insertion indices in lexicographic index order. During access
1362   // pattern expansion, we can skip setting the innermost dimension.
1363   if (codegen.sparseOut && !codegen.expValues) {
1364     Value pos = constantIndex(builder, loc, at);
1365     builder.create<memref::StoreOp>(loc, codegen.loops[idx], codegen.lexIdx,
1366                                     pos);
1367   }
1368 }
1369 
1370 /// Generates the induction structure for a while-loop.
1371 static void genWhileInduction(Merger &merger, CodeGen &codegen,
1372                               OpBuilder &builder, linalg::GenericOp op,
1373                               unsigned idx, bool needsUniv,
1374                               BitVector &induction, scf::WhileOp whileOp) {
1375   Location loc = op.getLoc();
1376   // Finalize each else branch of all if statements.
1377   if (codegen.redVal || codegen.expValues) {
1378     while (auto ifOp = dyn_cast_or_null<scf::IfOp>(
1379                builder.getInsertionBlock()->getParentOp())) {
1380       unsigned y = 0;
1381       SmallVector<Value, 4> yields;
1382       if (codegen.redVal) {
1383         yields.push_back(codegen.redVal);
1384         updateReduc(merger, codegen, ifOp.getResult(y++));
1385       }
1386       if (codegen.expValues) {
1387         yields.push_back(codegen.expCount);
1388         codegen.expCount = ifOp->getResult(y++);
1389       }
1390       assert(y == yields.size());
1391       builder.create<scf::YieldOp>(loc, yields);
1392       builder.setInsertionPointAfter(ifOp);
1393     }
1394   }
1395   builder.setInsertionPointToEnd(&whileOp.getAfter().front());
1396   // Finalize the induction. Note that the induction could be performed
1397   // in the individual if-branches to avoid re-evaluating the conditions.
1398   // However, that would result in a rather elaborate forest of yield
1399   // instructions during code generation. Moreover, performing the induction
1400   // after the if-statements more closely resembles code generated by TACO.
1401   unsigned o = 0;
1402   SmallVector<Value, 4> operands;
1403   Value one = constantIndex(builder, loc, 1);
1404   for (unsigned b = 0, be = induction.size(); b < be; b++) {
1405     if (induction[b] && merger.isDim(b, Dim::kSparse)) {
1406       unsigned tensor = merger.tensor(b);
1407       assert(idx == merger.index(b));
1408       Value op1 = codegen.idxs[tensor][idx];
1409       Value op2 = codegen.loops[idx];
1410       Value op3 = codegen.pidxs[tensor][idx];
1411       Value cmp = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
1412                                                 op1, op2);
1413       Value add = builder.create<arith::AddIOp>(loc, op3, one);
1414       operands.push_back(builder.create<arith::SelectOp>(loc, cmp, add, op3));
1415       codegen.pidxs[tensor][idx] = whileOp->getResult(o++);
1416     }
1417   }
1418   if (codegen.redVal) {
1419     operands.push_back(codegen.redVal);
1420     updateReduc(merger, codegen, whileOp->getResult(o++));
1421   }
1422   if (codegen.expValues) {
1423     operands.push_back(codegen.expCount);
1424     codegen.expCount = whileOp->getResult(o++);
1425   }
1426   if (needsUniv) {
1427     operands.push_back(
1428         builder.create<arith::AddIOp>(loc, codegen.loops[idx], one));
1429     codegen.loops[idx] = whileOp->getResult(o++);
1430   }
1431   assert(o == operands.size());
1432   builder.create<scf::YieldOp>(loc, operands);
1433   builder.setInsertionPointAfter(whileOp);
1434 }
1435 
1436 /// Generates the induction structure for a for-loop.
1437 static void genForInduction(Merger &merger, CodeGen &codegen,
1438                             OpBuilder &builder, linalg::GenericOp op,
1439                             Operation *loop) {
1440   Location loc = op.getLoc();
1441   unsigned o = 0;
1442   SmallVector<Value, 4> operands;
1443   if (codegen.redVal) {
1444     operands.push_back(codegen.redVal);
1445     updateReduc(merger, codegen, loop->getResult(o++));
1446   }
1447   if (codegen.expValues) {
1448     operands.push_back(codegen.expCount);
1449     codegen.expCount = loop->getResult(o++);
1450   }
1451   assert(o == operands.size());
1452   if (o > 0)
1453     builder.create<scf::YieldOp>(loc, operands);
1454   builder.setInsertionPointAfter(loop);
1455 }
1456 
1457 /// Generates a single if-statement within a while-loop.
1458 static scf::IfOp genIf(Merger &merger, CodeGen &codegen, OpBuilder &builder,
1459                        linalg::GenericOp op, unsigned idx,
1460                        BitVector &conditions) {
1461   Location loc = op.getLoc();
1462   SmallVector<Type, 4> types;
1463   Value cond;
1464   for (unsigned b = 0, be = conditions.size(); b < be; b++) {
1465     if (conditions[b]) {
1466       unsigned tensor = merger.tensor(b);
1467       assert(idx == merger.index(b));
1468       Value clause;
1469       if (merger.isDim(b, Dim::kSparse)) {
1470         Value op1 = codegen.idxs[tensor][idx];
1471         Value op2 = codegen.loops[idx];
1472         clause = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
1473                                                op1, op2);
1474       } else {
1475         clause = constantI1(builder, loc, true);
1476       }
1477       cond = cond ? builder.create<arith::AndIOp>(loc, cond, clause) : clause;
1478     }
1479   }
1480   if (codegen.redVal)
1481     types.push_back(codegen.redVal.getType());
1482   if (codegen.expValues)
1483     types.push_back(builder.getIndexType());
1484   scf::IfOp ifOp = builder.create<scf::IfOp>(loc, types, cond, /*else=*/true);
1485   builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
1486   return ifOp;
1487 }
1488 
1489 /// Generates end of true branch of if-statement within a while-loop.
1490 static void endIf(Merger &merger, CodeGen &codegen, OpBuilder &builder,
1491                   linalg::GenericOp op, scf::IfOp ifOp, Operation *loop,
1492                   Value redInput, Value cntInput) {
1493   SmallVector<Value, 4> operands;
1494   if (codegen.redVal) {
1495     operands.push_back(codegen.redVal);
1496     updateReduc(merger, codegen, redInput);
1497   }
1498   if (codegen.expValues) {
1499     operands.push_back(codegen.expCount);
1500     codegen.expCount = cntInput;
1501   }
1502   if (!operands.empty())
1503     builder.create<scf::YieldOp>(op.getLoc(), operands);
1504   builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
1505 }
1506 
1507 //===----------------------------------------------------------------------===//
1508 // Sparse compiler synthesis methods (loop sequence).
1509 //===----------------------------------------------------------------------===//
1510 
1511 /// Starts a loop sequence at given level. Returns true if
1512 /// the universal loop index must be maintained at this level.
1513 static bool startLoopSeq(Merger &merger, CodeGen &codegen, OpBuilder &builder,
1514                          linalg::GenericOp op, std::vector<unsigned> &topSort,
1515                          unsigned exp, unsigned at, unsigned idx, unsigned ldx,
1516                          unsigned lts) {
1517   assert(codegen.curVecLength == 1);
1518   assert(!codegen.loops[idx]);
1519   // Emit invariants at this loop sequence level.
1520   genInvariants(merger, codegen, builder, op, exp, ldx, /*atStart=*/true);
1521   // Emit access pattern expansion for sparse tensor output.
1522   genExpansion(merger, codegen, builder, op, at, /*atStart=*/true);
1523   // Emit further intitialization at this loop sequence level.
1524   unsigned l0 = merger.set(lts)[0];
1525   bool needsUniv =
1526       genInit(merger, codegen, builder, op, topSort, at, merger.lat(l0).bits);
1527   // Maintain the universal index only if it is actually
1528   // consumed by a subsequent lattice point.
1529   if (needsUniv) {
1530     unsigned lsize = merger.set(lts).size();
1531     for (unsigned i = 1; i < lsize; i++) {
1532       unsigned li = merger.set(lts)[i];
1533       if (!merger.hasAnyDimOf(merger.lat(li).simple, Dim::kSparse))
1534         return true;
1535     }
1536   }
1537   return false;
1538 }
1539 
1540 /// Starts a single loop in current sequence.
1541 static Operation *startLoop(Merger &merger, CodeGen &codegen,
1542                             OpBuilder &builder, linalg::GenericOp op,
1543                             std::vector<unsigned> &topSort, unsigned at,
1544                             unsigned li, bool needsUniv) {
1545   assert(codegen.curVecLength == 1);
1546   // Emit the for/while-loop control.
1547   Operation *loop = genLoop(merger, codegen, builder, op, topSort, at,
1548                             needsUniv, merger.lat(li).simple);
1549   // Emit the locals for this loop.
1550   genLocals(merger, codegen, builder, op, topSort, at, needsUniv,
1551             merger.lat(li).bits);
1552   return loop;
1553 }
1554 
1555 /// Ends a single loop in current sequence. Returns new values for needsUniv.
1556 static bool endLoop(Merger &merger, CodeGen &codegen, OpBuilder &builder,
1557                     linalg::GenericOp op, Operation *loop, unsigned idx,
1558                     unsigned li, bool needsUniv) {
1559   codegen.curVecLength = 1;
1560   // End a while-loop.
1561   if (auto whileOp = dyn_cast<scf::WhileOp>(loop)) {
1562     genWhileInduction(merger, codegen, builder, op, idx, needsUniv,
1563                       merger.lat(li).bits, whileOp);
1564     return needsUniv;
1565   }
1566   // End a for-loop.
1567   genForInduction(merger, codegen, builder, op, loop);
1568   return false;
1569 }
1570 
1571 /// Ends a loop sequence at given level.
1572 static void endLoopSeq(Merger &merger, CodeGen &codegen, OpBuilder &builder,
1573                        linalg::GenericOp op, unsigned exp, unsigned at,
1574                        unsigned idx, unsigned ldx) {
1575   assert(codegen.curVecLength == 1);
1576   codegen.loops[idx] = Value();
1577   // Bring a pending reduction back from SIMD form when sequence ends.
1578   if (codegen.redVal)
1579     if (auto vtp = codegen.redVal.getType().dyn_cast<VectorType>())
1580       updateReduc(merger, codegen,
1581                   genVectorReducEnd(codegen, builder, op.getLoc(), vtp));
1582   // Unmark bookkeeping of invariants and loop index.
1583   genInvariants(merger, codegen, builder, op, exp, ldx, /*atStart=*/false);
1584   // Finalize access pattern expansion for sparse tensor output.
1585   genExpansion(merger, codegen, builder, op, at, /*atStart=*/false);
1586 }
1587 
1588 /// Recursively generates code while computing iteration lattices in order
1589 /// to manage the complexity of implementing co-iteration over unions
1590 /// and intersections of sparse iterations spaces.
1591 static void genStmt(Merger &merger, CodeGen &codegen, RewriterBase &rewriter,
1592                     linalg::GenericOp op, std::vector<unsigned> &topSort,
1593                     unsigned exp, unsigned at) {
1594   // At each leaf, assign remaining tensor (sub)expression to output tensor.
1595   if (at == topSort.size()) {
1596     unsigned ldx = topSort[at - 1];
1597     Value rhs = genExp(merger, codegen, rewriter, op, exp, ldx);
1598     genTensorStore(merger, codegen, rewriter, op, exp, rhs);
1599     return;
1600   }
1601 
1602   // Construct iteration lattices for current loop index, with L0 at top.
1603   unsigned idx = topSort[at];
1604   unsigned ldx = at == 0 ? -1u : topSort[at - 1];
1605   unsigned lts = merger.optimizeSet(merger.buildLattices(exp, idx));
1606 
1607   // Start a loop sequence.
1608   bool needsUniv = startLoopSeq(merger, codegen, rewriter, op, topSort, exp, at,
1609                                 idx, ldx, lts);
1610 
1611   // Emit a loop for every lattice point L0 >= Li in this loop sequence.
1612   unsigned lsize = merger.set(lts).size();
1613   for (unsigned i = 0; i < lsize; i++) {
1614     // Start a loop.
1615     unsigned li = merger.set(lts)[i];
1616     Operation *loop =
1617         startLoop(merger, codegen, rewriter, op, topSort, at, li, needsUniv);
1618 
1619     // Visit all lattices points with Li >= Lj to generate the
1620     // loop-body, possibly with if statements for coiteration.
1621     Value redInput = codegen.redVal;
1622     Value cntInput = codegen.expCount;
1623     bool isWhile = dyn_cast<scf::WhileOp>(loop) != nullptr;
1624     for (unsigned j = 0; j < lsize; j++) {
1625       unsigned lj = merger.set(lts)[j];
1626       unsigned ej = merger.lat(lj).exp;
1627       if (li == lj || merger.latGT(li, lj)) {
1628         // Recurse into body of each branch.
1629         if (isWhile) {
1630           scf::IfOp ifOp =
1631               genIf(merger, codegen, rewriter, op, idx, merger.lat(lj).simple);
1632           genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1);
1633           endIf(merger, codegen, rewriter, op, ifOp, loop, redInput, cntInput);
1634         } else {
1635           genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1);
1636         }
1637       }
1638     }
1639 
1640     // End a loop.
1641     needsUniv =
1642         endLoop(merger, codegen, rewriter, op, loop, idx, li, needsUniv);
1643   }
1644 
1645   // End a loop sequence.
1646   endLoopSeq(merger, codegen, rewriter, op, exp, at, idx, ldx);
1647 }
1648 
1649 /// Converts the result computed by the sparse kernel into the required form.
1650 static void genResult(Merger &merger, CodeGen &codegen, RewriterBase &rewriter,
1651                       linalg::GenericOp op) {
1652   OpOperand *lhs = op.getOutputOperand(0);
1653   Type resType = lhs->get().getType();
1654   if (getSparseTensorEncoding(resType)) {
1655     // The sparse tensor rematerializes from the original sparse tensor's
1656     // underlying sparse storage format.
1657     rewriter.replaceOpWithNewOp<LoadOp>(op, resType, lhs->get(),
1658                                         codegen.sparseOut == lhs);
1659   } else {
1660     // To rematerialize an non-annotated tensor, simply load it
1661     // from the bufferized value.
1662     Value val = codegen.buffers.back(); // value array
1663     rewriter.replaceOpWithNewOp<bufferization::ToTensorOp>(op, resType, val);
1664   }
1665 }
1666 
1667 //===----------------------------------------------------------------------===//
1668 // Sparse compiler rewriting methods.
1669 //===----------------------------------------------------------------------===//
1670 
1671 namespace {
1672 
1673 /// Sparse rewriting rule for generic Lingalg operation.
1674 struct GenericOpSparsifier : public OpRewritePattern<linalg::GenericOp> {
1675 public:
1676   GenericOpSparsifier(MLIRContext *context, SparsificationOptions o)
1677       : OpRewritePattern<linalg::GenericOp>(context), options(o) {}
1678 
1679   LogicalResult matchAndRewrite(linalg::GenericOp op,
1680                                 PatternRewriter &rewriter) const override {
1681     // Detects sparse annotations and translate the per-dimension sparsity
1682     // information for all tensors to loop indices in the kernel.
1683     assert(op.getNumOutputs() == 1);
1684     unsigned numTensors = op.getNumInputsAndOutputs();
1685     unsigned numLoops = op.iterator_types().getValue().size();
1686     Merger merger(numTensors, numLoops);
1687     if (!findSparseAnnotations(merger, op))
1688       return failure();
1689 
1690     // Computes a topologically sorted iteration graph to ensure
1691     // tensors are visited in natural index order. Fails on cycles.
1692     // This assumes that higher-level passes have already put the
1693     // tensors in each tensor expression in a feasible order.
1694     std::vector<unsigned> topSort;
1695     if (!computeIterationGraph(merger, op, topSort,
1696                                SortMask::kIncludeUndef |
1697                                    SortMask::kIncludeDense) &&
1698         !computeIterationGraph(merger, op, topSort, SortMask::kIncludeUndef) &&
1699         !computeIterationGraph(merger, op, topSort, SortMask::kIncludeDense) &&
1700         !computeIterationGraph(merger, op, topSort, SortMask::kSparseOnly))
1701       return failure();
1702 
1703     // Builds the tensor expression for the Linalg operation in SSA form.
1704     Optional<unsigned> optExp = merger.buildTensorExpFromLinalg(op);
1705     if (!optExp.hasValue())
1706       return failure();
1707     unsigned exp = optExp.getValue();
1708 
1709     // Rejects an inadmissable tensor expression.
1710     OpOperand *sparseOut = nullptr;
1711     unsigned outerParNest = 0;
1712     if (!isAdmissableTensorExp(merger, op, topSort, exp, &sparseOut,
1713                                outerParNest))
1714       return failure();
1715 
1716     // Recursively generates code.
1717     merger.setHasSparseOut(sparseOut != nullptr);
1718     CodeGen codegen(options, numTensors, numLoops, sparseOut, outerParNest);
1719     genBuffers(merger, codegen, rewriter, op);
1720     genStmt(merger, codegen, rewriter, op, topSort, exp, 0);
1721     genResult(merger, codegen, rewriter, op);
1722     return success();
1723   }
1724 
1725 private:
1726   /// Options to control sparse code generation.
1727   SparsificationOptions options;
1728 };
1729 
1730 } // namespace
1731 
1732 /// Populates the given patterns list with rewriting rules required for
1733 /// the sparsification of linear algebra operations.
1734 void mlir::populateSparsificationPatterns(
1735     RewritePatternSet &patterns, const SparsificationOptions &options) {
1736   patterns.add<GenericOpSparsifier>(patterns.getContext(), options);
1737 }
1738