1 //===- Sparsification.cpp - Implementation of sparsification --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements converting sparse tensor types to actual sparse code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodegenUtils.h" 14 15 #include "mlir/Dialect/Affine/IR/AffineOps.h" 16 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 17 #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h" 18 #include "mlir/Dialect/Bufferization/IR/Bufferization.h" 19 #include "mlir/Dialect/Func/IR/FuncOps.h" 20 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 21 #include "mlir/Dialect/Linalg/IR/Linalg.h" 22 #include "mlir/Dialect/Linalg/Utils/Utils.h" 23 #include "mlir/Dialect/MemRef/IR/MemRef.h" 24 #include "mlir/Dialect/SCF/IR/SCF.h" 25 #include "mlir/Dialect/SCF/Transforms/Transforms.h" 26 #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h" 27 #include "mlir/Dialect/SparseTensor/Transforms/Passes.h" 28 #include "mlir/Dialect/SparseTensor/Utils/Merger.h" 29 #include "mlir/Dialect/Vector/IR/VectorOps.h" 30 #include "mlir/IR/Matchers.h" 31 #include "mlir/IR/TensorEncoding.h" 32 #include "llvm/ADT/SmallBitVector.h" 33 34 using namespace mlir; 35 using namespace mlir::sparse_tensor; 36 37 //===----------------------------------------------------------------------===// 38 // Declarations of data structures. 39 //===----------------------------------------------------------------------===// 40 41 namespace { 42 43 // Iteration graph sorting. 44 enum SortMask { kSparseOnly = 0x0, kIncludeDense = 0x1, kIncludeUndef = 0x2 }; 45 46 // Reduction kinds. 47 enum Reduction { kNoReduc, kSum, kProduct, kAnd, kOr, kXor }; 48 49 // Code generation. 50 struct CodeGen { 51 CodeGen(SparsificationOptions o, unsigned numTensors, unsigned numLoops, 52 OpOperand *op, unsigned nest) 53 : options(o), loops(numLoops), sizes(numLoops), buffers(numTensors), 54 pointers(numTensors, std::vector<Value>(numLoops)), 55 indices(numTensors, std::vector<Value>(numLoops)), 56 highs(numTensors, std::vector<Value>(numLoops)), 57 pidxs(numTensors, std::vector<Value>(numLoops)), 58 idxs(numTensors, std::vector<Value>(numLoops)), redVal(), sparseOut(op), 59 outerParNest(nest), lexIdx(), lexVal(), expValues(), expFilled(), 60 expAdded(), expCount(), curVecMask() {} 61 /// Sparsification options. 62 SparsificationOptions options; 63 /// Universal dense indices and upper bounds (by index). The loops array 64 /// is updated with the value of the universal dense index in the current 65 /// loop. The sizes array is set once with the inferred dimension sizes. 66 std::vector<Value> loops; 67 std::vector<Value> sizes; 68 /// Buffers for storing dense and sparse numerical values (by tensor). 69 /// This array is set once during bufferization of all tensors. 70 std::vector<Value> buffers; 71 /// Sparse storage schemes (1-D): pointers and indices (by tensor and index). 72 /// This array is set once during bufferization of all sparse tensors. 73 std::vector<std::vector<Value>> pointers; 74 std::vector<std::vector<Value>> indices; 75 /// Sparse iteration information (by tensor and index). These arrays 76 /// are updated to remain current within the current loop. 77 std::vector<std::vector<Value>> highs; 78 std::vector<std::vector<Value>> pidxs; 79 std::vector<std::vector<Value>> idxs; 80 /// Current reduction, updated during code generation. When indices of a 81 /// reduction are exhausted, all inner loops can use a scalarized reduction. 82 unsigned redExp = -1u; 83 Value redVal; 84 Reduction redKind = kNoReduc; 85 // Sparse tensor as output. Implemented either through direct injective 86 // insertion in lexicographic index order (where indices are updated 87 // in the temporary array `lexIdx`) or through access pattern expansion 88 // in the innermost loop nest (`expValues` through `expCount`). 89 OpOperand *sparseOut; 90 unsigned outerParNest; 91 Value lexIdx; 92 Value lexVal; 93 Value expValues; 94 Value expFilled; 95 Value expAdded; 96 Value expCount; 97 // Current vector length and mask. 98 unsigned curVecLength = 1; 99 Value curVecMask; 100 }; 101 102 } // namespace 103 104 //===----------------------------------------------------------------------===// 105 // Sparse compiler analysis methods. 106 //===----------------------------------------------------------------------===// 107 108 /// Helper method to apply dimension ordering permutation. 109 static unsigned perm(const SparseTensorEncodingAttr &enc, unsigned d) { 110 if (enc) { 111 auto order = enc.getDimOrdering(); 112 if (order) { 113 assert(order.isPermutation()); 114 return order.getDimPosition(d); 115 } 116 } 117 return d; 118 } 119 120 /// Helper method to translate dim level type to internal representation. 121 static Dim toDim(const SparseTensorEncodingAttr &enc, unsigned d) { 122 if (enc) { 123 SparseTensorEncodingAttr::DimLevelType tp = enc.getDimLevelType()[d]; 124 if (tp == SparseTensorEncodingAttr::DimLevelType::Compressed) 125 return Dim::kSparse; 126 if (tp == SparseTensorEncodingAttr::DimLevelType::Singleton) 127 return Dim::kSingle; 128 } 129 return Dim::kDense; 130 } 131 132 /// Helper method to inspect affine expressions. Rejects cases where the 133 /// same index is used more than once. Also rejects affine expressions 134 /// that are not a direct index for annotated tensors. 135 // TODO: accept more affine cases for sparse tensors 136 static bool findAffine(Merger &merger, unsigned tensor, AffineExpr a, Dim dim, 137 bool isDense) { 138 switch (a.getKind()) { 139 case AffineExprKind::DimId: { 140 unsigned idx = a.cast<AffineDimExpr>().getPosition(); 141 if (!merger.isDim(tensor, idx, Dim::kUndef)) 142 return false; // used more than once 143 merger.setDim(tensor, idx, dim); 144 return true; 145 } 146 case AffineExprKind::Add: 147 case AffineExprKind::Mul: { 148 if (!isDense) 149 return false; 150 auto binOp = a.cast<AffineBinaryOpExpr>(); 151 return findAffine(merger, tensor, binOp.getLHS(), dim, isDense) && 152 findAffine(merger, tensor, binOp.getRHS(), dim, isDense); 153 } 154 case AffineExprKind::Constant: 155 return isDense; 156 default: 157 return false; 158 } 159 } 160 161 /// Helper method to inspect sparse encodings in the tensor types. 162 /// Fills the per-dimension sparsity information for all tensors. 163 /// Returns true if the sparse annotations and affine subscript 164 /// expressions of all tensors are admissable. Returns false if 165 /// no annotations are found or inadmissable constructs occur. 166 static bool findSparseAnnotations(Merger &merger, linalg::GenericOp op) { 167 bool annotated = false; 168 for (OpOperand *t : op.getInputAndOutputOperands()) { 169 auto map = op.getTiedIndexingMap(t); 170 auto enc = getSparseTensorEncoding(t->get().getType()); 171 if (enc) 172 annotated = true; 173 assert(map.getNumResults() == op.getRank(t)); 174 for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { 175 unsigned tensor = t->getOperandNumber(); 176 AffineExpr a = map.getResult(perm(enc, d)); 177 if (!findAffine(merger, tensor, a, toDim(enc, d), !enc)) 178 return false; // inadmissable affine expression 179 } 180 } 181 return annotated; 182 } 183 184 /// A DFS helper to compute a topological sort. Note that recursion is 185 /// bounded by the number of implicit loops, which is always small. 186 /// Returns false when a cycle is detected. 187 static bool topSortDFS(unsigned i, std::vector<unsigned> &visit, 188 std::vector<unsigned> &topSort, 189 std::vector<std::vector<bool>> &adjM) { 190 if (visit[i] != 0) 191 return visit[i] != 1; // 1 denotes cycle! 192 visit[i] = 1; 193 for (unsigned j = 0, e = visit.size(); j < e; j++) 194 if (adjM[i][j]) 195 if (!topSortDFS(j, visit, topSort, adjM)) 196 return false; 197 visit[i] = 2; 198 topSort.push_back(i); 199 return true; 200 } 201 202 /// Helper method to add all constraints from the indices in one affine 203 /// expression before all indices in the other affine expression. For 204 /// example i0+i1 < i2+i3+1 yields i0<i2, i0<i3, i1<i2, and i1<i3. 205 static void addAffineOrderings(std::vector<std::vector<bool>> &adjM, 206 AffineExpr a, AffineExpr b, unsigned fidx) { 207 switch (a.getKind()) { 208 case AffineExprKind::DimId: { 209 unsigned idx = a.cast<AffineDimExpr>().getPosition(); 210 if (b) 211 addAffineOrderings(adjM, b, AffineExpr(), idx); 212 else 213 adjM[fidx][idx] = true; 214 break; 215 } 216 case AffineExprKind::Add: 217 case AffineExprKind::Mul: { 218 auto binOp = a.cast<AffineBinaryOpExpr>(); 219 addAffineOrderings(adjM, binOp.getLHS(), b, fidx); 220 addAffineOrderings(adjM, binOp.getRHS(), b, fidx); 221 break; 222 } 223 default: 224 break; 225 } 226 } 227 228 /// Computes a topologically sorted iteration graph for the linalg operation. 229 /// Ensures all tensors are visited in natural index order. This is essential 230 /// for sparse storage formats since these only support access along fixed 231 /// dimensions. Even for dense storage formats, however, the natural index 232 /// order yields innermost unit-stride access with better spatial locality. 233 static bool computeIterationGraph(Merger &merger, linalg::GenericOp op, 234 std::vector<unsigned> &topSort, 235 unsigned mask) { 236 // Set up an n x n from/to adjacency matrix of the iteration graph 237 // for the implicit loop indices i_0 .. i_n-1. 238 unsigned n = op.getNumLoops(); 239 std::vector<std::vector<bool>> adjM(n, std::vector<bool>(n, false)); 240 241 // Iterate over the indexing maps of every tensor in the tensor expression. 242 for (OpOperand *t : op.getInputAndOutputOperands()) { 243 auto map = op.getTiedIndexingMap(t); 244 auto enc = getSparseTensorEncoding(t->get().getType()); 245 assert(map.getNumDims() == n); 246 // Skip dense tensor constraints when not requested. 247 if (!(mask & SortMask::kIncludeDense) && !enc) 248 continue; 249 // Each tensor expression and optional dimension ordering (row-major 250 // by default) puts an ordering constraint on the loop indices. For 251 // example, the tensor expresion A_ijk forces the ordering i < j < k 252 // on the loop indices if no explicit dimension ordering is given. 253 for (unsigned d = 1, rank = map.getNumResults(); d < rank; d++) { 254 AffineExpr f = map.getResult(perm(enc, d - 1)); 255 AffineExpr t = map.getResult(perm(enc, d)); 256 addAffineOrderings(adjM, f, t, 0); 257 } 258 // Push unrelated loops into sparse iteration space, so these 259 // will be skipped more often. 260 if (mask & SortMask::kIncludeUndef) { 261 unsigned tensor = t->getOperandNumber(); 262 for (unsigned i = 0; i < n; i++) 263 if (merger.isDim(tensor, i, Dim::kSparse)) 264 for (unsigned j = 0; j < n; j++) 265 if (merger.isDim(tensor, j, Dim::kUndef)) 266 adjM[i][j] = true; 267 } 268 } 269 270 // Topologically sort the iteration graph to determine loop order. 271 // Report failure for a cyclic iteration graph. 272 topSort.clear(); 273 topSort.reserve(n); 274 std::vector<unsigned> visit(n, 0); 275 for (unsigned i = 0; i < n; i++) 276 if (visit[i] == 0) 277 if (!topSortDFS(i, visit, topSort, adjM)) 278 return false; // cycle! 279 std::reverse(std::begin(topSort), std::end(topSort)); 280 return true; 281 } 282 283 /// Returns true if tensor has an in-place annotation. 284 static bool isInPlace(Value val) { 285 if (auto arg = val.dyn_cast<BlockArgument>()) 286 if (auto funcOp = dyn_cast<func::FuncOp>(arg.getOwner()->getParentOp())) 287 if (auto attr = funcOp.getArgAttrOfType<BoolAttr>( 288 arg.getArgNumber(), 289 bufferization::BufferizableOpInterface::kInplaceableAttrName)) 290 return attr.getValue(); 291 return false; 292 } 293 294 /// Returns true if tensor materializes uninitialized into the computation. 295 static bool isMaterializing(Value val) { 296 return val.getDefiningOp<linalg::InitTensorOp>() || 297 val.getDefiningOp<bufferization::AllocTensorOp>(); 298 } 299 300 /// Returns true when the tensor expression is admissable for codegen. 301 /// Since all sparse input tensors are admissable, we just need to check 302 /// whether the out tensor in the tensor expression codegen is admissable. 303 /// Sets `sparseOut` to the tensor and `outerParNest` to the outer injective 304 /// nesting depth when a "truly dynamic" sparse tensor output occurs. 305 static bool isAdmissableTensorExp(Merger &merger, linalg::GenericOp op, 306 std::vector<unsigned> &topSort, unsigned exp, 307 OpOperand **sparseOut, 308 unsigned &outerParNest) { 309 OpOperand *lhs = op.getOutputOperand(0); 310 unsigned tensor = lhs->getOperandNumber(); 311 auto enc = getSparseTensorEncoding(lhs->get().getType()); 312 // An non-annotated output tensor is assumed dense, and becomes a random 313 // access n-dim memref. Admissable since insertions cannot occur. 314 if (!enc) 315 return true; 316 // An all-dense annotated "sparse" output tensor becomes a linearized random 317 // access 1-dim memref. Also admissable since insertions cannot occur. 318 bool allDense = true; 319 auto iteratorTypes = op.iterator_types().getValue(); 320 unsigned numLoops = iteratorTypes.size(); 321 for (unsigned i = 0; i < numLoops; i++) 322 if (merger.isDim(tensor, i, Dim::kSparse)) { 323 allDense = false; 324 break; 325 } 326 if (allDense) 327 return true; 328 // A tensor expression with a sparse output tensor that changes its values 329 // but not its nonzero structure, an operation called "simply dynamic" in 330 // [Bik96,Ch9], is also admissable without special codegen, provided 331 // the tensor's underlying sparse storage scheme can be modified in place. 332 if (merger.isSingleCondition(tensor, exp) && isInPlace(lhs->get())) 333 return true; 334 // Accept "truly dynamic" if the output tensor materializes uninitialized 335 // into the computation and insertions occur in lexicographic index order. 336 if (isMaterializing(lhs->get())) { 337 unsigned nest = 0; 338 for (unsigned i = 0; i < numLoops; i++) { 339 if (isReductionIterator(iteratorTypes[topSort[i]])) 340 break; // terminate at first reduction 341 nest++; 342 } 343 // Determine admissable dynamic insertion situations: 344 // (1) fully injective, since there are no reductions, 345 // (2) admissable 1-d expansion in innermost dimension. 346 if (nest >= op.getRank(lhs) - 1) { 347 *sparseOut = lhs; 348 outerParNest = nest; 349 return true; 350 } 351 } 352 return false; 353 } 354 355 //===----------------------------------------------------------------------===// 356 // Sparse compiler synthesis methods (reductions). 357 //===----------------------------------------------------------------------===// 358 359 /// Maps reduction kind to vector::CombiningKind. 360 static vector::CombiningKind getCombiningKind(Reduction kind) { 361 switch (kind) { 362 case kNoReduc: 363 break; 364 case kSum: 365 return vector::CombiningKind::ADD; 366 case kProduct: 367 return vector::CombiningKind::MUL; 368 case kAnd: 369 return vector::CombiningKind::AND; 370 case kOr: 371 return vector::CombiningKind::OR; 372 case kXor: 373 return vector::CombiningKind::XOR; 374 } 375 llvm_unreachable("unknown reduction kind"); 376 } 377 378 /// Maps operation to reduction. 379 static Reduction getReduction(Kind kind) { 380 switch (kind) { 381 case Kind::kAddF: 382 case Kind::kAddC: 383 case Kind::kAddI: 384 case Kind::kSubF: 385 case Kind::kSubC: 386 case Kind::kSubI: 387 return kSum; 388 case Kind::kMulF: 389 case Kind::kMulC: 390 case Kind::kMulI: 391 return kProduct; 392 case Kind::kAndI: 393 return kAnd; 394 case Kind::kOrI: 395 return kOr; 396 case Kind::kXorI: 397 return kXor; 398 default: 399 llvm_unreachable("unexpected reduction operator"); 400 } 401 } 402 403 /// Generates an initial value for a vector reduction, following the scheme 404 /// given in Chapter 5 of "The Software Vectorization Handbook", where the 405 /// initial scalar value is correctly embedded in the vector reduction value, 406 /// and a straightforward horizontal reduction will complete the operation. 407 static Value genVectorReducInit(CodeGen &codegen, OpBuilder &builder, 408 Location loc, VectorType vtp) { 409 Value r = codegen.redVal; 410 switch (codegen.redKind) { 411 case kNoReduc: 412 break; 413 case kSum: 414 case kXor: 415 // Initialize reduction vector to: | 0 | .. | 0 | r | 416 return builder.create<vector::InsertElementOp>( 417 loc, r, constantZero(builder, loc, vtp), 418 constantIndex(builder, loc, 0)); 419 case kProduct: 420 // Initialize reduction vector to: | 1 | .. | 1 | r | 421 return builder.create<vector::InsertElementOp>( 422 loc, r, constantOne(builder, loc, vtp), constantIndex(builder, loc, 0)); 423 case kAnd: 424 case kOr: 425 // Initialize reduction vector to: | r | .. | r | r | 426 return builder.create<vector::BroadcastOp>(loc, vtp, r); 427 } 428 llvm_unreachable("unknown reduction kind"); 429 } 430 431 /// Generates final value for a vector reduction. 432 static Value genVectorReducEnd(CodeGen &codegen, OpBuilder &builder, 433 Location loc, VectorType vtp) { 434 vector::CombiningKind kind = getCombiningKind(codegen.redKind); 435 return builder.create<vector::ReductionOp>(loc, kind, codegen.redVal); 436 } 437 438 /// Updates scalarized reduction value. 439 static void updateReduc(Merger &merger, CodeGen &codegen, Value reduc) { 440 assert(codegen.redKind != kNoReduc); 441 codegen.redVal = merger.exp(codegen.redExp).val = reduc; 442 } 443 444 //===----------------------------------------------------------------------===// 445 // Sparse compiler synthesis methods (statements and expressions). 446 //===----------------------------------------------------------------------===// 447 448 /// Generates buffer for the output tensor. Note that all sparse kernels 449 /// assume that when all elements are written to (viz. x(i) = y(i) * z(i)), 450 /// the output buffer is already initialized to all zeroes and only nonzeroes 451 /// values are computed and written out. For updates (viz. x(i) += y(i) * z(i)), 452 /// only nonzeroes values are used for the updates and no assumption on the 453 /// original contents of the output buffer is necessary.. 454 static Value genOutputBuffer(CodeGen &codegen, OpBuilder &builder, 455 linalg::GenericOp op, MemRefType denseTp, 456 ArrayRef<Value> args) { 457 Location loc = op.getLoc(); 458 Value tensor = op.getOutputOperand(0)->get(); 459 // The output tensor simply could materialize from the buffer that will 460 // be generated for the tensor present in the outs() clause. This has 461 // the major advantage that the sparse kernel only updates the nonzero 462 // positions for the output tensor. 463 if (isInPlace(tensor)) 464 return builder.create<bufferization::ToMemrefOp>(loc, denseTp, tensor); 465 // By default, a new buffer is allocated which is initialized to the 466 // tensor defined in the outs() clause. This is always correct but 467 // introduces a dense initialization component that may negatively 468 // impact the running complexity of the sparse kernel. If the tensor 469 // materializes into the computation, we need to preserve the zero 470 // initialization assumption of all sparse output buffers. 471 Value alloc = builder.create<memref::AllocOp>(loc, denseTp, args); 472 if (isMaterializing(tensor)) { 473 Value zero = constantZero(builder, loc, denseTp.getElementType()); 474 builder.create<linalg::FillOp>(loc, ValueRange{zero}, ValueRange{alloc}); 475 } else { 476 Value init = 477 builder.create<bufferization::ToMemrefOp>(loc, denseTp, tensor); 478 builder.create<memref::CopyOp>(loc, init, alloc); 479 } 480 return alloc; 481 } 482 483 /// Local bufferization of all dense and sparse data structures. 484 /// This code enables testing the first prototype sparse compiler. 485 // TODO: replace this with a proliferated bufferization strategy 486 static void genBuffers(Merger &merger, CodeGen &codegen, OpBuilder &builder, 487 linalg::GenericOp op) { 488 Location loc = op.getLoc(); 489 assert(op.getNumInputsAndOutputs() == op.getNumInputs() + 1); 490 // For every tensor, find lower and upper bound on dimensions, set the 491 // same bounds on loop indices, and obtain dense or sparse buffer(s). 492 SmallVector<Value, 4> args; 493 for (OpOperand *t : op.getInputAndOutputOperands()) { 494 unsigned tensor = t->getOperandNumber(); 495 auto shape = op.getShape(t); 496 auto map = op.getTiedIndexingMap(t); 497 auto enc = getSparseTensorEncoding(t->get().getType()); 498 // Scan all dimensions of current tensor. 499 args.clear(); 500 for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { 501 AffineExpr a = map.getResult(perm(enc, d)); 502 if (a.getKind() != AffineExprKind::DimId) 503 continue; // compound 504 unsigned idx = a.cast<AffineDimExpr>().getPosition(); 505 // Handle sparse storage schemes. 506 if (merger.isDim(tensor, idx, Dim::kSparse)) { 507 auto dynShape = {ShapedType::kDynamicSize}; 508 auto ptrTp = 509 MemRefType::get(dynShape, getPointerOverheadType(builder, enc)); 510 auto indTp = 511 MemRefType::get(dynShape, getIndexOverheadType(builder, enc)); 512 Value dim = constantIndex(builder, loc, d); 513 // Generate sparse primitives to obtains pointer and indices. 514 codegen.pointers[tensor][idx] = 515 builder.create<ToPointersOp>(loc, ptrTp, t->get(), dim); 516 codegen.indices[tensor][idx] = 517 builder.create<ToIndicesOp>(loc, indTp, t->get(), dim); 518 } 519 // Find upper bound in current dimension. 520 unsigned p = perm(enc, d); 521 Value up = linalg::createOrFoldDimOp(builder, loc, t->get(), p); 522 if (ShapedType::isDynamic(shape[p])) 523 args.push_back(up); 524 assert(codegen.highs[tensor][idx] == nullptr); 525 codegen.sizes[idx] = codegen.highs[tensor][idx] = up; 526 } 527 // Perform the required bufferization. Dense inputs materialize 528 // from the input tensors. Dense outputs need special handling. 529 // Sparse inputs use sparse primitives to obtain the values. 530 // We also accept in-place all-dense annotated "sparse" outputs. 531 Type elementType = getElementTypeOrSelf(t->get().getType()); 532 if (!enc) { 533 // Non-annotated dense tensors. 534 auto denseTp = MemRefType::get(shape, elementType); 535 if (tensor < op.getNumInputs()) 536 codegen.buffers[tensor] = 537 builder.create<bufferization::ToMemrefOp>(loc, denseTp, t->get()); 538 else 539 codegen.buffers[tensor] = 540 genOutputBuffer(codegen, builder, op, denseTp, args); 541 } else if (t == codegen.sparseOut) { 542 // True sparse output needs a lexIdx array. 543 Value rank = constantIndex(builder, loc, op.getRank(t)); 544 auto dynShape = {ShapedType::kDynamicSize}; 545 auto memTp = MemRefType::get(dynShape, builder.getIndexType()); 546 codegen.lexIdx = builder.create<memref::AllocaOp>(loc, memTp, rank); 547 codegen.lexVal = builder.create<memref::AllocaOp>( 548 loc, MemRefType::get({}, elementType)); 549 } else { 550 // Annotated sparse tensors. 551 auto dynShape = {ShapedType::kDynamicSize}; 552 auto sparseTp = MemRefType::get(dynShape, elementType); 553 codegen.buffers[tensor] = 554 builder.create<ToValuesOp>(loc, sparseTp, t->get()); 555 } 556 } 557 } 558 559 /// Constructs vector type. 560 static VectorType vectorType(CodeGen &codegen, Type etp) { 561 unsigned numScalableDims = codegen.options.enableVLAVectorization; 562 return VectorType::get(codegen.curVecLength, etp, numScalableDims); 563 } 564 565 /// Constructs vector type from pointer. 566 static VectorType vectorType(CodeGen &codegen, Value ptr) { 567 return vectorType(codegen, ptr.getType().cast<MemRefType>().getElementType()); 568 } 569 570 /// Constructs vector iteration mask. 571 static Value genVectorMask(CodeGen &codegen, OpBuilder &builder, Value iv, 572 Value lo, Value hi, Value step) { 573 Location loc = iv.getLoc(); 574 VectorType mtp = vectorType(codegen, builder.getI1Type()); 575 // Special case if the vector length evenly divides the trip count (for 576 // example, "for i = 0, 128, 16"). A constant all-true mask is generated 577 // so that all subsequent masked memory operations are immediately folded 578 // into unconditional memory operations. 579 IntegerAttr loInt, hiInt, stepInt; 580 if (matchPattern(lo, m_Constant(&loInt)) && 581 matchPattern(hi, m_Constant(&hiInt)) && 582 matchPattern(step, m_Constant(&stepInt))) { 583 if (((hiInt.getInt() - loInt.getInt()) % stepInt.getInt()) == 0) 584 return builder.create<vector::BroadcastOp>( 585 loc, mtp, constantI1(builder, loc, true)); 586 } 587 // Otherwise, generate a vector mask that avoids overrunning the upperbound 588 // during vector execution. Here we rely on subsequent loop optimizations to 589 // avoid executing the mask in all iterations, for example, by splitting the 590 // loop into an unconditional vector loop and a scalar cleanup loop. 591 auto minMap = AffineMap::get( 592 /*dimCount=*/2, /*symbolCount=*/1, 593 {builder.getAffineSymbolExpr(0), 594 builder.getAffineDimExpr(0) - builder.getAffineDimExpr(1)}, 595 builder.getContext()); 596 Value end = 597 builder.createOrFold<AffineMinOp>(loc, minMap, ValueRange{hi, iv, step}); 598 return builder.create<vector::CreateMaskOp>(loc, mtp, end); 599 } 600 601 /// Generates a vectorized load lhs = a[ind[lo:hi]] or lhs = a[lo:hi]. 602 static Value genVectorLoad(CodeGen &codegen, OpBuilder &builder, Value ptr, 603 ArrayRef<Value> args) { 604 Location loc = ptr.getLoc(); 605 VectorType vtp = vectorType(codegen, ptr); 606 Value pass = constantZero(builder, loc, vtp); 607 if (args.back().getType().isa<VectorType>()) { 608 SmallVector<Value, 4> scalarArgs(args.begin(), args.end()); 609 Value indexVec = args.back(); 610 scalarArgs.back() = constantIndex(builder, loc, 0); 611 return builder.create<vector::GatherOp>(loc, vtp, ptr, scalarArgs, indexVec, 612 codegen.curVecMask, pass); 613 } 614 return builder.create<vector::MaskedLoadOp>(loc, vtp, ptr, args, 615 codegen.curVecMask, pass); 616 } 617 618 /// Generates a vectorized store a[ind[lo:hi]] = rhs or a[lo:hi] = rhs. 619 static void genVectorStore(CodeGen &codegen, OpBuilder &builder, Value rhs, 620 Value ptr, ArrayRef<Value> args) { 621 Location loc = ptr.getLoc(); 622 if (args.back().getType().isa<VectorType>()) { 623 SmallVector<Value, 4> scalarArgs(args.begin(), args.end()); 624 Value indexVec = args.back(); 625 scalarArgs.back() = constantIndex(builder, loc, 0); 626 builder.create<vector::ScatterOp>(loc, ptr, scalarArgs, indexVec, 627 codegen.curVecMask, rhs); 628 return; 629 } 630 builder.create<vector::MaskedStoreOp>(loc, ptr, args, codegen.curVecMask, 631 rhs); 632 } 633 634 /// Generates a vectorized invariant. Here we rely on subsequent loop 635 /// optimizations to hoist the invariant broadcast out of the vector loop. 636 static Value genVectorInvariantValue(CodeGen &codegen, OpBuilder &builder, 637 Value val) { 638 VectorType vtp = vectorType(codegen, val.getType()); 639 return builder.create<vector::BroadcastOp>(val.getLoc(), vtp, val); 640 } 641 642 /// Generates an affine expression. 643 // 644 // TODO: generalize for sparse tensor subscripts 645 // 646 static Value genAffine(CodeGen &codegen, OpBuilder &builder, AffineExpr a, 647 Location loc) { 648 switch (a.getKind()) { 649 case AffineExprKind::DimId: { 650 unsigned idx = a.cast<AffineDimExpr>().getPosition(); 651 return codegen.loops[idx]; // universal dense index 652 } 653 case AffineExprKind::Add: { 654 auto binOp = a.cast<AffineBinaryOpExpr>(); 655 return builder.create<arith::AddIOp>( 656 loc, genAffine(codegen, builder, binOp.getLHS(), loc), 657 genAffine(codegen, builder, binOp.getRHS(), loc)); 658 } 659 case AffineExprKind::Mul: { 660 auto binOp = a.cast<AffineBinaryOpExpr>(); 661 return builder.create<arith::MulIOp>( 662 loc, genAffine(codegen, builder, binOp.getLHS(), loc), 663 genAffine(codegen, builder, binOp.getRHS(), loc)); 664 } 665 case AffineExprKind::Constant: { 666 int64_t c = a.cast<AffineConstantExpr>().getValue(); 667 return constantIndex(builder, loc, c); 668 } 669 default: 670 llvm_unreachable("unexpected affine subscript"); 671 } 672 } 673 674 /// Generates index for load/store on sparse tensor. 675 static Value genIndex(CodeGen &codegen, linalg::GenericOp op, OpOperand *t) { 676 auto map = op.getTiedIndexingMap(t); 677 auto enc = getSparseTensorEncoding(t->get().getType()); 678 AffineExpr a = map.getResult(perm(enc, map.getNumResults() - 1)); 679 assert(a.getKind() == AffineExprKind::DimId); 680 unsigned idx = a.cast<AffineDimExpr>().getPosition(); 681 return codegen.loops[idx]; 682 } 683 684 /// Generates subscript for load/store on a dense or sparse tensor. 685 static Value genSubscript(CodeGen &codegen, OpBuilder &builder, 686 linalg::GenericOp op, OpOperand *t, 687 SmallVector<Value, 4> &args) { 688 unsigned tensor = t->getOperandNumber(); 689 auto map = op.getTiedIndexingMap(t); 690 auto enc = getSparseTensorEncoding(t->get().getType()); 691 unsigned rank = map.getNumResults(); 692 if (enc) { 693 // Note that currently, all sparse subscripts are simple. 694 // TODO: accept affine too? 695 AffineExpr a = map.getResult(perm(enc, rank - 1)); 696 assert(a.getKind() == AffineExprKind::DimId); 697 unsigned idx = a.cast<AffineDimExpr>().getPosition(); 698 assert(codegen.pidxs[tensor][idx] != nullptr); 699 args.push_back(codegen.pidxs[tensor][idx]); // position index 700 } else { 701 for (unsigned d = 0; d < rank; d++) { 702 AffineExpr a = map.getResult(perm(enc, d)); 703 args.push_back(genAffine(codegen, builder, a, op.getLoc())); 704 } 705 } 706 return codegen.buffers[tensor]; 707 } 708 709 /// Generates insertion code to implement dynamic tensor load. 710 static Value genInsertionLoad(CodeGen &codegen, OpBuilder &builder, 711 linalg::GenericOp op, OpOperand *t) { 712 Location loc = op.getLoc(); 713 // Direct lexicographic index order, tensor loads as zero. 714 if (!codegen.expValues) { 715 Type tp = getElementTypeOrSelf(t->get().getType()); 716 return constantZero(builder, loc, tp); 717 } 718 // Load from expanded access pattern. 719 Value index = genIndex(codegen, op, t); 720 return builder.create<memref::LoadOp>(loc, codegen.expValues, index); 721 } 722 723 /// Generates insertion code to implement dynamic tensor store. 724 static void genInsertionStore(CodeGen &codegen, OpBuilder &builder, 725 linalg::GenericOp op, OpOperand *t, Value rhs) { 726 Location loc = op.getLoc(); 727 // Direct insertion in lexicographic index order. 728 if (!codegen.expValues) { 729 builder.create<memref::StoreOp>(loc, rhs, codegen.lexVal); 730 builder.create<LexInsertOp>(loc, t->get(), codegen.lexIdx, codegen.lexVal); 731 return; 732 } 733 // Generates insertion code along expanded access pattern. 734 // if (!expFilled[i]) then 735 // expFilled[i] = true 736 // expAdded[inserts++] = i 737 // endif 738 // values[i] = rhs 739 Value index = genIndex(codegen, op, t); 740 Value fval = constantI1(builder, loc, false); 741 Value tval = constantI1(builder, loc, true); 742 // If statement. 743 Value filled = builder.create<memref::LoadOp>(loc, codegen.expFilled, index); 744 Value cond = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq, 745 filled, fval); 746 scf::IfOp ifOp = builder.create<scf::IfOp>(loc, builder.getIndexType(), cond, 747 /*else=*/true); 748 // True branch. 749 builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); 750 builder.create<memref::StoreOp>(loc, tval, codegen.expFilled, index); 751 builder.create<memref::StoreOp>(loc, index, codegen.expAdded, 752 codegen.expCount); 753 Value one = constantIndex(builder, loc, 1); 754 Value add = builder.create<arith::AddIOp>(loc, codegen.expCount, one); 755 builder.create<scf::YieldOp>(loc, add); 756 // False branch. 757 builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); 758 builder.create<scf::YieldOp>(loc, codegen.expCount); 759 builder.setInsertionPointAfter(ifOp); 760 // Value assignment. 761 codegen.expCount = ifOp.getResult(0); 762 builder.create<memref::StoreOp>(loc, rhs, codegen.expValues, index); 763 } 764 765 /// Generates a load on a dense or sparse tensor. 766 static Value genTensorLoad(Merger &merger, CodeGen &codegen, OpBuilder &builder, 767 linalg::GenericOp op, unsigned exp) { 768 // Test if the load was hoisted to a higher loop nest. 769 Value val = merger.exp(exp).val; 770 if (val) { 771 if (codegen.curVecLength > 1 && !val.getType().isa<VectorType>()) 772 return genVectorInvariantValue(codegen, builder, val); 773 return val; 774 } 775 // Load during insertion. 776 OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).tensor]; 777 if (t == codegen.sparseOut) 778 return genInsertionLoad(codegen, builder, op, t); 779 // Actual load. 780 SmallVector<Value, 4> args; 781 Value ptr = genSubscript(codegen, builder, op, t, args); 782 if (codegen.curVecLength > 1) 783 return genVectorLoad(codegen, builder, ptr, args); 784 return builder.create<memref::LoadOp>(op.getLoc(), ptr, args); 785 } 786 787 /// Generates a store on a dense or sparse tensor. 788 static void genTensorStore(Merger &merger, CodeGen &codegen, OpBuilder &builder, 789 linalg::GenericOp op, unsigned exp, Value rhs) { 790 Location loc = op.getLoc(); 791 // Test if this is a scalarized reduction. 792 if (codegen.redVal) { 793 if (codegen.curVecLength > 1) 794 rhs = builder.create<arith::SelectOp>(loc, codegen.curVecMask, rhs, 795 codegen.redVal); 796 updateReduc(merger, codegen, rhs); 797 return; 798 } 799 // Store during insertion. 800 OpOperand *t = op.getOutputOperand(0); 801 if (t == codegen.sparseOut) { 802 if (!rhs) { 803 // Only unary and binary are allowed to return uninitialized rhs 804 // to indicate missing output. 805 assert(merger.exp(exp).kind == kUnary || merger.exp(exp).kind == kBinary); 806 } else { 807 genInsertionStore(codegen, builder, op, t, rhs); 808 } 809 return; 810 } 811 // Actual store. 812 SmallVector<Value, 4> args; 813 Value ptr = genSubscript(codegen, builder, op, t, args); 814 if (codegen.curVecLength > 1) 815 genVectorStore(codegen, builder, rhs, ptr, args); 816 else 817 builder.create<memref::StoreOp>(loc, rhs, ptr, args); 818 } 819 820 /// Generates a pointer/index load from the sparse storage scheme. Narrower 821 /// data types need to be zero extended before casting the value into the 822 /// index type used for looping and indexing. 823 static Value genLoad(CodeGen &codegen, OpBuilder &builder, Location loc, 824 Value ptr, Value s) { 825 // See https://llvm.org/docs/GetElementPtr.html for some background on 826 // the complications described below. 827 if (codegen.curVecLength > 1) { 828 // Since the index vector is used in a subsequent gather/scatter operations, 829 // which effectively defines an unsigned pointer + signed index, we must 830 // zero extend the vector to an index width. For 8-bit and 16-bit values, 831 // an 32-bit index width suffices. For 32-bit values, zero extending the 832 // elements into 64-bit loses some performance since the 32-bit indexed 833 // gather/scatter is more efficient than the 64-bit index variant (if the 834 // negative 32-bit index space is unused, the enableSIMDIndex32 flag can 835 // preserve this performance). For 64-bit values, there is no good way 836 // to state that the indices are unsigned, with creates the potential of 837 // incorrect address calculations in the unlikely case we need such 838 // extremely large offsets. 839 Type etp = ptr.getType().cast<MemRefType>().getElementType(); 840 Value vload = genVectorLoad(codegen, builder, ptr, {s}); 841 if (!etp.isa<IndexType>()) { 842 if (etp.getIntOrFloatBitWidth() < 32) 843 vload = builder.create<arith::ExtUIOp>( 844 loc, vectorType(codegen, builder.getI32Type()), vload); 845 else if (etp.getIntOrFloatBitWidth() < 64 && 846 !codegen.options.enableSIMDIndex32) 847 vload = builder.create<arith::ExtUIOp>( 848 loc, vectorType(codegen, builder.getI64Type()), vload); 849 } 850 return vload; 851 } 852 // For the scalar case, we simply zero extend narrower indices into 64-bit 853 // values before casting to index without a performance penalty. Here too, 854 // however, indices that already are 64-bit, in theory, cannot express the 855 // full range as explained above. 856 Value load = builder.create<memref::LoadOp>(loc, ptr, s); 857 if (!load.getType().isa<IndexType>()) { 858 if (load.getType().getIntOrFloatBitWidth() < 64) 859 load = builder.create<arith::ExtUIOp>(loc, builder.getI64Type(), load); 860 load = 861 builder.create<arith::IndexCastOp>(loc, builder.getIndexType(), load); 862 } 863 return load; 864 } 865 866 /// Generates an invariant value. 867 static Value genInvariantValue(Merger &merger, CodeGen &codegen, 868 OpBuilder &builder, unsigned exp) { 869 Value val = merger.exp(exp).val; 870 if (codegen.curVecLength > 1) 871 return genVectorInvariantValue(codegen, builder, val); 872 return val; 873 } 874 875 /// Generates an address computation "sz * p + i". 876 static Value genAddress(CodeGen &codegen, OpBuilder &builder, Location loc, 877 Value size, Value p, Value i) { 878 Value mul = builder.create<arith::MulIOp>(loc, size, p); 879 if (auto vtp = i.getType().dyn_cast<VectorType>()) { 880 Value inv = 881 builder.create<arith::IndexCastOp>(loc, vtp.getElementType(), mul); 882 mul = genVectorInvariantValue(codegen, builder, inv); 883 } 884 return builder.create<arith::AddIOp>(loc, mul, i); 885 } 886 887 /// Generates an index value. 888 static Value genIndexValue(CodeGen &codegen, OpBuilder &builder, unsigned idx, 889 unsigned ldx) { 890 Value ival = codegen.loops[idx]; 891 Type itype = ival.getType(); 892 // During vectorization, we either encounter: 893 // (1) indices already in vector form, as in ... = ind[lo:hi], good to go, or 894 // (2) single index, as in ... = i, must convert to [i, i+1, ...] for inner i. 895 unsigned vl = codegen.curVecLength; 896 if (vl > 1 && !itype.isa<VectorType>()) { 897 Location loc = ival.getLoc(); 898 VectorType vtp = vectorType(codegen, itype); 899 ival = builder.create<vector::BroadcastOp>(loc, vtp, ival); 900 if (idx == ldx) { 901 Value incr; 902 if (vtp.isScalable()) { 903 Type stepvty = vectorType(codegen, builder.getI64Type()); 904 Value stepv = builder.create<LLVM::StepVectorOp>(loc, stepvty); 905 incr = builder.create<arith::IndexCastOp>(loc, vtp, stepv); 906 } else { 907 SmallVector<APInt, 4> integers; 908 for (unsigned i = 0; i < vl; i++) 909 integers.push_back(APInt(/*width=*/64, i)); 910 auto values = DenseElementsAttr::get(vtp, integers); 911 incr = builder.create<arith::ConstantOp>(loc, vtp, values); 912 } 913 ival = builder.create<arith::AddIOp>(loc, ival, incr); 914 } 915 } 916 return ival; 917 } 918 919 /// Semi-ring branches are simply inlined by the sparse compiler. Prior 920 /// analysis has verified that all computations are "local" to the inlined 921 /// branch or otherwise invariantly defined outside the loop nest, with the 922 /// exception of index computations, which need to be relinked to actual 923 /// inlined cloned code. 924 static Value relinkBranch(CodeGen &codegen, RewriterBase &rewriter, 925 Block *block, Value e, unsigned ldx) { 926 if (Operation *def = e.getDefiningOp()) { 927 if (auto indexOp = dyn_cast<linalg::IndexOp>(def)) 928 return genIndexValue(codegen, rewriter, indexOp.dim(), ldx); 929 if (def->getBlock() == block) { 930 for (unsigned i = 0, n = def->getNumOperands(); i < n; i++) 931 def->setOperand( 932 i, relinkBranch(codegen, rewriter, block, def->getOperand(i), ldx)); 933 } 934 } 935 return e; 936 } 937 938 /// Recursively generates tensor expression. 939 static Value genExp(Merger &merger, CodeGen &codegen, RewriterBase &rewriter, 940 linalg::GenericOp op, unsigned exp, unsigned ldx) { 941 Location loc = op.getLoc(); 942 if (exp == -1u) 943 return Value(); 944 if (merger.exp(exp).kind == Kind::kTensor) 945 return genTensorLoad(merger, codegen, rewriter, op, exp); 946 if (merger.exp(exp).kind == Kind::kInvariant) 947 return genInvariantValue(merger, codegen, rewriter, exp); 948 if (merger.exp(exp).kind == Kind::kIndex) 949 return genIndexValue(codegen, rewriter, merger.exp(exp).index, ldx); 950 Value v0 = 951 genExp(merger, codegen, rewriter, op, merger.exp(exp).children.e0, ldx); 952 Value v1 = 953 genExp(merger, codegen, rewriter, op, merger.exp(exp).children.e1, ldx); 954 Value ee = merger.buildExp(rewriter, loc, exp, v0, v1); 955 if (ee && (merger.exp(exp).kind == Kind::kUnary || 956 merger.exp(exp).kind == Kind::kBinary || 957 merger.exp(exp).kind == Kind::kBinaryBranch)) 958 ee = relinkBranch(codegen, rewriter, ee.getParentBlock(), ee, ldx); 959 return ee; 960 } 961 962 /// Determines if affine expression is invariant. 963 static bool isInvariantAffine(const CodeGen &codegen, AffineExpr a, 964 unsigned ldx, bool &atLevel) { 965 switch (a.getKind()) { 966 case AffineExprKind::DimId: { 967 unsigned idx = a.cast<AffineDimExpr>().getPosition(); 968 if (idx == ldx) 969 atLevel = true; 970 return codegen.loops[idx] != nullptr; // no longer in play? 971 } 972 case AffineExprKind::Add: 973 case AffineExprKind::Mul: { 974 auto binOp = a.cast<AffineBinaryOpExpr>(); 975 return isInvariantAffine(codegen, binOp.getLHS(), ldx, atLevel) && 976 isInvariantAffine(codegen, binOp.getRHS(), ldx, atLevel); 977 } 978 default: 979 return true; 980 } 981 } 982 983 /// Hoists loop invariant tensor loads for which indices have been exhausted. 984 static void genInvariants(Merger &merger, CodeGen &codegen, OpBuilder &builder, 985 linalg::GenericOp op, unsigned exp, unsigned ldx, 986 bool atStart, Kind last = Kind::kTensor) { 987 if (exp == -1u) 988 return; 989 if (merger.exp(exp).kind == Kind::kTensor) { 990 // Inspect tensor indices. 991 bool atLevel = ldx == -1u; 992 OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).tensor]; 993 auto map = op.getTiedIndexingMap(t); 994 auto enc = getSparseTensorEncoding(t->get().getType()); 995 for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { 996 AffineExpr a = map.getResult(perm(enc, d)); 997 if (!isInvariantAffine(codegen, a, ldx, atLevel)) 998 return; // still in play 999 } 1000 // All exhausted at this level (atLevel denotes exactly at this level). 1001 if (!atLevel) 1002 return; 1003 OpOperand *lhs = op.getOutputOperand(0); 1004 if (lhs == t) { 1005 // Start or end a scalarized reduction 1006 if (atStart) { 1007 Value load = genTensorLoad(merger, codegen, builder, op, exp); 1008 codegen.redKind = getReduction(last); 1009 codegen.redExp = exp; 1010 updateReduc(merger, codegen, load); 1011 } else { 1012 Value redVal = codegen.redVal; 1013 updateReduc(merger, codegen, Value()); 1014 codegen.redExp = -1u; 1015 codegen.redKind = kNoReduc; 1016 genTensorStore(merger, codegen, builder, op, exp, redVal); 1017 } 1018 } else { 1019 // Start or end loop invariant hoisting of a tensor load. 1020 merger.exp(exp).val = 1021 atStart ? genTensorLoad(merger, codegen, builder, op, exp) : Value(); 1022 } 1023 } else if (merger.exp(exp).kind != Kind::kInvariant && 1024 merger.exp(exp).kind != Kind::kIndex) { 1025 // Traverse into the binary operations. Note that we only hoist 1026 // tensor loads, since subsequent MLIR/LLVM passes know how to 1027 // deal with all other kinds of derived loop invariants. 1028 Kind last = merger.exp(exp).kind; 1029 unsigned e0 = merger.exp(exp).children.e0; 1030 unsigned e1 = merger.exp(exp).children.e1; 1031 genInvariants(merger, codegen, builder, op, e0, ldx, atStart, last); 1032 genInvariants(merger, codegen, builder, op, e1, ldx, atStart, last); 1033 } 1034 } 1035 1036 /// Generates an expanded access pattern in innermost dimension. 1037 static void genExpansion(Merger &merger, CodeGen &codegen, OpBuilder &builder, 1038 linalg::GenericOp op, unsigned at, bool atStart) { 1039 OpOperand *lhs = codegen.sparseOut; 1040 if (!lhs || codegen.outerParNest != op.getRank(lhs) - 1 || 1041 at != codegen.outerParNest) 1042 return; // not needed at this level 1043 // Generate start or end of an expanded access pattern. 1044 Value tensor = lhs->get(); 1045 Location loc = op.getLoc(); 1046 if (atStart) { 1047 auto dynShape = {ShapedType::kDynamicSize}; 1048 Type etp = tensor.getType().cast<ShapedType>().getElementType(); 1049 Type t1 = MemRefType::get(dynShape, etp); 1050 Type t2 = MemRefType::get(dynShape, builder.getI1Type()); 1051 Type t3 = MemRefType::get(dynShape, builder.getIndexType()); 1052 Type t4 = builder.getIndexType(); 1053 auto res = 1054 builder.create<ExpandOp>(loc, TypeRange({t1, t2, t3, t4}), tensor); 1055 assert(res.getNumResults() == 4); 1056 assert(!codegen.expValues); 1057 codegen.expValues = res.getResult(0); 1058 codegen.expFilled = res.getResult(1); 1059 codegen.expAdded = res.getResult(2); 1060 codegen.expCount = res.getResult(3); 1061 } else { 1062 assert(codegen.expValues); 1063 builder.create<CompressOp>(loc, tensor, codegen.lexIdx, codegen.expValues, 1064 codegen.expFilled, codegen.expAdded, 1065 codegen.expCount); 1066 codegen.expValues = codegen.expFilled = codegen.expAdded = 1067 codegen.expCount = Value(); 1068 } 1069 } 1070 1071 /// Generates initialization code for the subsequent loop sequence at 1072 /// current index level. Returns true if the loop sequence needs to 1073 /// maintain the universal index. 1074 static bool genInit(Merger &merger, CodeGen &codegen, OpBuilder &builder, 1075 linalg::GenericOp op, std::vector<unsigned> &topSort, 1076 unsigned at, BitVector &inits) { 1077 bool needsUniv = false; 1078 Location loc = op.getLoc(); 1079 unsigned idx = topSort[at]; 1080 1081 // Initialize sparse positions. 1082 for (unsigned b = 0, be = inits.size(); b < be; b++) { 1083 if (inits[b]) { 1084 unsigned tensor = merger.tensor(b); 1085 assert(idx == merger.index(b)); 1086 if (merger.isDim(b, Dim::kSparse)) { 1087 // Initialize sparse index. 1088 unsigned pat = at; 1089 for (; pat != 0; pat--) { 1090 if (codegen.pidxs[tensor][topSort[pat - 1]]) 1091 break; 1092 } 1093 Value ptr = codegen.pointers[tensor][idx]; 1094 Value one = constantIndex(builder, loc, 1); 1095 Value p0 = (pat == 0) ? constantIndex(builder, loc, 0) 1096 : codegen.pidxs[tensor][topSort[pat - 1]]; 1097 codegen.pidxs[tensor][idx] = genLoad(codegen, builder, loc, ptr, p0); 1098 Value p1 = builder.create<arith::AddIOp>(loc, p0, one); 1099 codegen.highs[tensor][idx] = genLoad(codegen, builder, loc, ptr, p1); 1100 } else { 1101 // Dense index still in play. 1102 needsUniv = true; 1103 } 1104 } 1105 } 1106 1107 // Initialize the universal dense index. 1108 codegen.loops[idx] = constantIndex(builder, loc, 0); 1109 return needsUniv; 1110 } 1111 1112 /// Returns vectorization strategy. Any implicit inner loop in the Linalg 1113 /// operation is a candidate. Whether it is actually converted to SIMD code 1114 /// depends on the requested strategy. 1115 static bool isVectorFor(CodeGen &codegen, bool isInner, bool isReduction, 1116 bool isSparse) { 1117 // Reject vectorization of sparse output, unless innermost is reduction. 1118 if (codegen.sparseOut && !isReduction) 1119 return false; 1120 // Inspect strategy. 1121 switch (codegen.options.vectorizationStrategy) { 1122 case SparseVectorizationStrategy::kNone: 1123 return false; 1124 case SparseVectorizationStrategy::kDenseInnerLoop: 1125 return isInner && !isSparse; 1126 case SparseVectorizationStrategy::kAnyStorageInnerLoop: 1127 return isInner; 1128 } 1129 llvm_unreachable("unexpected vectorization strategy"); 1130 } 1131 1132 /// Returns parallelization strategy. Any implicit loop in the Linalg operation 1133 /// that is marked "parallel" is a candidate. Whether it is actually converted 1134 /// to a parallel operation depends on the requested strategy. 1135 static bool isParallelFor(CodeGen &codegen, bool isOuter, bool isReduction, 1136 bool isSparse, bool isVector) { 1137 // Reject parallelization of sparse output. 1138 if (codegen.sparseOut) 1139 return false; 1140 // Inspect strategy. 1141 switch (codegen.options.parallelizationStrategy) { 1142 case SparseParallelizationStrategy::kNone: 1143 return false; 1144 case SparseParallelizationStrategy::kDenseOuterLoop: 1145 return isOuter && !isSparse && !isReduction && !isVector; 1146 case SparseParallelizationStrategy::kAnyStorageOuterLoop: 1147 return isOuter && !isReduction && !isVector; 1148 case SparseParallelizationStrategy::kDenseAnyLoop: 1149 return !isSparse && !isReduction && !isVector; 1150 case SparseParallelizationStrategy::kAnyStorageAnyLoop: 1151 return !isReduction && !isVector; 1152 } 1153 llvm_unreachable("unexpected parallelization strategy"); 1154 } 1155 1156 /// Checks unit stride for dense tensors. The iteration graph may have ignored 1157 /// dense access patterns in order to avoid cycles (sparse access patterns are 1158 /// always placed innermost), but that means dense access has become strided. 1159 /// This prevents effective vectorization. 1160 static bool denseUnitStrides(Merger &merger, linalg::GenericOp op, 1161 unsigned idx) { 1162 for (OpOperand *t : op.getInputAndOutputOperands()) { 1163 if (!getSparseTensorEncoding(t->get().getType())) { 1164 auto map = op.getTiedIndexingMap(t); 1165 for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { 1166 AffineExpr a = map.getResult(d); 1167 // Report non-unit stride if innermost index appears at an outer 1168 // dimension (true non-unit stride) or if the innermost index appears 1169 // in a compound subscript in the innermost dimension. Even if the 1170 // latter is unit stride, it does not play well with scatter/gather. 1171 // TODO: accept unit stride affine innermost like a[i,j+k+1]? 1172 if (a.isFunctionOfDim(idx) && 1173 ((d != rank - 1) || (a.getKind() != AffineExprKind::DimId))) 1174 return false; 1175 } 1176 } 1177 } 1178 return true; 1179 } 1180 1181 /// Generates a for-loop on a single index. 1182 static Operation *genFor(Merger &merger, CodeGen &codegen, OpBuilder &builder, 1183 linalg::GenericOp op, bool isOuter, bool isInner, 1184 unsigned idx, BitVector &indices) { 1185 unsigned fb = indices.find_first(); 1186 unsigned tensor = merger.tensor(fb); 1187 assert(idx == merger.index(fb)); 1188 auto iteratorTypes = op.iterator_types().getValue(); 1189 bool isReduction = isReductionIterator(iteratorTypes[idx]); 1190 bool isSparse = merger.isDim(fb, Dim::kSparse); 1191 bool isVector = isVectorFor(codegen, isInner, isReduction, isSparse) && 1192 denseUnitStrides(merger, op, idx); 1193 bool isParallel = 1194 isParallelFor(codegen, isOuter, isReduction, isSparse, isVector); 1195 1196 // Prepare vector length. 1197 if (isVector) 1198 codegen.curVecLength = codegen.options.vectorLength; 1199 1200 // Loop bounds and increment. 1201 Location loc = op.getLoc(); 1202 Value lo = isSparse ? codegen.pidxs[tensor][idx] : codegen.loops[idx]; 1203 Value hi = isSparse ? codegen.highs[tensor][idx] : codegen.sizes[idx]; 1204 Value step = constantIndex(builder, loc, codegen.curVecLength); 1205 if (isVector && codegen.options.enableVLAVectorization) { 1206 Value vscale = builder.create<vector::VectorScaleOp>( 1207 loc, IndexType::get(builder.getContext())); 1208 step = builder.create<arith::MulIOp>(loc, vscale, step); 1209 } 1210 1211 // Emit a parallel loop. 1212 if (isParallel) { 1213 assert(!isVector); 1214 scf::ParallelOp parOp = builder.create<scf::ParallelOp>(loc, lo, hi, step); 1215 if (isSparse) 1216 codegen.pidxs[tensor][idx] = parOp.getInductionVars()[0]; 1217 else 1218 codegen.loops[idx] = parOp.getInductionVars()[0]; 1219 builder.setInsertionPointToStart(parOp.getBody()); 1220 return parOp; 1221 } 1222 1223 // Emit a sequential or vector loop. 1224 SmallVector<Value, 4> operands; 1225 if (codegen.redVal) { 1226 // In a vector loop, bring reduction into SIMD form, if not already. 1227 if (isVector && !codegen.redVal.getType().isa<VectorType>()) { 1228 VectorType vtp = vectorType(codegen, codegen.redVal.getType()); 1229 Value vred = genVectorReducInit(codegen, builder, loc, vtp); 1230 updateReduc(merger, codegen, vred); 1231 } 1232 operands.push_back(codegen.redVal); 1233 } 1234 if (codegen.expValues) 1235 operands.push_back(codegen.expCount); 1236 scf::ForOp forOp = builder.create<scf::ForOp>(loc, lo, hi, step, operands); 1237 if (codegen.redVal) 1238 updateReduc(merger, codegen, forOp.getRegionIterArgs().front()); 1239 if (codegen.expValues) 1240 codegen.expCount = forOp.getRegionIterArgs().back(); 1241 // Assign induction variable to sparse or dense index. 1242 Value iv = forOp.getInductionVar(); 1243 if (isSparse) 1244 codegen.pidxs[tensor][idx] = iv; 1245 else 1246 codegen.loops[idx] = iv; 1247 builder.setInsertionPointToStart(forOp.getBody()); 1248 // Share vector iteration mask between all subsequent loads/stores. 1249 if (isVector) 1250 codegen.curVecMask = genVectorMask(codegen, builder, iv, lo, hi, step); 1251 return forOp; 1252 } 1253 1254 /// Emit a while-loop for co-iteration over multiple indices. 1255 static Operation *genWhile(Merger &merger, CodeGen &codegen, OpBuilder &builder, 1256 linalg::GenericOp op, unsigned idx, bool needsUniv, 1257 BitVector &indices) { 1258 SmallVector<Type, 4> types; 1259 SmallVector<Value, 4> operands; 1260 // Construct the while-loop with a parameter for each index. 1261 Type indexType = builder.getIndexType(); 1262 for (unsigned b = 0, be = indices.size(); b < be; b++) { 1263 if (indices[b] && merger.isDim(b, Dim::kSparse)) { 1264 unsigned tensor = merger.tensor(b); 1265 assert(idx == merger.index(b)); 1266 types.push_back(indexType); 1267 operands.push_back(codegen.pidxs[tensor][idx]); 1268 } 1269 } 1270 if (codegen.redVal) { 1271 types.push_back(codegen.redVal.getType()); 1272 operands.push_back(codegen.redVal); 1273 } 1274 if (codegen.expValues) { 1275 types.push_back(indexType); 1276 operands.push_back(codegen.expCount); 1277 } 1278 if (needsUniv) { 1279 types.push_back(indexType); 1280 operands.push_back(codegen.loops[idx]); 1281 } 1282 assert(types.size() == operands.size()); 1283 Location loc = op.getLoc(); 1284 scf::WhileOp whileOp = builder.create<scf::WhileOp>(loc, types, operands); 1285 1286 SmallVector<Location> locs(types.size(), loc); 1287 Block *before = builder.createBlock(&whileOp.getBefore(), {}, types, locs); 1288 Block *after = builder.createBlock(&whileOp.getAfter(), {}, types, locs); 1289 1290 // Build the "before" region, which effectively consists 1291 // of a conjunction of "i < upper" tests on all induction. 1292 builder.setInsertionPointToStart(&whileOp.getBefore().front()); 1293 Value cond; 1294 unsigned o = 0; 1295 for (unsigned b = 0, be = indices.size(); b < be; b++) { 1296 if (indices[b] && merger.isDim(b, Dim::kSparse)) { 1297 unsigned tensor = merger.tensor(b); 1298 assert(idx == merger.index(b)); 1299 Value op1 = before->getArgument(o); 1300 Value op2 = codegen.highs[tensor][idx]; 1301 Value opc = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult, 1302 op1, op2); 1303 cond = cond ? builder.create<arith::AndIOp>(loc, cond, opc) : opc; 1304 codegen.pidxs[tensor][idx] = after->getArgument(o++); 1305 } 1306 } 1307 if (codegen.redVal) 1308 updateReduc(merger, codegen, after->getArgument(o++)); 1309 if (codegen.expValues) 1310 codegen.expCount = after->getArgument(o++); 1311 if (needsUniv) 1312 codegen.loops[idx] = after->getArgument(o++); 1313 assert(o == operands.size()); 1314 builder.create<scf::ConditionOp>(loc, cond, before->getArguments()); 1315 builder.setInsertionPointToStart(&whileOp.getAfter().front()); 1316 return whileOp; 1317 } 1318 1319 /// Generates a for-loop or a while-loop, depending on whether it implements 1320 /// singleton iteration or co-iteration over the given conjunction. 1321 static Operation *genLoop(Merger &merger, CodeGen &codegen, OpBuilder &builder, 1322 linalg::GenericOp op, std::vector<unsigned> &topSort, 1323 unsigned at, bool needsUniv, BitVector &indices) { 1324 unsigned idx = topSort[at]; 1325 if (indices.count() == 1) { 1326 bool isOuter = at == 0; 1327 bool isInner = at == topSort.size() - 1; 1328 return genFor(merger, codegen, builder, op, isOuter, isInner, idx, indices); 1329 } 1330 return genWhile(merger, codegen, builder, op, idx, needsUniv, indices); 1331 } 1332 1333 /// Generates the local variables for this loop, consisting of the sparse 1334 /// indices, restored universal dense index, and dense positions. 1335 static void genLocals(Merger &merger, CodeGen &codegen, OpBuilder &builder, 1336 linalg::GenericOp op, std::vector<unsigned> &topSort, 1337 unsigned at, bool needsUniv, BitVector &locals) { 1338 Location loc = op.getLoc(); 1339 unsigned idx = topSort[at]; 1340 1341 // Initialize sparse indices. 1342 Value min; 1343 for (unsigned b = 0, be = locals.size(); b < be; b++) { 1344 if (locals[b] && merger.isDim(b, Dim::kSparse)) { 1345 unsigned tensor = merger.tensor(b); 1346 assert(idx == merger.index(b)); 1347 Value ptr = codegen.indices[tensor][idx]; 1348 Value s = codegen.pidxs[tensor][idx]; 1349 Value load = genLoad(codegen, builder, loc, ptr, s); 1350 codegen.idxs[tensor][idx] = load; 1351 if (!needsUniv) { 1352 if (min) { 1353 Value cmp = builder.create<arith::CmpIOp>( 1354 loc, arith::CmpIPredicate::ult, load, min); 1355 min = builder.create<arith::SelectOp>(loc, cmp, load, min); 1356 } else { 1357 min = load; 1358 } 1359 } 1360 } 1361 } 1362 1363 // Merge dense universal index over minimum. 1364 if (min) { 1365 assert(!needsUniv); 1366 codegen.loops[idx] = min; 1367 } 1368 1369 // Initialize dense positions. Note that we generate dense indices of the 1370 // output tensor unconditionally, since they may not appear in the lattice, 1371 // but may be needed for linearized codegen. 1372 for (unsigned b = 0, be = locals.size(); b < be; b++) { 1373 if ((locals[b] || merger.isOutTensor(b, idx)) && 1374 merger.isDim(b, Dim::kDense)) { 1375 unsigned tensor = merger.tensor(b); 1376 assert(idx == merger.index(b)); 1377 unsigned pat = at; 1378 for (; pat != 0; pat--) 1379 if (codegen.pidxs[tensor][topSort[pat - 1]]) 1380 break; 1381 Value p = (pat == 0) ? constantIndex(builder, loc, 0) 1382 : codegen.pidxs[tensor][topSort[pat - 1]]; 1383 codegen.pidxs[tensor][idx] = genAddress( 1384 codegen, builder, loc, codegen.sizes[idx], p, codegen.loops[idx]); 1385 } 1386 } 1387 1388 // Move the insertion indices in lexicographic index order. During access 1389 // pattern expansion, we can skip setting the innermost dimension. 1390 if (codegen.sparseOut && !codegen.expValues) { 1391 Value pos = constantIndex(builder, loc, at); 1392 builder.create<memref::StoreOp>(loc, codegen.loops[idx], codegen.lexIdx, 1393 pos); 1394 } 1395 } 1396 1397 /// Generates the induction structure for a while-loop. 1398 static void genWhileInduction(Merger &merger, CodeGen &codegen, 1399 OpBuilder &builder, linalg::GenericOp op, 1400 unsigned idx, bool needsUniv, 1401 BitVector &induction, scf::WhileOp whileOp) { 1402 Location loc = op.getLoc(); 1403 // Finalize each else branch of all if statements. 1404 if (codegen.redVal || codegen.expValues) { 1405 while (auto ifOp = dyn_cast_or_null<scf::IfOp>( 1406 builder.getInsertionBlock()->getParentOp())) { 1407 unsigned y = 0; 1408 SmallVector<Value, 4> yields; 1409 if (codegen.redVal) { 1410 yields.push_back(codegen.redVal); 1411 updateReduc(merger, codegen, ifOp.getResult(y++)); 1412 } 1413 if (codegen.expValues) { 1414 yields.push_back(codegen.expCount); 1415 codegen.expCount = ifOp->getResult(y++); 1416 } 1417 assert(y == yields.size()); 1418 builder.create<scf::YieldOp>(loc, yields); 1419 builder.setInsertionPointAfter(ifOp); 1420 } 1421 } 1422 builder.setInsertionPointToEnd(&whileOp.getAfter().front()); 1423 // Finalize the induction. Note that the induction could be performed 1424 // in the individual if-branches to avoid re-evaluating the conditions. 1425 // However, that would result in a rather elaborate forest of yield 1426 // instructions during code generation. Moreover, performing the induction 1427 // after the if-statements more closely resembles code generated by TACO. 1428 unsigned o = 0; 1429 SmallVector<Value, 4> operands; 1430 Value one = constantIndex(builder, loc, 1); 1431 for (unsigned b = 0, be = induction.size(); b < be; b++) { 1432 if (induction[b] && merger.isDim(b, Dim::kSparse)) { 1433 unsigned tensor = merger.tensor(b); 1434 assert(idx == merger.index(b)); 1435 Value op1 = codegen.idxs[tensor][idx]; 1436 Value op2 = codegen.loops[idx]; 1437 Value op3 = codegen.pidxs[tensor][idx]; 1438 Value cmp = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq, 1439 op1, op2); 1440 Value add = builder.create<arith::AddIOp>(loc, op3, one); 1441 operands.push_back(builder.create<arith::SelectOp>(loc, cmp, add, op3)); 1442 codegen.pidxs[tensor][idx] = whileOp->getResult(o++); 1443 } 1444 } 1445 if (codegen.redVal) { 1446 operands.push_back(codegen.redVal); 1447 updateReduc(merger, codegen, whileOp->getResult(o++)); 1448 } 1449 if (codegen.expValues) { 1450 operands.push_back(codegen.expCount); 1451 codegen.expCount = whileOp->getResult(o++); 1452 } 1453 if (needsUniv) { 1454 operands.push_back( 1455 builder.create<arith::AddIOp>(loc, codegen.loops[idx], one)); 1456 codegen.loops[idx] = whileOp->getResult(o++); 1457 } 1458 assert(o == operands.size()); 1459 builder.create<scf::YieldOp>(loc, operands); 1460 builder.setInsertionPointAfter(whileOp); 1461 } 1462 1463 /// Generates the induction structure for a for-loop. 1464 static void genForInduction(Merger &merger, CodeGen &codegen, 1465 OpBuilder &builder, linalg::GenericOp op, 1466 Operation *loop) { 1467 Location loc = op.getLoc(); 1468 unsigned o = 0; 1469 SmallVector<Value, 4> operands; 1470 if (codegen.redVal) { 1471 operands.push_back(codegen.redVal); 1472 updateReduc(merger, codegen, loop->getResult(o++)); 1473 } 1474 if (codegen.expValues) { 1475 operands.push_back(codegen.expCount); 1476 codegen.expCount = loop->getResult(o++); 1477 } 1478 assert(o == operands.size()); 1479 if (o > 0) 1480 builder.create<scf::YieldOp>(loc, operands); 1481 builder.setInsertionPointAfter(loop); 1482 } 1483 1484 /// Generates a single if-statement within a while-loop. 1485 static scf::IfOp genIf(Merger &merger, CodeGen &codegen, OpBuilder &builder, 1486 linalg::GenericOp op, unsigned idx, 1487 BitVector &conditions) { 1488 Location loc = op.getLoc(); 1489 SmallVector<Type, 4> types; 1490 Value cond; 1491 for (unsigned b = 0, be = conditions.size(); b < be; b++) { 1492 if (conditions[b]) { 1493 unsigned tensor = merger.tensor(b); 1494 assert(idx == merger.index(b)); 1495 Value clause; 1496 if (merger.isDim(b, Dim::kSparse)) { 1497 Value op1 = codegen.idxs[tensor][idx]; 1498 Value op2 = codegen.loops[idx]; 1499 clause = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq, 1500 op1, op2); 1501 } else { 1502 clause = constantI1(builder, loc, true); 1503 } 1504 cond = cond ? builder.create<arith::AndIOp>(loc, cond, clause) : clause; 1505 } 1506 } 1507 if (codegen.redVal) 1508 types.push_back(codegen.redVal.getType()); 1509 if (codegen.expValues) 1510 types.push_back(builder.getIndexType()); 1511 scf::IfOp ifOp = builder.create<scf::IfOp>(loc, types, cond, /*else=*/true); 1512 builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); 1513 return ifOp; 1514 } 1515 1516 /// Generates end of true branch of if-statement within a while-loop. 1517 static void endIf(Merger &merger, CodeGen &codegen, OpBuilder &builder, 1518 linalg::GenericOp op, scf::IfOp ifOp, Operation *loop, 1519 Value redInput, Value cntInput) { 1520 SmallVector<Value, 4> operands; 1521 if (codegen.redVal) { 1522 operands.push_back(codegen.redVal); 1523 updateReduc(merger, codegen, redInput); 1524 } 1525 if (codegen.expValues) { 1526 operands.push_back(codegen.expCount); 1527 codegen.expCount = cntInput; 1528 } 1529 if (!operands.empty()) 1530 builder.create<scf::YieldOp>(op.getLoc(), operands); 1531 builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); 1532 } 1533 1534 //===----------------------------------------------------------------------===// 1535 // Sparse compiler synthesis methods (loop sequence). 1536 //===----------------------------------------------------------------------===// 1537 1538 /// Starts a loop sequence at given level. Returns true if 1539 /// the universal loop index must be maintained at this level. 1540 static bool startLoopSeq(Merger &merger, CodeGen &codegen, OpBuilder &builder, 1541 linalg::GenericOp op, std::vector<unsigned> &topSort, 1542 unsigned exp, unsigned at, unsigned idx, unsigned ldx, 1543 unsigned lts) { 1544 assert(codegen.curVecLength == 1); 1545 assert(!codegen.loops[idx]); 1546 // Emit invariants at this loop sequence level. 1547 genInvariants(merger, codegen, builder, op, exp, ldx, /*atStart=*/true); 1548 // Emit access pattern expansion for sparse tensor output. 1549 genExpansion(merger, codegen, builder, op, at, /*atStart=*/true); 1550 // Emit further intitialization at this loop sequence level. 1551 unsigned l0 = merger.set(lts)[0]; 1552 bool needsUniv = 1553 genInit(merger, codegen, builder, op, topSort, at, merger.lat(l0).bits); 1554 // Maintain the universal index only if it is actually 1555 // consumed by a subsequent lattice point. 1556 if (needsUniv) { 1557 unsigned lsize = merger.set(lts).size(); 1558 for (unsigned i = 1; i < lsize; i++) { 1559 unsigned li = merger.set(lts)[i]; 1560 if (!merger.hasAnyDimOf(merger.lat(li).simple, Dim::kSparse)) 1561 return true; 1562 } 1563 } 1564 return false; 1565 } 1566 1567 /// Starts a single loop in current sequence. 1568 static Operation *startLoop(Merger &merger, CodeGen &codegen, 1569 OpBuilder &builder, linalg::GenericOp op, 1570 std::vector<unsigned> &topSort, unsigned at, 1571 unsigned li, bool needsUniv) { 1572 assert(codegen.curVecLength == 1); 1573 // Emit the for/while-loop control. 1574 Operation *loop = genLoop(merger, codegen, builder, op, topSort, at, 1575 needsUniv, merger.lat(li).simple); 1576 // Emit the locals for this loop. 1577 genLocals(merger, codegen, builder, op, topSort, at, needsUniv, 1578 merger.lat(li).bits); 1579 return loop; 1580 } 1581 1582 /// Ends a single loop in current sequence. Returns new values for needsUniv. 1583 static bool endLoop(Merger &merger, CodeGen &codegen, OpBuilder &builder, 1584 linalg::GenericOp op, Operation *loop, unsigned idx, 1585 unsigned li, bool needsUniv) { 1586 codegen.curVecLength = 1; 1587 // End a while-loop. 1588 if (auto whileOp = dyn_cast<scf::WhileOp>(loop)) { 1589 genWhileInduction(merger, codegen, builder, op, idx, needsUniv, 1590 merger.lat(li).bits, whileOp); 1591 return needsUniv; 1592 } 1593 // End a for-loop. 1594 genForInduction(merger, codegen, builder, op, loop); 1595 return false; 1596 } 1597 1598 /// Ends a loop sequence at given level. 1599 static void endLoopSeq(Merger &merger, CodeGen &codegen, OpBuilder &builder, 1600 linalg::GenericOp op, unsigned exp, unsigned at, 1601 unsigned idx, unsigned ldx) { 1602 assert(codegen.curVecLength == 1); 1603 codegen.loops[idx] = Value(); 1604 // Bring a pending reduction back from SIMD form when sequence ends. 1605 if (codegen.redVal) 1606 if (auto vtp = codegen.redVal.getType().dyn_cast<VectorType>()) 1607 updateReduc(merger, codegen, 1608 genVectorReducEnd(codegen, builder, op.getLoc(), vtp)); 1609 // Unmark bookkeeping of invariants and loop index. 1610 genInvariants(merger, codegen, builder, op, exp, ldx, /*atStart=*/false); 1611 // Finalize access pattern expansion for sparse tensor output. 1612 genExpansion(merger, codegen, builder, op, at, /*atStart=*/false); 1613 } 1614 1615 /// Recursively generates code while computing iteration lattices in order 1616 /// to manage the complexity of implementing co-iteration over unions 1617 /// and intersections of sparse iterations spaces. 1618 static void genStmt(Merger &merger, CodeGen &codegen, RewriterBase &rewriter, 1619 linalg::GenericOp op, std::vector<unsigned> &topSort, 1620 unsigned exp, unsigned at) { 1621 // At each leaf, assign remaining tensor (sub)expression to output tensor. 1622 if (at == topSort.size()) { 1623 unsigned ldx = topSort[at - 1]; 1624 Value rhs = genExp(merger, codegen, rewriter, op, exp, ldx); 1625 genTensorStore(merger, codegen, rewriter, op, exp, rhs); 1626 return; 1627 } 1628 1629 // Construct iteration lattices for current loop index, with L0 at top. 1630 unsigned idx = topSort[at]; 1631 unsigned ldx = at == 0 ? -1u : topSort[at - 1]; 1632 unsigned lts = merger.optimizeSet(merger.buildLattices(exp, idx)); 1633 1634 // Start a loop sequence. 1635 bool needsUniv = startLoopSeq(merger, codegen, rewriter, op, topSort, exp, at, 1636 idx, ldx, lts); 1637 1638 // Emit a loop for every lattice point L0 >= Li in this loop sequence. 1639 unsigned lsize = merger.set(lts).size(); 1640 for (unsigned i = 0; i < lsize; i++) { 1641 // Start a loop. 1642 unsigned li = merger.set(lts)[i]; 1643 Operation *loop = 1644 startLoop(merger, codegen, rewriter, op, topSort, at, li, needsUniv); 1645 1646 // Visit all lattices points with Li >= Lj to generate the 1647 // loop-body, possibly with if statements for coiteration. 1648 Value redInput = codegen.redVal; 1649 Value cntInput = codegen.expCount; 1650 bool isWhile = dyn_cast<scf::WhileOp>(loop) != nullptr; 1651 for (unsigned j = 0; j < lsize; j++) { 1652 unsigned lj = merger.set(lts)[j]; 1653 unsigned ej = merger.lat(lj).exp; 1654 if (li == lj || merger.latGT(li, lj)) { 1655 // Recurse into body of each branch. 1656 if (isWhile) { 1657 scf::IfOp ifOp = 1658 genIf(merger, codegen, rewriter, op, idx, merger.lat(lj).simple); 1659 genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1); 1660 endIf(merger, codegen, rewriter, op, ifOp, loop, redInput, cntInput); 1661 } else { 1662 genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1); 1663 } 1664 } 1665 } 1666 1667 // End a loop. 1668 needsUniv = 1669 endLoop(merger, codegen, rewriter, op, loop, idx, li, needsUniv); 1670 } 1671 1672 // End a loop sequence. 1673 endLoopSeq(merger, codegen, rewriter, op, exp, at, idx, ldx); 1674 } 1675 1676 /// Converts the result computed by the sparse kernel into the required form. 1677 static void genResult(Merger &merger, CodeGen &codegen, RewriterBase &rewriter, 1678 linalg::GenericOp op) { 1679 OpOperand *lhs = op.getOutputOperand(0); 1680 Type resType = lhs->get().getType(); 1681 if (getSparseTensorEncoding(resType)) { 1682 // The sparse tensor rematerializes from the original sparse tensor's 1683 // underlying sparse storage format. 1684 rewriter.replaceOpWithNewOp<LoadOp>(op, resType, lhs->get(), 1685 codegen.sparseOut == lhs); 1686 } else { 1687 // To rematerialize an non-annotated tensor, simply load it 1688 // from the bufferized value. 1689 Value val = codegen.buffers.back(); // value array 1690 rewriter.replaceOpWithNewOp<bufferization::ToTensorOp>(op, resType, val); 1691 } 1692 } 1693 1694 //===----------------------------------------------------------------------===// 1695 // Sparse compiler rewriting methods. 1696 //===----------------------------------------------------------------------===// 1697 1698 namespace { 1699 1700 /// Sparse rewriting rule for generic Lingalg operation. 1701 struct GenericOpSparsifier : public OpRewritePattern<linalg::GenericOp> { 1702 public: 1703 GenericOpSparsifier(MLIRContext *context, SparsificationOptions o) 1704 : OpRewritePattern<linalg::GenericOp>(context), options(o) {} 1705 1706 LogicalResult matchAndRewrite(linalg::GenericOp op, 1707 PatternRewriter &rewriter) const override { 1708 // Detects sparse annotations and translate the per-dimension sparsity 1709 // information for all tensors to loop indices in the kernel. 1710 assert(op.getNumOutputs() == 1); 1711 unsigned numTensors = op.getNumInputsAndOutputs(); 1712 unsigned numLoops = op.iterator_types().getValue().size(); 1713 Merger merger(numTensors, numLoops); 1714 if (!findSparseAnnotations(merger, op)) 1715 return failure(); 1716 1717 // Computes a topologically sorted iteration graph to ensure 1718 // tensors are visited in natural index order. Fails on cycles. 1719 // This assumes that higher-level passes have already put the 1720 // tensors in each tensor expression in a feasible order. 1721 std::vector<unsigned> topSort; 1722 if (!computeIterationGraph(merger, op, topSort, 1723 SortMask::kIncludeUndef | 1724 SortMask::kIncludeDense) && 1725 !computeIterationGraph(merger, op, topSort, SortMask::kIncludeUndef) && 1726 !computeIterationGraph(merger, op, topSort, SortMask::kIncludeDense) && 1727 !computeIterationGraph(merger, op, topSort, SortMask::kSparseOnly)) 1728 return failure(); 1729 1730 // Builds the tensor expression for the Linalg operation in SSA form. 1731 Optional<unsigned> optExp = merger.buildTensorExpFromLinalg(op); 1732 if (!optExp.has_value()) 1733 return failure(); 1734 unsigned exp = optExp.value(); 1735 1736 // Rejects an inadmissable tensor expression. 1737 OpOperand *sparseOut = nullptr; 1738 unsigned outerParNest = 0; 1739 if (!isAdmissableTensorExp(merger, op, topSort, exp, &sparseOut, 1740 outerParNest)) 1741 return failure(); 1742 1743 // Recursively generates code. 1744 merger.setHasSparseOut(sparseOut != nullptr); 1745 CodeGen codegen(options, numTensors, numLoops, sparseOut, outerParNest); 1746 genBuffers(merger, codegen, rewriter, op); 1747 genStmt(merger, codegen, rewriter, op, topSort, exp, 0); 1748 genResult(merger, codegen, rewriter, op); 1749 return success(); 1750 } 1751 1752 private: 1753 /// Options to control sparse code generation. 1754 SparsificationOptions options; 1755 }; 1756 1757 } // namespace 1758 1759 /// Populates the given patterns list with rewriting rules required for 1760 /// the sparsification of linear algebra operations. 1761 void mlir::populateSparsificationPatterns( 1762 RewritePatternSet &patterns, const SparsificationOptions &options) { 1763 patterns.add<GenericOpSparsifier>(patterns.getContext(), options); 1764 } 1765