1 //===- Sparsification.cpp - Implementation of sparsification --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements lowering sparse tensor types to actual sparse code. 10 // 11 // The concept of letting a compiler generate sparse code automatically was 12 // pioneered for dense linear algebra code in Fortran by [Bik96] in MT1 and 13 // formalized to tensor algebra by [Kjolstad17,20] for the Sparse Tensor 14 // Algebra Compiler (TACO). The implementation in this file closely follows 15 // the "sparse iteration theory" that forms the foundation of TACO. A rewriting 16 // rule is applied to each tensor expression in linalg (MLIR's tensor index 17 // notation) where the sparsity of tensors is indicated with annotation using 18 // a per-dimension specification of sparse/dense storage together with a 19 // specification of the order on the dimensions. Subsequently, a topologically 20 // sorted iteration graph, reflecting the required order on indices with respect 21 // to the dimensions of each tensor, is constructed to ensure that all tensors 22 // are visited in natural index order. Next, iteration lattices are constructed 23 // for the tensor expression for every index in topological order. Each 24 // iteration lattice point consists of a conjunction of tensor indices together 25 // with a tensor (sub)expression that needs to be evaluated for that 26 // conjunction. Within the lattice, iteration points are ordered according to 27 // the way indices are exhausted. As such these iteration lattices drive actual 28 // sparse code generation, which consists of a tedious but relatively 29 // straightforward one-to-one mapping from iteration lattices to combinations 30 // of for-loops, while-loops, and if-statements. 31 // 32 // [Bik96] Aart J.C. Bik. Compiler Support for Sparse Matrix Computations. 33 // PhD thesis, Leiden University, May 1996 (aartbik.com/sparse.php). 34 // [Kjolstad17] Fredrik Berg Kjolstad, Shoaib Ashraf Kamil, Stephen Chou, 35 // David Lugato, and Saman Amarasinghe. The Tensor Algebra Compiler. 36 // Proceedings of the ACM on Programming Languages, October 2017. 37 // [Kjolstad20] Fredrik Berg Kjolstad. Sparse Tensor Algebra Compilation. 38 // PhD thesis, MIT, February, 2020 (tensor-compiler.org). 39 // 40 // Implementation detail: We use llvm::SmallVector for vectors with 41 // variable lengths and std::vector for vectors with fixed lengths. 42 //===----------------------------------------------------------------------===// 43 44 #include "mlir/Dialect/Linalg/IR/LinalgOps.h" 45 #include "mlir/Dialect/Linalg/Utils/Utils.h" 46 #include "mlir/Dialect/SCF/SCF.h" 47 #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h" 48 #include "mlir/Dialect/SparseTensor/Transforms/Passes.h" 49 #include "mlir/Dialect/StandardOps/IR/Ops.h" 50 #include "mlir/Dialect/Vector/VectorOps.h" 51 #include "mlir/IR/Matchers.h" 52 #include "mlir/IR/TensorEncoding.h" 53 #include "llvm/ADT/SmallBitVector.h" 54 55 using namespace mlir; 56 using namespace mlir::sparse_tensor; 57 58 namespace { 59 60 enum class Kind { kTensor, kInvariant, kMulF, kMulI, kAddF, kAddI }; 61 enum class Dim { kSparse, kDense, kSingle, kUndef }; 62 63 /// Tensor expression. Represents a MLIR expression in tensor index notation. 64 /// For tensors, e0 denotes the tensor index. For invariants, the IR value is 65 /// stored directly. For binary operations, e0 and e1 denote the index of the 66 /// children tensor expressions. 67 struct TensorExp { 68 TensorExp(Kind k, unsigned x, unsigned y, Value v) 69 : kind(k), e0(x), e1(y), val(v) { 70 assert((kind == Kind::kTensor && e0 != -1u && e1 == -1u && !val) || 71 (kind == Kind::kInvariant && e0 == -1u && e1 == -1u && val) || 72 (kind >= Kind::kMulF && e0 != -1u && e1 != -1u && !val)); 73 } 74 Kind kind; 75 /// Indices of children expression(s). 76 unsigned e0; 77 unsigned e1; 78 /// Direct link to IR for an invariant. During code generation, 79 /// field is used to cache "hoisted" loop invariant tensor loads. 80 Value val; 81 }; 82 83 /// Lattice point. Each lattice point consists of a conjunction of tensor 84 /// loop indices (encoded in a bitvector) and the index of the corresponding 85 /// tensor expression. 86 struct LatPoint { 87 LatPoint(unsigned n, unsigned e, unsigned b) : bits(n, false), exp(e) { 88 bits.set(b); 89 } 90 LatPoint(const llvm::BitVector &b, unsigned e) : bits(b), exp(e) {} 91 /// Conjunction of tensor loop indices as bitvector. This represents 92 /// all indices involved in the tensor expression 93 llvm::BitVector bits; 94 /// Simplified conjunction of tensor loop indices as bitvector. This 95 /// represents a simplified condition under which this tensor expression 96 /// must execute. Pre-computed during codegen to avoid repeated eval. 97 llvm::BitVector simple; 98 /// Index of the tensor expresssion. 99 unsigned exp; 100 }; 101 102 /// A class to handle all iteration lattice operations. This class abstracts 103 /// away from some implementation details of storing iteration lattices and 104 /// tensor expressions. This allows for fine-tuning performance characteristics 105 /// independently from the basic algorithm if bottlenecks are identified. 106 class Merger { 107 public: 108 /// Constructs a merger for the given number of tensors and loops. The 109 /// user supplies the number of tensors involved in the kernel, with the 110 /// last tensor in this set denoting the output tensor. The merger adds an 111 /// additional synthetic tensor at the end of this set to represent all 112 /// invariant expressions in the kernel. 113 Merger(unsigned t, unsigned l) 114 : outTensor(t - 1), numTensors(t + 1), numLoops(l), 115 dims(t + 1, std::vector<Dim>(l, Dim::kUndef)) {} 116 117 /// Adds a tensor expression. Returns its index. 118 unsigned addExp(Kind k, unsigned e0, unsigned e1 = -1u, Value v = Value()) { 119 unsigned e = tensorExps.size(); 120 tensorExps.push_back(TensorExp(k, e0, e1, v)); 121 return e; 122 } 123 unsigned addExp(Kind k, Value v) { return addExp(k, -1u, -1u, v); } 124 125 /// Adds an iteration lattice point. Returns its index. 126 unsigned addLat(unsigned t, unsigned i, unsigned e) { 127 assert(t < numTensors && i < numLoops); 128 unsigned p = latPoints.size(); 129 latPoints.push_back(LatPoint(numLoops * numTensors, e, numTensors * i + t)); 130 return p; 131 } 132 133 /// Adds a new, initially empty, set. Returns its index. 134 unsigned addSet() { 135 unsigned s = latSets.size(); 136 latSets.emplace_back(SmallVector<unsigned, 16>()); 137 return s; 138 } 139 140 /// Computes a single conjunction of two lattice points by taking the "union" 141 /// of loop indices (effectively constructing a larger "intersection" of those 142 /// indices) with a newly constructed tensor (sub)expression of given kind. 143 /// Returns the index of the new lattice point. 144 unsigned conjLatPoint(Kind kind, unsigned p0, unsigned p1) { 145 unsigned p = latPoints.size(); 146 llvm::BitVector nb = llvm::BitVector(latPoints[p0].bits); 147 nb |= latPoints[p1].bits; 148 unsigned e = addExp(kind, latPoints[p0].exp, latPoints[p1].exp); 149 latPoints.push_back(LatPoint(nb, e)); 150 return p; 151 } 152 153 /// Conjunctive merge of two lattice sets L0 and L1 is conjunction of 154 /// cartesian product. Returns the index of the new set. 155 unsigned takeConj(Kind kind, unsigned s0, unsigned s1) { 156 unsigned s = addSet(); 157 for (unsigned p0 : latSets[s0]) 158 for (unsigned p1 : latSets[s1]) 159 latSets[s].push_back(conjLatPoint(kind, p0, p1)); 160 return s; 161 } 162 163 /// Disjunctive merge of two lattice sets L0 and L1 is (L0 /\_op L1, L0, L1). 164 /// Returns the index of the new set. 165 unsigned takeDisj(Kind kind, unsigned s0, unsigned s1) { 166 unsigned s = takeConj(kind, s0, s1); 167 for (unsigned p : latSets[s0]) 168 latSets[s].push_back(p); 169 for (unsigned p : latSets[s1]) 170 latSets[s].push_back(p); 171 return s; 172 } 173 174 /// Optimizes the iteration lattice points in the given set. This 175 /// method should be called right before code generation to avoid 176 /// generating redundant loops and conditions. 177 unsigned optimizeSet(unsigned s0) { 178 unsigned s = addSet(); 179 assert(latSets[s0].size() != 0); 180 unsigned p0 = latSets[s0][0]; 181 for (unsigned p1 : latSets[s0]) { 182 bool add = true; 183 if (p0 != p1) { 184 // Is this a straightforward copy? 185 unsigned e = latPoints[p1].exp; 186 if (exp(e).kind == Kind::kTensor && exp(e).e0 == outTensor) 187 continue; 188 // Conjunction already covered? 189 for (unsigned p2 : latSets[s]) { 190 assert(!latGT(p1, p2)); // Lj => Li would be bad 191 if (onlyDenseDiff(p2, p1)) { 192 add = false; 193 break; 194 } 195 } 196 assert(!add || latGT(p0, p1)); 197 } 198 if (add) 199 latSets[s].push_back(p1); 200 } 201 for (unsigned p : latSets[s]) 202 latPoints[p].simple = simplifyCond(s, p); 203 return s; 204 } 205 206 /// Simplifies the conditions in a conjunction of a given lattice point 207 /// within the given set using just two basic rules: 208 /// (1) multiple dense conditions are reduced to single dense, and 209 /// (2) a *singleton* sparse/dense is reduced to sparse/random access. 210 llvm::BitVector simplifyCond(unsigned s, unsigned p0) { 211 // First determine if this lattice point is a *singleton*, i.e., 212 // the last point in a lattice, no other is less than this one. 213 bool isSingleton = true; 214 for (unsigned p1 : latSets[s]) { 215 if (p0 != p1 && latGT(p0, p1)) { 216 isSingleton = false; 217 break; 218 } 219 } 220 // Now apply the two basic rules. 221 llvm::BitVector simple = latPoints[p0].bits; 222 bool reset = isSingleton && hasAnyDimOf(simple, Dim::kSparse); 223 for (unsigned b = 0, be = simple.size(); b < be; b++) { 224 if (simple[b] && !isDim(b, Dim::kSparse)) { 225 if (reset) 226 simple.reset(b); 227 reset = true; 228 } 229 } 230 return simple; 231 } 232 233 /// Returns true if Li > Lj. 234 bool latGT(unsigned i, unsigned j) const { 235 const llvm::BitVector &bitsi = latPoints[i].bits; 236 const llvm::BitVector &bitsj = latPoints[j].bits; 237 assert(bitsi.size() == bitsj.size()); 238 if (bitsi.count() > bitsj.count()) { 239 for (unsigned b = 0, be = bitsj.size(); b < be; b++) 240 if (bitsj[b] && !bitsi[b]) 241 return false; 242 return true; 243 } 244 return false; 245 } 246 247 /// Returns true if Li and Lj only differ in dense. 248 bool onlyDenseDiff(unsigned i, unsigned j) { 249 llvm::BitVector tmp = latPoints[j].bits; 250 tmp ^= latPoints[i].bits; 251 return !hasAnyDimOf(tmp, Dim::kSparse); 252 } 253 254 /// Bit translation. 255 unsigned tensor(unsigned b) const { return b % numTensors; } 256 unsigned index(unsigned b) const { return b / numTensors; } 257 258 /// Returns true if bit corresponds to queried dim. 259 bool isDim(unsigned b, Dim d) const { return isDim(tensor(b), index(b), d); } 260 261 /// Returns true if tensor access at given index has queried dim. 262 bool isDim(unsigned t, unsigned i, Dim d) const { 263 assert(t < numTensors && i < numLoops); 264 return dims[t][i] == d; 265 } 266 267 /// Returns true if any set bit corresponds to queried dim. 268 bool hasAnyDimOf(const llvm::BitVector &bits, Dim d) const { 269 for (unsigned b = 0, be = bits.size(); b < be; b++) 270 if (bits[b] && isDim(b, d)) 271 return true; 272 return false; 273 } 274 275 /// Setter 276 void setDim(unsigned t, unsigned i, Dim d) { dims[t][i] = d; } 277 278 /// Getters. 279 TensorExp &exp(unsigned e) { return tensorExps[e]; } 280 LatPoint &lat(unsigned l) { return latPoints[l]; } 281 SmallVector<unsigned, 16> &set(unsigned s) { return latSets[s]; } 282 283 private: 284 const unsigned outTensor; 285 const unsigned numTensors; 286 const unsigned numLoops; 287 288 std::vector<std::vector<Dim>> dims; 289 llvm::SmallVector<TensorExp, 32> tensorExps; 290 llvm::SmallVector<LatPoint, 16> latPoints; 291 llvm::SmallVector<SmallVector<unsigned, 16>, 8> latSets; 292 }; 293 294 // Code generation. 295 struct CodeGen { 296 CodeGen(SparsificationOptions o, unsigned numTensors, unsigned numLoops) 297 : options(o), loops(numLoops), sizes(numLoops), buffers(numTensors), 298 pointers(numTensors, std::vector<Value>(numLoops)), 299 indices(numTensors, std::vector<Value>(numLoops)), 300 highs(numTensors, std::vector<Value>(numLoops)), 301 pidxs(numTensors, std::vector<Value>(numLoops)), 302 idxs(numTensors, std::vector<Value>(numLoops)), redExp(-1u), redVal(), 303 curVecLength(1), curVecMask() {} 304 /// Sparsification options. 305 SparsificationOptions options; 306 /// Universal dense indices and upper bounds (by index). The loops array 307 /// is updated with the value of the universal dense index in the current 308 /// loop. The sizes array is set once with the inferred dimension sizes. 309 std::vector<Value> loops; 310 std::vector<Value> sizes; 311 /// Buffers for storing dense and sparse numerical values (by tensor). 312 /// This array is set once during bufferization of all tensors. 313 std::vector<Value> buffers; 314 /// Sparse storage schemes (1-D): pointers and indices (by tensor and index). 315 /// This array is set once during bufferization of all sparse tensors. 316 std::vector<std::vector<Value>> pointers; 317 std::vector<std::vector<Value>> indices; 318 /// Sparse iteration information (by tensor and index). These arrays 319 /// are updated to remain current within the current loop. 320 std::vector<std::vector<Value>> highs; 321 std::vector<std::vector<Value>> pidxs; 322 std::vector<std::vector<Value>> idxs; 323 /// Current reduction, updated during code generation. When indices of a 324 /// reduction are exhausted, all inner loops can "scalarize" the reduction. 325 // TODO: currently only done for (a chain of) innermost for-loops, where it 326 // is most effective; we could generalize to more outer and while-loops. 327 unsigned redExp; 328 Value redVal; 329 // Current vector length and mask. 330 unsigned curVecLength; 331 Value curVecMask; 332 }; 333 334 } // namespace 335 336 // Helper method to translate dim level type to internal representation. 337 static Dim toDim(SparseTensorEncodingAttr &enc, unsigned d) { 338 if (enc) { 339 SparseTensorEncodingAttr::DimLevelType tp = enc.getDimLevelType()[d]; 340 if (tp == SparseTensorEncodingAttr::DimLevelType::Compressed) 341 return Dim::kSparse; 342 if (tp == SparseTensorEncodingAttr::DimLevelType::Singleton) 343 return Dim::kSingle; 344 } 345 return Dim::kDense; 346 } 347 348 /// Helper method to inspect sparse encodings in the tensor types. 349 /// Fills the per-dimension sparsity information for all tensors. 350 static void findSparseAnnotations(Merger &merger, linalg::GenericOp op) { 351 unsigned numTensors = op.getNumShapedOperands(); 352 for (unsigned t = 0; t < numTensors; t++) { 353 auto map = op.getIndexingMap(t); 354 unsigned rank = op.getShapedType(t).getRank(); 355 auto enc = getSparseTensorEncoding(op.getShapedType(t)); 356 for (unsigned d = 0; d < rank; d++) { 357 unsigned idx = map.getDimPosition(d); 358 merger.setDim(t, idx, toDim(enc, d)); 359 } 360 } 361 } 362 363 /// A DFS helper to compute a topological sort. Note that recursion is 364 /// bounded by the number of implicit loops, which is always small. 365 /// Returns false when a cycle is detected. 366 static bool topSortDFS(unsigned i, std::vector<unsigned> &visit, 367 std::vector<unsigned> &topSort, 368 std::vector<std::vector<bool>> &adjM) { 369 if (visit[i] != 0) 370 return visit[i] != 1; // 1 denotes cycle! 371 visit[i] = 1; 372 for (unsigned j = 0, e = visit.size(); j < e; j++) 373 if (adjM[i][j]) 374 if (!topSortDFS(j, visit, topSort, adjM)) 375 return false; 376 visit[i] = 2; 377 topSort.push_back(i); 378 return true; 379 } 380 381 /// Computes a topologically sorted iteration graph for the linalg operation. 382 /// Ensures all tensors are visited in natural index order. This is essential 383 /// for sparse storage formats since these only support access along fixed 384 /// dimensions. Even for dense storage formats, however, the natural index 385 /// order yields innermost unit-stride access with better spatial locality. 386 static bool computeIterationGraph(Merger &merger, linalg::GenericOp op, 387 std::vector<unsigned> &topSort, 388 bool sparseOnly) { 389 // Set up an n x n from/to adjacency matrix of the iteration graph 390 // for the implicit loop indices i_0 .. i_n-1. 391 unsigned n = op.getNumLoops(); 392 std::vector<std::vector<bool>> adjM(n, std::vector<bool>(n, false)); 393 394 // Iterate over the indexing maps of every tensor in the tensor expression. 395 unsigned numTensors = op.getNumShapedOperands(); 396 for (unsigned t = 0; t < numTensors; t++) { 397 auto map = op.getIndexingMap(t); 398 assert(map.getNumDims() == n); 399 // Skip dense tensor constraints when sparse only is requested. 400 if (sparseOnly && !getSparseTensorEncoding(op.getShapedType(t))) 401 continue; 402 // At the moment, we take the index variables in the tensor access 403 // expression in the order in which they appear (conceptually a 404 // "row-major" layout of every tensor). So, a tensor access A_ijk 405 // forces the ordering i < j < k on the loop indices. 406 // TODO: support affine map to define alternative dimension orders. 407 for (unsigned d = 1, e = map.getNumResults(); d < e; d++) { 408 unsigned f = map.getDimPosition(d - 1); 409 unsigned t = map.getDimPosition(d); 410 adjM[f][t] = true; 411 } 412 } 413 414 // Topologically sort the iteration graph to determine loop order. 415 // Report failure for a cyclic iteration graph. 416 topSort.clear(); 417 topSort.reserve(n); 418 std::vector<unsigned> visit(n, 0); 419 for (unsigned i = 0; i < n; i++) 420 if (visit[i] == 0) 421 if (!topSortDFS(i, visit, topSort, adjM)) 422 return false; // cycle! 423 std::reverse(std::begin(topSort), std::end(topSort)); 424 return true; 425 } 426 427 /// Traverses the SSA tree (possibly a DAG) to build a tensor expression. 428 /// This simplifies constructing (sub)expressions during iteration lattice 429 /// building (compared to using the SSA representation everywhere). 430 static Optional<unsigned> buildTensorExp(Merger &merger, linalg::GenericOp op, 431 Value val) { 432 if (auto arg = val.dyn_cast<BlockArgument>()) { 433 unsigned argN = arg.getArgNumber(); 434 if (arg.getOwner()->getParentOp() == op) { 435 // Any parameter of the generic op is considered a tensor, 436 // indexed by the implicit loop bounds. 437 auto map = op.getIndexingMap(argN); 438 if (map.isProjectedPermutation()) 439 return merger.addExp(Kind::kTensor, argN); 440 // Cannot handle (yet). 441 return None; 442 } 443 // Any parameter of a higher op is invariant. 444 return merger.addExp(Kind::kInvariant, val); 445 } 446 Operation *def = val.getDefiningOp(); 447 if (def->getBlock() != &op.region().front()) { 448 // Something defined outside is invariant. 449 return merger.addExp(Kind::kInvariant, val); 450 } else if (def->getNumOperands() == 2) { 451 // Construct binary operations if subexpressions could be built. 452 auto x = buildTensorExp(merger, op, def->getOperand(0)); 453 auto y = buildTensorExp(merger, op, def->getOperand(1)); 454 if (x.hasValue() && y.hasValue()) { 455 unsigned e0 = x.getValue(); 456 unsigned e1 = y.getValue(); 457 if (isa<MulFOp>(def)) 458 return merger.addExp(Kind::kMulF, e0, e1); 459 if (isa<MulIOp>(def)) 460 return merger.addExp(Kind::kMulI, e0, e1); 461 if (isa<AddFOp>(def)) 462 return merger.addExp(Kind::kAddF, e0, e1); 463 if (isa<AddIOp>(def)) 464 return merger.addExp(Kind::kAddI, e0, e1); 465 } 466 } 467 // Cannot build (yet). 468 return None; 469 } 470 471 /// Builds the iteration lattices in a bottom-up traversal given the remaining 472 /// tensor (sub)expression and the next loop index in the iteration graph. 473 static unsigned buildLattices(Merger &merger, linalg::GenericOp op, 474 unsigned exp, unsigned idx) { 475 Kind kind = merger.exp(exp).kind; 476 if (kind == Kind::kTensor || kind == Kind::kInvariant) { 477 // Either the index is really used in the tensor expression, or it is 478 // set to the undefined index in that dimension. An invariant expression 479 // is set to a synthetic tensor with undefined indices only. 480 unsigned s = merger.addSet(); 481 unsigned t = 482 kind == Kind::kTensor ? merger.exp(exp).e0 : op.getNumShapedOperands(); 483 merger.set(s).push_back(merger.addLat(t, idx, exp)); 484 return s; 485 } 486 unsigned s0 = buildLattices(merger, op, merger.exp(exp).e0, idx); 487 unsigned s1 = buildLattices(merger, op, merger.exp(exp).e1, idx); 488 switch (kind) { 489 case Kind::kTensor: 490 case Kind::kInvariant: 491 llvm_unreachable("handled above"); 492 case Kind::kMulF: 493 case Kind::kMulI: 494 return merger.takeConj(kind, s0, s1); 495 case Kind::kAddF: 496 case Kind::kAddI: 497 return merger.takeDisj(kind, s0, s1); 498 } 499 llvm_unreachable("unexpected expression kind"); 500 } 501 502 /// Maps sparse integer option to actual integral storage type. 503 static Type genIntType(PatternRewriter &rewriter, unsigned width) { 504 if (width == 0) 505 return rewriter.getIndexType(); 506 return rewriter.getIntegerType(width); 507 } 508 509 /// Generates buffer for the output tensor. 510 static Value genOutputBuffer(CodeGen &codegen, PatternRewriter &rewriter, 511 linalg::GenericOp op, MemRefType denseTp, 512 ArrayRef<Value> args) { 513 Location loc = op.getLoc(); 514 Value tensor = op.getOutput(0); 515 // The output tensor simply could materialize from the buffer that will 516 // be generated for the tensor present in the outs() clause. This has 517 // the major advantage that the sparse kernel only updates the nonzero 518 // positions for the output tensor. Currently this results in functional, 519 // but slightly imprecise IR, so it is put under an experimental option. 520 if (codegen.options.fastOutput) 521 return rewriter.create<memref::BufferCastOp>(loc, denseTp, tensor); 522 // By default, a new buffer is allocated which is initialized to the 523 // tensor defined in the outs() clause. This is always correct but 524 // introduces a dense initialization component that may negatively 525 // impact the running complexity of the sparse kernel. 526 Value init = rewriter.create<memref::BufferCastOp>(loc, denseTp, tensor); 527 Value alloc = rewriter.create<memref::AllocOp>(loc, denseTp, args); 528 rewriter.create<linalg::CopyOp>(loc, init, alloc); 529 return alloc; 530 } 531 532 /// Local bufferization of all dense and sparse data structures. 533 /// This code enables testing the first prototype sparse compiler. 534 // TODO: replace this with a proliferated bufferization strategy 535 static void genBuffers(Merger &merger, CodeGen &codegen, 536 PatternRewriter &rewriter, linalg::GenericOp op) { 537 Location loc = op.getLoc(); 538 unsigned numTensors = op.getNumShapedOperands(); 539 unsigned numInputs = op.getNumInputs(); 540 assert(numTensors == numInputs + 1); 541 // For every tensor, find lower and upper bound on dimensions, set the 542 // same bounds on loop indices, and obtain dense or sparse buffer(s). 543 SmallVector<Value, 4> args; 544 for (unsigned t = 0; t < numTensors; t++) { 545 Value tensor = t < numInputs ? op.getInput(t) : op.getOutput(0); 546 auto tensorType = op.getShapedType(t); 547 auto shape = tensorType.getShape(); 548 auto map = op.getIndexingMap(t); 549 auto enc = getSparseTensorEncoding(tensorType); 550 // Scan all dimensions of current tensor. 551 args.clear(); 552 for (unsigned d = 0, rank = shape.size(); d < rank; d++) { 553 unsigned i = map.getDimPosition(d); 554 // Handle sparse storage schemes. 555 if (merger.isDim(t, i, Dim::kSparse)) { 556 auto dynShape = {ShapedType::kDynamicSize}; 557 auto ptrTp = MemRefType::get( 558 dynShape, genIntType(rewriter, enc.getPointerBitWidth())); 559 auto indTp = MemRefType::get( 560 dynShape, genIntType(rewriter, enc.getIndexBitWidth())); 561 Value dim = rewriter.create<ConstantIndexOp>(loc, d); 562 // Generate sparse primitives to obtains pointer and indices. 563 codegen.pointers[t][i] = 564 rewriter.create<ToPointersOp>(loc, ptrTp, tensor, dim); 565 codegen.indices[t][i] = 566 rewriter.create<ToIndicesOp>(loc, indTp, tensor, dim); 567 } 568 // Find lower and upper bound in current dimension. 569 Value up; 570 if (shape[d] == MemRefType::kDynamicSize) { 571 up = rewriter.create<memref::DimOp>(loc, tensor, d); 572 args.push_back(up); 573 } else { 574 up = rewriter.create<ConstantIndexOp>(loc, shape[d]); 575 } 576 codegen.sizes[i] = codegen.highs[t][i] = up; 577 } 578 // Perform the required bufferization. All dense inputs materialize 579 // from the input tensor. The dense output tensor needs special 580 // handling. Sparse inputs use a sparse primitive to obtain the values. 581 if (!enc) { 582 auto denseTp = MemRefType::get(shape, tensorType.getElementType()); 583 if (t < numInputs) 584 codegen.buffers[t] = 585 rewriter.create<memref::BufferCastOp>(loc, denseTp, tensor); 586 else 587 codegen.buffers[t] = 588 genOutputBuffer(codegen, rewriter, op, denseTp, args); 589 } else { 590 auto dynShape = {ShapedType::kDynamicSize}; 591 auto sparseTp = MemRefType::get(dynShape, tensorType.getElementType()); 592 codegen.buffers[t] = rewriter.create<ToValuesOp>(loc, sparseTp, tensor); 593 } 594 } 595 } 596 597 /// Constructs vector type. 598 static VectorType vectorType(CodeGen &codegen, Type etp) { 599 return VectorType::get(codegen.curVecLength, etp); 600 } 601 602 /// Constructs vector type from pointer. 603 static VectorType vectorType(CodeGen &codegen, Value ptr) { 604 return vectorType(codegen, ptr.getType().cast<MemRefType>().getElementType()); 605 } 606 607 /// Constructs vector iteration mask. 608 static Value genVectorMask(CodeGen &codegen, PatternRewriter &rewriter, 609 Value iv, Value lo, Value hi, Value step) { 610 Location loc = iv.getLoc(); 611 VectorType mtp = vectorType(codegen, rewriter.getIntegerType(1)); 612 // Special case if the vector length evenly divides the trip count (for 613 // example, "for i = 0, 128, 16"). A constant all-true mask is generated 614 // so that all subsequent masked memory operations are immediately folded 615 // into unconditional memory operations. 616 IntegerAttr loInt, hiInt, stepInt; 617 if (matchPattern(lo, m_Constant(&loInt)) && 618 matchPattern(hi, m_Constant(&hiInt)) && 619 matchPattern(step, m_Constant(&stepInt))) { 620 if (((hiInt.getInt() - loInt.getInt()) % stepInt.getInt()) == 0) 621 return rewriter.create<vector::BroadcastOp>( 622 loc, mtp, rewriter.create<ConstantIntOp>(loc, 1, 1)); 623 } 624 // Otherwise, generate a vector mask that avoids overrunning the upperbound 625 // during vector execution. Here we rely on subsequent loop optimizations to 626 // avoid executing the mask in all iterations, for example, by splitting the 627 // loop into an unconditional vector loop and a scalar cleanup loop. 628 Value end = rewriter.create<SubIOp>(loc, hi, iv); 629 return rewriter.create<vector::CreateMaskOp>(loc, mtp, end); 630 } 631 632 /// Generates a vectorized load lhs = a[ind[lo:hi]] or lhs = a[lo:hi]. 633 static Value genVectorLoad(CodeGen &codegen, PatternRewriter &rewriter, 634 Value ptr, ArrayRef<Value> args) { 635 Location loc = ptr.getLoc(); 636 VectorType vtp = vectorType(codegen, ptr); 637 Value pass = rewriter.create<ConstantOp>(loc, vtp, rewriter.getZeroAttr(vtp)); 638 if (args.back().getType().isa<VectorType>()) { 639 SmallVector<Value, 4> scalarArgs(args.begin(), args.end()); 640 Value indexVec = args.back(); 641 scalarArgs.back() = rewriter.create<ConstantIndexOp>(loc, 0); 642 return rewriter.create<vector::GatherOp>( 643 loc, vtp, ptr, scalarArgs, indexVec, codegen.curVecMask, pass); 644 } 645 return rewriter.create<vector::MaskedLoadOp>(loc, vtp, ptr, args, 646 codegen.curVecMask, pass); 647 } 648 649 /// Generates a vectorized store a[ind[lo:hi]] = rhs or a[lo:hi] = rhs. 650 static void genVectorStore(CodeGen &codegen, PatternRewriter &rewriter, 651 Value rhs, Value ptr, ArrayRef<Value> args) { 652 Location loc = ptr.getLoc(); 653 if (args.back().getType().isa<VectorType>()) { 654 SmallVector<Value, 4> scalarArgs(args.begin(), args.end()); 655 Value indexVec = args.back(); 656 scalarArgs.back() = rewriter.create<ConstantIndexOp>(loc, 0); 657 rewriter.create<vector::ScatterOp>(loc, ptr, scalarArgs, indexVec, 658 codegen.curVecMask, rhs); 659 return; 660 } 661 rewriter.create<vector::MaskedStoreOp>(loc, ptr, args, codegen.curVecMask, 662 rhs); 663 } 664 665 /// Generates a vectorized invariant. Here we rely on subsequent loop 666 /// optimizations to hoist the invariant broadcast out of the vector loop. 667 static Value genVectorInvariantValue(CodeGen &codegen, 668 PatternRewriter &rewriter, Value val) { 669 VectorType vtp = vectorType(codegen, val.getType()); 670 return rewriter.create<vector::BroadcastOp>(val.getLoc(), vtp, val); 671 } 672 673 /// Generates a load on a dense or sparse tensor. 674 static Value genTensorLoad(Merger &merger, CodeGen &codegen, 675 PatternRewriter &rewriter, linalg::GenericOp op, 676 unsigned exp) { 677 // Test if the load was hoisted to a higher loop nest. 678 Value val = merger.exp(exp).val; 679 if (val) { 680 if (codegen.curVecLength > 1 && !val.getType().isa<VectorType>()) 681 return genVectorInvariantValue(codegen, rewriter, val); 682 return val; 683 } 684 // Actual load. 685 SmallVector<Value, 4> args; 686 unsigned tensor = merger.exp(exp).e0; 687 auto map = op.getIndexingMap(tensor); 688 auto enc = getSparseTensorEncoding(op.getShapedType(tensor)); 689 for (unsigned i = 0, m = map.getNumResults(); i < m; ++i) { 690 unsigned idx = map.getDimPosition(i); 691 args.push_back(codegen.loops[idx]); // universal dense index 692 if (enc) { 693 args.clear(); 694 args.push_back(codegen.pidxs[tensor][idx]); // position index 695 } 696 } 697 Location loc = op.getLoc(); 698 Value ptr = codegen.buffers[tensor]; 699 if (codegen.curVecLength > 1) 700 return genVectorLoad(codegen, rewriter, ptr, args); 701 return rewriter.create<memref::LoadOp>(loc, ptr, args); 702 } 703 704 /// Generates a store on a dense tensor. 705 static void genTensorStore(Merger &merger, CodeGen &codegen, 706 PatternRewriter &rewriter, linalg::GenericOp op, 707 unsigned tensor, Value rhs) { 708 Location loc = op.getLoc(); 709 // Test if this is a scalarized reduction. 710 unsigned lhs = op.getNumShapedOperands() - 1; 711 if (lhs == tensor && codegen.redVal) { 712 if (codegen.curVecLength > 1) 713 rhs = rewriter.create<SelectOp>(loc, codegen.curVecMask, rhs, 714 codegen.redVal); 715 codegen.redVal = rhs; 716 return; 717 } 718 // Actual store. 719 SmallVector<Value, 4> args; 720 auto map = op.getIndexingMap(tensor); 721 for (unsigned i = 0, m = map.getNumResults(); i < m; ++i) { 722 unsigned idx = map.getDimPosition(i); 723 args.push_back(codegen.loops[idx]); // universal dense index 724 } 725 Value ptr = codegen.buffers[tensor]; 726 if (codegen.curVecLength > 1) 727 genVectorStore(codegen, rewriter, rhs, ptr, args); 728 else 729 rewriter.create<memref::StoreOp>(loc, rhs, ptr, args); 730 } 731 732 /// Generates a pointer/index load from the sparse storage scheme. Narrower 733 /// data types need to be zero extended before casting the value into the 734 /// index type used for looping and indexing. 735 static Value genLoad(CodeGen &codegen, PatternRewriter &rewriter, Location loc, 736 Value ptr, Value s) { 737 // See https://llvm.org/docs/GetElementPtr.html for some background on 738 // the complications described below. 739 if (codegen.curVecLength > 1) { 740 // Since the index vector is used in a subsequent gather/scatter operations, 741 // which effectively defines an unsigned pointer + signed index, we must 742 // zero extend the vector to an index width. For 8-bit and 16-bit values, 743 // an 32-bit index width suffices. For 32-bit values, zero extending the 744 // elements into 64-bit loses some performance since the 32-bit indexed 745 // gather/scatter is more efficient than the 64-bit index variant (in 746 // the future, we could introduce a flag that states the negative space 747 // of 32-bit indices is unused). For 64-bit values, there is no good way 748 // to state that the indices are unsigned, with creates the potential of 749 // incorrect address calculations in the unlikely case we need such 750 // extremely large offsets. 751 Type etp = ptr.getType().cast<MemRefType>().getElementType(); 752 Value vload = genVectorLoad(codegen, rewriter, ptr, {s}); 753 if (!etp.isa<IndexType>()) { 754 if (etp.getIntOrFloatBitWidth() < 32) 755 vload = rewriter.create<ZeroExtendIOp>( 756 loc, vload, vectorType(codegen, rewriter.getIntegerType(32))); 757 else if (etp.getIntOrFloatBitWidth() < 64) 758 vload = rewriter.create<ZeroExtendIOp>( 759 loc, vload, vectorType(codegen, rewriter.getIntegerType(64))); 760 } 761 return vload; 762 } 763 // For the scalar case, we simply zero extend narrower indices into 64-bit 764 // values before casting to index without a performance penalty. Here too, 765 // however, indices that already are 64-bit, in theory, cannot express the 766 // full range as explained above. 767 Value load = rewriter.create<memref::LoadOp>(loc, ptr, s); 768 if (!load.getType().isa<IndexType>()) { 769 if (load.getType().getIntOrFloatBitWidth() < 64) 770 load = rewriter.create<ZeroExtendIOp>(loc, load, 771 rewriter.getIntegerType(64)); 772 load = rewriter.create<IndexCastOp>(loc, load, rewriter.getIndexType()); 773 } 774 return load; 775 } 776 777 /// Generates an invariant value. 778 static Value genInvariantValue(Merger &merger, CodeGen &codegen, 779 PatternRewriter &rewriter, unsigned exp) { 780 Value val = merger.exp(exp).val; 781 if (codegen.curVecLength > 1) 782 return genVectorInvariantValue(codegen, rewriter, val); 783 return val; 784 } 785 786 /// Generates an address computation "sz * p + i". 787 static Value genAddress(CodeGen &codegen, PatternRewriter &rewriter, 788 Location loc, Value size, Value p, Value i) { 789 Value mul = rewriter.create<MulIOp>(loc, size, p); 790 if (auto vtp = i.getType().dyn_cast<VectorType>()) { 791 Value inv = rewriter.create<IndexCastOp>(loc, mul, vtp.getElementType()); 792 mul = genVectorInvariantValue(codegen, rewriter, inv); 793 } 794 return rewriter.create<AddIOp>(loc, mul, i); 795 } 796 797 /// Generates start of a reduction. 798 static Value genReductionStart(Merger &merger, CodeGen &codegen, 799 PatternRewriter &rewriter, 800 linalg::GenericOp op) { 801 if (codegen.redVal) 802 return codegen.redVal; // chained with previous for-loop 803 if (codegen.curVecLength > 1) { 804 // TODO: assumes + reductions for now 805 VectorType vtp = vectorType(codegen, codegen.buffers[codegen.redExp]); 806 return rewriter.create<ConstantOp>(op.getLoc(), vtp, 807 rewriter.getZeroAttr(vtp)); 808 } 809 return genTensorLoad(merger, codegen, rewriter, op, codegen.redExp); 810 } 811 812 /// Generates end of a reduction. 813 static void genReductionEnd(Merger &merger, CodeGen &codegen, 814 PatternRewriter &rewriter, linalg::GenericOp op) { 815 Value red = codegen.redVal; 816 if (!red) 817 return; 818 assert(codegen.curVecLength == 1); 819 codegen.redVal = merger.exp(codegen.redExp).val = Value(); // end chain 820 unsigned lhs = op.getNumShapedOperands() - 1; 821 if (auto vtp = red.getType().dyn_cast<VectorType>()) { 822 // TODO: assumes + reductions for now 823 StringAttr kind = rewriter.getStringAttr("add"); 824 Value ld = genTensorLoad(merger, codegen, rewriter, op, codegen.redExp); 825 // Integer reductions don't accept an accumulator. 826 if (vtp.getElementType().isa<IntegerType>()) { 827 red = rewriter.create<vector::ReductionOp>(op.getLoc(), ld.getType(), 828 kind, red, ValueRange{}); 829 red = rewriter.create<AddIOp>(op.getLoc(), red, ld); 830 } else { 831 red = rewriter.create<vector::ReductionOp>(op.getLoc(), ld.getType(), 832 kind, red, ld); 833 } 834 } 835 genTensorStore(merger, codegen, rewriter, op, lhs, red); 836 } 837 838 /// Recursively generates tensor expression. 839 static Value genExp(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, 840 linalg::GenericOp op, unsigned exp) { 841 if (merger.exp(exp).kind == Kind::kTensor) 842 return genTensorLoad(merger, codegen, rewriter, op, exp); 843 else if (merger.exp(exp).kind == Kind::kInvariant) 844 return genInvariantValue(merger, codegen, rewriter, exp); 845 Value v0 = genExp(merger, codegen, rewriter, op, merger.exp(exp).e0); 846 Value v1 = genExp(merger, codegen, rewriter, op, merger.exp(exp).e1); 847 switch (merger.exp(exp).kind) { 848 case Kind::kTensor: 849 case Kind::kInvariant: 850 llvm_unreachable("handled above"); 851 case Kind::kMulF: 852 return rewriter.create<MulFOp>(op.getLoc(), v0, v1); 853 case Kind::kMulI: 854 return rewriter.create<MulIOp>(op.getLoc(), v0, v1); 855 case Kind::kAddF: 856 return rewriter.create<AddFOp>(op.getLoc(), v0, v1); 857 case Kind::kAddI: 858 return rewriter.create<AddIOp>(op.getLoc(), v0, v1); 859 } 860 llvm_unreachable("unexpected expression kind"); 861 } 862 863 /// Hoists loop invariant tensor loads for which indices have been exhausted. 864 static void genInvariants(Merger &merger, CodeGen &codegen, 865 PatternRewriter &rewriter, linalg::GenericOp op, 866 unsigned exp, unsigned ldx, bool hoist) { 867 if (merger.exp(exp).kind == Kind::kTensor) { 868 // Inspect tensor indices. 869 bool atLevel = ldx == -1u; 870 unsigned tensor = merger.exp(exp).e0; 871 auto map = op.getIndexingMap(tensor); 872 for (unsigned i = 0, m = map.getNumResults(); i < m; ++i) { 873 unsigned idx = map.getDimPosition(i); 874 if (!codegen.loops[idx]) 875 return; // still in play 876 else if (idx == ldx) 877 atLevel = true; 878 } 879 // All exhausted at this level (atLevel denotes exactly at this level). 880 unsigned lhs = op.getNumShapedOperands() - 1; 881 if (lhs == tensor) { 882 codegen.redExp = hoist ? exp : -1u; 883 } else if (atLevel) { 884 merger.exp(exp).val = 885 hoist ? genTensorLoad(merger, codegen, rewriter, op, exp) : Value(); 886 } 887 } else if (merger.exp(exp).kind != Kind::kInvariant) { 888 // Traverse into the binary operations. Note that we only hoist 889 // tensor loads, since subsequent MLIR/LLVM passes know how to 890 // deal with all other kinds of derived loop invariants. 891 unsigned e0 = merger.exp(exp).e0; 892 unsigned e1 = merger.exp(exp).e1; 893 genInvariants(merger, codegen, rewriter, op, e0, ldx, hoist); 894 genInvariants(merger, codegen, rewriter, op, e1, ldx, hoist); 895 } 896 } 897 898 /// Generates initialization code for the subsequent loop sequence at 899 /// current index level. Returns true if the loop sequence needs to 900 /// maintain the universal index. 901 static bool genInit(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, 902 linalg::GenericOp op, std::vector<unsigned> &topSort, 903 unsigned at, llvm::BitVector &inits) { 904 bool needsUniv = false; 905 Location loc = op.getLoc(); 906 unsigned idx = topSort[at]; 907 908 // Initialize sparse positions. 909 for (unsigned b = 0, be = inits.size(); b < be; b++) { 910 if (inits[b]) { 911 unsigned tensor = merger.tensor(b); 912 assert(idx == merger.index(b)); 913 if (merger.isDim(b, Dim::kSparse)) { 914 // Initialize sparse index. 915 unsigned pat = at; 916 for (; pat != 0; pat--) { 917 if (codegen.pidxs[tensor][topSort[pat - 1]]) 918 break; 919 } 920 Value ptr = codegen.pointers[tensor][idx]; 921 Value one = rewriter.create<ConstantIndexOp>(loc, 1); 922 Value p0 = (pat == 0) ? rewriter.create<ConstantIndexOp>(loc, 0) 923 : codegen.pidxs[tensor][topSort[pat - 1]]; 924 codegen.pidxs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p0); 925 Value p1 = rewriter.create<AddIOp>(loc, p0, one); 926 codegen.highs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p1); 927 } else { 928 // Dense index still in play. 929 needsUniv = true; 930 } 931 } 932 } 933 934 // Initialize the universal dense index. 935 codegen.loops[idx] = rewriter.create<ConstantIndexOp>(loc, 0); 936 return needsUniv; 937 } 938 939 /// Returns vectorization strategy. Any implicit inner loop in the Linalg 940 /// operation is a candidate. Whether it is actually converted to SIMD code 941 /// depends on the requested strategy. 942 static bool isVectorFor(CodeGen &codegen, bool isInner, bool isSparse) { 943 switch (codegen.options.vectorizationStrategy) { 944 case SparseVectorizationStrategy::kNone: 945 return false; 946 case SparseVectorizationStrategy::kDenseInnerLoop: 947 return isInner && !isSparse; 948 case SparseVectorizationStrategy::kAnyStorageInnerLoop: 949 return isInner; 950 } 951 llvm_unreachable("unexpected vectorization strategy"); 952 } 953 954 /// Returns parallelization strategy. Any implicit loop in the Linalg operation 955 /// that is marked "parallel" is a candidate. Whether it is actually converted 956 /// to a parallel operation depends on the requested strategy. 957 static bool isParallelFor(CodeGen &codegen, bool isOuter, bool isReduction, 958 bool isSparse, bool isVector) { 959 switch (codegen.options.parallelizationStrategy) { 960 case SparseParallelizationStrategy::kNone: 961 return false; 962 case SparseParallelizationStrategy::kDenseOuterLoop: 963 return isOuter && !isSparse && !isReduction && !isVector; 964 case SparseParallelizationStrategy::kAnyStorageOuterLoop: 965 return isOuter && !isReduction && !isVector; 966 case SparseParallelizationStrategy::kDenseAnyLoop: 967 return !isSparse && !isReduction && !isVector; 968 case SparseParallelizationStrategy::kAnyStorageAnyLoop: 969 return !isReduction && !isVector; 970 } 971 llvm_unreachable("unexpected parallelization strategy"); 972 } 973 974 /// Checks unit strides for dense tensors. The iteration graph may have ignored 975 /// dense access patterns in order to avoid cycles (sparse access patterns are 976 /// always placed innermost), but that means dense access has become strided. 977 /// For now, we reject vectorization of such cases. 978 /// TODO: implement strided load/stores on dense arrays 979 static bool denseUnitStrides(Merger &merger, linalg::GenericOp op, 980 unsigned idx) { 981 unsigned numTensors = op.getNumShapedOperands(); 982 for (unsigned t = 0; t < numTensors; t++) { 983 if (!getSparseTensorEncoding(op.getShapedType(t))) { 984 auto map = op.getIndexingMap(t); 985 unsigned r = map.getNumResults(); 986 for (unsigned i = 0; i < r; i++) { 987 if (map.getDimPosition(i) == idx && i != r - 1) 988 return false; 989 } 990 } 991 } 992 return true; 993 } 994 995 /// Generates a for-loop on a single index. 996 static Operation *genFor(Merger &merger, CodeGen &codegen, 997 PatternRewriter &rewriter, linalg::GenericOp op, 998 bool isOuter, bool isInner, unsigned idx, 999 llvm::BitVector &indices) { 1000 unsigned fb = indices.find_first(); 1001 unsigned tensor = merger.tensor(fb); 1002 assert(idx == merger.index(fb)); 1003 auto iteratorTypes = op.iterator_types().getValue(); 1004 bool isReduction = linalg::isReductionIteratorType(iteratorTypes[idx]); 1005 bool isSparse = merger.isDim(fb, Dim::kSparse); 1006 bool isVector = isVectorFor(codegen, isInner, isSparse) && 1007 denseUnitStrides(merger, op, idx); 1008 bool isParallel = 1009 isParallelFor(codegen, isOuter, isReduction, isSparse, isVector); 1010 1011 // Prepare vector length. 1012 if (isVector) 1013 codegen.curVecLength = codegen.options.vectorLength; 1014 1015 // Loop bounds and increment. 1016 Location loc = op.getLoc(); 1017 Value lo = isSparse ? codegen.pidxs[tensor][idx] : codegen.loops[idx]; 1018 Value hi = isSparse ? codegen.highs[tensor][idx] : codegen.sizes[idx]; 1019 Value step = rewriter.create<ConstantIndexOp>(loc, codegen.curVecLength); 1020 1021 // Emit a parallel loop. 1022 if (isParallel) { 1023 assert(!isVector); 1024 scf::ParallelOp parOp = rewriter.create<scf::ParallelOp>(loc, lo, hi, step); 1025 if (isSparse) 1026 codegen.pidxs[tensor][idx] = parOp.getInductionVars()[0]; 1027 else 1028 codegen.loops[idx] = parOp.getInductionVars()[0]; 1029 rewriter.setInsertionPointToStart(parOp.getBody()); 1030 return parOp; 1031 } 1032 1033 // Emit a sequential loop, potentially with a scalarized reduction. 1034 bool scalarRed = isInner && codegen.redExp != -1u; 1035 SmallVector<Value, 4> operands; 1036 if (scalarRed) { 1037 Value load = genReductionStart(merger, codegen, rewriter, op); 1038 operands.push_back(load); 1039 } 1040 scf::ForOp forOp = rewriter.create<scf::ForOp>(loc, lo, hi, step, operands); 1041 if (scalarRed) { 1042 codegen.redVal = merger.exp(codegen.redExp).val = 1043 forOp.getRegionIterArgs().front(); 1044 } 1045 // Assign induction variable to sparse or dense index. 1046 Value iv = forOp.getInductionVar(); 1047 if (isSparse) 1048 codegen.pidxs[tensor][idx] = iv; 1049 else 1050 codegen.loops[idx] = iv; 1051 rewriter.setInsertionPointToStart(forOp.getBody()); 1052 // Share vector iteration mask between all subsequent loads/stores. 1053 if (isVector) 1054 codegen.curVecMask = genVectorMask(codegen, rewriter, iv, lo, hi, step); 1055 return forOp; 1056 } 1057 1058 /// Emit a while-loop for co-iteration over multiple indices. 1059 static Operation *genWhile(Merger &merger, CodeGen &codegen, 1060 PatternRewriter &rewriter, linalg::GenericOp op, 1061 unsigned idx, bool needsUniv, 1062 llvm::BitVector &indices) { 1063 SmallVector<Type, 4> types; 1064 SmallVector<Value, 4> operands; 1065 // Construct the while-loop with a parameter for each index. 1066 Type indexType = rewriter.getIndexType(); 1067 for (unsigned b = 0, be = indices.size(); b < be; b++) { 1068 if (indices[b] && merger.isDim(b, Dim::kSparse)) { 1069 unsigned tensor = merger.tensor(b); 1070 assert(idx == merger.index(b)); 1071 types.push_back(indexType); 1072 assert(codegen.pidxs[tensor][idx].getType().isa<IndexType>() && 1073 "type mismatch for sparse index"); 1074 operands.push_back(codegen.pidxs[tensor][idx]); 1075 } 1076 } 1077 if (needsUniv) { 1078 types.push_back(indexType); 1079 assert(codegen.loops[idx].getType().isa<IndexType>() && 1080 "type mismatch for universal index"); 1081 operands.push_back(codegen.loops[idx]); 1082 } 1083 Location loc = op.getLoc(); 1084 scf::WhileOp whileOp = rewriter.create<scf::WhileOp>(loc, types, operands); 1085 Block *before = rewriter.createBlock(&whileOp.before(), {}, types); 1086 Block *after = rewriter.createBlock(&whileOp.after(), {}, types); 1087 1088 // Build the "before" region, which effectively consists 1089 // of a conjunction of "i < upper" tests on all induction. 1090 rewriter.setInsertionPointToStart(&whileOp.before().front()); 1091 Value cond; 1092 unsigned o = 0; 1093 for (unsigned b = 0, be = indices.size(); b < be; b++) { 1094 if (indices[b] && merger.isDim(b, Dim::kSparse)) { 1095 unsigned tensor = merger.tensor(b); 1096 assert(idx == merger.index(b)); 1097 Value op1 = before->getArgument(o); 1098 Value op2 = codegen.highs[tensor][idx]; 1099 Value opc = rewriter.create<CmpIOp>(loc, CmpIPredicate::ult, op1, op2); 1100 cond = cond ? rewriter.create<AndOp>(loc, cond, opc) : opc; 1101 codegen.pidxs[tensor][idx] = after->getArgument(o++); 1102 } 1103 } 1104 if (needsUniv) 1105 codegen.loops[idx] = after->getArgument(o++); 1106 assert(o == operands.size()); 1107 rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments()); 1108 rewriter.setInsertionPointToStart(&whileOp.after().front()); 1109 return whileOp; 1110 } 1111 1112 /// Generates a for-loop or a while-loop, depending on whether it implements 1113 /// singleton iteration or co-iteration over the given conjunction. 1114 static Operation *genLoop(Merger &merger, CodeGen &codegen, 1115 PatternRewriter &rewriter, linalg::GenericOp op, 1116 std::vector<unsigned> &topSort, unsigned at, 1117 bool needsUniv, llvm::BitVector &indices) { 1118 unsigned idx = topSort[at]; 1119 if (indices.count() == 1) { 1120 bool isOuter = at == 0; 1121 bool isInner = at == topSort.size() - 1; 1122 return genFor(merger, codegen, rewriter, op, isOuter, isInner, idx, 1123 indices); 1124 } 1125 genReductionEnd(merger, codegen, rewriter, op); // cannot chain 1126 return genWhile(merger, codegen, rewriter, op, idx, needsUniv, indices); 1127 } 1128 1129 /// Generates the local variables for this loop, consisting of the sparse 1130 /// indices, restored universal dense index, and dense positions. 1131 static void genLocals(Merger &merger, CodeGen &codegen, 1132 PatternRewriter &rewriter, linalg::GenericOp op, 1133 std::vector<unsigned> &topSort, unsigned at, 1134 bool needsUniv, llvm::BitVector &locals) { 1135 Location loc = op.getLoc(); 1136 unsigned idx = topSort[at]; 1137 1138 // Initialize sparse indices. 1139 Value min; 1140 for (unsigned b = 0, be = locals.size(); b < be; b++) { 1141 if (locals[b] && merger.isDim(b, Dim::kSparse)) { 1142 unsigned tensor = merger.tensor(b); 1143 assert(idx == merger.index(b)); 1144 Value ptr = codegen.indices[tensor][idx]; 1145 Value s = codegen.pidxs[tensor][idx]; 1146 Value load = genLoad(codegen, rewriter, loc, ptr, s); 1147 codegen.idxs[tensor][idx] = load; 1148 if (!needsUniv) { 1149 if (min) { 1150 Value cmp = 1151 rewriter.create<CmpIOp>(loc, CmpIPredicate::ult, load, min); 1152 min = rewriter.create<SelectOp>(loc, cmp, load, min); 1153 } else { 1154 min = load; 1155 } 1156 } 1157 } 1158 } 1159 1160 // Merge dense universal index over minimum. 1161 if (min) { 1162 assert(!needsUniv); 1163 codegen.loops[idx] = min; 1164 } 1165 1166 // Initialize dense positions. 1167 for (unsigned b = 0, be = locals.size(); b < be; b++) { 1168 if (locals[b] && merger.isDim(b, Dim::kDense)) { 1169 unsigned tensor = merger.tensor(b); 1170 assert(idx == merger.index(b)); 1171 unsigned pat = at; 1172 for (; pat != 0; pat--) 1173 if (codegen.pidxs[tensor][topSort[pat - 1]]) 1174 break; 1175 Value p = (pat == 0) ? rewriter.create<ConstantIndexOp>(loc, 0) 1176 : codegen.pidxs[tensor][topSort[pat - 1]]; 1177 codegen.pidxs[tensor][idx] = genAddress( 1178 codegen, rewriter, loc, codegen.sizes[idx], p, codegen.loops[idx]); 1179 } 1180 } 1181 } 1182 1183 /// Generates the induction structure for a while-loop. 1184 static void genWhileInduction(Merger &merger, CodeGen &codegen, 1185 PatternRewriter &rewriter, linalg::GenericOp op, 1186 unsigned idx, bool needsUniv, 1187 llvm::BitVector &induction, ResultRange results) { 1188 Location loc = op.getLoc(); 1189 unsigned o = 0; 1190 SmallVector<Value, 4> operands; 1191 Value one = rewriter.create<ConstantIndexOp>(loc, 1); 1192 for (unsigned b = 0, be = induction.size(); b < be; b++) { 1193 if (induction[b] && merger.isDim(b, Dim::kSparse)) { 1194 unsigned tensor = merger.tensor(b); 1195 assert(idx == merger.index(b)); 1196 Value op1 = codegen.idxs[tensor][idx]; 1197 Value op2 = codegen.loops[idx]; 1198 Value op3 = codegen.pidxs[tensor][idx]; 1199 Value cmp = rewriter.create<CmpIOp>(loc, CmpIPredicate::eq, op1, op2); 1200 Value add = rewriter.create<AddIOp>(loc, op3, one); 1201 operands.push_back(rewriter.create<SelectOp>(loc, cmp, add, op3)); 1202 codegen.pidxs[tensor][idx] = results[o++]; 1203 } 1204 } 1205 if (needsUniv) { 1206 operands.push_back(rewriter.create<AddIOp>(loc, codegen.loops[idx], one)); 1207 codegen.loops[idx] = results[o++]; 1208 } 1209 assert(o == operands.size()); 1210 rewriter.create<scf::YieldOp>(loc, operands); 1211 } 1212 1213 /// Generates a single if-statement within a while-loop. 1214 static scf::IfOp genIf(Merger &merger, CodeGen &codegen, 1215 PatternRewriter &rewriter, linalg::GenericOp op, 1216 unsigned idx, llvm::BitVector &conditions) { 1217 Location loc = op.getLoc(); 1218 Value cond; 1219 for (unsigned b = 0, be = conditions.size(); b < be; b++) { 1220 if (conditions[b]) { 1221 unsigned tensor = merger.tensor(b); 1222 assert(idx == merger.index(b)); 1223 Value clause; 1224 if (merger.isDim(b, Dim::kSparse)) { 1225 Value op1 = codegen.idxs[tensor][idx]; 1226 Value op2 = codegen.loops[idx]; 1227 clause = rewriter.create<CmpIOp>(loc, CmpIPredicate::eq, op1, op2); 1228 } else { 1229 clause = rewriter.create<ConstantIntOp>(loc, 1, 1); // true 1230 } 1231 cond = cond ? rewriter.create<AndOp>(loc, cond, clause) : clause; 1232 } 1233 } 1234 scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, cond, /*else*/ true); 1235 rewriter.setInsertionPointToStart(&ifOp.thenRegion().front()); 1236 return ifOp; 1237 } 1238 1239 /// Recursively generates code while computing iteration lattices in order 1240 /// to manage the complexity of implementing co-iteration over unions 1241 /// and intersections of sparse iterations spaces. 1242 static void genStmt(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, 1243 linalg::GenericOp op, std::vector<unsigned> &topSort, 1244 unsigned exp, unsigned at) { 1245 // At each leaf, assign remaining tensor (sub)expression to output tensor. 1246 if (at == topSort.size()) { 1247 unsigned lhs = op.getNumShapedOperands() - 1; 1248 Value rhs = genExp(merger, codegen, rewriter, op, exp); 1249 genTensorStore(merger, codegen, rewriter, op, lhs, rhs); 1250 return; 1251 } 1252 assert(codegen.curVecLength == 1); 1253 1254 // Construct iteration lattices for current loop index, with L0 at top. 1255 // Then emit initialization code for the loop sequence at this level. 1256 // We maintain the universal dense index if dense indices are still 1257 // in play for a non-singleton loop sequence. 1258 Location loc = op.getLoc(); 1259 unsigned idx = topSort[at]; 1260 unsigned lts = merger.optimizeSet(buildLattices(merger, op, exp, idx)); 1261 unsigned lsize = merger.set(lts).size(); 1262 assert(lsize != 0); 1263 unsigned l0 = merger.set(lts)[0]; 1264 unsigned ldx = at == 0 ? -1u : topSort[at - 1]; 1265 genInvariants(merger, codegen, rewriter, op, exp, ldx, /*hoist=*/true); 1266 bool needsUniv = false; 1267 if (genInit(merger, codegen, rewriter, op, topSort, at, 1268 merger.lat(l0).bits)) { 1269 // Maintain the universal index only if it is actually 1270 // consumed by a subsequent lattice point. 1271 for (unsigned i = 1; i < lsize; i++) { 1272 unsigned li = merger.set(lts)[i]; 1273 if (!merger.hasAnyDimOf(merger.lat(li).simple, Dim::kSparse)) { 1274 needsUniv = true; 1275 break; 1276 } 1277 } 1278 } 1279 1280 // Emit a loop for every lattice point L0 >= Li. 1281 for (unsigned i = 0; i < lsize; i++) { 1282 unsigned li = merger.set(lts)[i]; 1283 1284 // Emit loop. 1285 codegen.curVecLength = 1; 1286 llvm::BitVector indices = merger.lat(li).simple; 1287 Operation *loop = 1288 genLoop(merger, codegen, rewriter, op, topSort, at, needsUniv, indices); 1289 genLocals(merger, codegen, rewriter, op, topSort, at, needsUniv, 1290 merger.lat(li).bits); 1291 1292 // Visit all lattices points with Li >= Lj to generate the 1293 // loop-body, possibly with if statements for coiteration. 1294 bool isWhile = dyn_cast<scf::WhileOp>(loop) != nullptr; 1295 for (unsigned j = 0; j < lsize; j++) { 1296 unsigned lj = merger.set(lts)[j]; 1297 unsigned ej = merger.lat(lj).exp; 1298 if (li == lj || merger.latGT(li, lj)) { 1299 // Recurse into body of each branch. 1300 if (isWhile) { 1301 scf::IfOp ifOp = 1302 genIf(merger, codegen, rewriter, op, idx, merger.lat(lj).simple); 1303 genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1); 1304 rewriter.setInsertionPointToStart(&ifOp.elseRegion().front()); 1305 } else { 1306 genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1); 1307 } 1308 } 1309 } 1310 1311 // Wrap-up induction and restore insertion point. 1312 if (isWhile) { 1313 scf::WhileOp whileOp = cast<scf::WhileOp>(loop); 1314 rewriter.setInsertionPointToEnd(&whileOp.after().front()); 1315 genWhileInduction(merger, codegen, rewriter, op, idx, needsUniv, 1316 merger.lat(li).bits, whileOp.results()); 1317 } else { 1318 needsUniv = false; 1319 if (codegen.redVal) { 1320 rewriter.create<scf::YieldOp>(loc, codegen.redVal); 1321 codegen.redVal = loop->getResult(0); 1322 } 1323 } 1324 rewriter.setInsertionPointAfter(loop); 1325 } 1326 1327 // Wrap-up loop sequence. 1328 codegen.curVecLength = 1; 1329 genReductionEnd(merger, codegen, rewriter, op); 1330 genInvariants(merger, codegen, rewriter, op, exp, ldx, /*hoist=*/false); 1331 codegen.loops[idx] = Value(); 1332 } 1333 1334 namespace { 1335 1336 /// Sparse rewriting rule for generic Lingalg operation. 1337 struct GenericOpSparsifier : public OpRewritePattern<linalg::GenericOp> { 1338 public: 1339 GenericOpSparsifier(MLIRContext *context, SparsificationOptions o) 1340 : OpRewritePattern<linalg::GenericOp>(context), options(o) {} 1341 1342 LogicalResult matchAndRewrite(linalg::GenericOp op, 1343 PatternRewriter &rewriter) const override { 1344 // Detects sparse annotations and translate the per-dimension sparsity 1345 // information for all tensors to loop indices in the kernel. 1346 assert(op.getNumOutputs() == 1); 1347 unsigned numTensors = op.getNumShapedOperands(); 1348 unsigned numLoops = op.iterator_types().getValue().size(); 1349 Merger merger(numTensors, numLoops); 1350 findSparseAnnotations(merger, op); 1351 1352 // Computes a topologically sorted iteration graph to ensure 1353 // tensors are visited in natural index order. Fails on cycles. 1354 // This assumes that higher-level passes have already put the 1355 // tensors in each tensor expression in a feasible order. 1356 std::vector<unsigned> topSort; 1357 if (!computeIterationGraph(merger, op, topSort, /*sparseOnly=*/false) && 1358 !computeIterationGraph(merger, op, topSort, /*sparseOnly=*/true)) 1359 return failure(); 1360 1361 // Finds the terminating yield statement and builds the tensor 1362 // expression for the Linalg operation in SSA form. 1363 Operation *yield = op.region().front().getTerminator(); 1364 Optional<unsigned> exp = buildTensorExp(merger, op, yield->getOperand(0)); 1365 if (!exp.hasValue()) 1366 return failure(); // build failure 1367 1368 // Recursively generates code. 1369 CodeGen codegen(options, numTensors, numLoops); 1370 genBuffers(merger, codegen, rewriter, op); 1371 genStmt(merger, codegen, rewriter, op, topSort, exp.getValue(), 0); 1372 Value result = rewriter.create<memref::TensorLoadOp>( 1373 op.getLoc(), codegen.buffers.back()); 1374 rewriter.replaceOp(op, result); 1375 return success(); 1376 } 1377 1378 private: 1379 /// Options to control sparse code generation. 1380 SparsificationOptions options; 1381 }; 1382 1383 } // namespace 1384 1385 /// Populates the given patterns list with rewriting rules required for 1386 /// the sparsification of linear algebra operations. 1387 void mlir::populateSparsificationPatterns( 1388 RewritePatternSet &patterns, const SparsificationOptions &options) { 1389 patterns.add<GenericOpSparsifier>(patterns.getContext(), options); 1390 } 1391