1 //===- Sparsification.cpp - Implementation of sparsification --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements converting sparse tensor types to actual sparse code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "mlir/Dialect/Affine/IR/AffineOps.h" 14 #include "mlir/Dialect/Linalg/IR/LinalgOps.h" 15 #include "mlir/Dialect/Linalg/Utils/Utils.h" 16 #include "mlir/Dialect/MemRef/IR/MemRef.h" 17 #include "mlir/Dialect/SCF/SCF.h" 18 #include "mlir/Dialect/SCF/Transforms.h" 19 #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h" 20 #include "mlir/Dialect/SparseTensor/Transforms/Passes.h" 21 #include "mlir/Dialect/SparseTensor/Utils/Merger.h" 22 #include "mlir/Dialect/StandardOps/IR/Ops.h" 23 #include "mlir/Dialect/Vector/VectorOps.h" 24 #include "mlir/IR/Matchers.h" 25 #include "mlir/IR/TensorEncoding.h" 26 #include "llvm/ADT/SmallBitVector.h" 27 28 using namespace mlir; 29 using namespace mlir::sparse_tensor; 30 31 //===----------------------------------------------------------------------===// 32 // Declarations of data structures. 33 //===----------------------------------------------------------------------===// 34 35 namespace { 36 37 // Iteration graph sorting. 38 enum SortMask { kSparseOnly = 0x0, kIncludeDense = 0x1, kIncludeUndef = 0x2 }; 39 40 // Reduction kinds. 41 enum Reduction { kSum, kProduct, kAnd, kOr, kXor }; 42 43 // Code generation. 44 struct CodeGen { 45 CodeGen(SparsificationOptions o, unsigned numTensors, unsigned numLoops) 46 : options(o), loops(numLoops), sizes(numLoops), buffers(numTensors), 47 pointers(numTensors, std::vector<Value>(numLoops)), 48 indices(numTensors, std::vector<Value>(numLoops)), 49 highs(numTensors, std::vector<Value>(numLoops)), 50 pidxs(numTensors, std::vector<Value>(numLoops)), 51 idxs(numTensors, std::vector<Value>(numLoops)), redExp(-1u), redVal(), 52 curVecLength(1), curVecMask() {} 53 /// Sparsification options. 54 SparsificationOptions options; 55 /// Universal dense indices and upper bounds (by index). The loops array 56 /// is updated with the value of the universal dense index in the current 57 /// loop. The sizes array is set once with the inferred dimension sizes. 58 std::vector<Value> loops; 59 std::vector<Value> sizes; 60 /// Buffers for storing dense and sparse numerical values (by tensor). 61 /// This array is set once during bufferization of all tensors. 62 std::vector<Value> buffers; 63 /// Sparse storage schemes (1-D): pointers and indices (by tensor and index). 64 /// This array is set once during bufferization of all sparse tensors. 65 std::vector<std::vector<Value>> pointers; 66 std::vector<std::vector<Value>> indices; 67 /// Sparse iteration information (by tensor and index). These arrays 68 /// are updated to remain current within the current loop. 69 std::vector<std::vector<Value>> highs; 70 std::vector<std::vector<Value>> pidxs; 71 std::vector<std::vector<Value>> idxs; 72 /// Current reduction, updated during code generation. When indices of a 73 /// reduction are exhausted, all inner loops can "scalarize" the reduction. 74 // TODO: currently only done for (a chain of) innermost for-loops, where it 75 // is most effective; we could generalize to more outer and while-loops. 76 unsigned redExp; 77 Value redVal; 78 Reduction redKind; 79 // Current vector length and mask. 80 unsigned curVecLength; 81 Value curVecMask; 82 }; 83 84 } // namespace 85 86 //===----------------------------------------------------------------------===// 87 // Sparse compiler analysis methods. 88 //===----------------------------------------------------------------------===// 89 90 /// Helper method to apply dimension ordering permutation. 91 static unsigned perm(const SparseTensorEncodingAttr &enc, unsigned d) { 92 if (enc) { 93 auto order = enc.getDimOrdering(); 94 if (order) { 95 assert(order.isPermutation()); 96 return order.getDimPosition(d); 97 } 98 } 99 return d; 100 } 101 102 /// Helper method to translate dim level type to internal representation. 103 static Dim toDim(const SparseTensorEncodingAttr &enc, unsigned d) { 104 if (enc) { 105 SparseTensorEncodingAttr::DimLevelType tp = enc.getDimLevelType()[d]; 106 if (tp == SparseTensorEncodingAttr::DimLevelType::Compressed) 107 return Dim::kSparse; 108 if (tp == SparseTensorEncodingAttr::DimLevelType::Singleton) 109 return Dim::kSingle; 110 } 111 return Dim::kDense; 112 } 113 114 /// Helper method to inspect affine expressions. Rejects cases where the 115 /// same index is used in more than one dimension of a tensor. Also rejects 116 /// affine expressions that are not a direct index for annotated tensors. 117 /// TODO: accept more affine cases for sparse tensors 118 static bool findAffine(Merger &merger, unsigned tensor, AffineExpr a, Dim dim, 119 bool isDense) { 120 switch (a.getKind()) { 121 case AffineExprKind::DimId: { 122 unsigned idx = a.cast<AffineDimExpr>().getPosition(); 123 if (!merger.isDim(tensor, idx, Dim::kUndef)) 124 return false; // used more than once 125 merger.setDim(tensor, idx, dim); 126 return true; 127 } 128 case AffineExprKind::Add: 129 case AffineExprKind::Mul: { 130 if (!isDense) 131 return false; 132 auto binOp = a.cast<AffineBinaryOpExpr>(); 133 return findAffine(merger, tensor, binOp.getLHS(), dim, isDense) && 134 findAffine(merger, tensor, binOp.getRHS(), dim, isDense); 135 } 136 case AffineExprKind::Constant: 137 return isDense; 138 default: 139 return false; 140 } 141 } 142 143 /// Helper method to inspect sparse encodings in the tensor types. 144 /// Fills the per-dimension sparsity information for all tensors. 145 /// Returns true if the sparse annotations and affine subscript 146 /// expressions of all tensors are admissable. Returns false if 147 /// no annotations are found or inadmissable constructs occur. 148 static bool findSparseAnnotations(Merger &merger, linalg::GenericOp op) { 149 bool annotated = false; 150 for (OpOperand *t : op.getInputAndOutputOperands()) { 151 auto map = op.getTiedIndexingMap(t); 152 auto enc = getSparseTensorEncoding(t->get().getType()); 153 if (enc) 154 annotated = true; 155 assert(map.getNumResults() == op.getRank(t)); 156 for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { 157 unsigned tensor = t->getOperandNumber(); 158 AffineExpr a = map.getResult(perm(enc, d)); 159 if (!findAffine(merger, tensor, a, toDim(enc, d), !enc)) 160 return false; // inadmissable affine expression 161 } 162 } 163 return annotated; 164 } 165 166 /// A DFS helper to compute a topological sort. Note that recursion is 167 /// bounded by the number of implicit loops, which is always small. 168 /// Returns false when a cycle is detected. 169 static bool topSortDFS(unsigned i, std::vector<unsigned> &visit, 170 std::vector<unsigned> &topSort, 171 std::vector<std::vector<bool>> &adjM) { 172 if (visit[i] != 0) 173 return visit[i] != 1; // 1 denotes cycle! 174 visit[i] = 1; 175 for (unsigned j = 0, e = visit.size(); j < e; j++) 176 if (adjM[i][j]) 177 if (!topSortDFS(j, visit, topSort, adjM)) 178 return false; 179 visit[i] = 2; 180 topSort.push_back(i); 181 return true; 182 } 183 184 /// Helper method to add all constraints from the indices in one affine 185 /// expression before all indices in the other affine expression. For 186 /// example i0+i1 < i2+i3+1 yields i0<i2, i0<i3, i1<i2, and i1<i3. 187 static void addAffineOrderings(std::vector<std::vector<bool>> &adjM, 188 AffineExpr a, AffineExpr b, unsigned fidx) { 189 switch (a.getKind()) { 190 case AffineExprKind::DimId: { 191 unsigned idx = a.cast<AffineDimExpr>().getPosition(); 192 if (b) 193 addAffineOrderings(adjM, b, AffineExpr(), idx); 194 else 195 adjM[fidx][idx] = true; 196 break; 197 } 198 case AffineExprKind::Add: 199 case AffineExprKind::Mul: { 200 auto binOp = a.cast<AffineBinaryOpExpr>(); 201 addAffineOrderings(adjM, binOp.getLHS(), b, fidx); 202 addAffineOrderings(adjM, binOp.getRHS(), b, fidx); 203 break; 204 } 205 default: 206 break; 207 } 208 } 209 210 /// Computes a topologically sorted iteration graph for the linalg operation. 211 /// Ensures all tensors are visited in natural index order. This is essential 212 /// for sparse storage formats since these only support access along fixed 213 /// dimensions. Even for dense storage formats, however, the natural index 214 /// order yields innermost unit-stride access with better spatial locality. 215 static bool computeIterationGraph(Merger &merger, linalg::GenericOp op, 216 std::vector<unsigned> &topSort, 217 unsigned mask) { 218 // Set up an n x n from/to adjacency matrix of the iteration graph 219 // for the implicit loop indices i_0 .. i_n-1. 220 unsigned n = op.getNumLoops(); 221 std::vector<std::vector<bool>> adjM(n, std::vector<bool>(n, false)); 222 223 // Iterate over the indexing maps of every tensor in the tensor expression. 224 for (OpOperand *t : op.getInputAndOutputOperands()) { 225 auto map = op.getTiedIndexingMap(t); 226 auto enc = getSparseTensorEncoding(t->get().getType()); 227 assert(map.getNumDims() == n); 228 // Skip dense tensor constraints when not requested. 229 if (!(mask & SortMask::kIncludeDense) && !enc) 230 continue; 231 // Each tensor expression and optional dimension ordering (row-major 232 // by default) puts an ordering constraint on the loop indices. For 233 // example, the tensor expresion A_ijk forces the ordering i < j < k 234 // on the loop indices if no explicit dimension ordering is given. 235 for (unsigned d = 1, rank = map.getNumResults(); d < rank; d++) { 236 AffineExpr f = map.getResult(perm(enc, d - 1)); 237 AffineExpr t = map.getResult(perm(enc, d)); 238 addAffineOrderings(adjM, f, t, 0); 239 } 240 // Push unrelated loops into sparse iteration space, so these 241 // will be skipped more often. 242 if (mask & SortMask::kIncludeUndef) { 243 unsigned tensor = t->getOperandNumber(); 244 for (unsigned i = 0; i < n; i++) 245 if (merger.isDim(tensor, i, Dim::kSparse)) 246 for (unsigned j = 0; j < n; j++) 247 if (merger.isDim(tensor, j, Dim::kUndef)) 248 adjM[i][j] = true; 249 } 250 } 251 252 // Topologically sort the iteration graph to determine loop order. 253 // Report failure for a cyclic iteration graph. 254 topSort.clear(); 255 topSort.reserve(n); 256 std::vector<unsigned> visit(n, 0); 257 for (unsigned i = 0; i < n; i++) 258 if (visit[i] == 0) 259 if (!topSortDFS(i, visit, topSort, adjM)) 260 return false; // cycle! 261 std::reverse(std::begin(topSort), std::end(topSort)); 262 return true; 263 } 264 265 /// Returns true when the tensor expression is admissable for codegen. 266 /// Since all sparse input tensors are admissable, we just need to check 267 /// whether the output tensor in the tensor expression codegen is admissable. 268 static bool isAdmissableTensorExp(Merger &merger, linalg::GenericOp op, 269 unsigned exp) { 270 OpOperand *lhs = op.getOutputOperand(0); 271 unsigned tensor = lhs->getOperandNumber(); 272 auto enc = getSparseTensorEncoding(lhs->get().getType()); 273 // An non-annotated output tensor is assumed dense, and becomes a random 274 // access n-dim memref. Admissable since insertions cannot occur. 275 if (!enc) 276 return true; 277 // An all-dense annotated "sparse" output tensor becomes a linearized random 278 // access 1-dim memref. Also admissable since insertions cannot occur. 279 bool allDense = true; 280 unsigned numLoops = op.iterator_types().getValue().size(); 281 for (unsigned i = 0; i < numLoops; i++) 282 if (merger.isDim(tensor, i, Dim::kSparse)) { 283 allDense = false; 284 break; 285 } 286 if (allDense) 287 return true; 288 // A tensor expression with a sparse output tensor that changes its values 289 // but not its nonzero structure, an operation called "simply dynamic" in 290 // [Bik96,Ch9], is also admissable without special codegen. 291 if (merger.isConjunction(tensor, exp)) 292 return true; 293 // Reject for now since this requires changes to the nonzero structure. 294 // TODO: implement "workspaces" [Kjolstad2019] 295 return false; 296 } 297 298 //===----------------------------------------------------------------------===// 299 // Sparse compiler synthesis methods. 300 //===----------------------------------------------------------------------===// 301 302 /// Maps reduction kind to name encoding. 303 static StringRef getReductionName(Reduction kind) { 304 switch (kind) { 305 case kSum: 306 return "add"; 307 case kProduct: 308 return "mul"; 309 case kAnd: 310 return "and"; 311 case kOr: 312 return "or"; 313 case kXor: 314 return "xor"; 315 } 316 llvm_unreachable("unknown reduction kind"); 317 } 318 319 /// Maps operation to reduction. 320 static Reduction getReduction(Kind kind) { 321 switch (kind) { 322 case Kind::kAddF: 323 case Kind::kAddI: 324 case Kind::kSubF: 325 case Kind::kSubI: 326 return kSum; 327 case Kind::kMulF: 328 case Kind::kMulI: 329 return kProduct; 330 case Kind::kAndI: 331 return kAnd; 332 case Kind::kOrI: 333 return kOr; 334 case Kind::kXorI: 335 return kXor; 336 default: 337 llvm_unreachable("unexpected reduction operator"); 338 } 339 } 340 341 /// Generates an initial value for a vector reductions, following the scheme 342 /// given in Chapter 5 of "The Software Vectorization Handbook", where the 343 /// initial scalar value is correctly embedded in the vector reduction value, 344 /// and a straightforward horizontal reduction will complete the operation. 345 static Value genReductionInit(PatternRewriter &rewriter, Location loc, 346 Reduction kind, VectorType vtp, Value r) { 347 switch (kind) { 348 case kSum: 349 case kXor: { 350 // Initialize reduction vector to: | 0 | .. | 0 | r | 351 Attribute zero = rewriter.getZeroAttr(vtp); 352 Value vec = rewriter.create<ConstantOp>(loc, vtp, zero); 353 return rewriter.create<vector::InsertElementOp>(loc, r, vec, 0); 354 } 355 case kProduct: { 356 // Initialize reduction vector to: | 1 | .. | 1 | r | 357 Type etp = vtp.getElementType(); 358 Attribute one; 359 if (etp.isa<FloatType>()) 360 one = rewriter.getFloatAttr(etp, 1.0); 361 else 362 one = rewriter.getIntegerAttr(etp, 1); 363 Value vec = 364 rewriter.create<ConstantOp>(loc, vtp, DenseElementsAttr::get(vtp, one)); 365 return rewriter.create<vector::InsertElementOp>(loc, r, vec, 0); 366 } 367 case kAnd: 368 case kOr: 369 // Initialize reduction vector to: | r | .. | r | r | 370 return rewriter.create<vector::BroadcastOp>(loc, vtp, r); 371 } 372 llvm_unreachable("unknown reduction kind"); 373 } 374 375 /// Maps sparse integer option to actual integral storage type. 376 static Type genIntType(PatternRewriter &rewriter, unsigned width) { 377 if (width == 0) 378 return rewriter.getIndexType(); 379 return rewriter.getIntegerType(width); 380 } 381 382 /// Detects in-place annotation on tensor argument. 383 static bool getInPlace(Value val) { 384 if (auto arg = val.dyn_cast<BlockArgument>()) 385 if (auto funcOp = dyn_cast<FuncOp>(arg.getOwner()->getParentOp())) 386 if (auto attr = funcOp.getArgAttrOfType<BoolAttr>( 387 arg.getArgNumber(), linalg::LinalgDialect::kInplaceableAttrName)) 388 return attr.getValue(); 389 return false; 390 } 391 392 /// Generates buffer for the output tensor. 393 static Value genOutputBuffer(CodeGen &codegen, PatternRewriter &rewriter, 394 linalg::GenericOp op, MemRefType denseTp, 395 ArrayRef<Value> args) { 396 Location loc = op.getLoc(); 397 Value tensor = op.getOutputOperand(0)->get(); 398 // The output tensor simply could materialize from the buffer that will 399 // be generated for the tensor present in the outs() clause. This has 400 // the major advantage that the sparse kernel only updates the nonzero 401 // positions for the output tensor. 402 if (getInPlace(tensor)) 403 return rewriter.create<memref::BufferCastOp>(loc, denseTp, tensor); 404 // By default, a new buffer is allocated which is initialized to the 405 // tensor defined in the outs() clause. This is always correct but 406 // introduces a dense initialization component that may negatively 407 // impact the running complexity of the sparse kernel. 408 Value init = rewriter.create<memref::BufferCastOp>(loc, denseTp, tensor); 409 Value alloc = rewriter.create<memref::AllocOp>(loc, denseTp, args); 410 rewriter.create<memref::CopyOp>(loc, init, alloc); 411 return alloc; 412 } 413 414 /// Local bufferization of all dense and sparse data structures. 415 /// This code enables testing the first prototype sparse compiler. 416 // TODO: replace this with a proliferated bufferization strategy 417 static bool genBuffers(Merger &merger, CodeGen &codegen, 418 PatternRewriter &rewriter, linalg::GenericOp op) { 419 Location loc = op.getLoc(); 420 assert(op.getNumInputsAndOutputs() == op.getNumInputs() + 1); 421 // For every tensor, find lower and upper bound on dimensions, set the 422 // same bounds on loop indices, and obtain dense or sparse buffer(s). 423 SmallVector<Value, 4> args; 424 for (OpOperand *t : op.getInputAndOutputOperands()) { 425 unsigned tensor = t->getOperandNumber(); 426 auto shape = op.getShape(t); 427 auto map = op.getTiedIndexingMap(t); 428 auto enc = getSparseTensorEncoding(t->get().getType()); 429 // Scan all dimensions of current tensor. 430 args.clear(); 431 for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { 432 AffineExpr a = map.getResult(perm(enc, d)); 433 if (a.getKind() != AffineExprKind::DimId) 434 continue; // compound 435 unsigned idx = a.cast<AffineDimExpr>().getPosition(); 436 // Handle sparse storage schemes. 437 if (merger.isDim(tensor, idx, Dim::kSparse)) { 438 auto dynShape = {ShapedType::kDynamicSize}; 439 auto ptrTp = MemRefType::get( 440 dynShape, genIntType(rewriter, enc.getPointerBitWidth())); 441 auto indTp = MemRefType::get( 442 dynShape, genIntType(rewriter, enc.getIndexBitWidth())); 443 Value dim = rewriter.create<ConstantIndexOp>(loc, d); 444 // Generate sparse primitives to obtains pointer and indices. 445 codegen.pointers[tensor][idx] = 446 rewriter.create<ToPointersOp>(loc, ptrTp, t->get(), dim); 447 codegen.indices[tensor][idx] = 448 rewriter.create<ToIndicesOp>(loc, indTp, t->get(), dim); 449 } 450 // Find upper bound in current dimension. 451 unsigned p = perm(enc, d); 452 Value up = linalg::createOrFoldDimOp(rewriter, loc, t->get(), p); 453 if (shape[p] == MemRefType::kDynamicSize) 454 args.push_back(up); 455 assert(codegen.highs[tensor][idx] == nullptr); 456 codegen.sizes[idx] = codegen.highs[tensor][idx] = up; 457 } 458 // Perform the required bufferization. Dense inputs materialize 459 // from the input tensors. Dense outputs need special handling. 460 // Sparse inputs use sparse primitives to obtain the values. 461 // We also accept in-place all-dense annotated "sparse" outputs. 462 Type elementType = getElementTypeOrSelf(t->get().getType()); 463 if (!enc) { 464 // Non-annotated dense tensors. 465 auto denseTp = MemRefType::get(shape, elementType); 466 if (tensor < op.getNumInputs()) 467 codegen.buffers[tensor] = 468 rewriter.create<memref::BufferCastOp>(loc, denseTp, t->get()); 469 else 470 codegen.buffers[tensor] = 471 genOutputBuffer(codegen, rewriter, op, denseTp, args); 472 } else { 473 // Annotated sparse tensors. 474 if (tensor == op.getNumInputs() && !getInPlace(t->get())) 475 return false; // reject output if not in-place 476 auto dynShape = {ShapedType::kDynamicSize}; 477 auto sparseTp = MemRefType::get(dynShape, elementType); 478 codegen.buffers[tensor] = 479 rewriter.create<ToValuesOp>(loc, sparseTp, t->get()); 480 } 481 } 482 return true; 483 } 484 485 /// Constructs vector type. 486 static VectorType vectorType(CodeGen &codegen, Type etp) { 487 return VectorType::get(codegen.curVecLength, etp); 488 } 489 490 /// Constructs vector type from pointer. 491 static VectorType vectorType(CodeGen &codegen, Value ptr) { 492 return vectorType(codegen, ptr.getType().cast<MemRefType>().getElementType()); 493 } 494 495 /// Constructs vector iteration mask. 496 static Value genVectorMask(CodeGen &codegen, PatternRewriter &rewriter, 497 Value iv, Value lo, Value hi, Value step) { 498 Location loc = iv.getLoc(); 499 VectorType mtp = vectorType(codegen, rewriter.getIntegerType(1)); 500 // Special case if the vector length evenly divides the trip count (for 501 // example, "for i = 0, 128, 16"). A constant all-true mask is generated 502 // so that all subsequent masked memory operations are immediately folded 503 // into unconditional memory operations. 504 IntegerAttr loInt, hiInt, stepInt; 505 if (matchPattern(lo, m_Constant(&loInt)) && 506 matchPattern(hi, m_Constant(&hiInt)) && 507 matchPattern(step, m_Constant(&stepInt))) { 508 if (((hiInt.getInt() - loInt.getInt()) % stepInt.getInt()) == 0) 509 return rewriter.create<vector::BroadcastOp>( 510 loc, mtp, rewriter.create<ConstantIntOp>(loc, 1, 1)); 511 } 512 // Otherwise, generate a vector mask that avoids overrunning the upperbound 513 // during vector execution. Here we rely on subsequent loop optimizations to 514 // avoid executing the mask in all iterations, for example, by splitting the 515 // loop into an unconditional vector loop and a scalar cleanup loop. 516 auto minMap = AffineMap::get( 517 /*dimCount=*/2, /*symbolCount=*/1, 518 {rewriter.getAffineSymbolExpr(0), 519 rewriter.getAffineDimExpr(0) - rewriter.getAffineDimExpr(1)}, 520 rewriter.getContext()); 521 Value end = 522 rewriter.createOrFold<AffineMinOp>(loc, minMap, ValueRange{hi, iv, step}); 523 return rewriter.create<vector::CreateMaskOp>(loc, mtp, end); 524 } 525 526 /// Generates a vectorized load lhs = a[ind[lo:hi]] or lhs = a[lo:hi]. 527 static Value genVectorLoad(CodeGen &codegen, PatternRewriter &rewriter, 528 Value ptr, ArrayRef<Value> args) { 529 Location loc = ptr.getLoc(); 530 VectorType vtp = vectorType(codegen, ptr); 531 Value pass = rewriter.create<ConstantOp>(loc, vtp, rewriter.getZeroAttr(vtp)); 532 if (args.back().getType().isa<VectorType>()) { 533 SmallVector<Value, 4> scalarArgs(args.begin(), args.end()); 534 Value indexVec = args.back(); 535 scalarArgs.back() = rewriter.create<ConstantIndexOp>(loc, 0); 536 return rewriter.create<vector::GatherOp>( 537 loc, vtp, ptr, scalarArgs, indexVec, codegen.curVecMask, pass); 538 } 539 return rewriter.create<vector::MaskedLoadOp>(loc, vtp, ptr, args, 540 codegen.curVecMask, pass); 541 } 542 543 /// Generates a vectorized store a[ind[lo:hi]] = rhs or a[lo:hi] = rhs. 544 static void genVectorStore(CodeGen &codegen, PatternRewriter &rewriter, 545 Value rhs, Value ptr, ArrayRef<Value> args) { 546 Location loc = ptr.getLoc(); 547 if (args.back().getType().isa<VectorType>()) { 548 SmallVector<Value, 4> scalarArgs(args.begin(), args.end()); 549 Value indexVec = args.back(); 550 scalarArgs.back() = rewriter.create<ConstantIndexOp>(loc, 0); 551 rewriter.create<vector::ScatterOp>(loc, ptr, scalarArgs, indexVec, 552 codegen.curVecMask, rhs); 553 return; 554 } 555 rewriter.create<vector::MaskedStoreOp>(loc, ptr, args, codegen.curVecMask, 556 rhs); 557 } 558 559 /// Generates a vectorized invariant. Here we rely on subsequent loop 560 /// optimizations to hoist the invariant broadcast out of the vector loop. 561 static Value genVectorInvariantValue(CodeGen &codegen, 562 PatternRewriter &rewriter, Value val) { 563 VectorType vtp = vectorType(codegen, val.getType()); 564 return rewriter.create<vector::BroadcastOp>(val.getLoc(), vtp, val); 565 } 566 567 /// Generates an affine expression. 568 // 569 // TODO: generalize for sparse tensor subscripts 570 // 571 static Value genAffine(CodeGen &codegen, PatternRewriter &rewriter, 572 AffineExpr a, Location loc) { 573 switch (a.getKind()) { 574 case AffineExprKind::DimId: { 575 unsigned idx = a.cast<AffineDimExpr>().getPosition(); 576 return codegen.loops[idx]; // universal dense index 577 } 578 case AffineExprKind::Add: { 579 auto binOp = a.cast<AffineBinaryOpExpr>(); 580 return rewriter.create<AddIOp>( 581 loc, genAffine(codegen, rewriter, binOp.getLHS(), loc), 582 genAffine(codegen, rewriter, binOp.getRHS(), loc)); 583 } 584 case AffineExprKind::Mul: { 585 auto binOp = a.cast<AffineBinaryOpExpr>(); 586 return rewriter.create<MulIOp>( 587 loc, genAffine(codegen, rewriter, binOp.getLHS(), loc), 588 genAffine(codegen, rewriter, binOp.getRHS(), loc)); 589 } 590 case AffineExprKind::Constant: { 591 int64_t c = a.cast<AffineConstantExpr>().getValue(); 592 return rewriter.create<ConstantIndexOp>(loc, c); 593 } 594 default: 595 llvm_unreachable("unexpected affine subscript"); 596 } 597 } 598 599 /// Generates subscript for load/store on a dense or sparse tensor. 600 static Value genSubscript(CodeGen &codegen, PatternRewriter &rewriter, 601 linalg::GenericOp op, OpOperand *t, 602 SmallVector<Value, 4> &args) { 603 unsigned tensor = t->getOperandNumber(); 604 auto map = op.getTiedIndexingMap(t); 605 auto enc = getSparseTensorEncoding(t->get().getType()); 606 unsigned rank = map.getNumResults(); 607 if (enc) { 608 // Note that currently, all sparse subscripts are simple. 609 // TODO: accept affine too? 610 unsigned idx = map.getDimPosition(perm(enc, rank - 1)); 611 assert(codegen.pidxs[tensor][idx] != nullptr); 612 args.push_back(codegen.pidxs[tensor][idx]); // position index 613 } else { 614 for (unsigned d = 0; d < rank; d++) { 615 AffineExpr a = map.getResult(perm(enc, d)); 616 args.push_back(genAffine(codegen, rewriter, a, op.getLoc())); 617 } 618 } 619 return codegen.buffers[tensor]; 620 } 621 622 /// Generates a load on a dense or sparse tensor. 623 static Value genTensorLoad(Merger &merger, CodeGen &codegen, 624 PatternRewriter &rewriter, linalg::GenericOp op, 625 unsigned exp) { 626 // Test if the load was hoisted to a higher loop nest. 627 Value val = merger.exp(exp).val; 628 if (val) { 629 if (codegen.curVecLength > 1 && !val.getType().isa<VectorType>()) 630 return genVectorInvariantValue(codegen, rewriter, val); 631 return val; 632 } 633 // Actual load. 634 SmallVector<Value, 4> args; 635 OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).tensor]; 636 Value ptr = genSubscript(codegen, rewriter, op, t, args); 637 if (codegen.curVecLength > 1) 638 return genVectorLoad(codegen, rewriter, ptr, args); 639 return rewriter.create<memref::LoadOp>(op.getLoc(), ptr, args); 640 } 641 642 /// Generates a store on a dense or sparse tensor. 643 static void genTensorStore(Merger &merger, CodeGen &codegen, 644 PatternRewriter &rewriter, linalg::GenericOp op, 645 Value rhs) { 646 // Test if this is a scalarized reduction. 647 if (codegen.redVal) { 648 if (codegen.curVecLength > 1) 649 rhs = rewriter.create<SelectOp>(op.getLoc(), codegen.curVecMask, rhs, 650 codegen.redVal); 651 codegen.redVal = rhs; 652 return; 653 } 654 // Actual store. 655 SmallVector<Value, 4> args; 656 OpOperand *t = op.getOutputOperand(0); 657 Value ptr = genSubscript(codegen, rewriter, op, t, args); 658 if (codegen.curVecLength > 1) 659 genVectorStore(codegen, rewriter, rhs, ptr, args); 660 else 661 rewriter.create<memref::StoreOp>(op.getLoc(), rhs, ptr, args); 662 } 663 664 /// Generates a pointer/index load from the sparse storage scheme. Narrower 665 /// data types need to be zero extended before casting the value into the 666 /// index type used for looping and indexing. 667 static Value genLoad(CodeGen &codegen, PatternRewriter &rewriter, Location loc, 668 Value ptr, Value s) { 669 // See https://llvm.org/docs/GetElementPtr.html for some background on 670 // the complications described below. 671 if (codegen.curVecLength > 1) { 672 // Since the index vector is used in a subsequent gather/scatter operations, 673 // which effectively defines an unsigned pointer + signed index, we must 674 // zero extend the vector to an index width. For 8-bit and 16-bit values, 675 // an 32-bit index width suffices. For 32-bit values, zero extending the 676 // elements into 64-bit loses some performance since the 32-bit indexed 677 // gather/scatter is more efficient than the 64-bit index variant (if the 678 // negative 32-bit index space is unused, the enableSIMDIndex32 flag can 679 // preserve this performance). For 64-bit values, there is no good way 680 // to state that the indices are unsigned, with creates the potential of 681 // incorrect address calculations in the unlikely case we need such 682 // extremely large offsets. 683 Type etp = ptr.getType().cast<MemRefType>().getElementType(); 684 Value vload = genVectorLoad(codegen, rewriter, ptr, {s}); 685 if (!etp.isa<IndexType>()) { 686 if (etp.getIntOrFloatBitWidth() < 32) 687 vload = rewriter.create<ZeroExtendIOp>( 688 loc, vload, vectorType(codegen, rewriter.getIntegerType(32))); 689 else if (etp.getIntOrFloatBitWidth() < 64 && 690 !codegen.options.enableSIMDIndex32) 691 vload = rewriter.create<ZeroExtendIOp>( 692 loc, vload, vectorType(codegen, rewriter.getIntegerType(64))); 693 } 694 return vload; 695 } 696 // For the scalar case, we simply zero extend narrower indices into 64-bit 697 // values before casting to index without a performance penalty. Here too, 698 // however, indices that already are 64-bit, in theory, cannot express the 699 // full range as explained above. 700 Value load = rewriter.create<memref::LoadOp>(loc, ptr, s); 701 if (!load.getType().isa<IndexType>()) { 702 if (load.getType().getIntOrFloatBitWidth() < 64) 703 load = rewriter.create<ZeroExtendIOp>(loc, load, 704 rewriter.getIntegerType(64)); 705 load = rewriter.create<IndexCastOp>(loc, load, rewriter.getIndexType()); 706 } 707 return load; 708 } 709 710 /// Generates an invariant value. 711 static Value genInvariantValue(Merger &merger, CodeGen &codegen, 712 PatternRewriter &rewriter, unsigned exp) { 713 Value val = merger.exp(exp).val; 714 if (codegen.curVecLength > 1) 715 return genVectorInvariantValue(codegen, rewriter, val); 716 return val; 717 } 718 719 /// Generates an address computation "sz * p + i". 720 static Value genAddress(CodeGen &codegen, PatternRewriter &rewriter, 721 Location loc, Value size, Value p, Value i) { 722 Value mul = rewriter.create<MulIOp>(loc, size, p); 723 if (auto vtp = i.getType().dyn_cast<VectorType>()) { 724 Value inv = rewriter.create<IndexCastOp>(loc, mul, vtp.getElementType()); 725 mul = genVectorInvariantValue(codegen, rewriter, inv); 726 } 727 return rewriter.create<AddIOp>(loc, mul, i); 728 } 729 730 /// Generates start of a reduction. 731 static Value genReductionStart(Merger &merger, CodeGen &codegen, 732 PatternRewriter &rewriter, 733 linalg::GenericOp op) { 734 if (codegen.redVal) 735 return codegen.redVal; // chained with previous for-loop 736 // Generate vector or scalar start of a reduction. 737 unsigned vl = codegen.curVecLength; 738 if (vl > 1) { 739 VectorType vtp = vectorType(codegen, codegen.buffers[codegen.redExp]); 740 assert(!merger.exp(codegen.redExp).val); 741 codegen.curVecLength = 1; 742 Value load = genTensorLoad(merger, codegen, rewriter, op, codegen.redExp); 743 codegen.curVecLength = vl; 744 return genReductionInit(rewriter, op.getLoc(), codegen.redKind, vtp, load); 745 } 746 return genTensorLoad(merger, codegen, rewriter, op, codegen.redExp); 747 } 748 749 /// Generates end of a reduction. 750 static void genReductionEnd(Merger &merger, CodeGen &codegen, 751 PatternRewriter &rewriter, linalg::GenericOp op) { 752 Value red = codegen.redVal; 753 if (!red) 754 return; 755 assert(codegen.curVecLength == 1); 756 codegen.redVal = merger.exp(codegen.redExp).val = Value(); // end chain 757 // Generate vector or scalar end of a reduction. 758 if (auto vtp = red.getType().dyn_cast<VectorType>()) { 759 StringRef name = getReductionName(codegen.redKind); 760 StringAttr kind = rewriter.getStringAttr(name); 761 red = rewriter.create<vector::ReductionOp>( 762 op.getLoc(), vtp.getElementType(), kind, red, ValueRange{}); 763 } 764 genTensorStore(merger, codegen, rewriter, op, red); 765 } 766 767 /// Recursively generates tensor expression. 768 static Value genExp(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, 769 linalg::GenericOp op, unsigned exp) { 770 Location loc = op.getLoc(); 771 if (exp == -1u) 772 return Value(); 773 if (merger.exp(exp).kind == Kind::kTensor) 774 return genTensorLoad(merger, codegen, rewriter, op, exp); 775 if (merger.exp(exp).kind == Kind::kInvariant) 776 return genInvariantValue(merger, codegen, rewriter, exp); 777 Value v0 = genExp(merger, codegen, rewriter, op, merger.exp(exp).children.e0); 778 Value v1 = genExp(merger, codegen, rewriter, op, merger.exp(exp).children.e1); 779 if (merger.exp(exp).kind == Kind::kNegI) { 780 // TODO: no negi in std, need to make zero explicit. 781 Type tp = op.getOutputTensorTypes()[0].getElementType(); 782 v1 = v0; 783 v0 = rewriter.create<ConstantOp>(loc, tp, rewriter.getZeroAttr(tp)); 784 if (codegen.curVecLength > 1) 785 v0 = genVectorInvariantValue(codegen, rewriter, v0); 786 } 787 return merger.buildExp(rewriter, loc, exp, v0, v1); 788 } 789 790 /// Determines if affine expression is invariant. 791 static bool isInvariantAffine(const CodeGen &codegen, AffineExpr a, 792 unsigned ldx, bool &atLevel) { 793 switch (a.getKind()) { 794 case AffineExprKind::DimId: { 795 unsigned idx = a.cast<AffineDimExpr>().getPosition(); 796 if (idx == ldx) 797 atLevel = true; 798 return codegen.loops[idx] != nullptr; // no longer in play? 799 } 800 case AffineExprKind::Add: 801 case AffineExprKind::Mul: { 802 auto binOp = a.cast<AffineBinaryOpExpr>(); 803 return isInvariantAffine(codegen, binOp.getLHS(), ldx, atLevel) && 804 isInvariantAffine(codegen, binOp.getRHS(), ldx, atLevel); 805 } 806 default: 807 return true; 808 } 809 } 810 811 /// Hoists loop invariant tensor loads for which indices have been exhausted. 812 static void genInvariants(Merger &merger, CodeGen &codegen, 813 PatternRewriter &rewriter, linalg::GenericOp op, 814 unsigned exp, unsigned ldx, bool hoist, 815 Kind last = Kind::kTensor) { 816 if (exp == -1u) 817 return; 818 if (merger.exp(exp).kind == Kind::kTensor) { 819 // Inspect tensor indices. 820 bool atLevel = ldx == -1u; 821 OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).tensor]; 822 auto map = op.getTiedIndexingMap(t); 823 auto enc = getSparseTensorEncoding(t->get().getType()); 824 for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { 825 AffineExpr a = map.getResult(perm(enc, d)); 826 if (!isInvariantAffine(codegen, a, ldx, atLevel)) 827 return; // still in play 828 } 829 // All exhausted at this level (atLevel denotes exactly at this level). 830 OpOperand *lhs = op.getOutputOperand(0); 831 if (lhs == t) { 832 codegen.redExp = hoist ? exp : -1u; 833 codegen.redKind = getReduction(last); 834 } else if (atLevel) { 835 merger.exp(exp).val = 836 hoist ? genTensorLoad(merger, codegen, rewriter, op, exp) : Value(); 837 } 838 } else if (merger.exp(exp).kind != Kind::kInvariant) { 839 // Traverse into the binary operations. Note that we only hoist 840 // tensor loads, since subsequent MLIR/LLVM passes know how to 841 // deal with all other kinds of derived loop invariants. 842 Kind last = merger.exp(exp).kind; 843 unsigned e0 = merger.exp(exp).children.e0; 844 unsigned e1 = merger.exp(exp).children.e1; 845 genInvariants(merger, codegen, rewriter, op, e0, ldx, hoist, last); 846 genInvariants(merger, codegen, rewriter, op, e1, ldx, hoist, last); 847 } 848 } 849 850 /// Generates initialization code for the subsequent loop sequence at 851 /// current index level. Returns true if the loop sequence needs to 852 /// maintain the universal index. 853 static bool genInit(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, 854 linalg::GenericOp op, std::vector<unsigned> &topSort, 855 unsigned at, llvm::BitVector &inits) { 856 bool needsUniv = false; 857 Location loc = op.getLoc(); 858 unsigned idx = topSort[at]; 859 860 // Initialize sparse positions. 861 for (unsigned b = 0, be = inits.size(); b < be; b++) { 862 if (inits[b]) { 863 unsigned tensor = merger.tensor(b); 864 assert(idx == merger.index(b)); 865 if (merger.isDim(b, Dim::kSparse)) { 866 // Initialize sparse index. 867 unsigned pat = at; 868 for (; pat != 0; pat--) { 869 if (codegen.pidxs[tensor][topSort[pat - 1]]) 870 break; 871 } 872 Value ptr = codegen.pointers[tensor][idx]; 873 Value one = rewriter.create<ConstantIndexOp>(loc, 1); 874 Value p0 = (pat == 0) ? rewriter.create<ConstantIndexOp>(loc, 0) 875 : codegen.pidxs[tensor][topSort[pat - 1]]; 876 codegen.pidxs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p0); 877 Value p1 = rewriter.create<AddIOp>(loc, p0, one); 878 codegen.highs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p1); 879 } else { 880 // Dense index still in play. 881 needsUniv = true; 882 } 883 } 884 } 885 886 // Initialize the universal dense index. 887 codegen.loops[idx] = rewriter.create<ConstantIndexOp>(loc, 0); 888 return needsUniv; 889 } 890 891 /// Returns vectorization strategy. Any implicit inner loop in the Linalg 892 /// operation is a candidate. Whether it is actually converted to SIMD code 893 /// depends on the requested strategy. 894 static bool isVectorFor(CodeGen &codegen, bool isInner, bool isSparse) { 895 switch (codegen.options.vectorizationStrategy) { 896 case SparseVectorizationStrategy::kNone: 897 return false; 898 case SparseVectorizationStrategy::kDenseInnerLoop: 899 return isInner && !isSparse; 900 case SparseVectorizationStrategy::kAnyStorageInnerLoop: 901 return isInner; 902 } 903 llvm_unreachable("unexpected vectorization strategy"); 904 } 905 906 /// Returns parallelization strategy. Any implicit loop in the Linalg operation 907 /// that is marked "parallel" is a candidate. Whether it is actually converted 908 /// to a parallel operation depends on the requested strategy. 909 static bool isParallelFor(CodeGen &codegen, bool isOuter, bool isReduction, 910 bool isSparse, bool isVector) { 911 switch (codegen.options.parallelizationStrategy) { 912 case SparseParallelizationStrategy::kNone: 913 return false; 914 case SparseParallelizationStrategy::kDenseOuterLoop: 915 return isOuter && !isSparse && !isReduction && !isVector; 916 case SparseParallelizationStrategy::kAnyStorageOuterLoop: 917 return isOuter && !isReduction && !isVector; 918 case SparseParallelizationStrategy::kDenseAnyLoop: 919 return !isSparse && !isReduction && !isVector; 920 case SparseParallelizationStrategy::kAnyStorageAnyLoop: 921 return !isReduction && !isVector; 922 } 923 llvm_unreachable("unexpected parallelization strategy"); 924 } 925 926 /// Checks unit strides for dense tensors. The iteration graph may have ignored 927 /// dense access patterns in order to avoid cycles (sparse access patterns are 928 /// always placed innermost), but that means dense access has become strided. 929 /// For now, we reject vectorization of such cases. 930 /// TODO: implement strided load/stores on dense arrays 931 static bool denseUnitStrides(Merger &merger, linalg::GenericOp op, 932 unsigned ldx) { 933 for (OpOperand *t : op.getInputAndOutputOperands()) { 934 if (!getSparseTensorEncoding(t->get().getType())) { 935 auto map = op.getTiedIndexingMap(t); 936 for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { 937 AffineExpr a = map.getResult(d); 938 if (a.getKind() != AffineExprKind::DimId) 939 return false; // very conservative 940 unsigned idx = a.cast<AffineDimExpr>().getPosition(); 941 if (idx == ldx && d != rank - 1) 942 return false; 943 } 944 } 945 } 946 return true; 947 } 948 949 /// Generates a for-loop on a single index. 950 static Operation *genFor(Merger &merger, CodeGen &codegen, 951 PatternRewriter &rewriter, linalg::GenericOp op, 952 bool isOuter, bool isInner, unsigned idx, 953 llvm::BitVector &indices) { 954 unsigned fb = indices.find_first(); 955 unsigned tensor = merger.tensor(fb); 956 assert(idx == merger.index(fb)); 957 auto iteratorTypes = op.iterator_types().getValue(); 958 bool isReduction = isReductionIterator(iteratorTypes[idx]); 959 bool isSparse = merger.isDim(fb, Dim::kSparse); 960 bool isVector = isVectorFor(codegen, isInner, isSparse) && 961 denseUnitStrides(merger, op, idx); 962 bool isParallel = 963 isParallelFor(codegen, isOuter, isReduction, isSparse, isVector); 964 965 // Prepare vector length. 966 if (isVector) 967 codegen.curVecLength = codegen.options.vectorLength; 968 969 // Loop bounds and increment. 970 Location loc = op.getLoc(); 971 Value lo = isSparse ? codegen.pidxs[tensor][idx] : codegen.loops[idx]; 972 Value hi = isSparse ? codegen.highs[tensor][idx] : codegen.sizes[idx]; 973 Value step = rewriter.create<ConstantIndexOp>(loc, codegen.curVecLength); 974 975 // Emit a parallel loop. 976 if (isParallel) { 977 assert(!isVector); 978 scf::ParallelOp parOp = rewriter.create<scf::ParallelOp>(loc, lo, hi, step); 979 if (isSparse) 980 codegen.pidxs[tensor][idx] = parOp.getInductionVars()[0]; 981 else 982 codegen.loops[idx] = parOp.getInductionVars()[0]; 983 rewriter.setInsertionPointToStart(parOp.getBody()); 984 return parOp; 985 } 986 987 // Emit a sequential loop, potentially with a scalarized reduction. 988 bool scalarRed = isInner && codegen.redExp != -1u; 989 SmallVector<Value, 4> operands; 990 if (scalarRed) { 991 Value load = genReductionStart(merger, codegen, rewriter, op); 992 operands.push_back(load); 993 } 994 scf::ForOp forOp = rewriter.create<scf::ForOp>(loc, lo, hi, step, operands); 995 if (scalarRed) { 996 codegen.redVal = merger.exp(codegen.redExp).val = 997 forOp.getRegionIterArgs().front(); 998 } 999 // Assign induction variable to sparse or dense index. 1000 Value iv = forOp.getInductionVar(); 1001 if (isSparse) 1002 codegen.pidxs[tensor][idx] = iv; 1003 else 1004 codegen.loops[idx] = iv; 1005 rewriter.setInsertionPointToStart(forOp.getBody()); 1006 // Share vector iteration mask between all subsequent loads/stores. 1007 if (isVector) 1008 codegen.curVecMask = genVectorMask(codegen, rewriter, iv, lo, hi, step); 1009 return forOp; 1010 } 1011 1012 /// Emit a while-loop for co-iteration over multiple indices. 1013 static Operation *genWhile(Merger &merger, CodeGen &codegen, 1014 PatternRewriter &rewriter, linalg::GenericOp op, 1015 unsigned idx, bool needsUniv, 1016 llvm::BitVector &indices) { 1017 SmallVector<Type, 4> types; 1018 SmallVector<Value, 4> operands; 1019 // Construct the while-loop with a parameter for each index. 1020 Type indexType = rewriter.getIndexType(); 1021 for (unsigned b = 0, be = indices.size(); b < be; b++) { 1022 if (indices[b] && merger.isDim(b, Dim::kSparse)) { 1023 unsigned tensor = merger.tensor(b); 1024 assert(idx == merger.index(b)); 1025 types.push_back(indexType); 1026 assert(codegen.pidxs[tensor][idx].getType().isa<IndexType>() && 1027 "type mismatch for sparse index"); 1028 operands.push_back(codegen.pidxs[tensor][idx]); 1029 } 1030 } 1031 if (needsUniv) { 1032 types.push_back(indexType); 1033 assert(codegen.loops[idx].getType().isa<IndexType>() && 1034 "type mismatch for universal index"); 1035 operands.push_back(codegen.loops[idx]); 1036 } 1037 Location loc = op.getLoc(); 1038 scf::WhileOp whileOp = rewriter.create<scf::WhileOp>(loc, types, operands); 1039 Block *before = rewriter.createBlock(&whileOp.before(), {}, types); 1040 Block *after = rewriter.createBlock(&whileOp.after(), {}, types); 1041 1042 // Build the "before" region, which effectively consists 1043 // of a conjunction of "i < upper" tests on all induction. 1044 rewriter.setInsertionPointToStart(&whileOp.before().front()); 1045 Value cond; 1046 unsigned o = 0; 1047 for (unsigned b = 0, be = indices.size(); b < be; b++) { 1048 if (indices[b] && merger.isDim(b, Dim::kSparse)) { 1049 unsigned tensor = merger.tensor(b); 1050 assert(idx == merger.index(b)); 1051 Value op1 = before->getArgument(o); 1052 Value op2 = codegen.highs[tensor][idx]; 1053 Value opc = rewriter.create<CmpIOp>(loc, CmpIPredicate::ult, op1, op2); 1054 cond = cond ? rewriter.create<AndOp>(loc, cond, opc) : opc; 1055 codegen.pidxs[tensor][idx] = after->getArgument(o++); 1056 } 1057 } 1058 if (needsUniv) 1059 codegen.loops[idx] = after->getArgument(o++); 1060 assert(o == operands.size()); 1061 rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments()); 1062 rewriter.setInsertionPointToStart(&whileOp.after().front()); 1063 return whileOp; 1064 } 1065 1066 /// Generates a for-loop or a while-loop, depending on whether it implements 1067 /// singleton iteration or co-iteration over the given conjunction. 1068 static Operation *genLoop(Merger &merger, CodeGen &codegen, 1069 PatternRewriter &rewriter, linalg::GenericOp op, 1070 std::vector<unsigned> &topSort, unsigned at, 1071 bool needsUniv, llvm::BitVector &indices) { 1072 unsigned idx = topSort[at]; 1073 if (indices.count() == 1) { 1074 bool isOuter = at == 0; 1075 bool isInner = at == topSort.size() - 1; 1076 return genFor(merger, codegen, rewriter, op, isOuter, isInner, idx, 1077 indices); 1078 } 1079 genReductionEnd(merger, codegen, rewriter, op); // cannot chain 1080 return genWhile(merger, codegen, rewriter, op, idx, needsUniv, indices); 1081 } 1082 1083 /// Generates the local variables for this loop, consisting of the sparse 1084 /// indices, restored universal dense index, and dense positions. 1085 static void genLocals(Merger &merger, CodeGen &codegen, 1086 PatternRewriter &rewriter, linalg::GenericOp op, 1087 std::vector<unsigned> &topSort, unsigned at, 1088 bool needsUniv, llvm::BitVector &locals) { 1089 Location loc = op.getLoc(); 1090 unsigned idx = topSort[at]; 1091 1092 // Initialize sparse indices. 1093 Value min; 1094 for (unsigned b = 0, be = locals.size(); b < be; b++) { 1095 if (locals[b] && merger.isDim(b, Dim::kSparse)) { 1096 unsigned tensor = merger.tensor(b); 1097 assert(idx == merger.index(b)); 1098 Value ptr = codegen.indices[tensor][idx]; 1099 Value s = codegen.pidxs[tensor][idx]; 1100 Value load = genLoad(codegen, rewriter, loc, ptr, s); 1101 codegen.idxs[tensor][idx] = load; 1102 if (!needsUniv) { 1103 if (min) { 1104 Value cmp = 1105 rewriter.create<CmpIOp>(loc, CmpIPredicate::ult, load, min); 1106 min = rewriter.create<SelectOp>(loc, cmp, load, min); 1107 } else { 1108 min = load; 1109 } 1110 } 1111 } 1112 } 1113 1114 // Merge dense universal index over minimum. 1115 if (min) { 1116 assert(!needsUniv); 1117 codegen.loops[idx] = min; 1118 } 1119 1120 // Initialize dense positions. Note that we generate dense indices of the 1121 // output tensor unconditionally, since they may not appear in the lattice, 1122 // but may be needed for linearized codegen. 1123 for (unsigned b = 0, be = locals.size(); b < be; b++) { 1124 if ((locals[b] || merger.isOutTensor(b, idx)) && 1125 merger.isDim(b, Dim::kDense)) { 1126 unsigned tensor = merger.tensor(b); 1127 assert(idx == merger.index(b)); 1128 unsigned pat = at; 1129 for (; pat != 0; pat--) 1130 if (codegen.pidxs[tensor][topSort[pat - 1]]) 1131 break; 1132 Value p = (pat == 0) ? rewriter.create<ConstantIndexOp>(loc, 0) 1133 : codegen.pidxs[tensor][topSort[pat - 1]]; 1134 codegen.pidxs[tensor][idx] = genAddress( 1135 codegen, rewriter, loc, codegen.sizes[idx], p, codegen.loops[idx]); 1136 } 1137 } 1138 } 1139 1140 /// Generates the induction structure for a while-loop. 1141 static void genWhileInduction(Merger &merger, CodeGen &codegen, 1142 PatternRewriter &rewriter, linalg::GenericOp op, 1143 unsigned idx, bool needsUniv, 1144 llvm::BitVector &induction, ResultRange results) { 1145 Location loc = op.getLoc(); 1146 unsigned o = 0; 1147 SmallVector<Value, 4> operands; 1148 Value one = rewriter.create<ConstantIndexOp>(loc, 1); 1149 for (unsigned b = 0, be = induction.size(); b < be; b++) { 1150 if (induction[b] && merger.isDim(b, Dim::kSparse)) { 1151 unsigned tensor = merger.tensor(b); 1152 assert(idx == merger.index(b)); 1153 Value op1 = codegen.idxs[tensor][idx]; 1154 Value op2 = codegen.loops[idx]; 1155 Value op3 = codegen.pidxs[tensor][idx]; 1156 Value cmp = rewriter.create<CmpIOp>(loc, CmpIPredicate::eq, op1, op2); 1157 Value add = rewriter.create<AddIOp>(loc, op3, one); 1158 operands.push_back(rewriter.create<SelectOp>(loc, cmp, add, op3)); 1159 codegen.pidxs[tensor][idx] = results[o++]; 1160 } 1161 } 1162 if (needsUniv) { 1163 operands.push_back(rewriter.create<AddIOp>(loc, codegen.loops[idx], one)); 1164 codegen.loops[idx] = results[o++]; 1165 } 1166 assert(o == operands.size()); 1167 rewriter.create<scf::YieldOp>(loc, operands); 1168 } 1169 1170 /// Generates a single if-statement within a while-loop. 1171 static scf::IfOp genIf(Merger &merger, CodeGen &codegen, 1172 PatternRewriter &rewriter, linalg::GenericOp op, 1173 unsigned idx, llvm::BitVector &conditions) { 1174 Location loc = op.getLoc(); 1175 Value cond; 1176 for (unsigned b = 0, be = conditions.size(); b < be; b++) { 1177 if (conditions[b]) { 1178 unsigned tensor = merger.tensor(b); 1179 assert(idx == merger.index(b)); 1180 Value clause; 1181 if (merger.isDim(b, Dim::kSparse)) { 1182 Value op1 = codegen.idxs[tensor][idx]; 1183 Value op2 = codegen.loops[idx]; 1184 clause = rewriter.create<CmpIOp>(loc, CmpIPredicate::eq, op1, op2); 1185 } else { 1186 clause = rewriter.create<ConstantIntOp>(loc, 1, 1); // true 1187 } 1188 cond = cond ? rewriter.create<AndOp>(loc, cond, clause) : clause; 1189 } 1190 } 1191 scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, cond, /*else*/ true); 1192 rewriter.setInsertionPointToStart(&ifOp.thenRegion().front()); 1193 return ifOp; 1194 } 1195 1196 /// Recursively generates code while computing iteration lattices in order 1197 /// to manage the complexity of implementing co-iteration over unions 1198 /// and intersections of sparse iterations spaces. 1199 static void genStmt(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, 1200 linalg::GenericOp op, std::vector<unsigned> &topSort, 1201 unsigned exp, unsigned at) { 1202 // At each leaf, assign remaining tensor (sub)expression to output tensor. 1203 if (at == topSort.size()) { 1204 Value rhs = genExp(merger, codegen, rewriter, op, exp); 1205 genTensorStore(merger, codegen, rewriter, op, rhs); 1206 return; 1207 } 1208 assert(codegen.curVecLength == 1); 1209 1210 // Construct iteration lattices for current loop index, with L0 at top. 1211 // Then emit initialization code for the loop sequence at this level. 1212 // We maintain the universal dense index if dense indices are still 1213 // in play for a non-singleton loop sequence. 1214 Location loc = op.getLoc(); 1215 unsigned idx = topSort[at]; 1216 unsigned lts = merger.optimizeSet(merger.buildLattices(exp, idx)); 1217 unsigned lsize = merger.set(lts).size(); 1218 assert(lsize != 0); 1219 unsigned l0 = merger.set(lts)[0]; 1220 unsigned ldx = at == 0 ? -1u : topSort[at - 1]; 1221 genInvariants(merger, codegen, rewriter, op, exp, ldx, /*hoist=*/true); 1222 bool needsUniv = false; 1223 if (genInit(merger, codegen, rewriter, op, topSort, at, 1224 merger.lat(l0).bits)) { 1225 // Maintain the universal index only if it is actually 1226 // consumed by a subsequent lattice point. 1227 for (unsigned i = 1; i < lsize; i++) { 1228 unsigned li = merger.set(lts)[i]; 1229 if (!merger.hasAnyDimOf(merger.lat(li).simple, Dim::kSparse)) { 1230 needsUniv = true; 1231 break; 1232 } 1233 } 1234 } 1235 1236 // Emit a loop for every lattice point L0 >= Li. 1237 for (unsigned i = 0; i < lsize; i++) { 1238 unsigned li = merger.set(lts)[i]; 1239 1240 // Emit loop. 1241 codegen.curVecLength = 1; 1242 llvm::BitVector indices = merger.lat(li).simple; 1243 Operation *loop = 1244 genLoop(merger, codegen, rewriter, op, topSort, at, needsUniv, indices); 1245 genLocals(merger, codegen, rewriter, op, topSort, at, needsUniv, 1246 merger.lat(li).bits); 1247 1248 // Visit all lattices points with Li >= Lj to generate the 1249 // loop-body, possibly with if statements for coiteration. 1250 bool isWhile = dyn_cast<scf::WhileOp>(loop) != nullptr; 1251 for (unsigned j = 0; j < lsize; j++) { 1252 unsigned lj = merger.set(lts)[j]; 1253 unsigned ej = merger.lat(lj).exp; 1254 if (li == lj || merger.latGT(li, lj)) { 1255 // Recurse into body of each branch. 1256 if (isWhile) { 1257 scf::IfOp ifOp = 1258 genIf(merger, codegen, rewriter, op, idx, merger.lat(lj).simple); 1259 genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1); 1260 rewriter.setInsertionPointToStart(&ifOp.elseRegion().front()); 1261 } else { 1262 genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1); 1263 } 1264 } 1265 } 1266 1267 // Wrap-up induction and restore insertion point. 1268 if (isWhile) { 1269 scf::WhileOp whileOp = cast<scf::WhileOp>(loop); 1270 rewriter.setInsertionPointToEnd(&whileOp.after().front()); 1271 genWhileInduction(merger, codegen, rewriter, op, idx, needsUniv, 1272 merger.lat(li).bits, whileOp.results()); 1273 } else { 1274 needsUniv = false; 1275 if (codegen.redVal) { 1276 rewriter.create<scf::YieldOp>(loc, codegen.redVal); 1277 codegen.redVal = loop->getResult(0); 1278 } 1279 } 1280 rewriter.setInsertionPointAfter(loop); 1281 } 1282 1283 // Wrap-up loop sequence. 1284 codegen.curVecLength = 1; 1285 genReductionEnd(merger, codegen, rewriter, op); 1286 genInvariants(merger, codegen, rewriter, op, exp, ldx, /*hoist=*/false); 1287 codegen.loops[idx] = Value(); 1288 } 1289 1290 /// Converts the result computed by the sparse kernel into the required form. 1291 static void genResult(Merger &merger, CodeGen &codegen, 1292 PatternRewriter &rewriter, linalg::GenericOp op) { 1293 Location loc = op.getLoc(); 1294 OpOperand *lhs = op.getOutputOperand(0); 1295 Type resType = lhs->get().getType(); 1296 unsigned tensor = lhs->getOperandNumber(); 1297 auto map = op.getTiedIndexingMap(lhs); 1298 auto enc = getSparseTensorEncoding(resType); 1299 Value result = codegen.buffers.back(); // value array 1300 if (enc) { 1301 // The sparse annotation unambigiously defines the arrays needed 1302 // to "reconstruct" the sparse tensor from the storage scheme 1303 // (even though lowering should never need this eventually). 1304 SmallVector<Value, 4> args; 1305 for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { 1306 AffineExpr a = map.getResult(perm(enc, d)); 1307 if (a.getKind() != AffineExprKind::DimId) 1308 continue; // compound 1309 unsigned idx = a.cast<AffineDimExpr>().getPosition(); 1310 if (merger.isDim(tensor, idx, Dim::kSparse)) { 1311 args.push_back(codegen.pointers[tensor][idx]); 1312 args.push_back(codegen.indices[tensor][idx]); 1313 } 1314 } 1315 args.push_back(result); 1316 result = rewriter.create<ToTensorOp>(loc, resType, args); 1317 } else { 1318 // To "reconstruct" an non-annotated tensor, sipmly load it 1319 // from the bufferized value. 1320 result = rewriter.create<memref::TensorLoadOp>(loc, resType, result); 1321 } 1322 rewriter.replaceOp(op, result); 1323 } 1324 1325 //===----------------------------------------------------------------------===// 1326 // Sparse compiler rewriting methods. 1327 //===----------------------------------------------------------------------===// 1328 1329 namespace { 1330 1331 /// Sparse rewriting rule for generic Lingalg operation. 1332 struct GenericOpSparsifier : public OpRewritePattern<linalg::GenericOp> { 1333 public: 1334 GenericOpSparsifier(MLIRContext *context, SparsificationOptions o) 1335 : OpRewritePattern<linalg::GenericOp>(context), options(o) {} 1336 1337 LogicalResult matchAndRewrite(linalg::GenericOp op, 1338 PatternRewriter &rewriter) const override { 1339 // Detects sparse annotations and translate the per-dimension sparsity 1340 // information for all tensors to loop indices in the kernel. 1341 assert(op.getNumOutputs() == 1); 1342 unsigned numTensors = op.getNumInputsAndOutputs(); 1343 unsigned numLoops = op.iterator_types().getValue().size(); 1344 Merger merger(numTensors, numLoops); 1345 if (!findSparseAnnotations(merger, op)) 1346 return failure(); 1347 1348 // Computes a topologically sorted iteration graph to ensure 1349 // tensors are visited in natural index order. Fails on cycles. 1350 // This assumes that higher-level passes have already put the 1351 // tensors in each tensor expression in a feasible order. 1352 std::vector<unsigned> topSort; 1353 if (!computeIterationGraph(merger, op, topSort, 1354 SortMask::kIncludeUndef | 1355 SortMask::kIncludeDense) && 1356 !computeIterationGraph(merger, op, topSort, SortMask::kIncludeUndef) && 1357 !computeIterationGraph(merger, op, topSort, SortMask::kIncludeDense) && 1358 !computeIterationGraph(merger, op, topSort, SortMask::kSparseOnly)) 1359 return failure(); 1360 1361 // Builds the tensor expression for the Linalg operation in SSA form. 1362 Optional<unsigned> exp = merger.buildTensorExpFromLinalg(op); 1363 if (!exp.hasValue()) 1364 return failure(); 1365 1366 // Rejects an inadmissable tensor expression. 1367 if (!isAdmissableTensorExp(merger, op, exp.getValue())) 1368 return failure(); 1369 1370 // Recursively generates code. 1371 CodeGen codegen(options, numTensors, numLoops); 1372 if (!genBuffers(merger, codegen, rewriter, op)) 1373 return failure(); // could not bufferize 1374 genStmt(merger, codegen, rewriter, op, topSort, exp.getValue(), 0); 1375 genResult(merger, codegen, rewriter, op); 1376 return success(); 1377 } 1378 1379 private: 1380 /// Options to control sparse code generation. 1381 SparsificationOptions options; 1382 }; 1383 1384 } // namespace 1385 1386 /// Populates the given patterns list with rewriting rules required for 1387 /// the sparsification of linear algebra operations. 1388 void mlir::populateSparsificationPatterns( 1389 RewritePatternSet &patterns, const SparsificationOptions &options) { 1390 patterns.add<GenericOpSparsifier>(patterns.getContext(), options); 1391 } 1392