1 //===- Sparsification.cpp - Implementation of sparsification --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements converting sparse tensor types to actual sparse code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "mlir/Dialect/Affine/IR/AffineOps.h" 14 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 15 #include "mlir/Dialect/Linalg/ComprehensiveBufferize/BufferizableOpInterface.h" 16 #include "mlir/Dialect/Linalg/IR/LinalgOps.h" 17 #include "mlir/Dialect/Linalg/Utils/Utils.h" 18 #include "mlir/Dialect/MemRef/IR/MemRef.h" 19 #include "mlir/Dialect/SCF/SCF.h" 20 #include "mlir/Dialect/SCF/Transforms.h" 21 #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h" 22 #include "mlir/Dialect/SparseTensor/Transforms/Passes.h" 23 #include "mlir/Dialect/SparseTensor/Utils/Merger.h" 24 #include "mlir/Dialect/StandardOps/IR/Ops.h" 25 #include "mlir/Dialect/Vector/VectorOps.h" 26 #include "mlir/IR/Matchers.h" 27 #include "mlir/IR/TensorEncoding.h" 28 #include "llvm/ADT/SmallBitVector.h" 29 30 using namespace mlir; 31 using namespace mlir::sparse_tensor; 32 33 //===----------------------------------------------------------------------===// 34 // Declarations of data structures. 35 //===----------------------------------------------------------------------===// 36 37 namespace { 38 39 // Iteration graph sorting. 40 enum SortMask { kSparseOnly = 0x0, kIncludeDense = 0x1, kIncludeUndef = 0x2 }; 41 42 // Reduction kinds. 43 enum Reduction { kNoReduc, kSum, kProduct, kAnd, kOr, kXor }; 44 45 // Code generation. 46 struct CodeGen { 47 CodeGen(SparsificationOptions o, unsigned numTensors, unsigned numLoops, 48 OpOperand *op) 49 : options(o), loops(numLoops), sizes(numLoops), buffers(numTensors), 50 pointers(numTensors, std::vector<Value>(numLoops)), 51 indices(numTensors, std::vector<Value>(numLoops)), 52 highs(numTensors, std::vector<Value>(numLoops)), 53 pidxs(numTensors, std::vector<Value>(numLoops)), 54 idxs(numTensors, std::vector<Value>(numLoops)), redExp(-1u), redVal(), 55 redKind(kNoReduc), sparseOut(op), lexIdx(), curVecLength(1), 56 curVecMask() {} 57 /// Sparsification options. 58 SparsificationOptions options; 59 /// Universal dense indices and upper bounds (by index). The loops array 60 /// is updated with the value of the universal dense index in the current 61 /// loop. The sizes array is set once with the inferred dimension sizes. 62 std::vector<Value> loops; 63 std::vector<Value> sizes; 64 /// Buffers for storing dense and sparse numerical values (by tensor). 65 /// This array is set once during bufferization of all tensors. 66 std::vector<Value> buffers; 67 /// Sparse storage schemes (1-D): pointers and indices (by tensor and index). 68 /// This array is set once during bufferization of all sparse tensors. 69 std::vector<std::vector<Value>> pointers; 70 std::vector<std::vector<Value>> indices; 71 /// Sparse iteration information (by tensor and index). These arrays 72 /// are updated to remain current within the current loop. 73 std::vector<std::vector<Value>> highs; 74 std::vector<std::vector<Value>> pidxs; 75 std::vector<std::vector<Value>> idxs; 76 /// Current reduction, updated during code generation. When indices of a 77 /// reduction are exhausted, all inner loops can use a scalarized reduction. 78 unsigned redExp; 79 Value redVal; 80 Reduction redKind; 81 // Sparse tensor as output. 82 OpOperand *sparseOut; 83 Value lexIdx; 84 // Current vector length and mask. 85 unsigned curVecLength; 86 Value curVecMask; 87 }; 88 89 } // namespace 90 91 //===----------------------------------------------------------------------===// 92 // Sparse compiler analysis methods. 93 //===----------------------------------------------------------------------===// 94 95 /// Helper method to apply dimension ordering permutation. 96 static unsigned perm(const SparseTensorEncodingAttr &enc, unsigned d) { 97 if (enc) { 98 auto order = enc.getDimOrdering(); 99 if (order) { 100 assert(order.isPermutation()); 101 return order.getDimPosition(d); 102 } 103 } 104 return d; 105 } 106 107 /// Helper method to translate dim level type to internal representation. 108 static Dim toDim(const SparseTensorEncodingAttr &enc, unsigned d) { 109 if (enc) { 110 SparseTensorEncodingAttr::DimLevelType tp = enc.getDimLevelType()[d]; 111 if (tp == SparseTensorEncodingAttr::DimLevelType::Compressed) 112 return Dim::kSparse; 113 if (tp == SparseTensorEncodingAttr::DimLevelType::Singleton) 114 return Dim::kSingle; 115 } 116 return Dim::kDense; 117 } 118 119 /// Helper method to inspect affine expressions. Rejects cases where the 120 /// same index is used more than once. Also rejects affine expressions 121 /// that are not a direct index for annotated tensors. 122 // TODO: accept more affine cases for sparse tensors 123 static bool findAffine(Merger &merger, unsigned tensor, AffineExpr a, Dim dim, 124 bool isDense) { 125 switch (a.getKind()) { 126 case AffineExprKind::DimId: { 127 unsigned idx = a.cast<AffineDimExpr>().getPosition(); 128 if (!merger.isDim(tensor, idx, Dim::kUndef)) 129 return false; // used more than once 130 merger.setDim(tensor, idx, dim); 131 return true; 132 } 133 case AffineExprKind::Add: 134 case AffineExprKind::Mul: { 135 if (!isDense) 136 return false; 137 auto binOp = a.cast<AffineBinaryOpExpr>(); 138 return findAffine(merger, tensor, binOp.getLHS(), dim, isDense) && 139 findAffine(merger, tensor, binOp.getRHS(), dim, isDense); 140 } 141 case AffineExprKind::Constant: 142 return isDense; 143 default: 144 return false; 145 } 146 } 147 148 /// Helper method to inspect sparse encodings in the tensor types. 149 /// Fills the per-dimension sparsity information for all tensors. 150 /// Returns true if the sparse annotations and affine subscript 151 /// expressions of all tensors are admissable. Returns false if 152 /// no annotations are found or inadmissable constructs occur. 153 static bool findSparseAnnotations(Merger &merger, linalg::GenericOp op) { 154 bool annotated = false; 155 for (OpOperand *t : op.getInputAndOutputOperands()) { 156 auto map = op.getTiedIndexingMap(t); 157 auto enc = getSparseTensorEncoding(t->get().getType()); 158 if (enc) 159 annotated = true; 160 assert(map.getNumResults() == op.getRank(t)); 161 for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { 162 unsigned tensor = t->getOperandNumber(); 163 AffineExpr a = map.getResult(perm(enc, d)); 164 if (!findAffine(merger, tensor, a, toDim(enc, d), !enc)) 165 return false; // inadmissable affine expression 166 } 167 } 168 return annotated; 169 } 170 171 /// A DFS helper to compute a topological sort. Note that recursion is 172 /// bounded by the number of implicit loops, which is always small. 173 /// Returns false when a cycle is detected. 174 static bool topSortDFS(unsigned i, std::vector<unsigned> &visit, 175 std::vector<unsigned> &topSort, 176 std::vector<std::vector<bool>> &adjM) { 177 if (visit[i] != 0) 178 return visit[i] != 1; // 1 denotes cycle! 179 visit[i] = 1; 180 for (unsigned j = 0, e = visit.size(); j < e; j++) 181 if (adjM[i][j]) 182 if (!topSortDFS(j, visit, topSort, adjM)) 183 return false; 184 visit[i] = 2; 185 topSort.push_back(i); 186 return true; 187 } 188 189 /// Helper method to add all constraints from the indices in one affine 190 /// expression before all indices in the other affine expression. For 191 /// example i0+i1 < i2+i3+1 yields i0<i2, i0<i3, i1<i2, and i1<i3. 192 static void addAffineOrderings(std::vector<std::vector<bool>> &adjM, 193 AffineExpr a, AffineExpr b, unsigned fidx) { 194 switch (a.getKind()) { 195 case AffineExprKind::DimId: { 196 unsigned idx = a.cast<AffineDimExpr>().getPosition(); 197 if (b) 198 addAffineOrderings(adjM, b, AffineExpr(), idx); 199 else 200 adjM[fidx][idx] = true; 201 break; 202 } 203 case AffineExprKind::Add: 204 case AffineExprKind::Mul: { 205 auto binOp = a.cast<AffineBinaryOpExpr>(); 206 addAffineOrderings(adjM, binOp.getLHS(), b, fidx); 207 addAffineOrderings(adjM, binOp.getRHS(), b, fidx); 208 break; 209 } 210 default: 211 break; 212 } 213 } 214 215 /// Computes a topologically sorted iteration graph for the linalg operation. 216 /// Ensures all tensors are visited in natural index order. This is essential 217 /// for sparse storage formats since these only support access along fixed 218 /// dimensions. Even for dense storage formats, however, the natural index 219 /// order yields innermost unit-stride access with better spatial locality. 220 static bool computeIterationGraph(Merger &merger, linalg::GenericOp op, 221 std::vector<unsigned> &topSort, 222 unsigned mask) { 223 // Set up an n x n from/to adjacency matrix of the iteration graph 224 // for the implicit loop indices i_0 .. i_n-1. 225 unsigned n = op.getNumLoops(); 226 std::vector<std::vector<bool>> adjM(n, std::vector<bool>(n, false)); 227 228 // Iterate over the indexing maps of every tensor in the tensor expression. 229 for (OpOperand *t : op.getInputAndOutputOperands()) { 230 auto map = op.getTiedIndexingMap(t); 231 auto enc = getSparseTensorEncoding(t->get().getType()); 232 assert(map.getNumDims() == n); 233 // Skip dense tensor constraints when not requested. 234 if (!(mask & SortMask::kIncludeDense) && !enc) 235 continue; 236 // Each tensor expression and optional dimension ordering (row-major 237 // by default) puts an ordering constraint on the loop indices. For 238 // example, the tensor expresion A_ijk forces the ordering i < j < k 239 // on the loop indices if no explicit dimension ordering is given. 240 for (unsigned d = 1, rank = map.getNumResults(); d < rank; d++) { 241 AffineExpr f = map.getResult(perm(enc, d - 1)); 242 AffineExpr t = map.getResult(perm(enc, d)); 243 addAffineOrderings(adjM, f, t, 0); 244 } 245 // Push unrelated loops into sparse iteration space, so these 246 // will be skipped more often. 247 if (mask & SortMask::kIncludeUndef) { 248 unsigned tensor = t->getOperandNumber(); 249 for (unsigned i = 0; i < n; i++) 250 if (merger.isDim(tensor, i, Dim::kSparse)) 251 for (unsigned j = 0; j < n; j++) 252 if (merger.isDim(tensor, j, Dim::kUndef)) 253 adjM[i][j] = true; 254 } 255 } 256 257 // Topologically sort the iteration graph to determine loop order. 258 // Report failure for a cyclic iteration graph. 259 topSort.clear(); 260 topSort.reserve(n); 261 std::vector<unsigned> visit(n, 0); 262 for (unsigned i = 0; i < n; i++) 263 if (visit[i] == 0) 264 if (!topSortDFS(i, visit, topSort, adjM)) 265 return false; // cycle! 266 std::reverse(std::begin(topSort), std::end(topSort)); 267 return true; 268 } 269 270 /// Returns true if tensor has an in-place annotation. 271 static bool isInPlace(Value val) { 272 if (auto arg = val.dyn_cast<BlockArgument>()) 273 if (auto funcOp = dyn_cast<FuncOp>(arg.getOwner()->getParentOp())) 274 if (auto attr = funcOp.getArgAttrOfType<BoolAttr>( 275 arg.getArgNumber(), 276 linalg::comprehensive_bufferize::BufferizableOpInterface:: 277 kInplaceableAttrName)) 278 return attr.getValue(); 279 return false; 280 } 281 282 /// Returns true if tensor materializes uninitialized into the computation. 283 static bool isMaterializing(Value val) { 284 return val.getDefiningOp<linalg::InitTensorOp>() || 285 val.getDefiningOp<InitOp>(); 286 } 287 288 /// Returns true when the tensor expression is admissable for codegen. 289 /// Since all sparse input tensors are admissable, we just need to check 290 /// whether the output tensor in the tensor expression codegen is admissable. 291 /// Sets `sparseOut` when a "truly dynamic" sparse tensor output occurs. 292 static bool isAdmissableTensorExp(Merger &merger, linalg::GenericOp op, 293 unsigned exp, OpOperand **sparseOut) { 294 OpOperand *lhs = op.getOutputOperand(0); 295 unsigned tensor = lhs->getOperandNumber(); 296 auto enc = getSparseTensorEncoding(lhs->get().getType()); 297 // An non-annotated output tensor is assumed dense, and becomes a random 298 // access n-dim memref. Admissable since insertions cannot occur. 299 if (!enc) 300 return true; 301 // An all-dense annotated "sparse" output tensor becomes a linearized random 302 // access 1-dim memref. Also admissable since insertions cannot occur. 303 bool allDense = true; 304 unsigned numLoops = op.iterator_types().getValue().size(); 305 for (unsigned i = 0; i < numLoops; i++) 306 if (merger.isDim(tensor, i, Dim::kSparse)) { 307 allDense = false; 308 break; 309 } 310 if (allDense) 311 return true; 312 // A tensor expression with a sparse output tensor that changes its values 313 // but not its nonzero structure, an operation called "simply dynamic" in 314 // [Bik96,Ch9], is also admissable without special codegen, provided 315 // the tensor's underlying sparse storage scheme can be modified in place. 316 if (merger.isConjunction(tensor, exp) && isInPlace(lhs->get())) 317 return true; 318 // Accept "truly dynamic" if the output tensor materializes uninitialized 319 // into the computation and insertions occur in lexicographic index order. 320 if (isMaterializing(lhs->get())) { 321 // In this first sparse tensor output implementation, this is enforced by 322 // rejecting any reduction loops (since the sparse parallel loops give a 323 // lexicographically sorted and injective view into that tensor). 324 // TODO: generalize to include reductions 325 for (auto attr : op.iterator_types()) 326 if (isReductionIterator(attr)) 327 return false; 328 *sparseOut = lhs; 329 return true; 330 } 331 return false; 332 } 333 334 //===----------------------------------------------------------------------===// 335 // Sparse compiler synthesis methods (reductions). 336 //===----------------------------------------------------------------------===// 337 338 /// Maps reduction kind to name encoding. 339 static StringRef getReductionName(Reduction kind) { 340 switch (kind) { 341 case kNoReduc: 342 break; 343 case kSum: 344 return "add"; 345 case kProduct: 346 return "mul"; 347 case kAnd: 348 return "and"; 349 case kOr: 350 return "or"; 351 case kXor: 352 return "xor"; 353 } 354 llvm_unreachable("unknown reduction kind"); 355 } 356 357 /// Maps operation to reduction. 358 static Reduction getReduction(Kind kind) { 359 switch (kind) { 360 case Kind::kAddF: 361 case Kind::kAddI: 362 case Kind::kSubF: 363 case Kind::kSubI: 364 return kSum; 365 case Kind::kMulF: 366 case Kind::kMulI: 367 return kProduct; 368 case Kind::kAndI: 369 return kAnd; 370 case Kind::kOrI: 371 return kOr; 372 case Kind::kXorI: 373 return kXor; 374 default: 375 llvm_unreachable("unexpected reduction operator"); 376 } 377 } 378 379 /// Generates an initial value for a vector reduction, following the scheme 380 /// given in Chapter 5 of "The Software Vectorization Handbook", where the 381 /// initial scalar value is correctly embedded in the vector reduction value, 382 /// and a straightforward horizontal reduction will complete the operation. 383 static Value genVectorReducInit(CodeGen &codegen, PatternRewriter &rewriter, 384 Location loc, VectorType vtp) { 385 Value r = codegen.redVal; 386 switch (codegen.redKind) { 387 case kNoReduc: 388 break; 389 case kSum: 390 case kXor: { 391 // Initialize reduction vector to: | 0 | .. | 0 | r | 392 Attribute zero = rewriter.getZeroAttr(vtp); 393 Value vec = rewriter.create<arith::ConstantOp>(loc, vtp, zero); 394 return rewriter.create<vector::InsertElementOp>(loc, r, vec, 0); 395 } 396 case kProduct: { 397 // Initialize reduction vector to: | 1 | .. | 1 | r | 398 Type etp = vtp.getElementType(); 399 Attribute one; 400 if (etp.isa<FloatType>()) 401 one = rewriter.getFloatAttr(etp, 1.0); 402 else 403 one = rewriter.getIntegerAttr(etp, 1); 404 Value vec = rewriter.create<arith::ConstantOp>( 405 loc, vtp, DenseElementsAttr::get(vtp, one)); 406 return rewriter.create<vector::InsertElementOp>(loc, r, vec, 0); 407 } 408 case kAnd: 409 case kOr: 410 // Initialize reduction vector to: | r | .. | r | r | 411 return rewriter.create<vector::BroadcastOp>(loc, vtp, r); 412 } 413 llvm_unreachable("unknown reduction kind"); 414 } 415 416 /// Generates final value for a vector reduction. 417 static Value genVectorReducEnd(CodeGen &codegen, PatternRewriter &rewriter, 418 Location loc, VectorType vtp) { 419 StringRef name = getReductionName(codegen.redKind); 420 StringAttr kind = rewriter.getStringAttr(name); 421 return rewriter.create<vector::ReductionOp>(loc, vtp.getElementType(), kind, 422 codegen.redVal, ValueRange{}); 423 } 424 425 /// Updates scalarized reduction value. 426 static void updateReduc(Merger &merger, CodeGen &codegen, Value reduc) { 427 assert(codegen.redKind != kNoReduc); 428 codegen.redVal = merger.exp(codegen.redExp).val = reduc; 429 } 430 431 //===----------------------------------------------------------------------===// 432 // Sparse compiler synthesis methods (statements and expressions). 433 //===----------------------------------------------------------------------===// 434 435 /// Maps sparse integer option to actual integral storage type. 436 static Type genIntType(PatternRewriter &rewriter, unsigned width) { 437 if (width == 0) 438 return rewriter.getIndexType(); 439 return rewriter.getIntegerType(width); 440 } 441 442 /// Generates buffer for the output tensor. Note that all sparse kernels 443 /// assume that when all elements are written to (viz. x(i) = y(i) * z(i)), 444 /// the output buffer is already initialized to all zeroes and only nonzeroes 445 /// values are computed and written out. For updates (viz. x(i) += y(i) * z(i)), 446 /// only nonzeroes values are used for the updates and no assumption on the 447 /// original contents of the output buffer is necessary.. 448 static Value genOutputBuffer(CodeGen &codegen, PatternRewriter &rewriter, 449 linalg::GenericOp op, MemRefType denseTp, 450 ArrayRef<Value> args) { 451 Location loc = op.getLoc(); 452 Value tensor = op.getOutputOperand(0)->get(); 453 // The output tensor simply could materialize from the buffer that will 454 // be generated for the tensor present in the outs() clause. This has 455 // the major advantage that the sparse kernel only updates the nonzero 456 // positions for the output tensor. 457 if (isInPlace(tensor)) 458 return rewriter.create<memref::BufferCastOp>(loc, denseTp, tensor); 459 // By default, a new buffer is allocated which is initialized to the 460 // tensor defined in the outs() clause. This is always correct but 461 // introduces a dense initialization component that may negatively 462 // impact the running complexity of the sparse kernel. If the tensor 463 // materializes into the computation, we need to preserve the zero 464 // initialization assumption of all sparse output buffers. 465 if (isMaterializing(tensor)) { 466 Type tp = denseTp.getElementType(); 467 Value alloc = rewriter.create<memref::AllocOp>(loc, denseTp, args); 468 Value zero = 469 rewriter.create<arith::ConstantOp>(loc, tp, rewriter.getZeroAttr(tp)); 470 rewriter.create<linalg::FillOp>(loc, zero, alloc); 471 return alloc; 472 } 473 Value init = rewriter.create<memref::BufferCastOp>(loc, denseTp, tensor); 474 Value alloc = rewriter.create<memref::AllocOp>(loc, denseTp, args); 475 rewriter.create<memref::CopyOp>(loc, init, alloc); 476 return alloc; 477 } 478 479 /// Local bufferization of all dense and sparse data structures. 480 /// This code enables testing the first prototype sparse compiler. 481 // TODO: replace this with a proliferated bufferization strategy 482 static void genBuffers(Merger &merger, CodeGen &codegen, 483 PatternRewriter &rewriter, linalg::GenericOp op) { 484 Location loc = op.getLoc(); 485 assert(op.getNumInputsAndOutputs() == op.getNumInputs() + 1); 486 // For every tensor, find lower and upper bound on dimensions, set the 487 // same bounds on loop indices, and obtain dense or sparse buffer(s). 488 SmallVector<Value, 4> args; 489 for (OpOperand *t : op.getInputAndOutputOperands()) { 490 unsigned tensor = t->getOperandNumber(); 491 auto shape = op.getShape(t); 492 auto map = op.getTiedIndexingMap(t); 493 auto enc = getSparseTensorEncoding(t->get().getType()); 494 // Scan all dimensions of current tensor. 495 args.clear(); 496 for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { 497 AffineExpr a = map.getResult(perm(enc, d)); 498 if (a.getKind() != AffineExprKind::DimId) 499 continue; // compound 500 unsigned idx = a.cast<AffineDimExpr>().getPosition(); 501 // Handle sparse storage schemes. 502 if (merger.isDim(tensor, idx, Dim::kSparse)) { 503 auto dynShape = {ShapedType::kDynamicSize}; 504 auto ptrTp = MemRefType::get( 505 dynShape, genIntType(rewriter, enc.getPointerBitWidth())); 506 auto indTp = MemRefType::get( 507 dynShape, genIntType(rewriter, enc.getIndexBitWidth())); 508 Value dim = rewriter.create<arith::ConstantIndexOp>(loc, d); 509 // Generate sparse primitives to obtains pointer and indices. 510 codegen.pointers[tensor][idx] = 511 rewriter.create<ToPointersOp>(loc, ptrTp, t->get(), dim); 512 codegen.indices[tensor][idx] = 513 rewriter.create<ToIndicesOp>(loc, indTp, t->get(), dim); 514 } 515 // Find upper bound in current dimension. 516 unsigned p = perm(enc, d); 517 Value up = linalg::createOrFoldDimOp(rewriter, loc, t->get(), p); 518 if (shape[p] == MemRefType::kDynamicSize) 519 args.push_back(up); 520 assert(codegen.highs[tensor][idx] == nullptr); 521 codegen.sizes[idx] = codegen.highs[tensor][idx] = up; 522 } 523 // Perform the required bufferization. Dense inputs materialize 524 // from the input tensors. Dense outputs need special handling. 525 // Sparse inputs use sparse primitives to obtain the values. 526 // We also accept in-place all-dense annotated "sparse" outputs. 527 Type elementType = getElementTypeOrSelf(t->get().getType()); 528 if (!enc) { 529 // Non-annotated dense tensors. 530 auto denseTp = MemRefType::get(shape, elementType); 531 if (tensor < op.getNumInputs()) 532 codegen.buffers[tensor] = 533 rewriter.create<memref::BufferCastOp>(loc, denseTp, t->get()); 534 else 535 codegen.buffers[tensor] = 536 genOutputBuffer(codegen, rewriter, op, denseTp, args); 537 } else if (t == codegen.sparseOut) { 538 // True sparse output needs a lexIdx array. 539 Value rank = rewriter.create<arith::ConstantIndexOp>(loc, op.getRank(t)); 540 auto dynShape = {ShapedType::kDynamicSize}; 541 auto memTp = MemRefType::get(dynShape, rewriter.getIndexType()); 542 codegen.lexIdx = rewriter.create<memref::AllocaOp>(loc, memTp, rank); 543 } else { 544 // Annotated sparse tensors. 545 auto dynShape = {ShapedType::kDynamicSize}; 546 auto sparseTp = MemRefType::get(dynShape, elementType); 547 codegen.buffers[tensor] = 548 rewriter.create<ToValuesOp>(loc, sparseTp, t->get()); 549 } 550 } 551 } 552 553 /// Constructs vector type. 554 static VectorType vectorType(CodeGen &codegen, Type etp) { 555 return VectorType::get(codegen.curVecLength, etp); 556 } 557 558 /// Constructs vector type from pointer. 559 static VectorType vectorType(CodeGen &codegen, Value ptr) { 560 return vectorType(codegen, ptr.getType().cast<MemRefType>().getElementType()); 561 } 562 563 /// Constructs vector iteration mask. 564 static Value genVectorMask(CodeGen &codegen, PatternRewriter &rewriter, 565 Value iv, Value lo, Value hi, Value step) { 566 Location loc = iv.getLoc(); 567 VectorType mtp = vectorType(codegen, genIntType(rewriter, 1)); 568 // Special case if the vector length evenly divides the trip count (for 569 // example, "for i = 0, 128, 16"). A constant all-true mask is generated 570 // so that all subsequent masked memory operations are immediately folded 571 // into unconditional memory operations. 572 IntegerAttr loInt, hiInt, stepInt; 573 if (matchPattern(lo, m_Constant(&loInt)) && 574 matchPattern(hi, m_Constant(&hiInt)) && 575 matchPattern(step, m_Constant(&stepInt))) { 576 if (((hiInt.getInt() - loInt.getInt()) % stepInt.getInt()) == 0) 577 return rewriter.create<vector::BroadcastOp>( 578 loc, mtp, rewriter.create<arith::ConstantIntOp>(loc, 1, 1)); 579 } 580 // Otherwise, generate a vector mask that avoids overrunning the upperbound 581 // during vector execution. Here we rely on subsequent loop optimizations to 582 // avoid executing the mask in all iterations, for example, by splitting the 583 // loop into an unconditional vector loop and a scalar cleanup loop. 584 auto minMap = AffineMap::get( 585 /*dimCount=*/2, /*symbolCount=*/1, 586 {rewriter.getAffineSymbolExpr(0), 587 rewriter.getAffineDimExpr(0) - rewriter.getAffineDimExpr(1)}, 588 rewriter.getContext()); 589 Value end = 590 rewriter.createOrFold<AffineMinOp>(loc, minMap, ValueRange{hi, iv, step}); 591 return rewriter.create<vector::CreateMaskOp>(loc, mtp, end); 592 } 593 594 /// Generates a vectorized load lhs = a[ind[lo:hi]] or lhs = a[lo:hi]. 595 static Value genVectorLoad(CodeGen &codegen, PatternRewriter &rewriter, 596 Value ptr, ArrayRef<Value> args) { 597 Location loc = ptr.getLoc(); 598 VectorType vtp = vectorType(codegen, ptr); 599 Value pass = 600 rewriter.create<arith::ConstantOp>(loc, vtp, rewriter.getZeroAttr(vtp)); 601 if (args.back().getType().isa<VectorType>()) { 602 SmallVector<Value, 4> scalarArgs(args.begin(), args.end()); 603 Value indexVec = args.back(); 604 scalarArgs.back() = rewriter.create<arith::ConstantIndexOp>(loc, 0); 605 return rewriter.create<vector::GatherOp>( 606 loc, vtp, ptr, scalarArgs, indexVec, codegen.curVecMask, pass); 607 } 608 return rewriter.create<vector::MaskedLoadOp>(loc, vtp, ptr, args, 609 codegen.curVecMask, pass); 610 } 611 612 /// Generates a vectorized store a[ind[lo:hi]] = rhs or a[lo:hi] = rhs. 613 static void genVectorStore(CodeGen &codegen, PatternRewriter &rewriter, 614 Value rhs, Value ptr, ArrayRef<Value> args) { 615 Location loc = ptr.getLoc(); 616 if (args.back().getType().isa<VectorType>()) { 617 SmallVector<Value, 4> scalarArgs(args.begin(), args.end()); 618 Value indexVec = args.back(); 619 scalarArgs.back() = rewriter.create<arith::ConstantIndexOp>(loc, 0); 620 rewriter.create<vector::ScatterOp>(loc, ptr, scalarArgs, indexVec, 621 codegen.curVecMask, rhs); 622 return; 623 } 624 rewriter.create<vector::MaskedStoreOp>(loc, ptr, args, codegen.curVecMask, 625 rhs); 626 } 627 628 /// Generates a vectorized invariant. Here we rely on subsequent loop 629 /// optimizations to hoist the invariant broadcast out of the vector loop. 630 static Value genVectorInvariantValue(CodeGen &codegen, 631 PatternRewriter &rewriter, Value val) { 632 VectorType vtp = vectorType(codegen, val.getType()); 633 return rewriter.create<vector::BroadcastOp>(val.getLoc(), vtp, val); 634 } 635 636 /// Generates an affine expression. 637 // 638 // TODO: generalize for sparse tensor subscripts 639 // 640 static Value genAffine(CodeGen &codegen, PatternRewriter &rewriter, 641 AffineExpr a, Location loc) { 642 switch (a.getKind()) { 643 case AffineExprKind::DimId: { 644 unsigned idx = a.cast<AffineDimExpr>().getPosition(); 645 return codegen.loops[idx]; // universal dense index 646 } 647 case AffineExprKind::Add: { 648 auto binOp = a.cast<AffineBinaryOpExpr>(); 649 return rewriter.create<arith::AddIOp>( 650 loc, genAffine(codegen, rewriter, binOp.getLHS(), loc), 651 genAffine(codegen, rewriter, binOp.getRHS(), loc)); 652 } 653 case AffineExprKind::Mul: { 654 auto binOp = a.cast<AffineBinaryOpExpr>(); 655 return rewriter.create<arith::MulIOp>( 656 loc, genAffine(codegen, rewriter, binOp.getLHS(), loc), 657 genAffine(codegen, rewriter, binOp.getRHS(), loc)); 658 } 659 case AffineExprKind::Constant: { 660 int64_t c = a.cast<AffineConstantExpr>().getValue(); 661 return rewriter.create<arith::ConstantIndexOp>(loc, c); 662 } 663 default: 664 llvm_unreachable("unexpected affine subscript"); 665 } 666 } 667 668 /// Generates subscript for load/store on a dense or sparse tensor. 669 static Value genSubscript(CodeGen &codegen, PatternRewriter &rewriter, 670 linalg::GenericOp op, OpOperand *t, 671 SmallVector<Value, 4> &args) { 672 unsigned tensor = t->getOperandNumber(); 673 auto map = op.getTiedIndexingMap(t); 674 auto enc = getSparseTensorEncoding(t->get().getType()); 675 unsigned rank = map.getNumResults(); 676 if (enc) { 677 // Note that currently, all sparse subscripts are simple. 678 // TODO: accept affine too? 679 AffineExpr a = map.getResult(perm(enc, rank - 1)); 680 assert(a.getKind() == AffineExprKind::DimId); 681 unsigned idx = a.cast<AffineDimExpr>().getPosition(); 682 assert(codegen.pidxs[tensor][idx] != nullptr); 683 args.push_back(codegen.pidxs[tensor][idx]); // position index 684 } else { 685 for (unsigned d = 0; d < rank; d++) { 686 AffineExpr a = map.getResult(perm(enc, d)); 687 args.push_back(genAffine(codegen, rewriter, a, op.getLoc())); 688 } 689 } 690 return codegen.buffers[tensor]; 691 } 692 693 /// Generates a load on a dense or sparse tensor. 694 static Value genTensorLoad(Merger &merger, CodeGen &codegen, 695 PatternRewriter &rewriter, linalg::GenericOp op, 696 unsigned exp) { 697 // Test if the load was hoisted to a higher loop nest. 698 Value val = merger.exp(exp).val; 699 if (val) { 700 if (codegen.curVecLength > 1 && !val.getType().isa<VectorType>()) 701 return genVectorInvariantValue(codegen, rewriter, val); 702 return val; 703 } 704 // Actual load. 705 SmallVector<Value, 4> args; 706 OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).tensor]; 707 Value ptr = genSubscript(codegen, rewriter, op, t, args); 708 if (codegen.curVecLength > 1) 709 return genVectorLoad(codegen, rewriter, ptr, args); 710 return rewriter.create<memref::LoadOp>(op.getLoc(), ptr, args); 711 } 712 713 /// Generates a store on a dense or sparse tensor. 714 static void genTensorStore(Merger &merger, CodeGen &codegen, 715 PatternRewriter &rewriter, linalg::GenericOp op, 716 Value rhs) { 717 Location loc = op.getLoc(); 718 // Test if this is a scalarized reduction. 719 if (codegen.redVal) { 720 if (codegen.curVecLength > 1) 721 rhs = rewriter.create<SelectOp>(loc, codegen.curVecMask, rhs, 722 codegen.redVal); 723 updateReduc(merger, codegen, rhs); 724 return; 725 } 726 // Insertion. 727 OpOperand *t = op.getOutputOperand(0); 728 if (t == codegen.sparseOut) { 729 rewriter.create<LexInsertOp>(loc, t->get(), codegen.lexIdx, rhs); 730 return; 731 } 732 // Actual store. 733 SmallVector<Value, 4> args; 734 Value ptr = genSubscript(codegen, rewriter, op, t, args); 735 if (codegen.curVecLength > 1) 736 genVectorStore(codegen, rewriter, rhs, ptr, args); 737 else 738 rewriter.create<memref::StoreOp>(loc, rhs, ptr, args); 739 } 740 741 /// Generates a pointer/index load from the sparse storage scheme. Narrower 742 /// data types need to be zero extended before casting the value into the 743 /// index type used for looping and indexing. 744 static Value genLoad(CodeGen &codegen, PatternRewriter &rewriter, Location loc, 745 Value ptr, Value s) { 746 // See https://llvm.org/docs/GetElementPtr.html for some background on 747 // the complications described below. 748 if (codegen.curVecLength > 1) { 749 // Since the index vector is used in a subsequent gather/scatter operations, 750 // which effectively defines an unsigned pointer + signed index, we must 751 // zero extend the vector to an index width. For 8-bit and 16-bit values, 752 // an 32-bit index width suffices. For 32-bit values, zero extending the 753 // elements into 64-bit loses some performance since the 32-bit indexed 754 // gather/scatter is more efficient than the 64-bit index variant (if the 755 // negative 32-bit index space is unused, the enableSIMDIndex32 flag can 756 // preserve this performance). For 64-bit values, there is no good way 757 // to state that the indices are unsigned, with creates the potential of 758 // incorrect address calculations in the unlikely case we need such 759 // extremely large offsets. 760 Type etp = ptr.getType().cast<MemRefType>().getElementType(); 761 Value vload = genVectorLoad(codegen, rewriter, ptr, {s}); 762 if (!etp.isa<IndexType>()) { 763 if (etp.getIntOrFloatBitWidth() < 32) 764 vload = rewriter.create<arith::ExtUIOp>( 765 loc, vload, vectorType(codegen, genIntType(rewriter, 32))); 766 else if (etp.getIntOrFloatBitWidth() < 64 && 767 !codegen.options.enableSIMDIndex32) 768 vload = rewriter.create<arith::ExtUIOp>( 769 loc, vload, vectorType(codegen, genIntType(rewriter, 64))); 770 } 771 return vload; 772 } 773 // For the scalar case, we simply zero extend narrower indices into 64-bit 774 // values before casting to index without a performance penalty. Here too, 775 // however, indices that already are 64-bit, in theory, cannot express the 776 // full range as explained above. 777 Value load = rewriter.create<memref::LoadOp>(loc, ptr, s); 778 if (!load.getType().isa<IndexType>()) { 779 if (load.getType().getIntOrFloatBitWidth() < 64) 780 load = 781 rewriter.create<arith::ExtUIOp>(loc, load, genIntType(rewriter, 64)); 782 load = 783 rewriter.create<arith::IndexCastOp>(loc, load, rewriter.getIndexType()); 784 } 785 return load; 786 } 787 788 /// Generates an invariant value. 789 static Value genInvariantValue(Merger &merger, CodeGen &codegen, 790 PatternRewriter &rewriter, unsigned exp) { 791 Value val = merger.exp(exp).val; 792 if (codegen.curVecLength > 1) 793 return genVectorInvariantValue(codegen, rewriter, val); 794 return val; 795 } 796 797 /// Generates an address computation "sz * p + i". 798 static Value genAddress(CodeGen &codegen, PatternRewriter &rewriter, 799 Location loc, Value size, Value p, Value i) { 800 Value mul = rewriter.create<arith::MulIOp>(loc, size, p); 801 if (auto vtp = i.getType().dyn_cast<VectorType>()) { 802 Value inv = 803 rewriter.create<arith::IndexCastOp>(loc, mul, vtp.getElementType()); 804 mul = genVectorInvariantValue(codegen, rewriter, inv); 805 } 806 return rewriter.create<arith::AddIOp>(loc, mul, i); 807 } 808 809 /// Recursively generates tensor expression. 810 static Value genExp(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, 811 linalg::GenericOp op, unsigned exp) { 812 Location loc = op.getLoc(); 813 if (exp == -1u) 814 return Value(); 815 if (merger.exp(exp).kind == Kind::kTensor) 816 return genTensorLoad(merger, codegen, rewriter, op, exp); 817 if (merger.exp(exp).kind == Kind::kInvariant) 818 return genInvariantValue(merger, codegen, rewriter, exp); 819 Value v0 = genExp(merger, codegen, rewriter, op, merger.exp(exp).children.e0); 820 Value v1 = genExp(merger, codegen, rewriter, op, merger.exp(exp).children.e1); 821 return merger.buildExp(rewriter, loc, exp, v0, v1); 822 } 823 824 /// Determines if affine expression is invariant. 825 static bool isInvariantAffine(const CodeGen &codegen, AffineExpr a, 826 unsigned ldx, bool &atLevel) { 827 switch (a.getKind()) { 828 case AffineExprKind::DimId: { 829 unsigned idx = a.cast<AffineDimExpr>().getPosition(); 830 if (idx == ldx) 831 atLevel = true; 832 return codegen.loops[idx] != nullptr; // no longer in play? 833 } 834 case AffineExprKind::Add: 835 case AffineExprKind::Mul: { 836 auto binOp = a.cast<AffineBinaryOpExpr>(); 837 return isInvariantAffine(codegen, binOp.getLHS(), ldx, atLevel) && 838 isInvariantAffine(codegen, binOp.getRHS(), ldx, atLevel); 839 } 840 default: 841 return true; 842 } 843 } 844 845 /// Hoists loop invariant tensor loads for which indices have been exhausted. 846 static void genInvariants(Merger &merger, CodeGen &codegen, 847 PatternRewriter &rewriter, linalg::GenericOp op, 848 unsigned exp, unsigned ldx, bool atStart, 849 Kind last = Kind::kTensor) { 850 if (exp == -1u) 851 return; 852 if (merger.exp(exp).kind == Kind::kTensor) { 853 // Inspect tensor indices. 854 bool atLevel = ldx == -1u; 855 OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).tensor]; 856 auto map = op.getTiedIndexingMap(t); 857 auto enc = getSparseTensorEncoding(t->get().getType()); 858 for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { 859 AffineExpr a = map.getResult(perm(enc, d)); 860 if (!isInvariantAffine(codegen, a, ldx, atLevel)) 861 return; // still in play 862 } 863 // All exhausted at this level (atLevel denotes exactly at this level). 864 if (!atLevel) 865 return; 866 OpOperand *lhs = op.getOutputOperand(0); 867 if (lhs == t) { 868 // Start or end a scalarized reduction 869 if (atStart) { 870 Value load = genTensorLoad(merger, codegen, rewriter, op, exp); 871 codegen.redKind = getReduction(last); 872 codegen.redExp = exp; 873 updateReduc(merger, codegen, load); 874 } else { 875 Value redVal = codegen.redVal; 876 updateReduc(merger, codegen, Value()); 877 codegen.redExp = -1u; 878 codegen.redKind = kNoReduc; 879 genTensorStore(merger, codegen, rewriter, op, redVal); 880 } 881 } else { 882 // Start or end loop invariant hoisting of a tensor load. 883 merger.exp(exp).val = 884 atStart ? genTensorLoad(merger, codegen, rewriter, op, exp) : Value(); 885 } 886 } else if (merger.exp(exp).kind != Kind::kInvariant) { 887 // Traverse into the binary operations. Note that we only hoist 888 // tensor loads, since subsequent MLIR/LLVM passes know how to 889 // deal with all other kinds of derived loop invariants. 890 Kind last = merger.exp(exp).kind; 891 unsigned e0 = merger.exp(exp).children.e0; 892 unsigned e1 = merger.exp(exp).children.e1; 893 genInvariants(merger, codegen, rewriter, op, e0, ldx, atStart, last); 894 genInvariants(merger, codegen, rewriter, op, e1, ldx, atStart, last); 895 } 896 } 897 898 /// Generates initialization code for the subsequent loop sequence at 899 /// current index level. Returns true if the loop sequence needs to 900 /// maintain the universal index. 901 static bool genInit(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, 902 linalg::GenericOp op, std::vector<unsigned> &topSort, 903 unsigned at, llvm::BitVector &inits) { 904 bool needsUniv = false; 905 Location loc = op.getLoc(); 906 unsigned idx = topSort[at]; 907 908 // Initialize sparse positions. 909 for (unsigned b = 0, be = inits.size(); b < be; b++) { 910 if (inits[b]) { 911 unsigned tensor = merger.tensor(b); 912 assert(idx == merger.index(b)); 913 if (merger.isDim(b, Dim::kSparse)) { 914 // Initialize sparse index. 915 unsigned pat = at; 916 for (; pat != 0; pat--) { 917 if (codegen.pidxs[tensor][topSort[pat - 1]]) 918 break; 919 } 920 Value ptr = codegen.pointers[tensor][idx]; 921 Value one = rewriter.create<arith::ConstantIndexOp>(loc, 1); 922 Value p0 = (pat == 0) ? rewriter.create<arith::ConstantIndexOp>(loc, 0) 923 : codegen.pidxs[tensor][topSort[pat - 1]]; 924 codegen.pidxs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p0); 925 Value p1 = rewriter.create<arith::AddIOp>(loc, p0, one); 926 codegen.highs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p1); 927 } else { 928 // Dense index still in play. 929 needsUniv = true; 930 } 931 } 932 } 933 934 // Initialize the universal dense index. 935 codegen.loops[idx] = rewriter.create<arith::ConstantIndexOp>(loc, 0); 936 return needsUniv; 937 } 938 939 /// Returns vectorization strategy. Any implicit inner loop in the Linalg 940 /// operation is a candidate. Whether it is actually converted to SIMD code 941 /// depends on the requested strategy. 942 static bool isVectorFor(CodeGen &codegen, bool isInner, bool isSparse) { 943 switch (codegen.options.vectorizationStrategy) { 944 case SparseVectorizationStrategy::kNone: 945 return false; 946 case SparseVectorizationStrategy::kDenseInnerLoop: 947 return isInner && !isSparse; 948 case SparseVectorizationStrategy::kAnyStorageInnerLoop: 949 return isInner; 950 } 951 llvm_unreachable("unexpected vectorization strategy"); 952 } 953 954 /// Returns parallelization strategy. Any implicit loop in the Linalg operation 955 /// that is marked "parallel" is a candidate. Whether it is actually converted 956 /// to a parallel operation depends on the requested strategy. 957 static bool isParallelFor(CodeGen &codegen, bool isOuter, bool isReduction, 958 bool isSparse, bool isVector) { 959 switch (codegen.options.parallelizationStrategy) { 960 case SparseParallelizationStrategy::kNone: 961 return false; 962 case SparseParallelizationStrategy::kDenseOuterLoop: 963 return isOuter && !isSparse && !isReduction && !isVector; 964 case SparseParallelizationStrategy::kAnyStorageOuterLoop: 965 return isOuter && !isReduction && !isVector; 966 case SparseParallelizationStrategy::kDenseAnyLoop: 967 return !isSparse && !isReduction && !isVector; 968 case SparseParallelizationStrategy::kAnyStorageAnyLoop: 969 return !isReduction && !isVector; 970 } 971 llvm_unreachable("unexpected parallelization strategy"); 972 } 973 974 /// Checks unit stride for dense tensors. The iteration graph may have ignored 975 /// dense access patterns in order to avoid cycles (sparse access patterns are 976 /// always placed innermost), but that means dense access has become strided. 977 /// This prevents effective vectorization. 978 static bool denseUnitStrides(Merger &merger, linalg::GenericOp op, 979 unsigned idx) { 980 for (OpOperand *t : op.getInputAndOutputOperands()) { 981 if (!getSparseTensorEncoding(t->get().getType())) { 982 auto map = op.getTiedIndexingMap(t); 983 for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { 984 AffineExpr a = map.getResult(d); 985 // Report non-unit stride if innermost index appears at an outer 986 // dimension (true non-unit stride) or if the innermost index appears 987 // in a compound subscript in the innermost dimension. Even if the 988 // latter is unit stride, it does not play well with scatter/gather. 989 // TODO: accept unit stride affine innermost like a[i,j+k+1]? 990 if (a.isFunctionOfDim(idx) && 991 ((d != rank - 1) || (a.getKind() != AffineExprKind::DimId))) 992 return false; 993 } 994 } 995 } 996 return true; 997 } 998 999 /// Generates a for-loop on a single index. 1000 static Operation *genFor(Merger &merger, CodeGen &codegen, 1001 PatternRewriter &rewriter, linalg::GenericOp op, 1002 bool isOuter, bool isInner, unsigned idx, 1003 llvm::BitVector &indices) { 1004 unsigned fb = indices.find_first(); 1005 unsigned tensor = merger.tensor(fb); 1006 assert(idx == merger.index(fb)); 1007 auto iteratorTypes = op.iterator_types().getValue(); 1008 bool isReduction = isReductionIterator(iteratorTypes[idx]); 1009 bool isSparse = merger.isDim(fb, Dim::kSparse); 1010 bool isVector = !codegen.sparseOut && 1011 isVectorFor(codegen, isInner, isSparse) && 1012 denseUnitStrides(merger, op, idx); 1013 bool isParallel = 1014 !codegen.sparseOut && 1015 isParallelFor(codegen, isOuter, isReduction, isSparse, isVector); 1016 1017 // Prepare vector length. 1018 if (isVector) 1019 codegen.curVecLength = codegen.options.vectorLength; 1020 1021 // Loop bounds and increment. 1022 Location loc = op.getLoc(); 1023 Value lo = isSparse ? codegen.pidxs[tensor][idx] : codegen.loops[idx]; 1024 Value hi = isSparse ? codegen.highs[tensor][idx] : codegen.sizes[idx]; 1025 Value step = 1026 rewriter.create<arith::ConstantIndexOp>(loc, codegen.curVecLength); 1027 1028 // Emit a parallel loop. 1029 if (isParallel) { 1030 assert(!isVector); 1031 scf::ParallelOp parOp = rewriter.create<scf::ParallelOp>(loc, lo, hi, step); 1032 if (isSparse) 1033 codegen.pidxs[tensor][idx] = parOp.getInductionVars()[0]; 1034 else 1035 codegen.loops[idx] = parOp.getInductionVars()[0]; 1036 rewriter.setInsertionPointToStart(parOp.getBody()); 1037 return parOp; 1038 } 1039 1040 // Emit a sequential or vector loop. 1041 SmallVector<Value, 4> operands; 1042 if (codegen.redVal) { 1043 // In a vector loop, bring reduction into SIMD form, if not already. 1044 if (isVector && !codegen.redVal.getType().isa<VectorType>()) { 1045 VectorType vtp = vectorType(codegen, codegen.redVal.getType()); 1046 Value vred = genVectorReducInit(codegen, rewriter, loc, vtp); 1047 updateReduc(merger, codegen, vred); 1048 } 1049 operands.push_back(codegen.redVal); 1050 } 1051 scf::ForOp forOp = rewriter.create<scf::ForOp>(loc, lo, hi, step, operands); 1052 if (codegen.redVal) 1053 updateReduc(merger, codegen, forOp.getRegionIterArgs().front()); 1054 // Assign induction variable to sparse or dense index. 1055 Value iv = forOp.getInductionVar(); 1056 if (isSparse) 1057 codegen.pidxs[tensor][idx] = iv; 1058 else 1059 codegen.loops[idx] = iv; 1060 rewriter.setInsertionPointToStart(forOp.getBody()); 1061 // Share vector iteration mask between all subsequent loads/stores. 1062 if (isVector) 1063 codegen.curVecMask = genVectorMask(codegen, rewriter, iv, lo, hi, step); 1064 return forOp; 1065 } 1066 1067 /// Emit a while-loop for co-iteration over multiple indices. 1068 static Operation *genWhile(Merger &merger, CodeGen &codegen, 1069 PatternRewriter &rewriter, linalg::GenericOp op, 1070 unsigned idx, bool needsUniv, 1071 llvm::BitVector &indices) { 1072 SmallVector<Type, 4> types; 1073 SmallVector<Value, 4> operands; 1074 // Construct the while-loop with a parameter for each index. 1075 Type indexType = rewriter.getIndexType(); 1076 for (unsigned b = 0, be = indices.size(); b < be; b++) { 1077 if (indices[b] && merger.isDim(b, Dim::kSparse)) { 1078 unsigned tensor = merger.tensor(b); 1079 assert(idx == merger.index(b)); 1080 types.push_back(indexType); 1081 operands.push_back(codegen.pidxs[tensor][idx]); 1082 } 1083 } 1084 if (codegen.redVal) { 1085 types.push_back(codegen.redVal.getType()); 1086 operands.push_back(codegen.redVal); 1087 } 1088 if (needsUniv) { 1089 types.push_back(indexType); 1090 operands.push_back(codegen.loops[idx]); 1091 } 1092 assert(types.size() == operands.size()); 1093 Location loc = op.getLoc(); 1094 scf::WhileOp whileOp = rewriter.create<scf::WhileOp>(loc, types, operands); 1095 Block *before = rewriter.createBlock(&whileOp.before(), {}, types); 1096 Block *after = rewriter.createBlock(&whileOp.after(), {}, types); 1097 1098 // Build the "before" region, which effectively consists 1099 // of a conjunction of "i < upper" tests on all induction. 1100 rewriter.setInsertionPointToStart(&whileOp.before().front()); 1101 Value cond; 1102 unsigned o = 0; 1103 for (unsigned b = 0, be = indices.size(); b < be; b++) { 1104 if (indices[b] && merger.isDim(b, Dim::kSparse)) { 1105 unsigned tensor = merger.tensor(b); 1106 assert(idx == merger.index(b)); 1107 Value op1 = before->getArgument(o); 1108 Value op2 = codegen.highs[tensor][idx]; 1109 Value opc = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult, 1110 op1, op2); 1111 cond = cond ? rewriter.create<arith::AndIOp>(loc, cond, opc) : opc; 1112 codegen.pidxs[tensor][idx] = after->getArgument(o++); 1113 } 1114 } 1115 if (codegen.redVal) 1116 updateReduc(merger, codegen, after->getArgument(o++)); 1117 if (needsUniv) 1118 codegen.loops[idx] = after->getArgument(o++); 1119 assert(o == operands.size()); 1120 rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments()); 1121 rewriter.setInsertionPointToStart(&whileOp.after().front()); 1122 return whileOp; 1123 } 1124 1125 /// Generates a for-loop or a while-loop, depending on whether it implements 1126 /// singleton iteration or co-iteration over the given conjunction. 1127 static Operation *genLoop(Merger &merger, CodeGen &codegen, 1128 PatternRewriter &rewriter, linalg::GenericOp op, 1129 std::vector<unsigned> &topSort, unsigned at, 1130 bool needsUniv, llvm::BitVector &indices) { 1131 unsigned idx = topSort[at]; 1132 if (indices.count() == 1) { 1133 bool isOuter = at == 0; 1134 bool isInner = at == topSort.size() - 1; 1135 return genFor(merger, codegen, rewriter, op, isOuter, isInner, idx, 1136 indices); 1137 } 1138 return genWhile(merger, codegen, rewriter, op, idx, needsUniv, indices); 1139 } 1140 1141 /// Generates the local variables for this loop, consisting of the sparse 1142 /// indices, restored universal dense index, and dense positions. 1143 static void genLocals(Merger &merger, CodeGen &codegen, 1144 PatternRewriter &rewriter, linalg::GenericOp op, 1145 std::vector<unsigned> &topSort, unsigned at, 1146 bool needsUniv, llvm::BitVector &locals) { 1147 Location loc = op.getLoc(); 1148 unsigned idx = topSort[at]; 1149 1150 // Initialize sparse indices. 1151 Value min; 1152 for (unsigned b = 0, be = locals.size(); b < be; b++) { 1153 if (locals[b] && merger.isDim(b, Dim::kSparse)) { 1154 unsigned tensor = merger.tensor(b); 1155 assert(idx == merger.index(b)); 1156 Value ptr = codegen.indices[tensor][idx]; 1157 Value s = codegen.pidxs[tensor][idx]; 1158 Value load = genLoad(codegen, rewriter, loc, ptr, s); 1159 codegen.idxs[tensor][idx] = load; 1160 if (!needsUniv) { 1161 if (min) { 1162 Value cmp = rewriter.create<arith::CmpIOp>( 1163 loc, arith::CmpIPredicate::ult, load, min); 1164 min = rewriter.create<SelectOp>(loc, cmp, load, min); 1165 } else { 1166 min = load; 1167 } 1168 } 1169 } 1170 } 1171 1172 // Merge dense universal index over minimum. 1173 if (min) { 1174 assert(!needsUniv); 1175 codegen.loops[idx] = min; 1176 } 1177 1178 // Initialize dense positions. Note that we generate dense indices of the 1179 // output tensor unconditionally, since they may not appear in the lattice, 1180 // but may be needed for linearized codegen. 1181 for (unsigned b = 0, be = locals.size(); b < be; b++) { 1182 if ((locals[b] || merger.isOutTensor(b, idx)) && 1183 merger.isDim(b, Dim::kDense)) { 1184 unsigned tensor = merger.tensor(b); 1185 assert(idx == merger.index(b)); 1186 unsigned pat = at; 1187 for (; pat != 0; pat--) 1188 if (codegen.pidxs[tensor][topSort[pat - 1]]) 1189 break; 1190 Value p = (pat == 0) ? rewriter.create<arith::ConstantIndexOp>(loc, 0) 1191 : codegen.pidxs[tensor][topSort[pat - 1]]; 1192 codegen.pidxs[tensor][idx] = genAddress( 1193 codegen, rewriter, loc, codegen.sizes[idx], p, codegen.loops[idx]); 1194 } 1195 } 1196 1197 // Move the insertion indices in lexicographic index order. 1198 if (codegen.sparseOut) { 1199 Value pos = rewriter.create<arith::ConstantIndexOp>(loc, at); 1200 rewriter.create<memref::StoreOp>(loc, codegen.loops[idx], codegen.lexIdx, 1201 pos); 1202 } 1203 } 1204 1205 /// Generates the induction structure for a while-loop. 1206 static void genWhileInduction(Merger &merger, CodeGen &codegen, 1207 PatternRewriter &rewriter, linalg::GenericOp op, 1208 unsigned idx, bool needsUniv, 1209 llvm::BitVector &induction, 1210 scf::WhileOp whileOp) { 1211 Location loc = op.getLoc(); 1212 // Finalize each else branch of all if statements. 1213 if (codegen.redVal) { 1214 while (auto ifOp = dyn_cast_or_null<scf::IfOp>( 1215 rewriter.getInsertionBlock()->getParentOp())) { 1216 rewriter.create<scf::YieldOp>(loc, codegen.redVal); 1217 updateReduc(merger, codegen, ifOp.getResult(0)); 1218 rewriter.setInsertionPointAfter(ifOp); 1219 } 1220 } 1221 rewriter.setInsertionPointToEnd(&whileOp.after().front()); 1222 // Finalize the induction. Note that the induction could be performed 1223 // in the individual if-branches to avoid re-evaluating the conditions. 1224 // However, that would result in a rather elaborate forest of yield 1225 // instructions during code generation. Moreover, performing the induction 1226 // after the if-statements more closely resembles code generated by TACO. 1227 unsigned o = 0; 1228 SmallVector<Value, 4> operands; 1229 Value one = rewriter.create<arith::ConstantIndexOp>(loc, 1); 1230 for (unsigned b = 0, be = induction.size(); b < be; b++) { 1231 if (induction[b] && merger.isDim(b, Dim::kSparse)) { 1232 unsigned tensor = merger.tensor(b); 1233 assert(idx == merger.index(b)); 1234 Value op1 = codegen.idxs[tensor][idx]; 1235 Value op2 = codegen.loops[idx]; 1236 Value op3 = codegen.pidxs[tensor][idx]; 1237 Value cmp = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq, 1238 op1, op2); 1239 Value add = rewriter.create<arith::AddIOp>(loc, op3, one); 1240 operands.push_back(rewriter.create<SelectOp>(loc, cmp, add, op3)); 1241 codegen.pidxs[tensor][idx] = whileOp->getResult(o++); 1242 } 1243 } 1244 if (codegen.redVal) { 1245 operands.push_back(codegen.redVal); 1246 updateReduc(merger, codegen, whileOp->getResult(o++)); 1247 } 1248 if (needsUniv) { 1249 operands.push_back( 1250 rewriter.create<arith::AddIOp>(loc, codegen.loops[idx], one)); 1251 codegen.loops[idx] = whileOp->getResult(o++); 1252 } 1253 assert(o == operands.size()); 1254 rewriter.create<scf::YieldOp>(loc, operands); 1255 rewriter.setInsertionPointAfter(whileOp); 1256 } 1257 1258 /// Generates the induction structure for a for-loop. 1259 static void genForInduction(Merger &merger, CodeGen &codegen, 1260 PatternRewriter &rewriter, linalg::GenericOp op, 1261 Operation *loop) { 1262 Location loc = op.getLoc(); 1263 unsigned o = 0; 1264 SmallVector<Value, 4> operands; 1265 if (codegen.redVal) { 1266 operands.push_back(codegen.redVal); 1267 updateReduc(merger, codegen, loop->getResult(o++)); 1268 } 1269 assert(o == operands.size()); 1270 if (o > 0) 1271 rewriter.create<scf::YieldOp>(loc, operands); 1272 rewriter.setInsertionPointAfter(loop); 1273 } 1274 1275 /// Generates a single if-statement within a while-loop. 1276 static scf::IfOp genIf(Merger &merger, CodeGen &codegen, 1277 PatternRewriter &rewriter, linalg::GenericOp op, 1278 unsigned idx, llvm::BitVector &conditions) { 1279 Location loc = op.getLoc(); 1280 SmallVector<Type, 4> types; 1281 Value cond; 1282 for (unsigned b = 0, be = conditions.size(); b < be; b++) { 1283 if (conditions[b]) { 1284 unsigned tensor = merger.tensor(b); 1285 assert(idx == merger.index(b)); 1286 Value clause; 1287 if (merger.isDim(b, Dim::kSparse)) { 1288 Value op1 = codegen.idxs[tensor][idx]; 1289 Value op2 = codegen.loops[idx]; 1290 clause = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq, 1291 op1, op2); 1292 } else { 1293 clause = rewriter.create<arith::ConstantIntOp>(loc, 1, 1); // true 1294 } 1295 cond = cond ? rewriter.create<arith::AndIOp>(loc, cond, clause) : clause; 1296 } 1297 } 1298 if (codegen.redVal) 1299 types.push_back(codegen.redVal.getType()); 1300 scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, types, cond, /*else=*/true); 1301 rewriter.setInsertionPointToStart(&ifOp.thenRegion().front()); 1302 return ifOp; 1303 } 1304 1305 /// Generates end of true branch of if-statement within a while-loop. 1306 static void endIf(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, 1307 linalg::GenericOp op, scf::IfOp ifOp, Value ifInput) { 1308 if (codegen.redVal) { 1309 rewriter.create<scf::YieldOp>(op.getLoc(), codegen.redVal); 1310 updateReduc(merger, codegen, ifInput); 1311 } 1312 rewriter.setInsertionPointToStart(&ifOp.elseRegion().front()); 1313 } 1314 1315 //===----------------------------------------------------------------------===// 1316 // Sparse compiler synthesis methods (loop sequence). 1317 //===----------------------------------------------------------------------===// 1318 1319 /// Starts a loop sequence at given level. Returns true if 1320 /// the universal loop index must be maintained at this level. 1321 static bool startLoopSeq(Merger &merger, CodeGen &codegen, 1322 PatternRewriter &rewriter, linalg::GenericOp op, 1323 std::vector<unsigned> &topSort, unsigned exp, 1324 unsigned at, unsigned idx, unsigned ldx, 1325 unsigned lts) { 1326 assert(codegen.curVecLength == 1); 1327 assert(!codegen.loops[idx]); 1328 // Emit invariants at this loop sequence level. 1329 genInvariants(merger, codegen, rewriter, op, exp, ldx, /*atStart=*/true); 1330 // Emit further intitialization at this loop sequence level. 1331 unsigned l0 = merger.set(lts)[0]; 1332 bool needsUniv = 1333 genInit(merger, codegen, rewriter, op, topSort, at, merger.lat(l0).bits); 1334 // Maintain the universal index only if it is actually 1335 // consumed by a subsequent lattice point. 1336 if (needsUniv) { 1337 unsigned lsize = merger.set(lts).size(); 1338 for (unsigned i = 1; i < lsize; i++) { 1339 unsigned li = merger.set(lts)[i]; 1340 if (!merger.hasAnyDimOf(merger.lat(li).simple, Dim::kSparse)) 1341 return true; 1342 } 1343 } 1344 return false; 1345 } 1346 1347 /// Starts a single loop in current sequence. 1348 static Operation *startLoop(Merger &merger, CodeGen &codegen, 1349 PatternRewriter &rewriter, linalg::GenericOp op, 1350 std::vector<unsigned> &topSort, unsigned at, 1351 unsigned li, bool needsUniv) { 1352 assert(codegen.curVecLength == 1); 1353 // Emit the for/while-loop control. 1354 Operation *loop = genLoop(merger, codegen, rewriter, op, topSort, at, 1355 needsUniv, merger.lat(li).simple); 1356 // Emit the locals for this loop. 1357 genLocals(merger, codegen, rewriter, op, topSort, at, needsUniv, 1358 merger.lat(li).bits); 1359 return loop; 1360 } 1361 1362 /// Ends a single loop in current sequence. Returns new values for needsUniv. 1363 static bool endLoop(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, 1364 linalg::GenericOp op, Operation *loop, unsigned idx, 1365 unsigned li, bool needsUniv) { 1366 codegen.curVecLength = 1; 1367 // End a while-loop. 1368 if (auto whileOp = dyn_cast<scf::WhileOp>(loop)) { 1369 genWhileInduction(merger, codegen, rewriter, op, idx, needsUniv, 1370 merger.lat(li).bits, whileOp); 1371 return needsUniv; 1372 } 1373 // End a for-loop. 1374 genForInduction(merger, codegen, rewriter, op, loop); 1375 return false; 1376 } 1377 1378 /// Ends a loop sequence at given level. 1379 static void endLoopSeq(Merger &merger, CodeGen &codegen, 1380 PatternRewriter &rewriter, linalg::GenericOp op, 1381 unsigned exp, unsigned idx, unsigned ldx) { 1382 assert(codegen.curVecLength == 1); 1383 codegen.loops[idx] = Value(); 1384 // Bring a pending reduction back from SIMD form when sequence ends. 1385 if (codegen.redVal) 1386 if (auto vtp = codegen.redVal.getType().dyn_cast<VectorType>()) 1387 updateReduc(merger, codegen, 1388 genVectorReducEnd(codegen, rewriter, op.getLoc(), vtp)); 1389 // Unmark bookkeeping of invariants and loop index. 1390 genInvariants(merger, codegen, rewriter, op, exp, ldx, /*atStart=*/false); 1391 } 1392 1393 /// Recursively generates code while computing iteration lattices in order 1394 /// to manage the complexity of implementing co-iteration over unions 1395 /// and intersections of sparse iterations spaces. 1396 static void genStmt(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, 1397 linalg::GenericOp op, std::vector<unsigned> &topSort, 1398 unsigned exp, unsigned at) { 1399 // At each leaf, assign remaining tensor (sub)expression to output tensor. 1400 if (at == topSort.size()) { 1401 Value rhs = genExp(merger, codegen, rewriter, op, exp); 1402 genTensorStore(merger, codegen, rewriter, op, rhs); 1403 return; 1404 } 1405 1406 // Construct iteration lattices for current loop index, with L0 at top. 1407 unsigned idx = topSort[at]; 1408 unsigned ldx = at == 0 ? -1u : topSort[at - 1]; 1409 unsigned lts = merger.optimizeSet(merger.buildLattices(exp, idx)); 1410 1411 // Start a loop sequence. 1412 bool needsUniv = startLoopSeq(merger, codegen, rewriter, op, topSort, exp, at, 1413 idx, ldx, lts); 1414 1415 // Emit a loop for every lattice point L0 >= Li in this loop sequence. 1416 unsigned lsize = merger.set(lts).size(); 1417 for (unsigned i = 0; i < lsize; i++) { 1418 // Start a loop. 1419 unsigned li = merger.set(lts)[i]; 1420 Operation *loop = 1421 startLoop(merger, codegen, rewriter, op, topSort, at, li, needsUniv); 1422 1423 // Visit all lattices points with Li >= Lj to generate the 1424 // loop-body, possibly with if statements for coiteration. 1425 Value ifInput = codegen.redVal; 1426 bool isWhile = dyn_cast<scf::WhileOp>(loop) != nullptr; 1427 for (unsigned j = 0; j < lsize; j++) { 1428 unsigned lj = merger.set(lts)[j]; 1429 unsigned ej = merger.lat(lj).exp; 1430 if (li == lj || merger.latGT(li, lj)) { 1431 // Recurse into body of each branch. 1432 if (isWhile) { 1433 scf::IfOp ifOp = 1434 genIf(merger, codegen, rewriter, op, idx, merger.lat(lj).simple); 1435 genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1); 1436 endIf(merger, codegen, rewriter, op, ifOp, ifInput); 1437 } else { 1438 genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1); 1439 } 1440 } 1441 } 1442 1443 // End a loop. 1444 needsUniv = 1445 endLoop(merger, codegen, rewriter, op, loop, idx, li, needsUniv); 1446 } 1447 1448 // End a loop sequence. 1449 endLoopSeq(merger, codegen, rewriter, op, exp, idx, ldx); 1450 } 1451 1452 /// Converts the result computed by the sparse kernel into the required form. 1453 static void genResult(Merger &merger, CodeGen &codegen, 1454 PatternRewriter &rewriter, linalg::GenericOp op) { 1455 OpOperand *lhs = op.getOutputOperand(0); 1456 Type resType = lhs->get().getType(); 1457 Value result; 1458 if (getSparseTensorEncoding(resType)) { 1459 // The sparse tensor rematerializes from the original sparse tensor's 1460 // underlying sparse storage format. 1461 rewriter.replaceOpWithNewOp<LoadOp>(op, resType, lhs->get(), 1462 codegen.sparseOut == lhs); 1463 } else { 1464 // To rematerialize an non-annotated tensor, simply load it 1465 // from the bufferized value. 1466 Value val = codegen.buffers.back(); // value array 1467 rewriter.replaceOpWithNewOp<memref::TensorLoadOp>(op, resType, val); 1468 } 1469 } 1470 1471 //===----------------------------------------------------------------------===// 1472 // Sparse compiler rewriting methods. 1473 //===----------------------------------------------------------------------===// 1474 1475 namespace { 1476 1477 /// Sparse rewriting rule for generic Lingalg operation. 1478 struct GenericOpSparsifier : public OpRewritePattern<linalg::GenericOp> { 1479 public: 1480 GenericOpSparsifier(MLIRContext *context, SparsificationOptions o) 1481 : OpRewritePattern<linalg::GenericOp>(context), options(o) {} 1482 1483 LogicalResult matchAndRewrite(linalg::GenericOp op, 1484 PatternRewriter &rewriter) const override { 1485 // Detects sparse annotations and translate the per-dimension sparsity 1486 // information for all tensors to loop indices in the kernel. 1487 assert(op.getNumOutputs() == 1); 1488 unsigned numTensors = op.getNumInputsAndOutputs(); 1489 unsigned numLoops = op.iterator_types().getValue().size(); 1490 Merger merger(numTensors, numLoops); 1491 if (!findSparseAnnotations(merger, op)) 1492 return failure(); 1493 1494 // Computes a topologically sorted iteration graph to ensure 1495 // tensors are visited in natural index order. Fails on cycles. 1496 // This assumes that higher-level passes have already put the 1497 // tensors in each tensor expression in a feasible order. 1498 std::vector<unsigned> topSort; 1499 if (!computeIterationGraph(merger, op, topSort, 1500 SortMask::kIncludeUndef | 1501 SortMask::kIncludeDense) && 1502 !computeIterationGraph(merger, op, topSort, SortMask::kIncludeUndef) && 1503 !computeIterationGraph(merger, op, topSort, SortMask::kIncludeDense) && 1504 !computeIterationGraph(merger, op, topSort, SortMask::kSparseOnly)) 1505 return failure(); 1506 1507 // Builds the tensor expression for the Linalg operation in SSA form. 1508 Optional<unsigned> optExp = merger.buildTensorExpFromLinalg(op); 1509 if (!optExp.hasValue()) 1510 return failure(); 1511 unsigned exp = optExp.getValue(); 1512 1513 // Rejects an inadmissable tensor expression. 1514 OpOperand *sparseOut = nullptr; 1515 if (!isAdmissableTensorExp(merger, op, exp, &sparseOut)) 1516 return failure(); 1517 1518 // Recursively generates code. 1519 CodeGen codegen(options, numTensors, numLoops, sparseOut); 1520 genBuffers(merger, codegen, rewriter, op); 1521 genStmt(merger, codegen, rewriter, op, topSort, exp, 0); 1522 genResult(merger, codegen, rewriter, op); 1523 return success(); 1524 } 1525 1526 private: 1527 /// Options to control sparse code generation. 1528 SparsificationOptions options; 1529 }; 1530 1531 } // namespace 1532 1533 /// Populates the given patterns list with rewriting rules required for 1534 /// the sparsification of linear algebra operations. 1535 void mlir::populateSparsificationPatterns( 1536 RewritePatternSet &patterns, const SparsificationOptions &options) { 1537 patterns.add<GenericOpSparsifier>(patterns.getContext(), options); 1538 } 1539