1 //===- Sparsification.cpp - Implementation of sparsification --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements lowering sparse tensor types to actual sparse code.
10 //
11 // The concept of letting a compiler generate sparse code automatically was
12 // pioneered for dense linear algebra code in Fortran by [Bik96] in MT1 and
13 // formalized to tensor algebra by [Kjolstad17,20] for the Sparse Tensor
14 // Algebra Compiler (TACO). The implementation in this file closely follows
15 // the "sparse iteration theory" that forms the foundation of TACO. A rewriting
16 // rule is applied to each tensor expression in linalg (MLIR's tensor index
17 // notation) where the sparsity of tensors is indicated with annotation using
18 // a per-dimension specification of sparse/dense storage together with a
19 // specification of the order on the dimensions. Subsequently, a topologically
20 // sorted iteration graph, reflecting the required order on indices with respect
21 // to the dimensions of each tensor, is constructed to ensure that all tensors
22 // are visited in natural index order. Next, iteration lattices are constructed
23 // for the tensor expression for every index in topological order. Each
24 // iteration lattice point consists of a conjunction of tensor indices together
25 // with a tensor (sub)expression that needs to be evaluated for that
26 // conjunction. Within the lattice, iteration points are ordered according to
27 // the way indices are exhausted. As such these iteration lattices drive actual
28 // sparse code generation, which consists of a tedious but relatively
29 // straightforward one-to-one mapping from iteration lattices to combinations
30 // of for-loops, while-loops, and if-statements.
31 //
32 // [Bik96] Aart J.C. Bik. Compiler Support for Sparse Matrix Computations.
33 // PhD thesis, Leiden University, May 1996 (aartbik.com/sparse.php).
34 // [Kjolstad17] Fredrik Berg Kjolstad, Shoaib Ashraf Kamil, Stephen Chou,
35 // David Lugato, and Saman Amarasinghe. The Tensor Algebra Compiler.
36 // Proceedings of the ACM on Programming Languages, October 2017.
37 // [Kjolstad20] Fredrik Berg Kjolstad. Sparse Tensor Algebra Compilation.
38 // PhD thesis, MIT, February, 2020 (tensor-compiler.org).
39 //
40 // Implementation detail: We use llvm::SmallVector for vectors with
41 // variable lengths and std::vector for vectors with fixed lengths.
42 //===----------------------------------------------------------------------===//
43 
44 #include "mlir/Dialect/Linalg/IR/LinalgOps.h"
45 #include "mlir/Dialect/Linalg/Utils/Utils.h"
46 #include "mlir/Dialect/SCF/SCF.h"
47 #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
48 #include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
49 #include "mlir/Dialect/StandardOps/IR/Ops.h"
50 #include "mlir/Dialect/Vector/VectorOps.h"
51 #include "mlir/IR/Matchers.h"
52 #include "mlir/IR/TensorEncoding.h"
53 #include "llvm/ADT/SmallBitVector.h"
54 
55 using namespace mlir;
56 using namespace mlir::sparse_tensor;
57 
58 namespace {
59 
60 enum class Kind { kTensor, kInvariant, kMulF, kMulI, kAddF, kAddI };
61 enum class Dim { kSparse, kDense, kSingle, kUndef };
62 
63 /// Tensor expression. Represents a MLIR expression in tensor index notation.
64 /// For tensors, e0 denotes the tensor index. For invariants, the IR value is
65 /// stored directly. For binary operations, e0 and e1 denote the index of the
66 /// children tensor expressions.
67 struct TensorExp {
68   TensorExp(Kind k, unsigned x, unsigned y, Value v)
69       : kind(k), e0(x), e1(y), val(v) {
70     assert((kind == Kind::kTensor && e0 != -1u && e1 == -1u && !val) ||
71            (kind == Kind::kInvariant && e0 == -1u && e1 == -1u && val) ||
72            (kind >= Kind::kMulF && e0 != -1u && e1 != -1u && !val));
73   }
74   Kind kind;
75   /// Indices of children expression(s).
76   unsigned e0;
77   unsigned e1;
78   /// Direct link to IR for an invariant. During code generation,
79   /// field is used to cache "hoisted" loop invariant tensor loads.
80   Value val;
81 };
82 
83 /// Lattice point. Each lattice point consists of a conjunction of tensor
84 /// loop indices (encoded in a bitvector) and the index of the corresponding
85 /// tensor expression.
86 struct LatPoint {
87   LatPoint(unsigned n, unsigned e, unsigned b) : bits(n, false), exp(e) {
88     bits.set(b);
89   }
90   LatPoint(const llvm::BitVector &b, unsigned e) : bits(b), exp(e) {}
91   /// Conjunction of tensor loop indices as bitvector. This represents
92   /// all indices involved in the tensor expression
93   llvm::BitVector bits;
94   /// Simplified conjunction of tensor loop indices as bitvector. This
95   /// represents a simplified condition under which this tensor expression
96   /// must execute. Pre-computed during codegen to avoid repeated eval.
97   llvm::BitVector simple;
98   /// Index of the tensor expresssion.
99   unsigned exp;
100 };
101 
102 /// A class to handle all iteration lattice operations. This class abstracts
103 /// away from some implementation details of storing iteration lattices and
104 /// tensor expressions. This allows for fine-tuning performance characteristics
105 /// independently from the basic algorithm if bottlenecks are identified.
106 class Merger {
107 public:
108   /// Constructs a merger for the given number of tensors and loops. The
109   /// user supplies the number of tensors involved in the kernel, with the
110   /// last tensor in this set denoting the output tensor. The merger adds an
111   /// additional synthetic tensor at the end of this set to represent all
112   /// invariant expressions in the kernel.
113   Merger(unsigned t, unsigned l)
114       : outTensor(t - 1), numTensors(t + 1), numLoops(l),
115         dims(t + 1, std::vector<Dim>(l, Dim::kUndef)) {}
116 
117   /// Adds a tensor expression. Returns its index.
118   unsigned addExp(Kind k, unsigned e0, unsigned e1 = -1u, Value v = Value()) {
119     unsigned e = tensorExps.size();
120     tensorExps.push_back(TensorExp(k, e0, e1, v));
121     return e;
122   }
123   unsigned addExp(Kind k, Value v) { return addExp(k, -1u, -1u, v); }
124 
125   /// Adds an iteration lattice point. Returns its index.
126   unsigned addLat(unsigned t, unsigned i, unsigned e) {
127     assert(t < numTensors && i < numLoops);
128     unsigned p = latPoints.size();
129     latPoints.push_back(LatPoint(numLoops * numTensors, e, numTensors * i + t));
130     return p;
131   }
132 
133   /// Adds a new, initially empty, set. Returns its index.
134   unsigned addSet() {
135     unsigned s = latSets.size();
136     latSets.emplace_back(SmallVector<unsigned, 16>());
137     return s;
138   }
139 
140   /// Computes a single conjunction of two lattice points by taking the "union"
141   /// of loop indices (effectively constructing a larger "intersection" of those
142   /// indices) with a newly constructed tensor (sub)expression of given kind.
143   /// Returns the index of the new lattice point.
144   unsigned conjLatPoint(Kind kind, unsigned p0, unsigned p1) {
145     unsigned p = latPoints.size();
146     llvm::BitVector nb = llvm::BitVector(latPoints[p0].bits);
147     nb |= latPoints[p1].bits;
148     unsigned e = addExp(kind, latPoints[p0].exp, latPoints[p1].exp);
149     latPoints.push_back(LatPoint(nb, e));
150     return p;
151   }
152 
153   /// Conjunctive merge of two lattice sets L0 and L1 is conjunction of
154   /// cartesian product. Returns the index of the new set.
155   unsigned takeConj(Kind kind, unsigned s0, unsigned s1) {
156     unsigned s = addSet();
157     for (unsigned p0 : latSets[s0])
158       for (unsigned p1 : latSets[s1])
159         latSets[s].push_back(conjLatPoint(kind, p0, p1));
160     return s;
161   }
162 
163   /// Disjunctive merge of two lattice sets L0 and L1 is (L0 /\_op L1, L0, L1).
164   /// Returns the index of the new set.
165   unsigned takeDisj(Kind kind, unsigned s0, unsigned s1) {
166     unsigned s = takeConj(kind, s0, s1);
167     for (unsigned p : latSets[s0])
168       latSets[s].push_back(p);
169     for (unsigned p : latSets[s1])
170       latSets[s].push_back(p);
171     return s;
172   }
173 
174   /// Optimizes the iteration lattice points in the given set. This
175   /// method should be called right before code generation to avoid
176   /// generating redundant loops and conditions.
177   unsigned optimizeSet(unsigned s0) {
178     unsigned s = addSet();
179     assert(latSets[s0].size() != 0);
180     unsigned p0 = latSets[s0][0];
181     for (unsigned p1 : latSets[s0]) {
182       bool add = true;
183       if (p0 != p1) {
184         // Is this a straightforward copy?
185         unsigned e = latPoints[p1].exp;
186         if (exp(e).kind == Kind::kTensor && exp(e).e0 == outTensor)
187           continue;
188         // Conjunction already covered?
189         for (unsigned p2 : latSets[s]) {
190           assert(!latGT(p1, p2)); // Lj => Li would be bad
191           if (onlyDenseDiff(p2, p1)) {
192             add = false;
193             break;
194           }
195         }
196         assert(!add || latGT(p0, p1));
197       }
198       if (add)
199         latSets[s].push_back(p1);
200     }
201     for (unsigned p : latSets[s])
202       latPoints[p].simple = simplifyCond(s, p);
203     return s;
204   }
205 
206   /// Simplifies the conditions in a conjunction of a given lattice point
207   /// within the given set using just two basic rules:
208   /// (1) multiple dense conditions are reduced to single dense, and
209   /// (2) a *singleton* sparse/dense is reduced to sparse/random access.
210   llvm::BitVector simplifyCond(unsigned s, unsigned p0) {
211     // First determine if this lattice point is a *singleton*, i.e.,
212     // the last point in a lattice, no other is less than this one.
213     bool isSingleton = true;
214     for (unsigned p1 : latSets[s]) {
215       if (p0 != p1 && latGT(p0, p1)) {
216         isSingleton = false;
217         break;
218       }
219     }
220     // Now apply the two basic rules.
221     llvm::BitVector simple = latPoints[p0].bits;
222     bool reset = isSingleton && hasAnyDimOf(simple, Dim::kSparse);
223     for (unsigned b = 0, be = simple.size(); b < be; b++) {
224       if (simple[b] && !isDim(b, Dim::kSparse)) {
225         if (reset)
226           simple.reset(b);
227         reset = true;
228       }
229     }
230     return simple;
231   }
232 
233   /// Returns true if Li > Lj.
234   bool latGT(unsigned i, unsigned j) const {
235     const llvm::BitVector &bitsi = latPoints[i].bits;
236     const llvm::BitVector &bitsj = latPoints[j].bits;
237     assert(bitsi.size() == bitsj.size());
238     if (bitsi.count() > bitsj.count()) {
239       for (unsigned b = 0, be = bitsj.size(); b < be; b++)
240         if (bitsj[b] && !bitsi[b])
241           return false;
242       return true;
243     }
244     return false;
245   }
246 
247   /// Returns true if Li and Lj only differ in dense.
248   bool onlyDenseDiff(unsigned i, unsigned j) {
249     llvm::BitVector tmp = latPoints[j].bits;
250     tmp ^= latPoints[i].bits;
251     return !hasAnyDimOf(tmp, Dim::kSparse);
252   }
253 
254   /// Bit translation.
255   unsigned tensor(unsigned b) const { return b % numTensors; }
256   unsigned index(unsigned b) const { return b / numTensors; }
257 
258   /// Returns true if bit corresponds to queried dim.
259   bool isDim(unsigned b, Dim d) const { return isDim(tensor(b), index(b), d); }
260 
261   /// Returns true if tensor access at given index has queried dim.
262   bool isDim(unsigned t, unsigned i, Dim d) const {
263     assert(t < numTensors && i < numLoops);
264     return dims[t][i] == d;
265   }
266 
267   /// Returns true if any set bit corresponds to queried dim.
268   bool hasAnyDimOf(const llvm::BitVector &bits, Dim d) const {
269     for (unsigned b = 0, be = bits.size(); b < be; b++)
270       if (bits[b] && isDim(b, d))
271         return true;
272     return false;
273   }
274 
275   /// Setter
276   void setDim(unsigned t, unsigned i, Dim d) { dims[t][i] = d; }
277 
278   /// Getters.
279   TensorExp &exp(unsigned e) { return tensorExps[e]; }
280   LatPoint &lat(unsigned l) { return latPoints[l]; }
281   SmallVector<unsigned, 16> &set(unsigned s) { return latSets[s]; }
282 
283 private:
284   const unsigned outTensor;
285   const unsigned numTensors;
286   const unsigned numLoops;
287 
288   std::vector<std::vector<Dim>> dims;
289   llvm::SmallVector<TensorExp, 32> tensorExps;
290   llvm::SmallVector<LatPoint, 16> latPoints;
291   llvm::SmallVector<SmallVector<unsigned, 16>, 8> latSets;
292 };
293 
294 // Code generation.
295 struct CodeGen {
296   CodeGen(SparsificationOptions o, unsigned numTensors, unsigned numLoops)
297       : options(o), loops(numLoops), sizes(numLoops), buffers(numTensors),
298         pointers(numTensors, std::vector<Value>(numLoops)),
299         indices(numTensors, std::vector<Value>(numLoops)),
300         highs(numTensors, std::vector<Value>(numLoops)),
301         pidxs(numTensors, std::vector<Value>(numLoops)),
302         idxs(numTensors, std::vector<Value>(numLoops)), redExp(-1u), redVal(),
303         curVecLength(1), curVecMask() {}
304   /// Sparsification options.
305   SparsificationOptions options;
306   /// Universal dense indices and upper bounds (by index). The loops array
307   /// is updated with the value of the universal dense index in the current
308   /// loop. The sizes array is set once with the inferred dimension sizes.
309   std::vector<Value> loops;
310   std::vector<Value> sizes;
311   /// Buffers for storing dense and sparse numerical values (by tensor).
312   /// This array is set once during bufferization of all tensors.
313   std::vector<Value> buffers;
314   /// Sparse storage schemes (1-D): pointers and indices (by tensor and index).
315   /// This array is set once during bufferization of all sparse tensors.
316   std::vector<std::vector<Value>> pointers;
317   std::vector<std::vector<Value>> indices;
318   /// Sparse iteration information (by tensor and index). These arrays
319   /// are updated to remain current within the current loop.
320   std::vector<std::vector<Value>> highs;
321   std::vector<std::vector<Value>> pidxs;
322   std::vector<std::vector<Value>> idxs;
323   /// Current reduction, updated during code generation. When indices of a
324   /// reduction are exhausted,  all inner loops can "scalarize" the reduction.
325   // TODO: currently only done for (a chain of) innermost for-loops, where it
326   // is most effective; we could generalize to more outer and while-loops.
327   unsigned redExp;
328   Value redVal;
329   // Current vector length and mask.
330   unsigned curVecLength;
331   Value curVecMask;
332 };
333 
334 } // namespace
335 
336 // Helper method to apply dimension ordering permutation.
337 static unsigned perm(SparseTensorEncodingAttr &enc, unsigned d) {
338   if (enc) {
339     auto order = enc.getDimOrdering();
340     if (order) {
341       assert(order.isPermutation());
342       return order.getDimPosition(d);
343     }
344   }
345   return d;
346 }
347 
348 // Helper method to translate dim level type to internal representation.
349 static Dim toDim(SparseTensorEncodingAttr &enc, unsigned d) {
350   if (enc) {
351     SparseTensorEncodingAttr::DimLevelType tp = enc.getDimLevelType()[d];
352     if (tp == SparseTensorEncodingAttr::DimLevelType::Compressed)
353       return Dim::kSparse;
354     if (tp == SparseTensorEncodingAttr::DimLevelType::Singleton)
355       return Dim::kSingle;
356   }
357   return Dim::kDense;
358 }
359 
360 /// Helper method to inspect sparse encodings in the tensor types.
361 /// Fills the per-dimension sparsity information for all tensors.
362 static bool findSparseAnnotations(Merger &merger, linalg::GenericOp op) {
363   bool annotated = false;
364   unsigned numTensors = op.getNumShapedOperands();
365   unsigned lhs = numTensors - 1;
366   for (unsigned t = 0; t < numTensors; t++) {
367     auto map = op.getIndexingMap(t);
368     if (!map.isProjectedPermutation())
369       return false;
370     auto enc = getSparseTensorEncoding(op.getShapedType(t));
371     if (enc) {
372       annotated = true;
373       if (t == lhs)
374         return false; // TODO: handle sparse outputs
375     }
376     assert(map.getNumResults() == op.getShapedType(t).getRank());
377     for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
378       unsigned idx = map.getDimPosition(perm(enc, d));
379       merger.setDim(t, idx, toDim(enc, d));
380     }
381   }
382   return annotated;
383 }
384 
385 /// A DFS helper to compute a topological sort. Note that recursion is
386 /// bounded by the number of implicit loops, which is always small.
387 /// Returns false when a cycle is detected.
388 static bool topSortDFS(unsigned i, std::vector<unsigned> &visit,
389                        std::vector<unsigned> &topSort,
390                        std::vector<std::vector<bool>> &adjM) {
391   if (visit[i] != 0)
392     return visit[i] != 1; // 1 denotes cycle!
393   visit[i] = 1;
394   for (unsigned j = 0, e = visit.size(); j < e; j++)
395     if (adjM[i][j])
396       if (!topSortDFS(j, visit, topSort, adjM))
397         return false;
398   visit[i] = 2;
399   topSort.push_back(i);
400   return true;
401 }
402 
403 /// Computes a topologically sorted iteration graph for the linalg operation.
404 /// Ensures all tensors are visited in natural index order. This is essential
405 /// for sparse storage formats since these only support access along fixed
406 /// dimensions. Even for dense storage formats, however, the natural index
407 /// order yields innermost unit-stride access with better spatial locality.
408 static bool computeIterationGraph(Merger &merger, linalg::GenericOp op,
409                                   std::vector<unsigned> &topSort,
410                                   bool sparseOnly) {
411   // Set up an n x n from/to adjacency matrix of the iteration graph
412   // for the implicit loop indices i_0 .. i_n-1.
413   unsigned n = op.getNumLoops();
414   std::vector<std::vector<bool>> adjM(n, std::vector<bool>(n, false));
415 
416   // Iterate over the indexing maps of every tensor in the tensor expression.
417   unsigned numTensors = op.getNumShapedOperands();
418   for (unsigned t = 0; t < numTensors; t++) {
419     auto map = op.getIndexingMap(t);
420     auto enc = getSparseTensorEncoding(op.getShapedType(t));
421     assert(map.getNumDims() == n);
422     // Skip dense tensor constraints when sparse only is requested.
423     if (sparseOnly && !enc)
424       continue;
425     // Each tensor expression and optional dimension ordering (row-major
426     // by default) puts an ordering constraint on the loop indices. For
427     // example, the tensor expresion A_ijk forces the ordering i < j < k
428     // on the loop indices if no explicit dimension ordering is given.
429     for (unsigned d = 1, rank = map.getNumResults(); d < rank; d++) {
430       unsigned f = map.getDimPosition(perm(enc, d - 1));
431       unsigned t = map.getDimPosition(perm(enc, d));
432       adjM[f][t] = true;
433     }
434   }
435 
436   // Topologically sort the iteration graph to determine loop order.
437   // Report failure for a cyclic iteration graph.
438   topSort.clear();
439   topSort.reserve(n);
440   std::vector<unsigned> visit(n, 0);
441   for (unsigned i = 0; i < n; i++)
442     if (visit[i] == 0)
443       if (!topSortDFS(i, visit, topSort, adjM))
444         return false; // cycle!
445   std::reverse(std::begin(topSort), std::end(topSort));
446   return true;
447 }
448 
449 /// Traverses the SSA tree (possibly a DAG) to build a tensor expression.
450 /// This simplifies constructing (sub)expressions during iteration lattice
451 /// building (compared to using the SSA representation everywhere).
452 static Optional<unsigned> buildTensorExp(Merger &merger, linalg::GenericOp op,
453                                          Value val) {
454   if (auto arg = val.dyn_cast<BlockArgument>()) {
455     unsigned argN = arg.getArgNumber();
456     // Any parameter of the generic op is considered a tensor,
457     // indexed by the implicit loop bounds.
458     if (arg.getOwner()->getParentOp() == op)
459       return merger.addExp(Kind::kTensor, argN);
460     // Any parameter of a higher op is invariant.
461     return merger.addExp(Kind::kInvariant, val);
462   }
463   Operation *def = val.getDefiningOp();
464   if (def->getBlock() != &op.region().front()) {
465     // Something defined outside is invariant.
466     return merger.addExp(Kind::kInvariant, val);
467   } else if (def->getNumOperands() == 2) {
468     // Construct binary operations if subexpressions could be built.
469     auto x = buildTensorExp(merger, op, def->getOperand(0));
470     auto y = buildTensorExp(merger, op, def->getOperand(1));
471     if (x.hasValue() && y.hasValue()) {
472       unsigned e0 = x.getValue();
473       unsigned e1 = y.getValue();
474       if (isa<MulFOp>(def))
475         return merger.addExp(Kind::kMulF, e0, e1);
476       if (isa<MulIOp>(def))
477         return merger.addExp(Kind::kMulI, e0, e1);
478       if (isa<AddFOp>(def))
479         return merger.addExp(Kind::kAddF, e0, e1);
480       if (isa<AddIOp>(def))
481         return merger.addExp(Kind::kAddI, e0, e1);
482     }
483   }
484   // Cannot build (yet).
485   return None;
486 }
487 
488 /// Builds the iteration lattices in a bottom-up traversal given the remaining
489 /// tensor (sub)expression and the next loop index in the iteration graph.
490 static unsigned buildLattices(Merger &merger, linalg::GenericOp op,
491                               unsigned exp, unsigned idx) {
492   Kind kind = merger.exp(exp).kind;
493   if (kind == Kind::kTensor || kind == Kind::kInvariant) {
494     // Either the index is really used in the tensor expression, or it is
495     // set to the undefined index in that dimension. An invariant expression
496     // is set to a synthetic tensor with undefined indices only.
497     unsigned s = merger.addSet();
498     unsigned t =
499         kind == Kind::kTensor ? merger.exp(exp).e0 : op.getNumShapedOperands();
500     merger.set(s).push_back(merger.addLat(t, idx, exp));
501     return s;
502   }
503   unsigned s0 = buildLattices(merger, op, merger.exp(exp).e0, idx);
504   unsigned s1 = buildLattices(merger, op, merger.exp(exp).e1, idx);
505   switch (kind) {
506   case Kind::kTensor:
507   case Kind::kInvariant:
508     llvm_unreachable("handled above");
509   case Kind::kMulF:
510   case Kind::kMulI:
511     return merger.takeConj(kind, s0, s1);
512   case Kind::kAddF:
513   case Kind::kAddI:
514     return merger.takeDisj(kind, s0, s1);
515   }
516   llvm_unreachable("unexpected expression kind");
517 }
518 
519 /// Maps sparse integer option to actual integral storage type.
520 static Type genIntType(PatternRewriter &rewriter, unsigned width) {
521   if (width == 0)
522     return rewriter.getIndexType();
523   return rewriter.getIntegerType(width);
524 }
525 
526 /// Detects in-place annotation on tensor argument.
527 static bool getInPlace(Value val) {
528   if (auto arg = val.dyn_cast<BlockArgument>())
529     if (auto funcOp = dyn_cast<FuncOp>(arg.getOwner()->getParentOp()))
530       if (auto attr = funcOp.getArgAttrOfType<BoolAttr>(
531               arg.getArgNumber(), linalg::LinalgDialect::kInplaceableAttrName))
532         return attr.getValue();
533   return false;
534 }
535 
536 /// Generates buffer for the output tensor.
537 static Value genOutputBuffer(CodeGen &codegen, PatternRewriter &rewriter,
538                              linalg::GenericOp op, MemRefType denseTp,
539                              ArrayRef<Value> args) {
540   Location loc = op.getLoc();
541   Value tensor = op.getOutput(0);
542   // The output tensor simply could materialize from the buffer that will
543   // be generated for the tensor present in the outs() clause. This has
544   // the major advantage that the sparse kernel only updates the nonzero
545   // positions for the output tensor.
546   if (getInPlace(tensor))
547     return rewriter.create<memref::BufferCastOp>(loc, denseTp, tensor);
548   // By default, a new buffer is allocated which is initialized to the
549   // tensor defined in the outs() clause. This is always correct but
550   // introduces a dense initialization component that may negatively
551   // impact the running complexity of the sparse kernel.
552   Value init = rewriter.create<memref::BufferCastOp>(loc, denseTp, tensor);
553   Value alloc = rewriter.create<memref::AllocOp>(loc, denseTp, args);
554   rewriter.create<linalg::CopyOp>(loc, init, alloc);
555   return alloc;
556 }
557 
558 /// Local bufferization of all dense and sparse data structures.
559 /// This code enables testing the first prototype sparse compiler.
560 // TODO: replace this with a proliferated bufferization strategy
561 static void genBuffers(Merger &merger, CodeGen &codegen,
562                        PatternRewriter &rewriter, linalg::GenericOp op) {
563   Location loc = op.getLoc();
564   unsigned numTensors = op.getNumShapedOperands();
565   unsigned numInputs = op.getNumInputs();
566   assert(numTensors == numInputs + 1);
567   // For every tensor, find lower and upper bound on dimensions, set the
568   // same bounds on loop indices, and obtain dense or sparse buffer(s).
569   SmallVector<Value, 4> args;
570   for (unsigned t = 0; t < numTensors; t++) {
571     Value tensor = t < numInputs ? op.getInput(t) : op.getOutput(0);
572     auto tensorType = op.getShapedType(t);
573     auto shape = tensorType.getShape();
574     auto map = op.getIndexingMap(t);
575     auto enc = getSparseTensorEncoding(tensorType);
576     // Scan all dimensions of current tensor.
577     args.clear();
578     for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
579       unsigned idx = map.getDimPosition(perm(enc, d));
580       // Handle sparse storage schemes.
581       if (merger.isDim(t, idx, Dim::kSparse)) {
582         auto dynShape = {ShapedType::kDynamicSize};
583         auto ptrTp = MemRefType::get(
584             dynShape, genIntType(rewriter, enc.getPointerBitWidth()));
585         auto indTp = MemRefType::get(
586             dynShape, genIntType(rewriter, enc.getIndexBitWidth()));
587         Value dim = rewriter.create<ConstantIndexOp>(loc, d);
588         // Generate sparse primitives to obtains pointer and indices.
589         codegen.pointers[t][idx] =
590             rewriter.create<ToPointersOp>(loc, ptrTp, tensor, dim);
591         codegen.indices[t][idx] =
592             rewriter.create<ToIndicesOp>(loc, indTp, tensor, dim);
593       }
594       // Find lower and upper bound in current dimension.
595       Value up;
596       if (shape[d] == MemRefType::kDynamicSize) {
597         up = rewriter.create<memref::DimOp>(loc, tensor, d);
598         args.push_back(up);
599       } else {
600         up = rewriter.create<ConstantIndexOp>(loc, shape[d]);
601       }
602       codegen.sizes[idx] = codegen.highs[t][idx] = up;
603     }
604     // Perform the required bufferization. All dense inputs materialize
605     // from the input tensor. The dense output tensor needs special
606     // handling. Sparse inputs use a sparse primitive to obtain the values.
607     if (!enc) {
608       auto denseTp = MemRefType::get(shape, tensorType.getElementType());
609       if (t < numInputs)
610         codegen.buffers[t] =
611             rewriter.create<memref::BufferCastOp>(loc, denseTp, tensor);
612       else
613         codegen.buffers[t] =
614             genOutputBuffer(codegen, rewriter, op, denseTp, args);
615     } else {
616       auto dynShape = {ShapedType::kDynamicSize};
617       auto sparseTp = MemRefType::get(dynShape, tensorType.getElementType());
618       codegen.buffers[t] = rewriter.create<ToValuesOp>(loc, sparseTp, tensor);
619     }
620   }
621 }
622 
623 /// Constructs vector type.
624 static VectorType vectorType(CodeGen &codegen, Type etp) {
625   return VectorType::get(codegen.curVecLength, etp);
626 }
627 
628 /// Constructs vector type from pointer.
629 static VectorType vectorType(CodeGen &codegen, Value ptr) {
630   return vectorType(codegen, ptr.getType().cast<MemRefType>().getElementType());
631 }
632 
633 /// Constructs vector iteration mask.
634 static Value genVectorMask(CodeGen &codegen, PatternRewriter &rewriter,
635                            Value iv, Value lo, Value hi, Value step) {
636   Location loc = iv.getLoc();
637   VectorType mtp = vectorType(codegen, rewriter.getIntegerType(1));
638   // Special case if the vector length evenly divides the trip count (for
639   // example, "for i = 0, 128, 16"). A constant all-true mask is generated
640   // so that all subsequent masked memory operations are immediately folded
641   // into unconditional memory operations.
642   IntegerAttr loInt, hiInt, stepInt;
643   if (matchPattern(lo, m_Constant(&loInt)) &&
644       matchPattern(hi, m_Constant(&hiInt)) &&
645       matchPattern(step, m_Constant(&stepInt))) {
646     if (((hiInt.getInt() - loInt.getInt()) % stepInt.getInt()) == 0)
647       return rewriter.create<vector::BroadcastOp>(
648           loc, mtp, rewriter.create<ConstantIntOp>(loc, 1, 1));
649   }
650   // Otherwise, generate a vector mask that avoids overrunning the upperbound
651   // during vector execution. Here we rely on subsequent loop optimizations to
652   // avoid executing the mask in all iterations, for example, by splitting the
653   // loop into an unconditional vector loop and a scalar cleanup loop.
654   Value end = rewriter.create<SubIOp>(loc, hi, iv);
655   return rewriter.create<vector::CreateMaskOp>(loc, mtp, end);
656 }
657 
658 /// Generates a vectorized load lhs = a[ind[lo:hi]] or lhs = a[lo:hi].
659 static Value genVectorLoad(CodeGen &codegen, PatternRewriter &rewriter,
660                            Value ptr, ArrayRef<Value> args) {
661   Location loc = ptr.getLoc();
662   VectorType vtp = vectorType(codegen, ptr);
663   Value pass = rewriter.create<ConstantOp>(loc, vtp, rewriter.getZeroAttr(vtp));
664   if (args.back().getType().isa<VectorType>()) {
665     SmallVector<Value, 4> scalarArgs(args.begin(), args.end());
666     Value indexVec = args.back();
667     scalarArgs.back() = rewriter.create<ConstantIndexOp>(loc, 0);
668     return rewriter.create<vector::GatherOp>(
669         loc, vtp, ptr, scalarArgs, indexVec, codegen.curVecMask, pass);
670   }
671   return rewriter.create<vector::MaskedLoadOp>(loc, vtp, ptr, args,
672                                                codegen.curVecMask, pass);
673 }
674 
675 /// Generates a vectorized store a[ind[lo:hi]] = rhs or a[lo:hi] = rhs.
676 static void genVectorStore(CodeGen &codegen, PatternRewriter &rewriter,
677                            Value rhs, Value ptr, ArrayRef<Value> args) {
678   Location loc = ptr.getLoc();
679   if (args.back().getType().isa<VectorType>()) {
680     SmallVector<Value, 4> scalarArgs(args.begin(), args.end());
681     Value indexVec = args.back();
682     scalarArgs.back() = rewriter.create<ConstantIndexOp>(loc, 0);
683     rewriter.create<vector::ScatterOp>(loc, ptr, scalarArgs, indexVec,
684                                        codegen.curVecMask, rhs);
685     return;
686   }
687   rewriter.create<vector::MaskedStoreOp>(loc, ptr, args, codegen.curVecMask,
688                                          rhs);
689 }
690 
691 /// Generates a vectorized invariant. Here we rely on subsequent loop
692 /// optimizations to hoist the invariant broadcast out of the vector loop.
693 static Value genVectorInvariantValue(CodeGen &codegen,
694                                      PatternRewriter &rewriter, Value val) {
695   VectorType vtp = vectorType(codegen, val.getType());
696   return rewriter.create<vector::BroadcastOp>(val.getLoc(), vtp, val);
697 }
698 
699 /// Generates a load on a dense or sparse tensor.
700 static Value genTensorLoad(Merger &merger, CodeGen &codegen,
701                            PatternRewriter &rewriter, linalg::GenericOp op,
702                            unsigned exp) {
703   // Test if the load was hoisted to a higher loop nest.
704   Value val = merger.exp(exp).val;
705   if (val) {
706     if (codegen.curVecLength > 1 && !val.getType().isa<VectorType>())
707       return genVectorInvariantValue(codegen, rewriter, val);
708     return val;
709   }
710   // Actual load.
711   SmallVector<Value, 4> args;
712   unsigned tensor = merger.exp(exp).e0;
713   auto map = op.getIndexingMap(tensor);
714   auto enc = getSparseTensorEncoding(op.getShapedType(tensor));
715   for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
716     unsigned idx = map.getDimPosition(perm(enc, d));
717     args.push_back(codegen.loops[idx]); // universal dense index
718     if (enc) {
719       args.clear();
720       args.push_back(codegen.pidxs[tensor][idx]); // position index
721     }
722   }
723   Location loc = op.getLoc();
724   Value ptr = codegen.buffers[tensor];
725   if (codegen.curVecLength > 1)
726     return genVectorLoad(codegen, rewriter, ptr, args);
727   return rewriter.create<memref::LoadOp>(loc, ptr, args);
728 }
729 
730 /// Generates a store on a dense tensor.
731 static void genTensorStore(Merger &merger, CodeGen &codegen,
732                            PatternRewriter &rewriter, linalg::GenericOp op,
733                            unsigned tensor, Value rhs) {
734   Location loc = op.getLoc();
735   // Test if this is a scalarized reduction.
736   unsigned lhs = op.getNumShapedOperands() - 1;
737   if (lhs == tensor && codegen.redVal) {
738     if (codegen.curVecLength > 1)
739       rhs = rewriter.create<SelectOp>(loc, codegen.curVecMask, rhs,
740                                       codegen.redVal);
741     codegen.redVal = rhs;
742     return;
743   }
744   // Actual store.
745   SmallVector<Value, 4> args;
746   auto map = op.getIndexingMap(tensor);
747   assert(!getSparseTensorEncoding(op.getShapedType(tensor)));
748   for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
749     unsigned idx = map.getDimPosition(d);
750     args.push_back(codegen.loops[idx]); // universal dense index
751   }
752   Value ptr = codegen.buffers[tensor];
753   if (codegen.curVecLength > 1)
754     genVectorStore(codegen, rewriter, rhs, ptr, args);
755   else
756     rewriter.create<memref::StoreOp>(loc, rhs, ptr, args);
757 }
758 
759 /// Generates a pointer/index load from the sparse storage scheme. Narrower
760 /// data types need to be zero extended before casting the value into the
761 /// index type used for looping and indexing.
762 static Value genLoad(CodeGen &codegen, PatternRewriter &rewriter, Location loc,
763                      Value ptr, Value s) {
764   // See https://llvm.org/docs/GetElementPtr.html for some background on
765   // the complications described below.
766   if (codegen.curVecLength > 1) {
767     // Since the index vector is used in a subsequent gather/scatter operations,
768     // which effectively defines an unsigned pointer + signed index, we must
769     // zero extend the vector to an index width. For 8-bit and 16-bit values,
770     // an 32-bit index width suffices. For 32-bit values, zero extending the
771     // elements into 64-bit loses some performance since the 32-bit indexed
772     // gather/scatter is more efficient than the 64-bit index variant (in
773     // the future, we could introduce a flag that states the negative space
774     // of 32-bit indices is unused). For 64-bit values, there is no good way
775     // to state that the indices are unsigned, with creates the potential of
776     // incorrect address calculations in the unlikely case we need such
777     // extremely large offsets.
778     Type etp = ptr.getType().cast<MemRefType>().getElementType();
779     Value vload = genVectorLoad(codegen, rewriter, ptr, {s});
780     if (!etp.isa<IndexType>()) {
781       if (etp.getIntOrFloatBitWidth() < 32)
782         vload = rewriter.create<ZeroExtendIOp>(
783             loc, vload, vectorType(codegen, rewriter.getIntegerType(32)));
784       else if (etp.getIntOrFloatBitWidth() < 64)
785         vload = rewriter.create<ZeroExtendIOp>(
786             loc, vload, vectorType(codegen, rewriter.getIntegerType(64)));
787     }
788     return vload;
789   }
790   // For the scalar case, we simply zero extend narrower indices into 64-bit
791   // values before casting to index without a performance penalty. Here too,
792   // however, indices that already are 64-bit, in theory, cannot express the
793   // full range as explained above.
794   Value load = rewriter.create<memref::LoadOp>(loc, ptr, s);
795   if (!load.getType().isa<IndexType>()) {
796     if (load.getType().getIntOrFloatBitWidth() < 64)
797       load = rewriter.create<ZeroExtendIOp>(loc, load,
798                                             rewriter.getIntegerType(64));
799     load = rewriter.create<IndexCastOp>(loc, load, rewriter.getIndexType());
800   }
801   return load;
802 }
803 
804 /// Generates an invariant value.
805 static Value genInvariantValue(Merger &merger, CodeGen &codegen,
806                                PatternRewriter &rewriter, unsigned exp) {
807   Value val = merger.exp(exp).val;
808   if (codegen.curVecLength > 1)
809     return genVectorInvariantValue(codegen, rewriter, val);
810   return val;
811 }
812 
813 /// Generates an address computation "sz * p + i".
814 static Value genAddress(CodeGen &codegen, PatternRewriter &rewriter,
815                         Location loc, Value size, Value p, Value i) {
816   Value mul = rewriter.create<MulIOp>(loc, size, p);
817   if (auto vtp = i.getType().dyn_cast<VectorType>()) {
818     Value inv = rewriter.create<IndexCastOp>(loc, mul, vtp.getElementType());
819     mul = genVectorInvariantValue(codegen, rewriter, inv);
820   }
821   return rewriter.create<AddIOp>(loc, mul, i);
822 }
823 
824 /// Generates start of a reduction.
825 static Value genReductionStart(Merger &merger, CodeGen &codegen,
826                                PatternRewriter &rewriter,
827                                linalg::GenericOp op) {
828   if (codegen.redVal)
829     return codegen.redVal; // chained with previous for-loop
830   if (codegen.curVecLength > 1) {
831     // TODO: assumes + reductions for now
832     VectorType vtp = vectorType(codegen, codegen.buffers[codegen.redExp]);
833     return rewriter.create<ConstantOp>(op.getLoc(), vtp,
834                                        rewriter.getZeroAttr(vtp));
835   }
836   return genTensorLoad(merger, codegen, rewriter, op, codegen.redExp);
837 }
838 
839 /// Generates end of a reduction.
840 static void genReductionEnd(Merger &merger, CodeGen &codegen,
841                             PatternRewriter &rewriter, linalg::GenericOp op) {
842   Value red = codegen.redVal;
843   if (!red)
844     return;
845   assert(codegen.curVecLength == 1);
846   codegen.redVal = merger.exp(codegen.redExp).val = Value(); // end chain
847   unsigned lhs = op.getNumShapedOperands() - 1;
848   if (auto vtp = red.getType().dyn_cast<VectorType>()) {
849     // TODO: assumes + reductions for now
850     StringAttr kind = rewriter.getStringAttr("add");
851     Value ld = genTensorLoad(merger, codegen, rewriter, op, codegen.redExp);
852     // Integer reductions don't accept an accumulator.
853     if (vtp.getElementType().isa<IntegerType>()) {
854       red = rewriter.create<vector::ReductionOp>(op.getLoc(), ld.getType(),
855                                                  kind, red, ValueRange{});
856       red = rewriter.create<AddIOp>(op.getLoc(), red, ld);
857     } else {
858       red = rewriter.create<vector::ReductionOp>(op.getLoc(), ld.getType(),
859                                                  kind, red, ld);
860     }
861   }
862   genTensorStore(merger, codegen, rewriter, op, lhs, red);
863 }
864 
865 /// Recursively generates tensor expression.
866 static Value genExp(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
867                     linalg::GenericOp op, unsigned exp) {
868   if (merger.exp(exp).kind == Kind::kTensor)
869     return genTensorLoad(merger, codegen, rewriter, op, exp);
870   else if (merger.exp(exp).kind == Kind::kInvariant)
871     return genInvariantValue(merger, codegen, rewriter, exp);
872   Value v0 = genExp(merger, codegen, rewriter, op, merger.exp(exp).e0);
873   Value v1 = genExp(merger, codegen, rewriter, op, merger.exp(exp).e1);
874   switch (merger.exp(exp).kind) {
875   case Kind::kTensor:
876   case Kind::kInvariant:
877     llvm_unreachable("handled above");
878   case Kind::kMulF:
879     return rewriter.create<MulFOp>(op.getLoc(), v0, v1);
880   case Kind::kMulI:
881     return rewriter.create<MulIOp>(op.getLoc(), v0, v1);
882   case Kind::kAddF:
883     return rewriter.create<AddFOp>(op.getLoc(), v0, v1);
884   case Kind::kAddI:
885     return rewriter.create<AddIOp>(op.getLoc(), v0, v1);
886   }
887   llvm_unreachable("unexpected expression kind");
888 }
889 
890 /// Hoists loop invariant tensor loads for which indices have been exhausted.
891 static void genInvariants(Merger &merger, CodeGen &codegen,
892                           PatternRewriter &rewriter, linalg::GenericOp op,
893                           unsigned exp, unsigned ldx, bool hoist) {
894   if (merger.exp(exp).kind == Kind::kTensor) {
895     // Inspect tensor indices.
896     bool atLevel = ldx == -1u;
897     unsigned tensor = merger.exp(exp).e0;
898     auto map = op.getIndexingMap(tensor);
899     auto enc = getSparseTensorEncoding(op.getShapedType(tensor));
900     for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
901       unsigned idx = map.getDimPosition(perm(enc, d));
902       if (!codegen.loops[idx])
903         return; // still in play
904       else if (idx == ldx)
905         atLevel = true;
906     }
907     // All exhausted at this level (atLevel denotes exactly at this level).
908     unsigned lhs = op.getNumShapedOperands() - 1;
909     if (lhs == tensor) {
910       codegen.redExp = hoist ? exp : -1u;
911     } else if (atLevel) {
912       merger.exp(exp).val =
913           hoist ? genTensorLoad(merger, codegen, rewriter, op, exp) : Value();
914     }
915   } else if (merger.exp(exp).kind != Kind::kInvariant) {
916     // Traverse into the binary operations. Note that we only hoist
917     // tensor loads, since subsequent MLIR/LLVM passes know how to
918     // deal with all other kinds of derived loop invariants.
919     unsigned e0 = merger.exp(exp).e0;
920     unsigned e1 = merger.exp(exp).e1;
921     genInvariants(merger, codegen, rewriter, op, e0, ldx, hoist);
922     genInvariants(merger, codegen, rewriter, op, e1, ldx, hoist);
923   }
924 }
925 
926 /// Generates initialization code for the subsequent loop sequence at
927 /// current index level. Returns true if the loop sequence needs to
928 /// maintain the universal index.
929 static bool genInit(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
930                     linalg::GenericOp op, std::vector<unsigned> &topSort,
931                     unsigned at, llvm::BitVector &inits) {
932   bool needsUniv = false;
933   Location loc = op.getLoc();
934   unsigned idx = topSort[at];
935 
936   // Initialize sparse positions.
937   for (unsigned b = 0, be = inits.size(); b < be; b++) {
938     if (inits[b]) {
939       unsigned tensor = merger.tensor(b);
940       assert(idx == merger.index(b));
941       if (merger.isDim(b, Dim::kSparse)) {
942         // Initialize sparse index.
943         unsigned pat = at;
944         for (; pat != 0; pat--) {
945           if (codegen.pidxs[tensor][topSort[pat - 1]])
946             break;
947         }
948         Value ptr = codegen.pointers[tensor][idx];
949         Value one = rewriter.create<ConstantIndexOp>(loc, 1);
950         Value p0 = (pat == 0) ? rewriter.create<ConstantIndexOp>(loc, 0)
951                               : codegen.pidxs[tensor][topSort[pat - 1]];
952         codegen.pidxs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p0);
953         Value p1 = rewriter.create<AddIOp>(loc, p0, one);
954         codegen.highs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p1);
955       } else {
956         // Dense index still in play.
957         needsUniv = true;
958       }
959     }
960   }
961 
962   // Initialize the universal dense index.
963   codegen.loops[idx] = rewriter.create<ConstantIndexOp>(loc, 0);
964   return needsUniv;
965 }
966 
967 /// Returns vectorization strategy. Any implicit inner loop in the Linalg
968 /// operation is a candidate. Whether it is actually converted to SIMD code
969 /// depends on the requested strategy.
970 static bool isVectorFor(CodeGen &codegen, bool isInner, bool isSparse) {
971   switch (codegen.options.vectorizationStrategy) {
972   case SparseVectorizationStrategy::kNone:
973     return false;
974   case SparseVectorizationStrategy::kDenseInnerLoop:
975     return isInner && !isSparse;
976   case SparseVectorizationStrategy::kAnyStorageInnerLoop:
977     return isInner;
978   }
979   llvm_unreachable("unexpected vectorization strategy");
980 }
981 
982 /// Returns parallelization strategy. Any implicit loop in the Linalg operation
983 /// that is marked "parallel" is a candidate. Whether it is actually converted
984 /// to a parallel operation depends on the requested strategy.
985 static bool isParallelFor(CodeGen &codegen, bool isOuter, bool isReduction,
986                           bool isSparse, bool isVector) {
987   switch (codegen.options.parallelizationStrategy) {
988   case SparseParallelizationStrategy::kNone:
989     return false;
990   case SparseParallelizationStrategy::kDenseOuterLoop:
991     return isOuter && !isSparse && !isReduction && !isVector;
992   case SparseParallelizationStrategy::kAnyStorageOuterLoop:
993     return isOuter && !isReduction && !isVector;
994   case SparseParallelizationStrategy::kDenseAnyLoop:
995     return !isSparse && !isReduction && !isVector;
996   case SparseParallelizationStrategy::kAnyStorageAnyLoop:
997     return !isReduction && !isVector;
998   }
999   llvm_unreachable("unexpected parallelization strategy");
1000 }
1001 
1002 /// Checks unit strides for dense tensors. The iteration graph may have ignored
1003 /// dense access patterns in order to avoid cycles (sparse access patterns are
1004 /// always placed innermost), but that means dense access has become strided.
1005 /// For now, we reject vectorization of such cases.
1006 /// TODO: implement strided load/stores on dense arrays
1007 static bool denseUnitStrides(Merger &merger, linalg::GenericOp op,
1008                              unsigned idx) {
1009   unsigned numTensors = op.getNumShapedOperands();
1010   for (unsigned t = 0; t < numTensors; t++) {
1011     if (!getSparseTensorEncoding(op.getShapedType(t))) {
1012       auto map = op.getIndexingMap(t);
1013       for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
1014         if (map.getDimPosition(d) == idx && d != rank - 1)
1015           return false;
1016       }
1017     }
1018   }
1019   return true;
1020 }
1021 
1022 /// Generates a for-loop on a single index.
1023 static Operation *genFor(Merger &merger, CodeGen &codegen,
1024                          PatternRewriter &rewriter, linalg::GenericOp op,
1025                          bool isOuter, bool isInner, unsigned idx,
1026                          llvm::BitVector &indices) {
1027   unsigned fb = indices.find_first();
1028   unsigned tensor = merger.tensor(fb);
1029   assert(idx == merger.index(fb));
1030   auto iteratorTypes = op.iterator_types().getValue();
1031   bool isReduction = linalg::isReductionIteratorType(iteratorTypes[idx]);
1032   bool isSparse = merger.isDim(fb, Dim::kSparse);
1033   bool isVector = isVectorFor(codegen, isInner, isSparse) &&
1034                   denseUnitStrides(merger, op, idx);
1035   bool isParallel =
1036       isParallelFor(codegen, isOuter, isReduction, isSparse, isVector);
1037 
1038   // Prepare vector length.
1039   if (isVector)
1040     codegen.curVecLength = codegen.options.vectorLength;
1041 
1042   // Loop bounds and increment.
1043   Location loc = op.getLoc();
1044   Value lo = isSparse ? codegen.pidxs[tensor][idx] : codegen.loops[idx];
1045   Value hi = isSparse ? codegen.highs[tensor][idx] : codegen.sizes[idx];
1046   Value step = rewriter.create<ConstantIndexOp>(loc, codegen.curVecLength);
1047 
1048   // Emit a parallel loop.
1049   if (isParallel) {
1050     assert(!isVector);
1051     scf::ParallelOp parOp = rewriter.create<scf::ParallelOp>(loc, lo, hi, step);
1052     if (isSparse)
1053       codegen.pidxs[tensor][idx] = parOp.getInductionVars()[0];
1054     else
1055       codegen.loops[idx] = parOp.getInductionVars()[0];
1056     rewriter.setInsertionPointToStart(parOp.getBody());
1057     return parOp;
1058   }
1059 
1060   // Emit a sequential loop, potentially with a scalarized reduction.
1061   bool scalarRed = isInner && codegen.redExp != -1u;
1062   SmallVector<Value, 4> operands;
1063   if (scalarRed) {
1064     Value load = genReductionStart(merger, codegen, rewriter, op);
1065     operands.push_back(load);
1066   }
1067   scf::ForOp forOp = rewriter.create<scf::ForOp>(loc, lo, hi, step, operands);
1068   if (scalarRed) {
1069     codegen.redVal = merger.exp(codegen.redExp).val =
1070         forOp.getRegionIterArgs().front();
1071   }
1072   // Assign induction variable to sparse or dense index.
1073   Value iv = forOp.getInductionVar();
1074   if (isSparse)
1075     codegen.pidxs[tensor][idx] = iv;
1076   else
1077     codegen.loops[idx] = iv;
1078   rewriter.setInsertionPointToStart(forOp.getBody());
1079   // Share vector iteration mask between all subsequent loads/stores.
1080   if (isVector)
1081     codegen.curVecMask = genVectorMask(codegen, rewriter, iv, lo, hi, step);
1082   return forOp;
1083 }
1084 
1085 /// Emit a while-loop for co-iteration over multiple indices.
1086 static Operation *genWhile(Merger &merger, CodeGen &codegen,
1087                            PatternRewriter &rewriter, linalg::GenericOp op,
1088                            unsigned idx, bool needsUniv,
1089                            llvm::BitVector &indices) {
1090   SmallVector<Type, 4> types;
1091   SmallVector<Value, 4> operands;
1092   // Construct the while-loop with a parameter for each index.
1093   Type indexType = rewriter.getIndexType();
1094   for (unsigned b = 0, be = indices.size(); b < be; b++) {
1095     if (indices[b] && merger.isDim(b, Dim::kSparse)) {
1096       unsigned tensor = merger.tensor(b);
1097       assert(idx == merger.index(b));
1098       types.push_back(indexType);
1099       assert(codegen.pidxs[tensor][idx].getType().isa<IndexType>() &&
1100              "type mismatch for sparse index");
1101       operands.push_back(codegen.pidxs[tensor][idx]);
1102     }
1103   }
1104   if (needsUniv) {
1105     types.push_back(indexType);
1106     assert(codegen.loops[idx].getType().isa<IndexType>() &&
1107            "type mismatch for universal index");
1108     operands.push_back(codegen.loops[idx]);
1109   }
1110   Location loc = op.getLoc();
1111   scf::WhileOp whileOp = rewriter.create<scf::WhileOp>(loc, types, operands);
1112   Block *before = rewriter.createBlock(&whileOp.before(), {}, types);
1113   Block *after = rewriter.createBlock(&whileOp.after(), {}, types);
1114 
1115   // Build the "before" region, which effectively consists
1116   // of a conjunction of "i < upper" tests on all induction.
1117   rewriter.setInsertionPointToStart(&whileOp.before().front());
1118   Value cond;
1119   unsigned o = 0;
1120   for (unsigned b = 0, be = indices.size(); b < be; b++) {
1121     if (indices[b] && merger.isDim(b, Dim::kSparse)) {
1122       unsigned tensor = merger.tensor(b);
1123       assert(idx == merger.index(b));
1124       Value op1 = before->getArgument(o);
1125       Value op2 = codegen.highs[tensor][idx];
1126       Value opc = rewriter.create<CmpIOp>(loc, CmpIPredicate::ult, op1, op2);
1127       cond = cond ? rewriter.create<AndOp>(loc, cond, opc) : opc;
1128       codegen.pidxs[tensor][idx] = after->getArgument(o++);
1129     }
1130   }
1131   if (needsUniv)
1132     codegen.loops[idx] = after->getArgument(o++);
1133   assert(o == operands.size());
1134   rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments());
1135   rewriter.setInsertionPointToStart(&whileOp.after().front());
1136   return whileOp;
1137 }
1138 
1139 /// Generates a for-loop or a while-loop, depending on whether it implements
1140 /// singleton iteration or co-iteration over the given conjunction.
1141 static Operation *genLoop(Merger &merger, CodeGen &codegen,
1142                           PatternRewriter &rewriter, linalg::GenericOp op,
1143                           std::vector<unsigned> &topSort, unsigned at,
1144                           bool needsUniv, llvm::BitVector &indices) {
1145   unsigned idx = topSort[at];
1146   if (indices.count() == 1) {
1147     bool isOuter = at == 0;
1148     bool isInner = at == topSort.size() - 1;
1149     return genFor(merger, codegen, rewriter, op, isOuter, isInner, idx,
1150                   indices);
1151   }
1152   genReductionEnd(merger, codegen, rewriter, op); // cannot chain
1153   return genWhile(merger, codegen, rewriter, op, idx, needsUniv, indices);
1154 }
1155 
1156 /// Generates the local variables for this loop, consisting of the sparse
1157 /// indices, restored universal dense index, and dense positions.
1158 static void genLocals(Merger &merger, CodeGen &codegen,
1159                       PatternRewriter &rewriter, linalg::GenericOp op,
1160                       std::vector<unsigned> &topSort, unsigned at,
1161                       bool needsUniv, llvm::BitVector &locals) {
1162   Location loc = op.getLoc();
1163   unsigned idx = topSort[at];
1164 
1165   // Initialize sparse indices.
1166   Value min;
1167   for (unsigned b = 0, be = locals.size(); b < be; b++) {
1168     if (locals[b] && merger.isDim(b, Dim::kSparse)) {
1169       unsigned tensor = merger.tensor(b);
1170       assert(idx == merger.index(b));
1171       Value ptr = codegen.indices[tensor][idx];
1172       Value s = codegen.pidxs[tensor][idx];
1173       Value load = genLoad(codegen, rewriter, loc, ptr, s);
1174       codegen.idxs[tensor][idx] = load;
1175       if (!needsUniv) {
1176         if (min) {
1177           Value cmp =
1178               rewriter.create<CmpIOp>(loc, CmpIPredicate::ult, load, min);
1179           min = rewriter.create<SelectOp>(loc, cmp, load, min);
1180         } else {
1181           min = load;
1182         }
1183       }
1184     }
1185   }
1186 
1187   // Merge dense universal index over minimum.
1188   if (min) {
1189     assert(!needsUniv);
1190     codegen.loops[idx] = min;
1191   }
1192 
1193   // Initialize dense positions.
1194   for (unsigned b = 0, be = locals.size(); b < be; b++) {
1195     if (locals[b] && merger.isDim(b, Dim::kDense)) {
1196       unsigned tensor = merger.tensor(b);
1197       assert(idx == merger.index(b));
1198       unsigned pat = at;
1199       for (; pat != 0; pat--)
1200         if (codegen.pidxs[tensor][topSort[pat - 1]])
1201           break;
1202       Value p = (pat == 0) ? rewriter.create<ConstantIndexOp>(loc, 0)
1203                            : codegen.pidxs[tensor][topSort[pat - 1]];
1204       codegen.pidxs[tensor][idx] = genAddress(
1205           codegen, rewriter, loc, codegen.sizes[idx], p, codegen.loops[idx]);
1206     }
1207   }
1208 }
1209 
1210 /// Generates the induction structure for a while-loop.
1211 static void genWhileInduction(Merger &merger, CodeGen &codegen,
1212                               PatternRewriter &rewriter, linalg::GenericOp op,
1213                               unsigned idx, bool needsUniv,
1214                               llvm::BitVector &induction, ResultRange results) {
1215   Location loc = op.getLoc();
1216   unsigned o = 0;
1217   SmallVector<Value, 4> operands;
1218   Value one = rewriter.create<ConstantIndexOp>(loc, 1);
1219   for (unsigned b = 0, be = induction.size(); b < be; b++) {
1220     if (induction[b] && merger.isDim(b, Dim::kSparse)) {
1221       unsigned tensor = merger.tensor(b);
1222       assert(idx == merger.index(b));
1223       Value op1 = codegen.idxs[tensor][idx];
1224       Value op2 = codegen.loops[idx];
1225       Value op3 = codegen.pidxs[tensor][idx];
1226       Value cmp = rewriter.create<CmpIOp>(loc, CmpIPredicate::eq, op1, op2);
1227       Value add = rewriter.create<AddIOp>(loc, op3, one);
1228       operands.push_back(rewriter.create<SelectOp>(loc, cmp, add, op3));
1229       codegen.pidxs[tensor][idx] = results[o++];
1230     }
1231   }
1232   if (needsUniv) {
1233     operands.push_back(rewriter.create<AddIOp>(loc, codegen.loops[idx], one));
1234     codegen.loops[idx] = results[o++];
1235   }
1236   assert(o == operands.size());
1237   rewriter.create<scf::YieldOp>(loc, operands);
1238 }
1239 
1240 /// Generates a single if-statement within a while-loop.
1241 static scf::IfOp genIf(Merger &merger, CodeGen &codegen,
1242                        PatternRewriter &rewriter, linalg::GenericOp op,
1243                        unsigned idx, llvm::BitVector &conditions) {
1244   Location loc = op.getLoc();
1245   Value cond;
1246   for (unsigned b = 0, be = conditions.size(); b < be; b++) {
1247     if (conditions[b]) {
1248       unsigned tensor = merger.tensor(b);
1249       assert(idx == merger.index(b));
1250       Value clause;
1251       if (merger.isDim(b, Dim::kSparse)) {
1252         Value op1 = codegen.idxs[tensor][idx];
1253         Value op2 = codegen.loops[idx];
1254         clause = rewriter.create<CmpIOp>(loc, CmpIPredicate::eq, op1, op2);
1255       } else {
1256         clause = rewriter.create<ConstantIntOp>(loc, 1, 1); // true
1257       }
1258       cond = cond ? rewriter.create<AndOp>(loc, cond, clause) : clause;
1259     }
1260   }
1261   scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, cond, /*else*/ true);
1262   rewriter.setInsertionPointToStart(&ifOp.thenRegion().front());
1263   return ifOp;
1264 }
1265 
1266 /// Recursively generates code while computing iteration lattices in order
1267 /// to manage the complexity of implementing co-iteration over unions
1268 /// and intersections of sparse iterations spaces.
1269 static void genStmt(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
1270                     linalg::GenericOp op, std::vector<unsigned> &topSort,
1271                     unsigned exp, unsigned at) {
1272   // At each leaf, assign remaining tensor (sub)expression to output tensor.
1273   if (at == topSort.size()) {
1274     unsigned lhs = op.getNumShapedOperands() - 1;
1275     Value rhs = genExp(merger, codegen, rewriter, op, exp);
1276     genTensorStore(merger, codegen, rewriter, op, lhs, rhs);
1277     return;
1278   }
1279   assert(codegen.curVecLength == 1);
1280 
1281   // Construct iteration lattices for current loop index, with L0 at top.
1282   // Then emit initialization code for the loop sequence at this level.
1283   // We maintain the universal dense index if dense indices are still
1284   // in play for a non-singleton loop sequence.
1285   Location loc = op.getLoc();
1286   unsigned idx = topSort[at];
1287   unsigned lts = merger.optimizeSet(buildLattices(merger, op, exp, idx));
1288   unsigned lsize = merger.set(lts).size();
1289   assert(lsize != 0);
1290   unsigned l0 = merger.set(lts)[0];
1291   unsigned ldx = at == 0 ? -1u : topSort[at - 1];
1292   genInvariants(merger, codegen, rewriter, op, exp, ldx, /*hoist=*/true);
1293   bool needsUniv = false;
1294   if (genInit(merger, codegen, rewriter, op, topSort, at,
1295               merger.lat(l0).bits)) {
1296     // Maintain the universal index only if it is actually
1297     // consumed by a subsequent lattice point.
1298     for (unsigned i = 1; i < lsize; i++) {
1299       unsigned li = merger.set(lts)[i];
1300       if (!merger.hasAnyDimOf(merger.lat(li).simple, Dim::kSparse)) {
1301         needsUniv = true;
1302         break;
1303       }
1304     }
1305   }
1306 
1307   // Emit a loop for every lattice point L0 >= Li.
1308   for (unsigned i = 0; i < lsize; i++) {
1309     unsigned li = merger.set(lts)[i];
1310 
1311     // Emit loop.
1312     codegen.curVecLength = 1;
1313     llvm::BitVector indices = merger.lat(li).simple;
1314     Operation *loop =
1315         genLoop(merger, codegen, rewriter, op, topSort, at, needsUniv, indices);
1316     genLocals(merger, codegen, rewriter, op, topSort, at, needsUniv,
1317               merger.lat(li).bits);
1318 
1319     // Visit all lattices points with Li >= Lj to generate the
1320     // loop-body, possibly with if statements for coiteration.
1321     bool isWhile = dyn_cast<scf::WhileOp>(loop) != nullptr;
1322     for (unsigned j = 0; j < lsize; j++) {
1323       unsigned lj = merger.set(lts)[j];
1324       unsigned ej = merger.lat(lj).exp;
1325       if (li == lj || merger.latGT(li, lj)) {
1326         // Recurse into body of each branch.
1327         if (isWhile) {
1328           scf::IfOp ifOp =
1329               genIf(merger, codegen, rewriter, op, idx, merger.lat(lj).simple);
1330           genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1);
1331           rewriter.setInsertionPointToStart(&ifOp.elseRegion().front());
1332         } else {
1333           genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1);
1334         }
1335       }
1336     }
1337 
1338     // Wrap-up induction and restore insertion point.
1339     if (isWhile) {
1340       scf::WhileOp whileOp = cast<scf::WhileOp>(loop);
1341       rewriter.setInsertionPointToEnd(&whileOp.after().front());
1342       genWhileInduction(merger, codegen, rewriter, op, idx, needsUniv,
1343                         merger.lat(li).bits, whileOp.results());
1344     } else {
1345       needsUniv = false;
1346       if (codegen.redVal) {
1347         rewriter.create<scf::YieldOp>(loc, codegen.redVal);
1348         codegen.redVal = loop->getResult(0);
1349       }
1350     }
1351     rewriter.setInsertionPointAfter(loop);
1352   }
1353 
1354   // Wrap-up loop sequence.
1355   codegen.curVecLength = 1;
1356   genReductionEnd(merger, codegen, rewriter, op);
1357   genInvariants(merger, codegen, rewriter, op, exp, ldx, /*hoist=*/false);
1358   codegen.loops[idx] = Value();
1359 }
1360 
1361 namespace {
1362 
1363 /// Sparse rewriting rule for generic Lingalg operation.
1364 struct GenericOpSparsifier : public OpRewritePattern<linalg::GenericOp> {
1365 public:
1366   GenericOpSparsifier(MLIRContext *context, SparsificationOptions o)
1367       : OpRewritePattern<linalg::GenericOp>(context), options(o) {}
1368 
1369   LogicalResult matchAndRewrite(linalg::GenericOp op,
1370                                 PatternRewriter &rewriter) const override {
1371     // Detects sparse annotations and translate the per-dimension sparsity
1372     // information for all tensors to loop indices in the kernel.
1373     assert(op.getNumOutputs() == 1);
1374     unsigned numTensors = op.getNumShapedOperands();
1375     unsigned numLoops = op.iterator_types().getValue().size();
1376     Merger merger(numTensors, numLoops);
1377     if (!findSparseAnnotations(merger, op))
1378       return failure();
1379 
1380     // Computes a topologically sorted iteration graph to ensure
1381     // tensors are visited in natural index order. Fails on cycles.
1382     // This assumes that higher-level passes have already put the
1383     // tensors in each tensor expression in a feasible order.
1384     std::vector<unsigned> topSort;
1385     if (!computeIterationGraph(merger, op, topSort, /*sparseOnly=*/false) &&
1386         !computeIterationGraph(merger, op, topSort, /*sparseOnly=*/true))
1387       return failure();
1388 
1389     // Finds the terminating yield statement and builds the tensor
1390     // expression for the Linalg operation in SSA form.
1391     Operation *yield = op.region().front().getTerminator();
1392     Optional<unsigned> exp = buildTensorExp(merger, op, yield->getOperand(0));
1393     if (!exp.hasValue())
1394       return failure(); // build failure
1395 
1396     // Recursively generates code.
1397     CodeGen codegen(options, numTensors, numLoops);
1398     genBuffers(merger, codegen, rewriter, op);
1399     genStmt(merger, codegen, rewriter, op, topSort, exp.getValue(), 0);
1400     Value result = rewriter.create<memref::TensorLoadOp>(
1401         op.getLoc(), codegen.buffers.back());
1402     rewriter.replaceOp(op, result);
1403     return success();
1404   }
1405 
1406 private:
1407   /// Options to control sparse code generation.
1408   SparsificationOptions options;
1409 };
1410 
1411 } // namespace
1412 
1413 /// Populates the given patterns list with rewriting rules required for
1414 /// the sparsification of linear algebra operations.
1415 void mlir::populateSparsificationPatterns(
1416     RewritePatternSet &patterns, const SparsificationOptions &options) {
1417   patterns.add<GenericOpSparsifier>(patterns.getContext(), options);
1418 }
1419