1 //===- Sparsification.cpp - Implementation of sparsification --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements converting sparse tensor types to actual sparse code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "mlir/Dialect/Linalg/IR/LinalgOps.h"
14 #include "mlir/Dialect/Linalg/Utils/Utils.h"
15 #include "mlir/Dialect/MemRef/IR/MemRef.h"
16 #include "mlir/Dialect/SCF/SCF.h"
17 #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
18 #include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
19 #include "mlir/Dialect/SparseTensor/Utils/Merger.h"
20 #include "mlir/Dialect/StandardOps/IR/Ops.h"
21 #include "mlir/Dialect/Vector/VectorOps.h"
22 #include "mlir/IR/Matchers.h"
23 #include "mlir/IR/TensorEncoding.h"
24 #include "llvm/ADT/SmallBitVector.h"
25 
26 using namespace mlir;
27 using namespace mlir::sparse_tensor;
28 
29 namespace {
30 
31 // Code generation.
32 struct CodeGen {
33   CodeGen(SparsificationOptions o, unsigned numTensors, unsigned numLoops)
34       : options(o), loops(numLoops), sizes(numLoops), buffers(numTensors),
35         pointers(numTensors, std::vector<Value>(numLoops)),
36         indices(numTensors, std::vector<Value>(numLoops)),
37         highs(numTensors, std::vector<Value>(numLoops)),
38         pidxs(numTensors, std::vector<Value>(numLoops)),
39         idxs(numTensors, std::vector<Value>(numLoops)), redExp(-1u), redVal(),
40         curVecLength(1), curVecMask() {}
41   /// Sparsification options.
42   SparsificationOptions options;
43   /// Universal dense indices and upper bounds (by index). The loops array
44   /// is updated with the value of the universal dense index in the current
45   /// loop. The sizes array is set once with the inferred dimension sizes.
46   std::vector<Value> loops;
47   std::vector<Value> sizes;
48   /// Buffers for storing dense and sparse numerical values (by tensor).
49   /// This array is set once during bufferization of all tensors.
50   std::vector<Value> buffers;
51   /// Sparse storage schemes (1-D): pointers and indices (by tensor and index).
52   /// This array is set once during bufferization of all sparse tensors.
53   std::vector<std::vector<Value>> pointers;
54   std::vector<std::vector<Value>> indices;
55   /// Sparse iteration information (by tensor and index). These arrays
56   /// are updated to remain current within the current loop.
57   std::vector<std::vector<Value>> highs;
58   std::vector<std::vector<Value>> pidxs;
59   std::vector<std::vector<Value>> idxs;
60   /// Current reduction, updated during code generation. When indices of a
61   /// reduction are exhausted,  all inner loops can "scalarize" the reduction.
62   // TODO: currently only done for (a chain of) innermost for-loops, where it
63   // is most effective; we could generalize to more outer and while-loops.
64   unsigned redExp;
65   Value redVal;
66   // Current vector length and mask.
67   unsigned curVecLength;
68   Value curVecMask;
69 };
70 
71 } // namespace
72 
73 // Helper method to apply dimension ordering permutation.
74 static unsigned perm(SparseTensorEncodingAttr &enc, unsigned d) {
75   if (enc) {
76     auto order = enc.getDimOrdering();
77     if (order) {
78       assert(order.isPermutation());
79       return order.getDimPosition(d);
80     }
81   }
82   return d;
83 }
84 
85 // Helper method to translate dim level type to internal representation.
86 static Dim toDim(SparseTensorEncodingAttr &enc, unsigned d) {
87   if (enc) {
88     SparseTensorEncodingAttr::DimLevelType tp = enc.getDimLevelType()[d];
89     if (tp == SparseTensorEncodingAttr::DimLevelType::Compressed)
90       return Dim::kSparse;
91     if (tp == SparseTensorEncodingAttr::DimLevelType::Singleton)
92       return Dim::kSingle;
93   }
94   return Dim::kDense;
95 }
96 
97 /// Helper method to inspect sparse encodings in the tensor types.
98 /// Fills the per-dimension sparsity information for all tensors.
99 static bool findSparseAnnotations(Merger &merger, linalg::GenericOp op) {
100   bool annotated = false;
101   for (OpOperand *t : op.getInputAndOutputOperands()) {
102     auto map = op.getTiedIndexingMap(t);
103     if (!map.isProjectedPermutation())
104       return false;
105     auto enc = getSparseTensorEncoding(t->get().getType());
106     if (enc)
107       annotated = true;
108     assert(map.getNumResults() == op.getRank(t));
109     for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
110       unsigned idx = map.getDimPosition(perm(enc, d));
111       merger.setDim(t->getOperandNumber(), idx, toDim(enc, d));
112     }
113   }
114   return annotated;
115 }
116 
117 /// A DFS helper to compute a topological sort. Note that recursion is
118 /// bounded by the number of implicit loops, which is always small.
119 /// Returns false when a cycle is detected.
120 static bool topSortDFS(unsigned i, std::vector<unsigned> &visit,
121                        std::vector<unsigned> &topSort,
122                        std::vector<std::vector<bool>> &adjM) {
123   if (visit[i] != 0)
124     return visit[i] != 1; // 1 denotes cycle!
125   visit[i] = 1;
126   for (unsigned j = 0, e = visit.size(); j < e; j++)
127     if (adjM[i][j])
128       if (!topSortDFS(j, visit, topSort, adjM))
129         return false;
130   visit[i] = 2;
131   topSort.push_back(i);
132   return true;
133 }
134 
135 /// Computes a topologically sorted iteration graph for the linalg operation.
136 /// Ensures all tensors are visited in natural index order. This is essential
137 /// for sparse storage formats since these only support access along fixed
138 /// dimensions. Even for dense storage formats, however, the natural index
139 /// order yields innermost unit-stride access with better spatial locality.
140 static bool computeIterationGraph(Merger &merger, linalg::GenericOp op,
141                                   std::vector<unsigned> &topSort,
142                                   bool sparseOnly) {
143   // Set up an n x n from/to adjacency matrix of the iteration graph
144   // for the implicit loop indices i_0 .. i_n-1.
145   unsigned n = op.getNumLoops();
146   std::vector<std::vector<bool>> adjM(n, std::vector<bool>(n, false));
147 
148   // Iterate over the indexing maps of every tensor in the tensor expression.
149   for (OpOperand *t : op.getInputAndOutputOperands()) {
150     auto map = op.getTiedIndexingMap(t);
151     auto enc = getSparseTensorEncoding(t->get().getType());
152     assert(map.getNumDims() == n);
153     // Skip dense tensor constraints when sparse only is requested.
154     if (sparseOnly && !enc)
155       continue;
156     // Each tensor expression and optional dimension ordering (row-major
157     // by default) puts an ordering constraint on the loop indices. For
158     // example, the tensor expresion A_ijk forces the ordering i < j < k
159     // on the loop indices if no explicit dimension ordering is given.
160     for (unsigned d = 1, rank = map.getNumResults(); d < rank; d++) {
161       unsigned f = map.getDimPosition(perm(enc, d - 1));
162       unsigned t = map.getDimPosition(perm(enc, d));
163       adjM[f][t] = true;
164     }
165   }
166 
167   // Topologically sort the iteration graph to determine loop order.
168   // Report failure for a cyclic iteration graph.
169   topSort.clear();
170   topSort.reserve(n);
171   std::vector<unsigned> visit(n, 0);
172   for (unsigned i = 0; i < n; i++)
173     if (visit[i] == 0)
174       if (!topSortDFS(i, visit, topSort, adjM))
175         return false; // cycle!
176   std::reverse(std::begin(topSort), std::end(topSort));
177   return true;
178 }
179 
180 /// Returns true when the tensor expression is admissable for codegen.
181 /// Since all sparse input tensors are admissable, we just need to check
182 /// whether the output tensor in the tensor expression codegen is admissable.
183 static bool isAdmissableTensorExp(Merger &merger, linalg::GenericOp op,
184                                   unsigned exp) {
185   OpOperand *lhs = op.getOutputOperand(0);
186   unsigned tensor = lhs->getOperandNumber();
187   auto enc = getSparseTensorEncoding(lhs->get().getType());
188   // An non-annotated output tensor is assumed dense, and becomes a random
189   // access n-dim memref. Admissable since inserstions cannot occur.
190   if (!enc)
191     return true;
192   // An all-dense annotated "sparse" output tensor becomes a linearized random
193   // access 1-dim memref. Also admissable since insertions cannot occur.
194   bool allDense = true;
195   unsigned numLoops = op.iterator_types().getValue().size();
196   for (unsigned i = 0; i < numLoops; i++)
197     if (merger.isDim(tensor, i, Dim::kSparse)) {
198       allDense = false;
199       break;
200     }
201   if (allDense)
202     return true;
203   // A tensor expression with a sparse output tensor that changes its values
204   // but not its nonzero structure, an operation called "simply dynamic" in
205   // [Bik96,Ch9], is also admissable without special codegen.
206   if (merger.isConjunction(tensor, exp))
207     return true;
208   // Reject for now since this requires changes to the nonzero structure.
209   // TODO: implement "workspaces" [Kjolstad2019]
210   return false;
211 }
212 
213 /// Maps sparse integer option to actual integral storage type.
214 static Type genIntType(PatternRewriter &rewriter, unsigned width) {
215   if (width == 0)
216     return rewriter.getIndexType();
217   return rewriter.getIntegerType(width);
218 }
219 
220 /// Detects in-place annotation on tensor argument.
221 static bool getInPlace(Value val) {
222   if (auto arg = val.dyn_cast<BlockArgument>())
223     if (auto funcOp = dyn_cast<FuncOp>(arg.getOwner()->getParentOp()))
224       if (auto attr = funcOp.getArgAttrOfType<BoolAttr>(
225               arg.getArgNumber(), linalg::LinalgDialect::kInplaceableAttrName))
226         return attr.getValue();
227   return false;
228 }
229 
230 /// Generates buffer for the output tensor.
231 static Value genOutputBuffer(CodeGen &codegen, PatternRewriter &rewriter,
232                              linalg::GenericOp op, MemRefType denseTp,
233                              ArrayRef<Value> args) {
234   Location loc = op.getLoc();
235   Value tensor = op.getOutputOperand(0)->get();
236   // The output tensor simply could materialize from the buffer that will
237   // be generated for the tensor present in the outs() clause. This has
238   // the major advantage that the sparse kernel only updates the nonzero
239   // positions for the output tensor.
240   if (getInPlace(tensor))
241     return rewriter.create<memref::BufferCastOp>(loc, denseTp, tensor);
242   // By default, a new buffer is allocated which is initialized to the
243   // tensor defined in the outs() clause. This is always correct but
244   // introduces a dense initialization component that may negatively
245   // impact the running complexity of the sparse kernel.
246   Value init = rewriter.create<memref::BufferCastOp>(loc, denseTp, tensor);
247   Value alloc = rewriter.create<memref::AllocOp>(loc, denseTp, args);
248   rewriter.create<memref::CopyOp>(loc, init, alloc);
249   return alloc;
250 }
251 
252 /// Local bufferization of all dense and sparse data structures.
253 /// This code enables testing the first prototype sparse compiler.
254 // TODO: replace this with a proliferated bufferization strategy
255 static bool genBuffers(Merger &merger, CodeGen &codegen,
256                        PatternRewriter &rewriter, linalg::GenericOp op) {
257   Location loc = op.getLoc();
258   assert(op.getNumInputsAndOutputs() == op.getNumInputs() + 1);
259   // For every tensor, find lower and upper bound on dimensions, set the
260   // same bounds on loop indices, and obtain dense or sparse buffer(s).
261   SmallVector<Value, 4> args;
262   for (OpOperand *t : op.getInputAndOutputOperands()) {
263     unsigned tensor = t->getOperandNumber();
264     auto shape = op.getShape(t);
265     auto map = op.getTiedIndexingMap(t);
266     auto enc = getSparseTensorEncoding(t->get().getType());
267     // Scan all dimensions of current tensor.
268     args.clear();
269     for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
270       unsigned idx = map.getDimPosition(perm(enc, d));
271       // Handle sparse storage schemes.
272       if (merger.isDim(tensor, idx, Dim::kSparse)) {
273         auto dynShape = {ShapedType::kDynamicSize};
274         auto ptrTp = MemRefType::get(
275             dynShape, genIntType(rewriter, enc.getPointerBitWidth()));
276         auto indTp = MemRefType::get(
277             dynShape, genIntType(rewriter, enc.getIndexBitWidth()));
278         Value dim = rewriter.create<ConstantIndexOp>(loc, d);
279         // Generate sparse primitives to obtains pointer and indices.
280         codegen.pointers[tensor][idx] =
281             rewriter.create<ToPointersOp>(loc, ptrTp, t->get(), dim);
282         codegen.indices[tensor][idx] =
283             rewriter.create<ToIndicesOp>(loc, indTp, t->get(), dim);
284       }
285       // Find upper bound in current dimension.
286       unsigned p = perm(enc, d);
287       Value up = linalg::createOrFoldDimOp(rewriter, loc, t->get(), p);
288       if (shape[p] == MemRefType::kDynamicSize)
289         args.push_back(up);
290       assert(codegen.highs[tensor][idx] == nullptr);
291       codegen.sizes[idx] = codegen.highs[tensor][idx] = up;
292     }
293     // Perform the required bufferization. Dense inputs materialize
294     // from the input tensors. Dense outputs need special handling.
295     // Sparse inputs use sparse primitives to obtain the values.
296     // We also accept in-place all-dense annotated "sparse" outputs.
297     Type elementType = getElementTypeOrSelf(t->get().getType());
298     if (!enc) {
299       // Non-annotated dense tensors.
300       auto denseTp = MemRefType::get(shape, elementType);
301       if (tensor < op.getNumInputs())
302         codegen.buffers[tensor] =
303             rewriter.create<memref::BufferCastOp>(loc, denseTp, t->get());
304       else
305         codegen.buffers[tensor] =
306             genOutputBuffer(codegen, rewriter, op, denseTp, args);
307     } else {
308       // Annotated sparse tensors.
309       if (tensor == op.getNumInputs() && !getInPlace(t->get()))
310         return false; // reject output if not in-place
311       auto dynShape = {ShapedType::kDynamicSize};
312       auto sparseTp = MemRefType::get(dynShape, elementType);
313       codegen.buffers[tensor] =
314           rewriter.create<ToValuesOp>(loc, sparseTp, t->get());
315     }
316   }
317   return true;
318 }
319 
320 /// Constructs vector type.
321 static VectorType vectorType(CodeGen &codegen, Type etp) {
322   return VectorType::get(codegen.curVecLength, etp);
323 }
324 
325 /// Constructs vector type from pointer.
326 static VectorType vectorType(CodeGen &codegen, Value ptr) {
327   return vectorType(codegen, ptr.getType().cast<MemRefType>().getElementType());
328 }
329 
330 /// Constructs vector iteration mask.
331 static Value genVectorMask(CodeGen &codegen, PatternRewriter &rewriter,
332                            Value iv, Value lo, Value hi, Value step) {
333   Location loc = iv.getLoc();
334   VectorType mtp = vectorType(codegen, rewriter.getIntegerType(1));
335   // Special case if the vector length evenly divides the trip count (for
336   // example, "for i = 0, 128, 16"). A constant all-true mask is generated
337   // so that all subsequent masked memory operations are immediately folded
338   // into unconditional memory operations.
339   IntegerAttr loInt, hiInt, stepInt;
340   if (matchPattern(lo, m_Constant(&loInt)) &&
341       matchPattern(hi, m_Constant(&hiInt)) &&
342       matchPattern(step, m_Constant(&stepInt))) {
343     if (((hiInt.getInt() - loInt.getInt()) % stepInt.getInt()) == 0)
344       return rewriter.create<vector::BroadcastOp>(
345           loc, mtp, rewriter.create<ConstantIntOp>(loc, 1, 1));
346   }
347   // Otherwise, generate a vector mask that avoids overrunning the upperbound
348   // during vector execution. Here we rely on subsequent loop optimizations to
349   // avoid executing the mask in all iterations, for example, by splitting the
350   // loop into an unconditional vector loop and a scalar cleanup loop.
351   Value end = rewriter.create<SubIOp>(loc, hi, iv);
352   return rewriter.create<vector::CreateMaskOp>(loc, mtp, end);
353 }
354 
355 /// Generates a vectorized load lhs = a[ind[lo:hi]] or lhs = a[lo:hi].
356 static Value genVectorLoad(CodeGen &codegen, PatternRewriter &rewriter,
357                            Value ptr, ArrayRef<Value> args) {
358   Location loc = ptr.getLoc();
359   VectorType vtp = vectorType(codegen, ptr);
360   Value pass = rewriter.create<ConstantOp>(loc, vtp, rewriter.getZeroAttr(vtp));
361   if (args.back().getType().isa<VectorType>()) {
362     SmallVector<Value, 4> scalarArgs(args.begin(), args.end());
363     Value indexVec = args.back();
364     scalarArgs.back() = rewriter.create<ConstantIndexOp>(loc, 0);
365     return rewriter.create<vector::GatherOp>(
366         loc, vtp, ptr, scalarArgs, indexVec, codegen.curVecMask, pass);
367   }
368   return rewriter.create<vector::MaskedLoadOp>(loc, vtp, ptr, args,
369                                                codegen.curVecMask, pass);
370 }
371 
372 /// Generates a vectorized store a[ind[lo:hi]] = rhs or a[lo:hi] = rhs.
373 static void genVectorStore(CodeGen &codegen, PatternRewriter &rewriter,
374                            Value rhs, Value ptr, ArrayRef<Value> args) {
375   Location loc = ptr.getLoc();
376   if (args.back().getType().isa<VectorType>()) {
377     SmallVector<Value, 4> scalarArgs(args.begin(), args.end());
378     Value indexVec = args.back();
379     scalarArgs.back() = rewriter.create<ConstantIndexOp>(loc, 0);
380     rewriter.create<vector::ScatterOp>(loc, ptr, scalarArgs, indexVec,
381                                        codegen.curVecMask, rhs);
382     return;
383   }
384   rewriter.create<vector::MaskedStoreOp>(loc, ptr, args, codegen.curVecMask,
385                                          rhs);
386 }
387 
388 /// Generates a vectorized invariant. Here we rely on subsequent loop
389 /// optimizations to hoist the invariant broadcast out of the vector loop.
390 static Value genVectorInvariantValue(CodeGen &codegen,
391                                      PatternRewriter &rewriter, Value val) {
392   VectorType vtp = vectorType(codegen, val.getType());
393   return rewriter.create<vector::BroadcastOp>(val.getLoc(), vtp, val);
394 }
395 
396 /// Generates a load on a dense or sparse tensor.
397 static Value genTensorLoad(Merger &merger, CodeGen &codegen,
398                            PatternRewriter &rewriter, linalg::GenericOp op,
399                            unsigned exp) {
400   // Test if the load was hoisted to a higher loop nest.
401   Value val = merger.exp(exp).val;
402   if (val) {
403     if (codegen.curVecLength > 1 && !val.getType().isa<VectorType>())
404       return genVectorInvariantValue(codegen, rewriter, val);
405     return val;
406   }
407   // Actual load.
408   SmallVector<Value, 4> args;
409   OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).tensor];
410   unsigned tensor = t->getOperandNumber();
411   auto map = op.getTiedIndexingMap(t);
412   auto enc = getSparseTensorEncoding(t->get().getType());
413   unsigned rank = map.getNumResults();
414   if (enc) {
415     unsigned idx = map.getDimPosition(perm(enc, rank - 1));
416     assert(codegen.pidxs[tensor][idx] != nullptr);
417     args.push_back(codegen.pidxs[tensor][idx]); // position index
418   } else {
419     for (unsigned d = 0; d < rank; d++) {
420       unsigned idx = map.getDimPosition(d);
421       args.push_back(codegen.loops[idx]); // universal dense index
422     }
423   }
424   Location loc = op.getLoc();
425   Value ptr = codegen.buffers[tensor];
426   if (codegen.curVecLength > 1)
427     return genVectorLoad(codegen, rewriter, ptr, args);
428   return rewriter.create<memref::LoadOp>(loc, ptr, args);
429 }
430 
431 /// Generates a store on a dense or sparse tensor.
432 static void genTensorStore(Merger &merger, CodeGen &codegen,
433                            PatternRewriter &rewriter, linalg::GenericOp op,
434                            OpOperand *t, Value rhs) {
435   Location loc = op.getLoc();
436   // Test if this is a scalarized reduction.
437   OpOperand *lhs = op.getOutputOperand(0);
438   if (lhs == t && codegen.redVal) {
439     if (codegen.curVecLength > 1)
440       rhs = rewriter.create<SelectOp>(loc, codegen.curVecMask, rhs,
441                                       codegen.redVal);
442     codegen.redVal = rhs;
443     return;
444   }
445   // Actual store.
446   SmallVector<Value, 4> args;
447   unsigned tensor = t->getOperandNumber();
448   auto map = op.getTiedIndexingMap(t);
449   auto enc = getSparseTensorEncoding(t->get().getType());
450   unsigned rank = map.getNumResults();
451   if (enc) {
452     unsigned idx = map.getDimPosition(perm(enc, rank - 1));
453     assert(codegen.pidxs[tensor][idx] != nullptr);
454     args.push_back(codegen.pidxs[tensor][idx]); // position index
455   } else {
456     for (unsigned d = 0; d < rank; d++) {
457       unsigned idx = map.getDimPosition(d);
458       args.push_back(codegen.loops[idx]); // universal dense index
459     }
460   }
461   Value ptr = codegen.buffers[tensor];
462   if (codegen.curVecLength > 1)
463     genVectorStore(codegen, rewriter, rhs, ptr, args);
464   else
465     rewriter.create<memref::StoreOp>(loc, rhs, ptr, args);
466 }
467 
468 /// Generates a pointer/index load from the sparse storage scheme. Narrower
469 /// data types need to be zero extended before casting the value into the
470 /// index type used for looping and indexing.
471 static Value genLoad(CodeGen &codegen, PatternRewriter &rewriter, Location loc,
472                      Value ptr, Value s) {
473   // See https://llvm.org/docs/GetElementPtr.html for some background on
474   // the complications described below.
475   if (codegen.curVecLength > 1) {
476     // Since the index vector is used in a subsequent gather/scatter operations,
477     // which effectively defines an unsigned pointer + signed index, we must
478     // zero extend the vector to an index width. For 8-bit and 16-bit values,
479     // an 32-bit index width suffices. For 32-bit values, zero extending the
480     // elements into 64-bit loses some performance since the 32-bit indexed
481     // gather/scatter is more efficient than the 64-bit index variant (if the
482     // negative 32-bit index space is unused, the enableSIMDIndex32 flag can
483     // preserve this performance). For 64-bit values, there is no good way
484     // to state that the indices are unsigned, with creates the potential of
485     // incorrect address calculations in the unlikely case we need such
486     // extremely large offsets.
487     Type etp = ptr.getType().cast<MemRefType>().getElementType();
488     Value vload = genVectorLoad(codegen, rewriter, ptr, {s});
489     if (!etp.isa<IndexType>()) {
490       if (etp.getIntOrFloatBitWidth() < 32)
491         vload = rewriter.create<ZeroExtendIOp>(
492             loc, vload, vectorType(codegen, rewriter.getIntegerType(32)));
493       else if (etp.getIntOrFloatBitWidth() < 64 &&
494                !codegen.options.enableSIMDIndex32)
495         vload = rewriter.create<ZeroExtendIOp>(
496             loc, vload, vectorType(codegen, rewriter.getIntegerType(64)));
497     }
498     return vload;
499   }
500   // For the scalar case, we simply zero extend narrower indices into 64-bit
501   // values before casting to index without a performance penalty. Here too,
502   // however, indices that already are 64-bit, in theory, cannot express the
503   // full range as explained above.
504   Value load = rewriter.create<memref::LoadOp>(loc, ptr, s);
505   if (!load.getType().isa<IndexType>()) {
506     if (load.getType().getIntOrFloatBitWidth() < 64)
507       load = rewriter.create<ZeroExtendIOp>(loc, load,
508                                             rewriter.getIntegerType(64));
509     load = rewriter.create<IndexCastOp>(loc, load, rewriter.getIndexType());
510   }
511   return load;
512 }
513 
514 /// Generates an invariant value.
515 static Value genInvariantValue(Merger &merger, CodeGen &codegen,
516                                PatternRewriter &rewriter, unsigned exp) {
517   Value val = merger.exp(exp).val;
518   if (codegen.curVecLength > 1)
519     return genVectorInvariantValue(codegen, rewriter, val);
520   return val;
521 }
522 
523 /// Generates an address computation "sz * p + i".
524 static Value genAddress(CodeGen &codegen, PatternRewriter &rewriter,
525                         Location loc, Value size, Value p, Value i) {
526   Value mul = rewriter.create<MulIOp>(loc, size, p);
527   if (auto vtp = i.getType().dyn_cast<VectorType>()) {
528     Value inv = rewriter.create<IndexCastOp>(loc, mul, vtp.getElementType());
529     mul = genVectorInvariantValue(codegen, rewriter, inv);
530   }
531   return rewriter.create<AddIOp>(loc, mul, i);
532 }
533 
534 /// Generates start of a reduction.
535 static Value genReductionStart(Merger &merger, CodeGen &codegen,
536                                PatternRewriter &rewriter,
537                                linalg::GenericOp op) {
538   if (codegen.redVal)
539     return codegen.redVal; // chained with previous for-loop
540   if (codegen.curVecLength > 1) {
541     // TODO: assumes + reductions for now
542     VectorType vtp = vectorType(codegen, codegen.buffers[codegen.redExp]);
543     return rewriter.create<ConstantOp>(op.getLoc(), vtp,
544                                        rewriter.getZeroAttr(vtp));
545   }
546   return genTensorLoad(merger, codegen, rewriter, op, codegen.redExp);
547 }
548 
549 /// Generates end of a reduction.
550 static void genReductionEnd(Merger &merger, CodeGen &codegen,
551                             PatternRewriter &rewriter, linalg::GenericOp op) {
552   Value red = codegen.redVal;
553   if (!red)
554     return;
555   assert(codegen.curVecLength == 1);
556   codegen.redVal = merger.exp(codegen.redExp).val = Value(); // end chain
557   OpOperand *lhs = op.getOutputOperand(0);
558   if (auto vtp = red.getType().dyn_cast<VectorType>()) {
559     // TODO: assumes + reductions for now
560     StringAttr kind = rewriter.getStringAttr("add");
561     Value ld = genTensorLoad(merger, codegen, rewriter, op, codegen.redExp);
562     // Integer reductions don't accept an accumulator.
563     if (vtp.getElementType().isa<IntegerType>()) {
564       red = rewriter.create<vector::ReductionOp>(op.getLoc(), ld.getType(),
565                                                  kind, red, ValueRange{});
566       red = rewriter.create<AddIOp>(op.getLoc(), red, ld);
567     } else {
568       red = rewriter.create<vector::ReductionOp>(op.getLoc(), ld.getType(),
569                                                  kind, red, ld);
570     }
571   }
572   genTensorStore(merger, codegen, rewriter, op, lhs, red);
573 }
574 
575 /// Recursively generates tensor expression.
576 static Value genExp(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
577                     linalg::GenericOp op, unsigned exp) {
578   Location loc = op.getLoc();
579   if (exp == -1u)
580     return Value();
581   if (merger.exp(exp).kind == Kind::kTensor)
582     return genTensorLoad(merger, codegen, rewriter, op, exp);
583   if (merger.exp(exp).kind == Kind::kInvariant)
584     return genInvariantValue(merger, codegen, rewriter, exp);
585   Value v0 = genExp(merger, codegen, rewriter, op, merger.exp(exp).children.e0);
586   Value v1 = genExp(merger, codegen, rewriter, op, merger.exp(exp).children.e1);
587   if (merger.exp(exp).kind == Kind::kNegI) {
588     // TODO: no negi in std, need to make zero explicit.
589     Type tp = op.getOutputTensorTypes()[0].getElementType();
590     v1 = v0;
591     v0 = rewriter.create<ConstantOp>(loc, tp, rewriter.getZeroAttr(tp));
592     if (codegen.curVecLength > 1)
593       v0 = genVectorInvariantValue(codegen, rewriter, v0);
594   }
595   return merger.buildExp(rewriter, loc, exp, v0, v1);
596 }
597 
598 /// Hoists loop invariant tensor loads for which indices have been exhausted.
599 static void genInvariants(Merger &merger, CodeGen &codegen,
600                           PatternRewriter &rewriter, linalg::GenericOp op,
601                           unsigned exp, unsigned ldx, bool hoist) {
602   if (exp == -1u)
603     return;
604   if (merger.exp(exp).kind == Kind::kTensor) {
605     // Inspect tensor indices.
606     bool atLevel = ldx == -1u;
607     OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).tensor];
608     auto map = op.getTiedIndexingMap(t);
609     auto enc = getSparseTensorEncoding(t->get().getType());
610     for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
611       unsigned idx = map.getDimPosition(perm(enc, d));
612       if (!codegen.loops[idx])
613         return; // still in play
614       else if (idx == ldx)
615         atLevel = true;
616     }
617     // All exhausted at this level (atLevel denotes exactly at this level).
618     OpOperand *lhs = op.getOutputOperand(0);
619     if (lhs == t) {
620       codegen.redExp = hoist ? exp : -1u;
621     } else if (atLevel) {
622       merger.exp(exp).val =
623           hoist ? genTensorLoad(merger, codegen, rewriter, op, exp) : Value();
624     }
625   } else if (merger.exp(exp).kind != Kind::kInvariant) {
626     // Traverse into the binary operations. Note that we only hoist
627     // tensor loads, since subsequent MLIR/LLVM passes know how to
628     // deal with all other kinds of derived loop invariants.
629     unsigned e0 = merger.exp(exp).children.e0;
630     unsigned e1 = merger.exp(exp).children.e1;
631     genInvariants(merger, codegen, rewriter, op, e0, ldx, hoist);
632     genInvariants(merger, codegen, rewriter, op, e1, ldx, hoist);
633   }
634 }
635 
636 /// Generates initialization code for the subsequent loop sequence at
637 /// current index level. Returns true if the loop sequence needs to
638 /// maintain the universal index.
639 static bool genInit(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
640                     linalg::GenericOp op, std::vector<unsigned> &topSort,
641                     unsigned at, llvm::BitVector &inits) {
642   bool needsUniv = false;
643   Location loc = op.getLoc();
644   unsigned idx = topSort[at];
645 
646   // Initialize sparse positions.
647   for (unsigned b = 0, be = inits.size(); b < be; b++) {
648     if (inits[b]) {
649       unsigned tensor = merger.tensor(b);
650       assert(idx == merger.index(b));
651       if (merger.isDim(b, Dim::kSparse)) {
652         // Initialize sparse index.
653         unsigned pat = at;
654         for (; pat != 0; pat--) {
655           if (codegen.pidxs[tensor][topSort[pat - 1]])
656             break;
657         }
658         Value ptr = codegen.pointers[tensor][idx];
659         Value one = rewriter.create<ConstantIndexOp>(loc, 1);
660         Value p0 = (pat == 0) ? rewriter.create<ConstantIndexOp>(loc, 0)
661                               : codegen.pidxs[tensor][topSort[pat - 1]];
662         codegen.pidxs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p0);
663         Value p1 = rewriter.create<AddIOp>(loc, p0, one);
664         codegen.highs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p1);
665       } else {
666         // Dense index still in play.
667         needsUniv = true;
668       }
669     }
670   }
671 
672   // Initialize the universal dense index.
673   codegen.loops[idx] = rewriter.create<ConstantIndexOp>(loc, 0);
674   return needsUniv;
675 }
676 
677 /// Returns vectorization strategy. Any implicit inner loop in the Linalg
678 /// operation is a candidate. Whether it is actually converted to SIMD code
679 /// depends on the requested strategy.
680 static bool isVectorFor(CodeGen &codegen, bool isInner, bool isSparse) {
681   switch (codegen.options.vectorizationStrategy) {
682   case SparseVectorizationStrategy::kNone:
683     return false;
684   case SparseVectorizationStrategy::kDenseInnerLoop:
685     return isInner && !isSparse;
686   case SparseVectorizationStrategy::kAnyStorageInnerLoop:
687     return isInner;
688   }
689   llvm_unreachable("unexpected vectorization strategy");
690 }
691 
692 /// Returns parallelization strategy. Any implicit loop in the Linalg operation
693 /// that is marked "parallel" is a candidate. Whether it is actually converted
694 /// to a parallel operation depends on the requested strategy.
695 static bool isParallelFor(CodeGen &codegen, bool isOuter, bool isReduction,
696                           bool isSparse, bool isVector) {
697   switch (codegen.options.parallelizationStrategy) {
698   case SparseParallelizationStrategy::kNone:
699     return false;
700   case SparseParallelizationStrategy::kDenseOuterLoop:
701     return isOuter && !isSparse && !isReduction && !isVector;
702   case SparseParallelizationStrategy::kAnyStorageOuterLoop:
703     return isOuter && !isReduction && !isVector;
704   case SparseParallelizationStrategy::kDenseAnyLoop:
705     return !isSparse && !isReduction && !isVector;
706   case SparseParallelizationStrategy::kAnyStorageAnyLoop:
707     return !isReduction && !isVector;
708   }
709   llvm_unreachable("unexpected parallelization strategy");
710 }
711 
712 /// Checks unit strides for dense tensors. The iteration graph may have ignored
713 /// dense access patterns in order to avoid cycles (sparse access patterns are
714 /// always placed innermost), but that means dense access has become strided.
715 /// For now, we reject vectorization of such cases.
716 /// TODO: implement strided load/stores on dense arrays
717 static bool denseUnitStrides(Merger &merger, linalg::GenericOp op,
718                              unsigned idx) {
719   for (OpOperand *t : op.getInputAndOutputOperands()) {
720     if (!getSparseTensorEncoding(t->get().getType())) {
721       auto map = op.getTiedIndexingMap(t);
722       for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
723         if (map.getDimPosition(d) == idx && d != rank - 1)
724           return false;
725       }
726     }
727   }
728   return true;
729 }
730 
731 /// Generates a for-loop on a single index.
732 static Operation *genFor(Merger &merger, CodeGen &codegen,
733                          PatternRewriter &rewriter, linalg::GenericOp op,
734                          bool isOuter, bool isInner, unsigned idx,
735                          llvm::BitVector &indices) {
736   unsigned fb = indices.find_first();
737   unsigned tensor = merger.tensor(fb);
738   assert(idx == merger.index(fb));
739   auto iteratorTypes = op.iterator_types().getValue();
740   bool isReduction = isReductionIterator(iteratorTypes[idx]);
741   bool isSparse = merger.isDim(fb, Dim::kSparse);
742   bool isVector = isVectorFor(codegen, isInner, isSparse) &&
743                   denseUnitStrides(merger, op, idx);
744   bool isParallel =
745       isParallelFor(codegen, isOuter, isReduction, isSparse, isVector);
746 
747   // Prepare vector length.
748   if (isVector)
749     codegen.curVecLength = codegen.options.vectorLength;
750 
751   // Loop bounds and increment.
752   Location loc = op.getLoc();
753   Value lo = isSparse ? codegen.pidxs[tensor][idx] : codegen.loops[idx];
754   Value hi = isSparse ? codegen.highs[tensor][idx] : codegen.sizes[idx];
755   Value step = rewriter.create<ConstantIndexOp>(loc, codegen.curVecLength);
756 
757   // Emit a parallel loop.
758   if (isParallel) {
759     assert(!isVector);
760     scf::ParallelOp parOp = rewriter.create<scf::ParallelOp>(loc, lo, hi, step);
761     if (isSparse)
762       codegen.pidxs[tensor][idx] = parOp.getInductionVars()[0];
763     else
764       codegen.loops[idx] = parOp.getInductionVars()[0];
765     rewriter.setInsertionPointToStart(parOp.getBody());
766     return parOp;
767   }
768 
769   // Emit a sequential loop, potentially with a scalarized reduction.
770   bool scalarRed = isInner && codegen.redExp != -1u;
771   SmallVector<Value, 4> operands;
772   if (scalarRed) {
773     Value load = genReductionStart(merger, codegen, rewriter, op);
774     operands.push_back(load);
775   }
776   scf::ForOp forOp = rewriter.create<scf::ForOp>(loc, lo, hi, step, operands);
777   if (scalarRed) {
778     codegen.redVal = merger.exp(codegen.redExp).val =
779         forOp.getRegionIterArgs().front();
780   }
781   // Assign induction variable to sparse or dense index.
782   Value iv = forOp.getInductionVar();
783   if (isSparse)
784     codegen.pidxs[tensor][idx] = iv;
785   else
786     codegen.loops[idx] = iv;
787   rewriter.setInsertionPointToStart(forOp.getBody());
788   // Share vector iteration mask between all subsequent loads/stores.
789   if (isVector)
790     codegen.curVecMask = genVectorMask(codegen, rewriter, iv, lo, hi, step);
791   return forOp;
792 }
793 
794 /// Emit a while-loop for co-iteration over multiple indices.
795 static Operation *genWhile(Merger &merger, CodeGen &codegen,
796                            PatternRewriter &rewriter, linalg::GenericOp op,
797                            unsigned idx, bool needsUniv,
798                            llvm::BitVector &indices) {
799   SmallVector<Type, 4> types;
800   SmallVector<Value, 4> operands;
801   // Construct the while-loop with a parameter for each index.
802   Type indexType = rewriter.getIndexType();
803   for (unsigned b = 0, be = indices.size(); b < be; b++) {
804     if (indices[b] && merger.isDim(b, Dim::kSparse)) {
805       unsigned tensor = merger.tensor(b);
806       assert(idx == merger.index(b));
807       types.push_back(indexType);
808       assert(codegen.pidxs[tensor][idx].getType().isa<IndexType>() &&
809              "type mismatch for sparse index");
810       operands.push_back(codegen.pidxs[tensor][idx]);
811     }
812   }
813   if (needsUniv) {
814     types.push_back(indexType);
815     assert(codegen.loops[idx].getType().isa<IndexType>() &&
816            "type mismatch for universal index");
817     operands.push_back(codegen.loops[idx]);
818   }
819   Location loc = op.getLoc();
820   scf::WhileOp whileOp = rewriter.create<scf::WhileOp>(loc, types, operands);
821   Block *before = rewriter.createBlock(&whileOp.before(), {}, types);
822   Block *after = rewriter.createBlock(&whileOp.after(), {}, types);
823 
824   // Build the "before" region, which effectively consists
825   // of a conjunction of "i < upper" tests on all induction.
826   rewriter.setInsertionPointToStart(&whileOp.before().front());
827   Value cond;
828   unsigned o = 0;
829   for (unsigned b = 0, be = indices.size(); b < be; b++) {
830     if (indices[b] && merger.isDim(b, Dim::kSparse)) {
831       unsigned tensor = merger.tensor(b);
832       assert(idx == merger.index(b));
833       Value op1 = before->getArgument(o);
834       Value op2 = codegen.highs[tensor][idx];
835       Value opc = rewriter.create<CmpIOp>(loc, CmpIPredicate::ult, op1, op2);
836       cond = cond ? rewriter.create<AndOp>(loc, cond, opc) : opc;
837       codegen.pidxs[tensor][idx] = after->getArgument(o++);
838     }
839   }
840   if (needsUniv)
841     codegen.loops[idx] = after->getArgument(o++);
842   assert(o == operands.size());
843   rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments());
844   rewriter.setInsertionPointToStart(&whileOp.after().front());
845   return whileOp;
846 }
847 
848 /// Generates a for-loop or a while-loop, depending on whether it implements
849 /// singleton iteration or co-iteration over the given conjunction.
850 static Operation *genLoop(Merger &merger, CodeGen &codegen,
851                           PatternRewriter &rewriter, linalg::GenericOp op,
852                           std::vector<unsigned> &topSort, unsigned at,
853                           bool needsUniv, llvm::BitVector &indices) {
854   unsigned idx = topSort[at];
855   if (indices.count() == 1) {
856     bool isOuter = at == 0;
857     bool isInner = at == topSort.size() - 1;
858     return genFor(merger, codegen, rewriter, op, isOuter, isInner, idx,
859                   indices);
860   }
861   genReductionEnd(merger, codegen, rewriter, op); // cannot chain
862   return genWhile(merger, codegen, rewriter, op, idx, needsUniv, indices);
863 }
864 
865 /// Generates the local variables for this loop, consisting of the sparse
866 /// indices, restored universal dense index, and dense positions.
867 static void genLocals(Merger &merger, CodeGen &codegen,
868                       PatternRewriter &rewriter, linalg::GenericOp op,
869                       std::vector<unsigned> &topSort, unsigned at,
870                       bool needsUniv, llvm::BitVector &locals) {
871   Location loc = op.getLoc();
872   unsigned idx = topSort[at];
873 
874   // Initialize sparse indices.
875   Value min;
876   for (unsigned b = 0, be = locals.size(); b < be; b++) {
877     if (locals[b] && merger.isDim(b, Dim::kSparse)) {
878       unsigned tensor = merger.tensor(b);
879       assert(idx == merger.index(b));
880       Value ptr = codegen.indices[tensor][idx];
881       Value s = codegen.pidxs[tensor][idx];
882       Value load = genLoad(codegen, rewriter, loc, ptr, s);
883       codegen.idxs[tensor][idx] = load;
884       if (!needsUniv) {
885         if (min) {
886           Value cmp =
887               rewriter.create<CmpIOp>(loc, CmpIPredicate::ult, load, min);
888           min = rewriter.create<SelectOp>(loc, cmp, load, min);
889         } else {
890           min = load;
891         }
892       }
893     }
894   }
895 
896   // Merge dense universal index over minimum.
897   if (min) {
898     assert(!needsUniv);
899     codegen.loops[idx] = min;
900   }
901 
902   // Initialize dense positions. Note that we generate dense indices of the
903   // output tensor unconditionally, since they may not appear in the lattice,
904   // but may be needed for linearized codegen.
905   for (unsigned b = 0, be = locals.size(); b < be; b++) {
906     if ((locals[b] || merger.isOutTensor(b, idx)) &&
907         merger.isDim(b, Dim::kDense)) {
908       unsigned tensor = merger.tensor(b);
909       assert(idx == merger.index(b));
910       unsigned pat = at;
911       for (; pat != 0; pat--)
912         if (codegen.pidxs[tensor][topSort[pat - 1]])
913           break;
914       Value p = (pat == 0) ? rewriter.create<ConstantIndexOp>(loc, 0)
915                            : codegen.pidxs[tensor][topSort[pat - 1]];
916       codegen.pidxs[tensor][idx] = genAddress(
917           codegen, rewriter, loc, codegen.sizes[idx], p, codegen.loops[idx]);
918     }
919   }
920 }
921 
922 /// Generates the induction structure for a while-loop.
923 static void genWhileInduction(Merger &merger, CodeGen &codegen,
924                               PatternRewriter &rewriter, linalg::GenericOp op,
925                               unsigned idx, bool needsUniv,
926                               llvm::BitVector &induction, ResultRange results) {
927   Location loc = op.getLoc();
928   unsigned o = 0;
929   SmallVector<Value, 4> operands;
930   Value one = rewriter.create<ConstantIndexOp>(loc, 1);
931   for (unsigned b = 0, be = induction.size(); b < be; b++) {
932     if (induction[b] && merger.isDim(b, Dim::kSparse)) {
933       unsigned tensor = merger.tensor(b);
934       assert(idx == merger.index(b));
935       Value op1 = codegen.idxs[tensor][idx];
936       Value op2 = codegen.loops[idx];
937       Value op3 = codegen.pidxs[tensor][idx];
938       Value cmp = rewriter.create<CmpIOp>(loc, CmpIPredicate::eq, op1, op2);
939       Value add = rewriter.create<AddIOp>(loc, op3, one);
940       operands.push_back(rewriter.create<SelectOp>(loc, cmp, add, op3));
941       codegen.pidxs[tensor][idx] = results[o++];
942     }
943   }
944   if (needsUniv) {
945     operands.push_back(rewriter.create<AddIOp>(loc, codegen.loops[idx], one));
946     codegen.loops[idx] = results[o++];
947   }
948   assert(o == operands.size());
949   rewriter.create<scf::YieldOp>(loc, operands);
950 }
951 
952 /// Generates a single if-statement within a while-loop.
953 static scf::IfOp genIf(Merger &merger, CodeGen &codegen,
954                        PatternRewriter &rewriter, linalg::GenericOp op,
955                        unsigned idx, llvm::BitVector &conditions) {
956   Location loc = op.getLoc();
957   Value cond;
958   for (unsigned b = 0, be = conditions.size(); b < be; b++) {
959     if (conditions[b]) {
960       unsigned tensor = merger.tensor(b);
961       assert(idx == merger.index(b));
962       Value clause;
963       if (merger.isDim(b, Dim::kSparse)) {
964         Value op1 = codegen.idxs[tensor][idx];
965         Value op2 = codegen.loops[idx];
966         clause = rewriter.create<CmpIOp>(loc, CmpIPredicate::eq, op1, op2);
967       } else {
968         clause = rewriter.create<ConstantIntOp>(loc, 1, 1); // true
969       }
970       cond = cond ? rewriter.create<AndOp>(loc, cond, clause) : clause;
971     }
972   }
973   scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, cond, /*else*/ true);
974   rewriter.setInsertionPointToStart(&ifOp.thenRegion().front());
975   return ifOp;
976 }
977 
978 /// Recursively generates code while computing iteration lattices in order
979 /// to manage the complexity of implementing co-iteration over unions
980 /// and intersections of sparse iterations spaces.
981 static void genStmt(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
982                     linalg::GenericOp op, std::vector<unsigned> &topSort,
983                     unsigned exp, unsigned at) {
984   // At each leaf, assign remaining tensor (sub)expression to output tensor.
985   if (at == topSort.size()) {
986     OpOperand *lhs = op.getOutputOperand(0);
987     Value rhs = genExp(merger, codegen, rewriter, op, exp);
988     genTensorStore(merger, codegen, rewriter, op, lhs, rhs);
989     return;
990   }
991   assert(codegen.curVecLength == 1);
992 
993   // Construct iteration lattices for current loop index, with L0 at top.
994   // Then emit initialization code for the loop sequence at this level.
995   // We maintain the universal dense index if dense indices are still
996   // in play for a non-singleton loop sequence.
997   Location loc = op.getLoc();
998   unsigned idx = topSort[at];
999   unsigned lts = merger.optimizeSet(merger.buildLattices(exp, idx));
1000   unsigned lsize = merger.set(lts).size();
1001   assert(lsize != 0);
1002   unsigned l0 = merger.set(lts)[0];
1003   unsigned ldx = at == 0 ? -1u : topSort[at - 1];
1004   genInvariants(merger, codegen, rewriter, op, exp, ldx, /*hoist=*/true);
1005   bool needsUniv = false;
1006   if (genInit(merger, codegen, rewriter, op, topSort, at,
1007               merger.lat(l0).bits)) {
1008     // Maintain the universal index only if it is actually
1009     // consumed by a subsequent lattice point.
1010     for (unsigned i = 1; i < lsize; i++) {
1011       unsigned li = merger.set(lts)[i];
1012       if (!merger.hasAnyDimOf(merger.lat(li).simple, Dim::kSparse)) {
1013         needsUniv = true;
1014         break;
1015       }
1016     }
1017   }
1018 
1019   // Emit a loop for every lattice point L0 >= Li.
1020   for (unsigned i = 0; i < lsize; i++) {
1021     unsigned li = merger.set(lts)[i];
1022 
1023     // Emit loop.
1024     codegen.curVecLength = 1;
1025     llvm::BitVector indices = merger.lat(li).simple;
1026     Operation *loop =
1027         genLoop(merger, codegen, rewriter, op, topSort, at, needsUniv, indices);
1028     genLocals(merger, codegen, rewriter, op, topSort, at, needsUniv,
1029               merger.lat(li).bits);
1030 
1031     // Visit all lattices points with Li >= Lj to generate the
1032     // loop-body, possibly with if statements for coiteration.
1033     bool isWhile = dyn_cast<scf::WhileOp>(loop) != nullptr;
1034     for (unsigned j = 0; j < lsize; j++) {
1035       unsigned lj = merger.set(lts)[j];
1036       unsigned ej = merger.lat(lj).exp;
1037       if (li == lj || merger.latGT(li, lj)) {
1038         // Recurse into body of each branch.
1039         if (isWhile) {
1040           scf::IfOp ifOp =
1041               genIf(merger, codegen, rewriter, op, idx, merger.lat(lj).simple);
1042           genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1);
1043           rewriter.setInsertionPointToStart(&ifOp.elseRegion().front());
1044         } else {
1045           genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1);
1046         }
1047       }
1048     }
1049 
1050     // Wrap-up induction and restore insertion point.
1051     if (isWhile) {
1052       scf::WhileOp whileOp = cast<scf::WhileOp>(loop);
1053       rewriter.setInsertionPointToEnd(&whileOp.after().front());
1054       genWhileInduction(merger, codegen, rewriter, op, idx, needsUniv,
1055                         merger.lat(li).bits, whileOp.results());
1056     } else {
1057       needsUniv = false;
1058       if (codegen.redVal) {
1059         rewriter.create<scf::YieldOp>(loc, codegen.redVal);
1060         codegen.redVal = loop->getResult(0);
1061       }
1062     }
1063     rewriter.setInsertionPointAfter(loop);
1064   }
1065 
1066   // Wrap-up loop sequence.
1067   codegen.curVecLength = 1;
1068   genReductionEnd(merger, codegen, rewriter, op);
1069   genInvariants(merger, codegen, rewriter, op, exp, ldx, /*hoist=*/false);
1070   codegen.loops[idx] = Value();
1071 }
1072 
1073 /// Converts the result computed by the sparse kernel into the required form.
1074 static void genResult(Merger &merger, CodeGen &codegen,
1075                       PatternRewriter &rewriter, linalg::GenericOp op) {
1076   Location loc = op.getLoc();
1077   OpOperand *lhs = op.getOutputOperand(0);
1078   Type resType = lhs->get().getType();
1079   unsigned tensor = lhs->getOperandNumber();
1080   auto map = op.getTiedIndexingMap(lhs);
1081   auto enc = getSparseTensorEncoding(resType);
1082   Value result = codegen.buffers.back(); // value array
1083   if (enc) {
1084     // The sparse annotation unambigiously defines the arrays needed
1085     // to "reconstruct" the sparse tensor from the storage scheme
1086     // (even though lowering should never need this eventually).
1087     SmallVector<Value, 4> args;
1088     for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
1089       unsigned idx = map.getDimPosition(perm(enc, d));
1090       if (merger.isDim(tensor, idx, Dim::kSparse)) {
1091         args.push_back(codegen.pointers[tensor][idx]);
1092         args.push_back(codegen.indices[tensor][idx]);
1093       }
1094     }
1095     args.push_back(result);
1096     result = rewriter.create<ToTensorOp>(loc, resType, args);
1097   } else {
1098     // To "reconstruct" an non-annotated tensor, sipmly load it
1099     // from the bufferized value.
1100     result = rewriter.create<memref::TensorLoadOp>(loc, resType, result);
1101   }
1102   rewriter.replaceOp(op, result);
1103 }
1104 
1105 namespace {
1106 
1107 /// Sparse rewriting rule for generic Lingalg operation.
1108 struct GenericOpSparsifier : public OpRewritePattern<linalg::GenericOp> {
1109 public:
1110   GenericOpSparsifier(MLIRContext *context, SparsificationOptions o)
1111       : OpRewritePattern<linalg::GenericOp>(context), options(o) {}
1112 
1113   LogicalResult matchAndRewrite(linalg::GenericOp op,
1114                                 PatternRewriter &rewriter) const override {
1115     // Detects sparse annotations and translate the per-dimension sparsity
1116     // information for all tensors to loop indices in the kernel.
1117     assert(op.getNumOutputs() == 1);
1118     unsigned numTensors = op.getNumInputsAndOutputs();
1119     unsigned numLoops = op.iterator_types().getValue().size();
1120     Merger merger(numTensors, numLoops);
1121     if (!findSparseAnnotations(merger, op))
1122       return failure();
1123 
1124     // Computes a topologically sorted iteration graph to ensure
1125     // tensors are visited in natural index order. Fails on cycles.
1126     // This assumes that higher-level passes have already put the
1127     // tensors in each tensor expression in a feasible order.
1128     std::vector<unsigned> topSort;
1129     if (!computeIterationGraph(merger, op, topSort, /*sparseOnly=*/false) &&
1130         !computeIterationGraph(merger, op, topSort, /*sparseOnly=*/true))
1131       return failure();
1132 
1133     // Builds the tensor expression for the Linalg operation in SSA form.
1134     Optional<unsigned> exp = merger.buildTensorExpFromLinalg(op);
1135     if (!exp.hasValue())
1136       return failure();
1137 
1138     // Rejects an inadmissable tensor expression.
1139     if (!isAdmissableTensorExp(merger, op, exp.getValue()))
1140       return failure();
1141 
1142     // Recursively generates code.
1143     CodeGen codegen(options, numTensors, numLoops);
1144     if (!genBuffers(merger, codegen, rewriter, op))
1145       return failure(); // could not bufferize
1146     genStmt(merger, codegen, rewriter, op, topSort, exp.getValue(), 0);
1147     genResult(merger, codegen, rewriter, op);
1148     return success();
1149   }
1150 
1151 private:
1152   /// Options to control sparse code generation.
1153   SparsificationOptions options;
1154 };
1155 
1156 } // namespace
1157 
1158 /// Populates the given patterns list with rewriting rules required for
1159 /// the sparsification of linear algebra operations.
1160 void mlir::populateSparsificationPatterns(
1161     RewritePatternSet &patterns, const SparsificationOptions &options) {
1162   patterns.add<GenericOpSparsifier>(patterns.getContext(), options);
1163 }
1164