1 //===- Sparsification.cpp - Implementation of sparsification --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements converting sparse tensor types to actual sparse code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodegenUtils.h"
14 
15 #include "mlir/Dialect/Affine/IR/AffineOps.h"
16 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
17 #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
18 #include "mlir/Dialect/Bufferization/IR/Bufferization.h"
19 #include "mlir/Dialect/Func/IR/FuncOps.h"
20 #include "mlir/Dialect/Linalg/IR/Linalg.h"
21 #include "mlir/Dialect/Linalg/Utils/Utils.h"
22 #include "mlir/Dialect/MemRef/IR/MemRef.h"
23 #include "mlir/Dialect/SCF/SCF.h"
24 #include "mlir/Dialect/SCF/Transforms.h"
25 #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
26 #include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
27 #include "mlir/Dialect/SparseTensor/Utils/Merger.h"
28 #include "mlir/Dialect/Vector/IR/VectorOps.h"
29 #include "mlir/IR/Matchers.h"
30 #include "mlir/IR/TensorEncoding.h"
31 #include "llvm/ADT/SmallBitVector.h"
32 
33 using namespace mlir;
34 using namespace mlir::sparse_tensor;
35 
36 //===----------------------------------------------------------------------===//
37 // Declarations of data structures.
38 //===----------------------------------------------------------------------===//
39 
40 namespace {
41 
42 // Iteration graph sorting.
43 enum SortMask { kSparseOnly = 0x0, kIncludeDense = 0x1, kIncludeUndef = 0x2 };
44 
45 // Reduction kinds.
46 enum Reduction { kNoReduc, kSum, kProduct, kAnd, kOr, kXor };
47 
48 // Code generation.
49 struct CodeGen {
50   CodeGen(SparsificationOptions o, unsigned numTensors, unsigned numLoops,
51           OpOperand *op, unsigned nest)
52       : options(o), loops(numLoops), sizes(numLoops), buffers(numTensors),
53         pointers(numTensors, std::vector<Value>(numLoops)),
54         indices(numTensors, std::vector<Value>(numLoops)),
55         highs(numTensors, std::vector<Value>(numLoops)),
56         pidxs(numTensors, std::vector<Value>(numLoops)),
57         idxs(numTensors, std::vector<Value>(numLoops)), redVal(), sparseOut(op),
58         outerParNest(nest), lexIdx(), expValues(), expFilled(), expAdded(),
59         expCount(), curVecMask() {}
60   /// Sparsification options.
61   SparsificationOptions options;
62   /// Universal dense indices and upper bounds (by index). The loops array
63   /// is updated with the value of the universal dense index in the current
64   /// loop. The sizes array is set once with the inferred dimension sizes.
65   std::vector<Value> loops;
66   std::vector<Value> sizes;
67   /// Buffers for storing dense and sparse numerical values (by tensor).
68   /// This array is set once during bufferization of all tensors.
69   std::vector<Value> buffers;
70   /// Sparse storage schemes (1-D): pointers and indices (by tensor and index).
71   /// This array is set once during bufferization of all sparse tensors.
72   std::vector<std::vector<Value>> pointers;
73   std::vector<std::vector<Value>> indices;
74   /// Sparse iteration information (by tensor and index). These arrays
75   /// are updated to remain current within the current loop.
76   std::vector<std::vector<Value>> highs;
77   std::vector<std::vector<Value>> pidxs;
78   std::vector<std::vector<Value>> idxs;
79   /// Current reduction, updated during code generation. When indices of a
80   /// reduction are exhausted, all inner loops can use a scalarized reduction.
81   unsigned redExp = -1u;
82   Value redVal;
83   Reduction redKind = kNoReduc;
84   // Sparse tensor as output. Implemented either through direct injective
85   // insertion in lexicographic index order (where indices are updated
86   // in the temporary array `lexIdx`) or through access pattern expansion
87   // in the innermost loop nest (`expValues` through `expCount`).
88   OpOperand *sparseOut;
89   unsigned outerParNest;
90   Value lexIdx;
91   Value expValues;
92   Value expFilled;
93   Value expAdded;
94   Value expCount;
95   // Current vector length and mask.
96   unsigned curVecLength = 1;
97   Value curVecMask;
98 };
99 
100 } // namespace
101 
102 //===----------------------------------------------------------------------===//
103 // Sparse compiler analysis methods.
104 //===----------------------------------------------------------------------===//
105 
106 /// Helper method to apply dimension ordering permutation.
107 static unsigned perm(const SparseTensorEncodingAttr &enc, unsigned d) {
108   if (enc) {
109     auto order = enc.getDimOrdering();
110     if (order) {
111       assert(order.isPermutation());
112       return order.getDimPosition(d);
113     }
114   }
115   return d;
116 }
117 
118 /// Helper method to translate dim level type to internal representation.
119 static Dim toDim(const SparseTensorEncodingAttr &enc, unsigned d) {
120   if (enc) {
121     SparseTensorEncodingAttr::DimLevelType tp = enc.getDimLevelType()[d];
122     if (tp == SparseTensorEncodingAttr::DimLevelType::Compressed)
123       return Dim::kSparse;
124     if (tp == SparseTensorEncodingAttr::DimLevelType::Singleton)
125       return Dim::kSingle;
126   }
127   return Dim::kDense;
128 }
129 
130 /// Helper method to inspect affine expressions. Rejects cases where the
131 /// same index is used more than once. Also rejects affine expressions
132 /// that are not a direct index for annotated tensors.
133 // TODO: accept more affine cases for sparse tensors
134 static bool findAffine(Merger &merger, unsigned tensor, AffineExpr a, Dim dim,
135                        bool isDense) {
136   switch (a.getKind()) {
137   case AffineExprKind::DimId: {
138     unsigned idx = a.cast<AffineDimExpr>().getPosition();
139     if (!merger.isDim(tensor, idx, Dim::kUndef))
140       return false; // used more than once
141     merger.setDim(tensor, idx, dim);
142     return true;
143   }
144   case AffineExprKind::Add:
145   case AffineExprKind::Mul: {
146     if (!isDense)
147       return false;
148     auto binOp = a.cast<AffineBinaryOpExpr>();
149     return findAffine(merger, tensor, binOp.getLHS(), dim, isDense) &&
150            findAffine(merger, tensor, binOp.getRHS(), dim, isDense);
151   }
152   case AffineExprKind::Constant:
153     return isDense;
154   default:
155     return false;
156   }
157 }
158 
159 /// Helper method to inspect sparse encodings in the tensor types.
160 /// Fills the per-dimension sparsity information for all tensors.
161 /// Returns true if the sparse annotations and affine subscript
162 /// expressions of all tensors are admissable. Returns false if
163 /// no annotations are found or inadmissable constructs occur.
164 static bool findSparseAnnotations(Merger &merger, linalg::GenericOp op) {
165   bool annotated = false;
166   for (OpOperand *t : op.getInputAndOutputOperands()) {
167     auto map = op.getTiedIndexingMap(t);
168     auto enc = getSparseTensorEncoding(t->get().getType());
169     if (enc)
170       annotated = true;
171     assert(map.getNumResults() == op.getRank(t));
172     for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
173       unsigned tensor = t->getOperandNumber();
174       AffineExpr a = map.getResult(perm(enc, d));
175       if (!findAffine(merger, tensor, a, toDim(enc, d), !enc))
176         return false; // inadmissable affine expression
177     }
178   }
179   return annotated;
180 }
181 
182 /// A DFS helper to compute a topological sort. Note that recursion is
183 /// bounded by the number of implicit loops, which is always small.
184 /// Returns false when a cycle is detected.
185 static bool topSortDFS(unsigned i, std::vector<unsigned> &visit,
186                        std::vector<unsigned> &topSort,
187                        std::vector<std::vector<bool>> &adjM) {
188   if (visit[i] != 0)
189     return visit[i] != 1; // 1 denotes cycle!
190   visit[i] = 1;
191   for (unsigned j = 0, e = visit.size(); j < e; j++)
192     if (adjM[i][j])
193       if (!topSortDFS(j, visit, topSort, adjM))
194         return false;
195   visit[i] = 2;
196   topSort.push_back(i);
197   return true;
198 }
199 
200 /// Helper method to add all constraints from the indices in one affine
201 /// expression before all indices in the other affine expression. For
202 /// example i0+i1 < i2+i3+1 yields i0<i2, i0<i3, i1<i2, and i1<i3.
203 static void addAffineOrderings(std::vector<std::vector<bool>> &adjM,
204                                AffineExpr a, AffineExpr b, unsigned fidx) {
205   switch (a.getKind()) {
206   case AffineExprKind::DimId: {
207     unsigned idx = a.cast<AffineDimExpr>().getPosition();
208     if (b)
209       addAffineOrderings(adjM, b, AffineExpr(), idx);
210     else
211       adjM[fidx][idx] = true;
212     break;
213   }
214   case AffineExprKind::Add:
215   case AffineExprKind::Mul: {
216     auto binOp = a.cast<AffineBinaryOpExpr>();
217     addAffineOrderings(adjM, binOp.getLHS(), b, fidx);
218     addAffineOrderings(adjM, binOp.getRHS(), b, fidx);
219     break;
220   }
221   default:
222     break;
223   }
224 }
225 
226 /// Computes a topologically sorted iteration graph for the linalg operation.
227 /// Ensures all tensors are visited in natural index order. This is essential
228 /// for sparse storage formats since these only support access along fixed
229 /// dimensions. Even for dense storage formats, however, the natural index
230 /// order yields innermost unit-stride access with better spatial locality.
231 static bool computeIterationGraph(Merger &merger, linalg::GenericOp op,
232                                   std::vector<unsigned> &topSort,
233                                   unsigned mask) {
234   // Set up an n x n from/to adjacency matrix of the iteration graph
235   // for the implicit loop indices i_0 .. i_n-1.
236   unsigned n = op.getNumLoops();
237   std::vector<std::vector<bool>> adjM(n, std::vector<bool>(n, false));
238 
239   // Iterate over the indexing maps of every tensor in the tensor expression.
240   for (OpOperand *t : op.getInputAndOutputOperands()) {
241     auto map = op.getTiedIndexingMap(t);
242     auto enc = getSparseTensorEncoding(t->get().getType());
243     assert(map.getNumDims() == n);
244     // Skip dense tensor constraints when not requested.
245     if (!(mask & SortMask::kIncludeDense) && !enc)
246       continue;
247     // Each tensor expression and optional dimension ordering (row-major
248     // by default) puts an ordering constraint on the loop indices. For
249     // example, the tensor expresion A_ijk forces the ordering i < j < k
250     // on the loop indices if no explicit dimension ordering is given.
251     for (unsigned d = 1, rank = map.getNumResults(); d < rank; d++) {
252       AffineExpr f = map.getResult(perm(enc, d - 1));
253       AffineExpr t = map.getResult(perm(enc, d));
254       addAffineOrderings(adjM, f, t, 0);
255     }
256     // Push unrelated loops into sparse iteration space, so these
257     // will be skipped more often.
258     if (mask & SortMask::kIncludeUndef) {
259       unsigned tensor = t->getOperandNumber();
260       for (unsigned i = 0; i < n; i++)
261         if (merger.isDim(tensor, i, Dim::kSparse))
262           for (unsigned j = 0; j < n; j++)
263             if (merger.isDim(tensor, j, Dim::kUndef))
264               adjM[i][j] = true;
265     }
266   }
267 
268   // Topologically sort the iteration graph to determine loop order.
269   // Report failure for a cyclic iteration graph.
270   topSort.clear();
271   topSort.reserve(n);
272   std::vector<unsigned> visit(n, 0);
273   for (unsigned i = 0; i < n; i++)
274     if (visit[i] == 0)
275       if (!topSortDFS(i, visit, topSort, adjM))
276         return false; // cycle!
277   std::reverse(std::begin(topSort), std::end(topSort));
278   return true;
279 }
280 
281 /// Returns true if tensor has an in-place annotation.
282 static bool isInPlace(Value val) {
283   if (auto arg = val.dyn_cast<BlockArgument>())
284     if (auto funcOp = dyn_cast<FuncOp>(arg.getOwner()->getParentOp()))
285       if (auto attr = funcOp.getArgAttrOfType<BoolAttr>(
286               arg.getArgNumber(),
287               bufferization::BufferizableOpInterface::kInplaceableAttrName))
288         return attr.getValue();
289   return false;
290 }
291 
292 /// Returns true if tensor materializes uninitialized into the computation.
293 static bool isMaterializing(Value val) {
294   return val.getDefiningOp<linalg::InitTensorOp>() ||
295          val.getDefiningOp<InitOp>();
296 }
297 
298 /// Returns true when the tensor expression is admissable for codegen.
299 /// Since all sparse input tensors are admissable, we just need to check
300 /// whether the out tensor in the tensor expression codegen is admissable.
301 /// Sets `sparseOut` to the tensor and `outerParNest` to the outer injective
302 /// nesting depth when a "truly dynamic" sparse tensor output occurs.
303 static bool isAdmissableTensorExp(Merger &merger, linalg::GenericOp op,
304                                   std::vector<unsigned> &topSort, unsigned exp,
305                                   OpOperand **sparseOut,
306                                   unsigned &outerParNest) {
307   OpOperand *lhs = op.getOutputOperand(0);
308   unsigned tensor = lhs->getOperandNumber();
309   auto enc = getSparseTensorEncoding(lhs->get().getType());
310   // An non-annotated output tensor is assumed dense, and becomes a random
311   // access n-dim memref. Admissable since insertions cannot occur.
312   if (!enc)
313     return true;
314   // An all-dense annotated "sparse" output tensor becomes a linearized random
315   // access 1-dim memref. Also admissable since insertions cannot occur.
316   bool allDense = true;
317   auto iteratorTypes = op.iterator_types().getValue();
318   unsigned numLoops = iteratorTypes.size();
319   for (unsigned i = 0; i < numLoops; i++)
320     if (merger.isDim(tensor, i, Dim::kSparse)) {
321       allDense = false;
322       break;
323     }
324   if (allDense)
325     return true;
326   // A tensor expression with a sparse output tensor that changes its values
327   // but not its nonzero structure, an operation called "simply dynamic" in
328   // [Bik96,Ch9], is also admissable without special codegen, provided
329   // the tensor's underlying sparse storage scheme can be modified in place.
330   if (merger.isSingleCondition(tensor, exp) && isInPlace(lhs->get()))
331     return true;
332   // Accept "truly dynamic" if the output tensor materializes uninitialized
333   // into the computation and insertions occur in lexicographic index order.
334   if (isMaterializing(lhs->get())) {
335     unsigned nest = 0;
336     for (unsigned i = 0; i < numLoops; i++) {
337       if (isReductionIterator(iteratorTypes[topSort[i]]))
338         break; // terminate at first reduction
339       nest++;
340     }
341     // Determine admissable dynamic insertion situations:
342     // (1) fully injective, since there are no reductions,
343     // (2) admissable 1-d expansion in innermost dimension.
344     if (nest >= op.getRank(lhs) - 1) {
345       *sparseOut = lhs;
346       outerParNest = nest;
347       return true;
348     }
349   }
350   return false;
351 }
352 
353 //===----------------------------------------------------------------------===//
354 // Sparse compiler synthesis methods (reductions).
355 //===----------------------------------------------------------------------===//
356 
357 /// Maps reduction kind to vector::CombiningKind.
358 static vector::CombiningKind getCombiningKind(Reduction kind) {
359   switch (kind) {
360   case kNoReduc:
361     break;
362   case kSum:
363     return vector::CombiningKind::ADD;
364   case kProduct:
365     return vector::CombiningKind::MUL;
366   case kAnd:
367     return vector::CombiningKind::AND;
368   case kOr:
369     return vector::CombiningKind::OR;
370   case kXor:
371     return vector::CombiningKind::XOR;
372   }
373   llvm_unreachable("unknown reduction kind");
374 }
375 
376 /// Maps operation to reduction.
377 static Reduction getReduction(Kind kind) {
378   switch (kind) {
379   case Kind::kAddF:
380   case Kind::kAddI:
381   case Kind::kSubF:
382   case Kind::kSubI:
383     return kSum;
384   case Kind::kMulF:
385   case Kind::kMulI:
386     return kProduct;
387   case Kind::kAndI:
388     return kAnd;
389   case Kind::kOrI:
390     return kOr;
391   case Kind::kXorI:
392     return kXor;
393   default:
394     llvm_unreachable("unexpected reduction operator");
395   }
396 }
397 
398 /// Generates an initial value for a vector reduction, following the scheme
399 /// given in Chapter 5 of "The Software Vectorization Handbook", where the
400 /// initial scalar value is correctly embedded in the vector reduction value,
401 /// and a straightforward horizontal reduction will complete the operation.
402 static Value genVectorReducInit(CodeGen &codegen, PatternRewriter &rewriter,
403                                 Location loc, VectorType vtp) {
404   Value r = codegen.redVal;
405   switch (codegen.redKind) {
406   case kNoReduc:
407     break;
408   case kSum:
409   case kXor:
410     // Initialize reduction vector to: | 0 | .. | 0 | r |
411     return rewriter.create<vector::InsertElementOp>(
412         loc, r, constantZero(rewriter, loc, vtp),
413         constantIndex(rewriter, loc, 0));
414   case kProduct:
415     // Initialize reduction vector to: | 1 | .. | 1 | r |
416     return rewriter.create<vector::InsertElementOp>(
417         loc, r, constantOne(rewriter, loc, vtp),
418         constantIndex(rewriter, loc, 0));
419   case kAnd:
420   case kOr:
421     // Initialize reduction vector to: | r | .. | r | r |
422     return rewriter.create<vector::BroadcastOp>(loc, vtp, r);
423   }
424   llvm_unreachable("unknown reduction kind");
425 }
426 
427 /// Generates final value for a vector reduction.
428 static Value genVectorReducEnd(CodeGen &codegen, PatternRewriter &rewriter,
429                                Location loc, VectorType vtp) {
430   vector::CombiningKind kind = getCombiningKind(codegen.redKind);
431   return rewriter.create<vector::ReductionOp>(loc, kind, codegen.redVal);
432 }
433 
434 /// Updates scalarized reduction value.
435 static void updateReduc(Merger &merger, CodeGen &codegen, Value reduc) {
436   assert(codegen.redKind != kNoReduc);
437   codegen.redVal = merger.exp(codegen.redExp).val = reduc;
438 }
439 
440 //===----------------------------------------------------------------------===//
441 // Sparse compiler synthesis methods (statements and expressions).
442 //===----------------------------------------------------------------------===//
443 
444 /// Generates buffer for the output tensor. Note that all sparse kernels
445 /// assume that when all elements are written to (viz. x(i) = y(i) * z(i)),
446 /// the output buffer is already initialized to all zeroes and only nonzeroes
447 /// values are computed and written out. For updates (viz. x(i) += y(i) * z(i)),
448 /// only nonzeroes values are used for the updates and no assumption on the
449 /// original contents of the output buffer is necessary..
450 static Value genOutputBuffer(CodeGen &codegen, PatternRewriter &rewriter,
451                              linalg::GenericOp op, MemRefType denseTp,
452                              ArrayRef<Value> args) {
453   Location loc = op.getLoc();
454   Value tensor = op.getOutputOperand(0)->get();
455   // The output tensor simply could materialize from the buffer that will
456   // be generated for the tensor present in the outs() clause. This has
457   // the major advantage that the sparse kernel only updates the nonzero
458   // positions for the output tensor.
459   if (isInPlace(tensor))
460     return rewriter.create<bufferization::ToMemrefOp>(loc, denseTp, tensor);
461   // By default, a new buffer is allocated which is initialized to the
462   // tensor defined in the outs() clause. This is always correct but
463   // introduces a dense initialization component that may negatively
464   // impact the running complexity of the sparse kernel. If the tensor
465   // materializes into the computation, we need to preserve the zero
466   // initialization assumption of all sparse output buffers.
467   Value alloc = rewriter.create<memref::AllocOp>(loc, denseTp, args);
468   if (isMaterializing(tensor)) {
469     Value zero = constantZero(rewriter, loc, denseTp.getElementType());
470     rewriter.create<linalg::FillOp>(loc, ValueRange{zero}, ValueRange{alloc});
471   } else {
472     Value init =
473         rewriter.create<bufferization::ToMemrefOp>(loc, denseTp, tensor);
474     rewriter.create<memref::CopyOp>(loc, init, alloc);
475   }
476   return alloc;
477 }
478 
479 /// Local bufferization of all dense and sparse data structures.
480 /// This code enables testing the first prototype sparse compiler.
481 // TODO: replace this with a proliferated bufferization strategy
482 static void genBuffers(Merger &merger, CodeGen &codegen,
483                        PatternRewriter &rewriter, linalg::GenericOp op) {
484   Location loc = op.getLoc();
485   assert(op.getNumInputsAndOutputs() == op.getNumInputs() + 1);
486   // For every tensor, find lower and upper bound on dimensions, set the
487   // same bounds on loop indices, and obtain dense or sparse buffer(s).
488   SmallVector<Value, 4> args;
489   for (OpOperand *t : op.getInputAndOutputOperands()) {
490     unsigned tensor = t->getOperandNumber();
491     auto shape = op.getShape(t);
492     auto map = op.getTiedIndexingMap(t);
493     auto enc = getSparseTensorEncoding(t->get().getType());
494     // Scan all dimensions of current tensor.
495     args.clear();
496     for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
497       AffineExpr a = map.getResult(perm(enc, d));
498       if (a.getKind() != AffineExprKind::DimId)
499         continue; // compound
500       unsigned idx = a.cast<AffineDimExpr>().getPosition();
501       // Handle sparse storage schemes.
502       if (merger.isDim(tensor, idx, Dim::kSparse)) {
503         auto dynShape = {ShapedType::kDynamicSize};
504         auto ptrTp =
505             MemRefType::get(dynShape, getPointerOverheadType(rewriter, enc));
506         auto indTp =
507             MemRefType::get(dynShape, getIndexOverheadType(rewriter, enc));
508         Value dim = constantIndex(rewriter, loc, d);
509         // Generate sparse primitives to obtains pointer and indices.
510         codegen.pointers[tensor][idx] =
511             rewriter.create<ToPointersOp>(loc, ptrTp, t->get(), dim);
512         codegen.indices[tensor][idx] =
513             rewriter.create<ToIndicesOp>(loc, indTp, t->get(), dim);
514       }
515       // Find upper bound in current dimension.
516       unsigned p = perm(enc, d);
517       Value up = linalg::createOrFoldDimOp(rewriter, loc, t->get(), p);
518       if (ShapedType::isDynamic(shape[p]))
519         args.push_back(up);
520       assert(codegen.highs[tensor][idx] == nullptr);
521       codegen.sizes[idx] = codegen.highs[tensor][idx] = up;
522     }
523     // Perform the required bufferization. Dense inputs materialize
524     // from the input tensors. Dense outputs need special handling.
525     // Sparse inputs use sparse primitives to obtain the values.
526     // We also accept in-place all-dense annotated "sparse" outputs.
527     Type elementType = getElementTypeOrSelf(t->get().getType());
528     if (!enc) {
529       // Non-annotated dense tensors.
530       auto denseTp = MemRefType::get(shape, elementType);
531       if (tensor < op.getNumInputs())
532         codegen.buffers[tensor] =
533             rewriter.create<bufferization::ToMemrefOp>(loc, denseTp, t->get());
534       else
535         codegen.buffers[tensor] =
536             genOutputBuffer(codegen, rewriter, op, denseTp, args);
537     } else if (t == codegen.sparseOut) {
538       // True sparse output needs a lexIdx array.
539       Value rank = constantIndex(rewriter, loc, op.getRank(t));
540       auto dynShape = {ShapedType::kDynamicSize};
541       auto memTp = MemRefType::get(dynShape, rewriter.getIndexType());
542       codegen.lexIdx = rewriter.create<memref::AllocaOp>(loc, memTp, rank);
543     } else {
544       // Annotated sparse tensors.
545       auto dynShape = {ShapedType::kDynamicSize};
546       auto sparseTp = MemRefType::get(dynShape, elementType);
547       codegen.buffers[tensor] =
548           rewriter.create<ToValuesOp>(loc, sparseTp, t->get());
549     }
550   }
551 }
552 
553 /// Constructs vector type.
554 static VectorType vectorType(CodeGen &codegen, Type etp) {
555   return VectorType::get(codegen.curVecLength, etp);
556 }
557 
558 /// Constructs vector type from pointer.
559 static VectorType vectorType(CodeGen &codegen, Value ptr) {
560   return vectorType(codegen, ptr.getType().cast<MemRefType>().getElementType());
561 }
562 
563 /// Constructs vector iteration mask.
564 static Value genVectorMask(CodeGen &codegen, PatternRewriter &rewriter,
565                            Value iv, Value lo, Value hi, Value step) {
566   Location loc = iv.getLoc();
567   VectorType mtp = vectorType(codegen, rewriter.getI1Type());
568   // Special case if the vector length evenly divides the trip count (for
569   // example, "for i = 0, 128, 16"). A constant all-true mask is generated
570   // so that all subsequent masked memory operations are immediately folded
571   // into unconditional memory operations.
572   IntegerAttr loInt, hiInt, stepInt;
573   if (matchPattern(lo, m_Constant(&loInt)) &&
574       matchPattern(hi, m_Constant(&hiInt)) &&
575       matchPattern(step, m_Constant(&stepInt))) {
576     if (((hiInt.getInt() - loInt.getInt()) % stepInt.getInt()) == 0)
577       return rewriter.create<vector::BroadcastOp>(
578           loc, mtp, constantI1(rewriter, loc, true));
579   }
580   // Otherwise, generate a vector mask that avoids overrunning the upperbound
581   // during vector execution. Here we rely on subsequent loop optimizations to
582   // avoid executing the mask in all iterations, for example, by splitting the
583   // loop into an unconditional vector loop and a scalar cleanup loop.
584   auto minMap = AffineMap::get(
585       /*dimCount=*/2, /*symbolCount=*/1,
586       {rewriter.getAffineSymbolExpr(0),
587        rewriter.getAffineDimExpr(0) - rewriter.getAffineDimExpr(1)},
588       rewriter.getContext());
589   Value end =
590       rewriter.createOrFold<AffineMinOp>(loc, minMap, ValueRange{hi, iv, step});
591   return rewriter.create<vector::CreateMaskOp>(loc, mtp, end);
592 }
593 
594 /// Generates a vectorized load lhs = a[ind[lo:hi]] or lhs = a[lo:hi].
595 static Value genVectorLoad(CodeGen &codegen, PatternRewriter &rewriter,
596                            Value ptr, ArrayRef<Value> args) {
597   Location loc = ptr.getLoc();
598   VectorType vtp = vectorType(codegen, ptr);
599   Value pass = constantZero(rewriter, loc, vtp);
600   if (args.back().getType().isa<VectorType>()) {
601     SmallVector<Value, 4> scalarArgs(args.begin(), args.end());
602     Value indexVec = args.back();
603     scalarArgs.back() = constantIndex(rewriter, loc, 0);
604     return rewriter.create<vector::GatherOp>(
605         loc, vtp, ptr, scalarArgs, indexVec, codegen.curVecMask, pass);
606   }
607   return rewriter.create<vector::MaskedLoadOp>(loc, vtp, ptr, args,
608                                                codegen.curVecMask, pass);
609 }
610 
611 /// Generates a vectorized store a[ind[lo:hi]] = rhs or a[lo:hi] = rhs.
612 static void genVectorStore(CodeGen &codegen, PatternRewriter &rewriter,
613                            Value rhs, Value ptr, ArrayRef<Value> args) {
614   Location loc = ptr.getLoc();
615   if (args.back().getType().isa<VectorType>()) {
616     SmallVector<Value, 4> scalarArgs(args.begin(), args.end());
617     Value indexVec = args.back();
618     scalarArgs.back() = constantIndex(rewriter, loc, 0);
619     rewriter.create<vector::ScatterOp>(loc, ptr, scalarArgs, indexVec,
620                                        codegen.curVecMask, rhs);
621     return;
622   }
623   rewriter.create<vector::MaskedStoreOp>(loc, ptr, args, codegen.curVecMask,
624                                          rhs);
625 }
626 
627 /// Generates a vectorized invariant. Here we rely on subsequent loop
628 /// optimizations to hoist the invariant broadcast out of the vector loop.
629 static Value genVectorInvariantValue(CodeGen &codegen,
630                                      PatternRewriter &rewriter, Value val) {
631   VectorType vtp = vectorType(codegen, val.getType());
632   return rewriter.create<vector::BroadcastOp>(val.getLoc(), vtp, val);
633 }
634 
635 /// Generates an affine expression.
636 //
637 // TODO: generalize for sparse tensor subscripts
638 //
639 static Value genAffine(CodeGen &codegen, PatternRewriter &rewriter,
640                        AffineExpr a, Location loc) {
641   switch (a.getKind()) {
642   case AffineExprKind::DimId: {
643     unsigned idx = a.cast<AffineDimExpr>().getPosition();
644     return codegen.loops[idx]; // universal dense index
645   }
646   case AffineExprKind::Add: {
647     auto binOp = a.cast<AffineBinaryOpExpr>();
648     return rewriter.create<arith::AddIOp>(
649         loc, genAffine(codegen, rewriter, binOp.getLHS(), loc),
650         genAffine(codegen, rewriter, binOp.getRHS(), loc));
651   }
652   case AffineExprKind::Mul: {
653     auto binOp = a.cast<AffineBinaryOpExpr>();
654     return rewriter.create<arith::MulIOp>(
655         loc, genAffine(codegen, rewriter, binOp.getLHS(), loc),
656         genAffine(codegen, rewriter, binOp.getRHS(), loc));
657   }
658   case AffineExprKind::Constant: {
659     int64_t c = a.cast<AffineConstantExpr>().getValue();
660     return constantIndex(rewriter, loc, c);
661   }
662   default:
663     llvm_unreachable("unexpected affine subscript");
664   }
665 }
666 
667 /// Generates index for load/store on sparse tensor.
668 static Value genIndex(CodeGen &codegen, linalg::GenericOp op, OpOperand *t) {
669   auto map = op.getTiedIndexingMap(t);
670   auto enc = getSparseTensorEncoding(t->get().getType());
671   AffineExpr a = map.getResult(perm(enc, map.getNumResults() - 1));
672   assert(a.getKind() == AffineExprKind::DimId);
673   unsigned idx = a.cast<AffineDimExpr>().getPosition();
674   return codegen.loops[idx];
675 }
676 
677 /// Generates subscript for load/store on a dense or sparse tensor.
678 static Value genSubscript(CodeGen &codegen, PatternRewriter &rewriter,
679                           linalg::GenericOp op, OpOperand *t,
680                           SmallVector<Value, 4> &args) {
681   unsigned tensor = t->getOperandNumber();
682   auto map = op.getTiedIndexingMap(t);
683   auto enc = getSparseTensorEncoding(t->get().getType());
684   unsigned rank = map.getNumResults();
685   if (enc) {
686     // Note that currently, all sparse subscripts are simple.
687     // TODO: accept affine too?
688     AffineExpr a = map.getResult(perm(enc, rank - 1));
689     assert(a.getKind() == AffineExprKind::DimId);
690     unsigned idx = a.cast<AffineDimExpr>().getPosition();
691     assert(codegen.pidxs[tensor][idx] != nullptr);
692     args.push_back(codegen.pidxs[tensor][idx]); // position index
693   } else {
694     for (unsigned d = 0; d < rank; d++) {
695       AffineExpr a = map.getResult(perm(enc, d));
696       args.push_back(genAffine(codegen, rewriter, a, op.getLoc()));
697     }
698   }
699   return codegen.buffers[tensor];
700 }
701 
702 /// Generates insertion code to implement dynamic tensor load.
703 static Value genInsertionLoad(CodeGen &codegen, PatternRewriter &rewriter,
704                               linalg::GenericOp op, OpOperand *t) {
705   Location loc = op.getLoc();
706   // Direct lexicographic index order, tensor loads as zero.
707   if (!codegen.expValues) {
708     Type tp = getElementTypeOrSelf(t->get().getType());
709     return constantZero(rewriter, loc, tp);
710   }
711   // Load from expanded access pattern.
712   Value index = genIndex(codegen, op, t);
713   return rewriter.create<memref::LoadOp>(loc, codegen.expValues, index);
714 }
715 
716 /// Generates insertion code to implement dynamic tensor store.
717 static void genInsertionStore(CodeGen &codegen, PatternRewriter &rewriter,
718                               linalg::GenericOp op, OpOperand *t, Value rhs) {
719   Location loc = op.getLoc();
720   // Direct insertion in lexicographic index order.
721   if (!codegen.expValues) {
722     rewriter.create<LexInsertOp>(loc, t->get(), codegen.lexIdx, rhs);
723     return;
724   }
725   // Generates insertion code along expanded access pattern.
726   //   if (!expFilled[i]) then
727   //     expFilled[i] = true
728   //     expAdded[inserts++] = i
729   //   endif
730   //   values[i] = rhs
731   Value index = genIndex(codegen, op, t);
732   Value fval = constantI1(rewriter, loc, false);
733   Value tval = constantI1(rewriter, loc, true);
734   // If statement.
735   Value filled = rewriter.create<memref::LoadOp>(loc, codegen.expFilled, index);
736   Value cond = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
737                                               filled, fval);
738   scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, rewriter.getIndexType(),
739                                               cond, /*else=*/true);
740   // True branch.
741   rewriter.setInsertionPointToStart(&ifOp.getThenRegion().front());
742   rewriter.create<memref::StoreOp>(loc, tval, codegen.expFilled, index);
743   rewriter.create<memref::StoreOp>(loc, index, codegen.expAdded,
744                                    codegen.expCount);
745   Value one = constantIndex(rewriter, loc, 1);
746   Value add = rewriter.create<arith::AddIOp>(loc, codegen.expCount, one);
747   rewriter.create<scf::YieldOp>(loc, add);
748   // False branch.
749   rewriter.setInsertionPointToStart(&ifOp.getElseRegion().front());
750   rewriter.create<scf::YieldOp>(loc, codegen.expCount);
751   rewriter.setInsertionPointAfter(ifOp);
752   // Value assignment.
753   codegen.expCount = ifOp.getResult(0);
754   rewriter.create<memref::StoreOp>(loc, rhs, codegen.expValues, index);
755 }
756 
757 /// Generates a load on a dense or sparse tensor.
758 static Value genTensorLoad(Merger &merger, CodeGen &codegen,
759                            PatternRewriter &rewriter, linalg::GenericOp op,
760                            unsigned exp) {
761   // Test if the load was hoisted to a higher loop nest.
762   Value val = merger.exp(exp).val;
763   if (val) {
764     if (codegen.curVecLength > 1 && !val.getType().isa<VectorType>())
765       return genVectorInvariantValue(codegen, rewriter, val);
766     return val;
767   }
768   // Load during insertion.
769   OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).tensor];
770   if (t == codegen.sparseOut)
771     return genInsertionLoad(codegen, rewriter, op, t);
772   // Actual load.
773   SmallVector<Value, 4> args;
774   Value ptr = genSubscript(codegen, rewriter, op, t, args);
775   if (codegen.curVecLength > 1)
776     return genVectorLoad(codegen, rewriter, ptr, args);
777   return rewriter.create<memref::LoadOp>(op.getLoc(), ptr, args);
778 }
779 
780 /// Generates a store on a dense or sparse tensor.
781 static void genTensorStore(Merger &merger, CodeGen &codegen,
782                            PatternRewriter &rewriter, linalg::GenericOp op,
783                            Value rhs) {
784   Location loc = op.getLoc();
785   // Test if this is a scalarized reduction.
786   if (codegen.redVal) {
787     if (codegen.curVecLength > 1)
788       rhs = rewriter.create<arith::SelectOp>(loc, codegen.curVecMask, rhs,
789                                              codegen.redVal);
790     updateReduc(merger, codegen, rhs);
791     return;
792   }
793   // Store during insertion.
794   OpOperand *t = op.getOutputOperand(0);
795   if (t == codegen.sparseOut) {
796     genInsertionStore(codegen, rewriter, op, t, rhs);
797     return;
798   }
799   // Actual store.
800   SmallVector<Value, 4> args;
801   Value ptr = genSubscript(codegen, rewriter, op, t, args);
802   if (codegen.curVecLength > 1)
803     genVectorStore(codegen, rewriter, rhs, ptr, args);
804   else
805     rewriter.create<memref::StoreOp>(loc, rhs, ptr, args);
806 }
807 
808 /// Generates a pointer/index load from the sparse storage scheme. Narrower
809 /// data types need to be zero extended before casting the value into the
810 /// index type used for looping and indexing.
811 static Value genLoad(CodeGen &codegen, PatternRewriter &rewriter, Location loc,
812                      Value ptr, Value s) {
813   // See https://llvm.org/docs/GetElementPtr.html for some background on
814   // the complications described below.
815   if (codegen.curVecLength > 1) {
816     // Since the index vector is used in a subsequent gather/scatter operations,
817     // which effectively defines an unsigned pointer + signed index, we must
818     // zero extend the vector to an index width. For 8-bit and 16-bit values,
819     // an 32-bit index width suffices. For 32-bit values, zero extending the
820     // elements into 64-bit loses some performance since the 32-bit indexed
821     // gather/scatter is more efficient than the 64-bit index variant (if the
822     // negative 32-bit index space is unused, the enableSIMDIndex32 flag can
823     // preserve this performance). For 64-bit values, there is no good way
824     // to state that the indices are unsigned, with creates the potential of
825     // incorrect address calculations in the unlikely case we need such
826     // extremely large offsets.
827     Type etp = ptr.getType().cast<MemRefType>().getElementType();
828     Value vload = genVectorLoad(codegen, rewriter, ptr, {s});
829     if (!etp.isa<IndexType>()) {
830       if (etp.getIntOrFloatBitWidth() < 32)
831         vload = rewriter.create<arith::ExtUIOp>(
832             loc, vectorType(codegen, rewriter.getI32Type()), vload);
833       else if (etp.getIntOrFloatBitWidth() < 64 &&
834                !codegen.options.enableSIMDIndex32)
835         vload = rewriter.create<arith::ExtUIOp>(
836             loc, vectorType(codegen, rewriter.getI64Type()), vload);
837     }
838     return vload;
839   }
840   // For the scalar case, we simply zero extend narrower indices into 64-bit
841   // values before casting to index without a performance penalty. Here too,
842   // however, indices that already are 64-bit, in theory, cannot express the
843   // full range as explained above.
844   Value load = rewriter.create<memref::LoadOp>(loc, ptr, s);
845   if (!load.getType().isa<IndexType>()) {
846     if (load.getType().getIntOrFloatBitWidth() < 64)
847       load = rewriter.create<arith::ExtUIOp>(loc, rewriter.getI64Type(), load);
848     load =
849         rewriter.create<arith::IndexCastOp>(loc, rewriter.getIndexType(), load);
850   }
851   return load;
852 }
853 
854 /// Generates an invariant value.
855 static Value genInvariantValue(Merger &merger, CodeGen &codegen,
856                                PatternRewriter &rewriter, unsigned exp) {
857   Value val = merger.exp(exp).val;
858   if (codegen.curVecLength > 1)
859     return genVectorInvariantValue(codegen, rewriter, val);
860   return val;
861 }
862 
863 /// Generates an address computation "sz * p + i".
864 static Value genAddress(CodeGen &codegen, PatternRewriter &rewriter,
865                         Location loc, Value size, Value p, Value i) {
866   Value mul = rewriter.create<arith::MulIOp>(loc, size, p);
867   if (auto vtp = i.getType().dyn_cast<VectorType>()) {
868     Value inv =
869         rewriter.create<arith::IndexCastOp>(loc, vtp.getElementType(), mul);
870     mul = genVectorInvariantValue(codegen, rewriter, inv);
871   }
872   return rewriter.create<arith::AddIOp>(loc, mul, i);
873 }
874 
875 /// Generates an index value.
876 static Value genIndexValue(Merger &merger, CodeGen &codegen,
877                            PatternRewriter &rewriter, unsigned exp,
878                            unsigned ldx) {
879   unsigned idx = merger.exp(exp).index;
880   Value ival = codegen.loops[idx];
881   Type itype = ival.getType();
882   // During vectorization, we either encounter:
883   // (1) indices already in vector form, as in ... = ind[lo:hi], good to go, or
884   // (2) single index, as in ... = i, must convert to [i, i+1, ...] for inner i.
885   unsigned vl = codegen.curVecLength;
886   if (vl > 1 && !itype.isa<VectorType>()) {
887     Location loc = ival.getLoc();
888     VectorType vtp = vectorType(codegen, itype);
889     ival = rewriter.create<vector::BroadcastOp>(loc, vtp, ival);
890     if (idx == ldx) {
891       SmallVector<APInt, 4> integers;
892       for (unsigned i = 0; i < vl; i++)
893         integers.push_back(APInt(/*width=*/64, i));
894       auto values = DenseElementsAttr::get(vtp, integers);
895       Value incr = rewriter.create<arith::ConstantOp>(loc, vtp, values);
896       ival = rewriter.create<arith::AddIOp>(loc, ival, incr);
897     }
898   }
899   return ival;
900 }
901 
902 /// Recursively generates tensor expression.
903 static Value genExp(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
904                     linalg::GenericOp op, unsigned exp, unsigned ldx) {
905   Location loc = op.getLoc();
906   if (exp == -1u)
907     return Value();
908   if (merger.exp(exp).kind == Kind::kTensor)
909     return genTensorLoad(merger, codegen, rewriter, op, exp);
910   if (merger.exp(exp).kind == Kind::kInvariant)
911     return genInvariantValue(merger, codegen, rewriter, exp);
912   if (merger.exp(exp).kind == Kind::kIndex)
913     return genIndexValue(merger, codegen, rewriter, exp, ldx);
914   Value v0 =
915       genExp(merger, codegen, rewriter, op, merger.exp(exp).children.e0, ldx);
916   Value v1 =
917       genExp(merger, codegen, rewriter, op, merger.exp(exp).children.e1, ldx);
918   return merger.buildExp(rewriter, loc, exp, v0, v1);
919 }
920 
921 /// Determines if affine expression is invariant.
922 static bool isInvariantAffine(const CodeGen &codegen, AffineExpr a,
923                               unsigned ldx, bool &atLevel) {
924   switch (a.getKind()) {
925   case AffineExprKind::DimId: {
926     unsigned idx = a.cast<AffineDimExpr>().getPosition();
927     if (idx == ldx)
928       atLevel = true;
929     return codegen.loops[idx] != nullptr; // no longer in play?
930   }
931   case AffineExprKind::Add:
932   case AffineExprKind::Mul: {
933     auto binOp = a.cast<AffineBinaryOpExpr>();
934     return isInvariantAffine(codegen, binOp.getLHS(), ldx, atLevel) &&
935            isInvariantAffine(codegen, binOp.getRHS(), ldx, atLevel);
936   }
937   default:
938     return true;
939   }
940 }
941 
942 /// Hoists loop invariant tensor loads for which indices have been exhausted.
943 static void genInvariants(Merger &merger, CodeGen &codegen,
944                           PatternRewriter &rewriter, linalg::GenericOp op,
945                           unsigned exp, unsigned ldx, bool atStart,
946                           Kind last = Kind::kTensor) {
947   if (exp == -1u)
948     return;
949   if (merger.exp(exp).kind == Kind::kTensor) {
950     // Inspect tensor indices.
951     bool atLevel = ldx == -1u;
952     OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).tensor];
953     auto map = op.getTiedIndexingMap(t);
954     auto enc = getSparseTensorEncoding(t->get().getType());
955     for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
956       AffineExpr a = map.getResult(perm(enc, d));
957       if (!isInvariantAffine(codegen, a, ldx, atLevel))
958         return; // still in play
959     }
960     // All exhausted at this level (atLevel denotes exactly at this level).
961     if (!atLevel)
962       return;
963     OpOperand *lhs = op.getOutputOperand(0);
964     if (lhs == t) {
965       // Start or end a scalarized reduction
966       if (atStart) {
967         Value load = genTensorLoad(merger, codegen, rewriter, op, exp);
968         codegen.redKind = getReduction(last);
969         codegen.redExp = exp;
970         updateReduc(merger, codegen, load);
971       } else {
972         Value redVal = codegen.redVal;
973         updateReduc(merger, codegen, Value());
974         codegen.redExp = -1u;
975         codegen.redKind = kNoReduc;
976         genTensorStore(merger, codegen, rewriter, op, redVal);
977       }
978     } else {
979       // Start or end loop invariant hoisting of a tensor load.
980       merger.exp(exp).val =
981           atStart ? genTensorLoad(merger, codegen, rewriter, op, exp) : Value();
982     }
983   } else if (merger.exp(exp).kind != Kind::kInvariant &&
984              merger.exp(exp).kind != Kind::kIndex) {
985     // Traverse into the binary operations. Note that we only hoist
986     // tensor loads, since subsequent MLIR/LLVM passes know how to
987     // deal with all other kinds of derived loop invariants.
988     Kind last = merger.exp(exp).kind;
989     unsigned e0 = merger.exp(exp).children.e0;
990     unsigned e1 = merger.exp(exp).children.e1;
991     genInvariants(merger, codegen, rewriter, op, e0, ldx, atStart, last);
992     genInvariants(merger, codegen, rewriter, op, e1, ldx, atStart, last);
993   }
994 }
995 
996 /// Generates an expanded access pattern in innermost dimension.
997 static void genExpansion(Merger &merger, CodeGen &codegen,
998                          PatternRewriter &rewriter, linalg::GenericOp op,
999                          unsigned at, bool atStart) {
1000   OpOperand *lhs = codegen.sparseOut;
1001   if (!lhs || codegen.outerParNest != op.getRank(lhs) - 1 ||
1002       at != codegen.outerParNest)
1003     return; // not needed at this level
1004   // Generate start or end of an expanded access pattern.
1005   Value tensor = lhs->get();
1006   Location loc = op.getLoc();
1007   if (atStart) {
1008     auto dynShape = {ShapedType::kDynamicSize};
1009     Type etp = tensor.getType().cast<ShapedType>().getElementType();
1010     Type t1 = MemRefType::get(dynShape, etp);
1011     Type t2 = MemRefType::get(dynShape, rewriter.getI1Type());
1012     Type t3 = MemRefType::get(dynShape, rewriter.getIndexType());
1013     Type t4 = rewriter.getIndexType();
1014     auto res =
1015         rewriter.create<ExpandOp>(loc, TypeRange({t1, t2, t3, t4}), tensor);
1016     assert(res.getNumResults() == 4);
1017     assert(!codegen.expValues);
1018     codegen.expValues = res.getResult(0);
1019     codegen.expFilled = res.getResult(1);
1020     codegen.expAdded = res.getResult(2);
1021     codegen.expCount = res.getResult(3);
1022   } else {
1023     assert(codegen.expValues);
1024     rewriter.create<CompressOp>(loc, tensor, codegen.lexIdx, codegen.expValues,
1025                                 codegen.expFilled, codegen.expAdded,
1026                                 codegen.expCount);
1027     codegen.expValues = codegen.expFilled = codegen.expAdded =
1028         codegen.expCount = Value();
1029   }
1030 }
1031 
1032 /// Generates initialization code for the subsequent loop sequence at
1033 /// current index level. Returns true if the loop sequence needs to
1034 /// maintain the universal index.
1035 static bool genInit(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
1036                     linalg::GenericOp op, std::vector<unsigned> &topSort,
1037                     unsigned at, BitVector &inits) {
1038   bool needsUniv = false;
1039   Location loc = op.getLoc();
1040   unsigned idx = topSort[at];
1041 
1042   // Initialize sparse positions.
1043   for (unsigned b = 0, be = inits.size(); b < be; b++) {
1044     if (inits[b]) {
1045       unsigned tensor = merger.tensor(b);
1046       assert(idx == merger.index(b));
1047       if (merger.isDim(b, Dim::kSparse)) {
1048         // Initialize sparse index.
1049         unsigned pat = at;
1050         for (; pat != 0; pat--) {
1051           if (codegen.pidxs[tensor][topSort[pat - 1]])
1052             break;
1053         }
1054         Value ptr = codegen.pointers[tensor][idx];
1055         Value one = constantIndex(rewriter, loc, 1);
1056         Value p0 = (pat == 0) ? constantIndex(rewriter, loc, 0)
1057                               : codegen.pidxs[tensor][topSort[pat - 1]];
1058         codegen.pidxs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p0);
1059         Value p1 = rewriter.create<arith::AddIOp>(loc, p0, one);
1060         codegen.highs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p1);
1061       } else {
1062         // Dense index still in play.
1063         needsUniv = true;
1064       }
1065     }
1066   }
1067 
1068   // Initialize the universal dense index.
1069   codegen.loops[idx] = constantIndex(rewriter, loc, 0);
1070   return needsUniv;
1071 }
1072 
1073 /// Returns vectorization strategy. Any implicit inner loop in the Linalg
1074 /// operation is a candidate. Whether it is actually converted to SIMD code
1075 /// depends on the requested strategy.
1076 static bool isVectorFor(CodeGen &codegen, bool isInner, bool isReduction,
1077                         bool isSparse) {
1078   // Reject vectorization of sparse output, unless innermost is reduction.
1079   if (codegen.sparseOut && !isReduction)
1080     return false;
1081   // Inspect strategy.
1082   switch (codegen.options.vectorizationStrategy) {
1083   case SparseVectorizationStrategy::kNone:
1084     return false;
1085   case SparseVectorizationStrategy::kDenseInnerLoop:
1086     return isInner && !isSparse;
1087   case SparseVectorizationStrategy::kAnyStorageInnerLoop:
1088     return isInner;
1089   }
1090   llvm_unreachable("unexpected vectorization strategy");
1091 }
1092 
1093 /// Returns parallelization strategy. Any implicit loop in the Linalg operation
1094 /// that is marked "parallel" is a candidate. Whether it is actually converted
1095 /// to a parallel operation depends on the requested strategy.
1096 static bool isParallelFor(CodeGen &codegen, bool isOuter, bool isReduction,
1097                           bool isSparse, bool isVector) {
1098   // Reject parallelization of sparse output.
1099   if (codegen.sparseOut)
1100     return false;
1101   // Inspect strategy.
1102   switch (codegen.options.parallelizationStrategy) {
1103   case SparseParallelizationStrategy::kNone:
1104     return false;
1105   case SparseParallelizationStrategy::kDenseOuterLoop:
1106     return isOuter && !isSparse && !isReduction && !isVector;
1107   case SparseParallelizationStrategy::kAnyStorageOuterLoop:
1108     return isOuter && !isReduction && !isVector;
1109   case SparseParallelizationStrategy::kDenseAnyLoop:
1110     return !isSparse && !isReduction && !isVector;
1111   case SparseParallelizationStrategy::kAnyStorageAnyLoop:
1112     return !isReduction && !isVector;
1113   }
1114   llvm_unreachable("unexpected parallelization strategy");
1115 }
1116 
1117 /// Checks unit stride for dense tensors. The iteration graph may have ignored
1118 /// dense access patterns in order to avoid cycles (sparse access patterns are
1119 /// always placed innermost), but that means dense access has become strided.
1120 /// This prevents effective vectorization.
1121 static bool denseUnitStrides(Merger &merger, linalg::GenericOp op,
1122                              unsigned idx) {
1123   for (OpOperand *t : op.getInputAndOutputOperands()) {
1124     if (!getSparseTensorEncoding(t->get().getType())) {
1125       auto map = op.getTiedIndexingMap(t);
1126       for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
1127         AffineExpr a = map.getResult(d);
1128         // Report non-unit stride if innermost index appears at an outer
1129         // dimension (true non-unit stride) or if the innermost index appears
1130         // in a compound subscript in the innermost dimension. Even if the
1131         // latter is unit stride, it does not play well with scatter/gather.
1132         // TODO: accept unit stride affine innermost like a[i,j+k+1]?
1133         if (a.isFunctionOfDim(idx) &&
1134             ((d != rank - 1) || (a.getKind() != AffineExprKind::DimId)))
1135           return false;
1136       }
1137     }
1138   }
1139   return true;
1140 }
1141 
1142 /// Generates a for-loop on a single index.
1143 static Operation *genFor(Merger &merger, CodeGen &codegen,
1144                          PatternRewriter &rewriter, linalg::GenericOp op,
1145                          bool isOuter, bool isInner, unsigned idx,
1146                          BitVector &indices) {
1147   unsigned fb = indices.find_first();
1148   unsigned tensor = merger.tensor(fb);
1149   assert(idx == merger.index(fb));
1150   auto iteratorTypes = op.iterator_types().getValue();
1151   bool isReduction = isReductionIterator(iteratorTypes[idx]);
1152   bool isSparse = merger.isDim(fb, Dim::kSparse);
1153   bool isVector = isVectorFor(codegen, isInner, isReduction, isSparse) &&
1154                   denseUnitStrides(merger, op, idx);
1155   bool isParallel =
1156       isParallelFor(codegen, isOuter, isReduction, isSparse, isVector);
1157 
1158   // Prepare vector length.
1159   if (isVector)
1160     codegen.curVecLength = codegen.options.vectorLength;
1161 
1162   // Loop bounds and increment.
1163   Location loc = op.getLoc();
1164   Value lo = isSparse ? codegen.pidxs[tensor][idx] : codegen.loops[idx];
1165   Value hi = isSparse ? codegen.highs[tensor][idx] : codegen.sizes[idx];
1166   Value step = constantIndex(rewriter, loc, codegen.curVecLength);
1167 
1168   // Emit a parallel loop.
1169   if (isParallel) {
1170     assert(!isVector);
1171     scf::ParallelOp parOp = rewriter.create<scf::ParallelOp>(loc, lo, hi, step);
1172     if (isSparse)
1173       codegen.pidxs[tensor][idx] = parOp.getInductionVars()[0];
1174     else
1175       codegen.loops[idx] = parOp.getInductionVars()[0];
1176     rewriter.setInsertionPointToStart(parOp.getBody());
1177     return parOp;
1178   }
1179 
1180   // Emit a sequential or vector loop.
1181   SmallVector<Value, 4> operands;
1182   if (codegen.redVal) {
1183     // In a vector loop, bring reduction into SIMD form, if not already.
1184     if (isVector && !codegen.redVal.getType().isa<VectorType>()) {
1185       VectorType vtp = vectorType(codegen, codegen.redVal.getType());
1186       Value vred = genVectorReducInit(codegen, rewriter, loc, vtp);
1187       updateReduc(merger, codegen, vred);
1188     }
1189     operands.push_back(codegen.redVal);
1190   }
1191   if (codegen.expValues)
1192     operands.push_back(codegen.expCount);
1193   scf::ForOp forOp = rewriter.create<scf::ForOp>(loc, lo, hi, step, operands);
1194   if (codegen.redVal)
1195     updateReduc(merger, codegen, forOp.getRegionIterArgs().front());
1196   if (codegen.expValues)
1197     codegen.expCount = forOp.getRegionIterArgs().back();
1198   // Assign induction variable to sparse or dense index.
1199   Value iv = forOp.getInductionVar();
1200   if (isSparse)
1201     codegen.pidxs[tensor][idx] = iv;
1202   else
1203     codegen.loops[idx] = iv;
1204   rewriter.setInsertionPointToStart(forOp.getBody());
1205   // Share vector iteration mask between all subsequent loads/stores.
1206   if (isVector)
1207     codegen.curVecMask = genVectorMask(codegen, rewriter, iv, lo, hi, step);
1208   return forOp;
1209 }
1210 
1211 /// Emit a while-loop for co-iteration over multiple indices.
1212 static Operation *genWhile(Merger &merger, CodeGen &codegen,
1213                            PatternRewriter &rewriter, linalg::GenericOp op,
1214                            unsigned idx, bool needsUniv,
1215                            BitVector &indices) {
1216   SmallVector<Type, 4> types;
1217   SmallVector<Value, 4> operands;
1218   // Construct the while-loop with a parameter for each index.
1219   Type indexType = rewriter.getIndexType();
1220   for (unsigned b = 0, be = indices.size(); b < be; b++) {
1221     if (indices[b] && merger.isDim(b, Dim::kSparse)) {
1222       unsigned tensor = merger.tensor(b);
1223       assert(idx == merger.index(b));
1224       types.push_back(indexType);
1225       operands.push_back(codegen.pidxs[tensor][idx]);
1226     }
1227   }
1228   if (codegen.redVal) {
1229     types.push_back(codegen.redVal.getType());
1230     operands.push_back(codegen.redVal);
1231   }
1232   if (codegen.expValues) {
1233     types.push_back(indexType);
1234     operands.push_back(codegen.expCount);
1235   }
1236   if (needsUniv) {
1237     types.push_back(indexType);
1238     operands.push_back(codegen.loops[idx]);
1239   }
1240   assert(types.size() == operands.size());
1241   Location loc = op.getLoc();
1242   scf::WhileOp whileOp = rewriter.create<scf::WhileOp>(loc, types, operands);
1243 
1244   SmallVector<Location> locs(types.size(), loc);
1245   Block *before = rewriter.createBlock(&whileOp.getBefore(), {}, types, locs);
1246   Block *after = rewriter.createBlock(&whileOp.getAfter(), {}, types, locs);
1247 
1248   // Build the "before" region, which effectively consists
1249   // of a conjunction of "i < upper" tests on all induction.
1250   rewriter.setInsertionPointToStart(&whileOp.getBefore().front());
1251   Value cond;
1252   unsigned o = 0;
1253   for (unsigned b = 0, be = indices.size(); b < be; b++) {
1254     if (indices[b] && merger.isDim(b, Dim::kSparse)) {
1255       unsigned tensor = merger.tensor(b);
1256       assert(idx == merger.index(b));
1257       Value op1 = before->getArgument(o);
1258       Value op2 = codegen.highs[tensor][idx];
1259       Value opc = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult,
1260                                                  op1, op2);
1261       cond = cond ? rewriter.create<arith::AndIOp>(loc, cond, opc) : opc;
1262       codegen.pidxs[tensor][idx] = after->getArgument(o++);
1263     }
1264   }
1265   if (codegen.redVal)
1266     updateReduc(merger, codegen, after->getArgument(o++));
1267   if (codegen.expValues)
1268     codegen.expCount = after->getArgument(o++);
1269   if (needsUniv)
1270     codegen.loops[idx] = after->getArgument(o++);
1271   assert(o == operands.size());
1272   rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments());
1273   rewriter.setInsertionPointToStart(&whileOp.getAfter().front());
1274   return whileOp;
1275 }
1276 
1277 /// Generates a for-loop or a while-loop, depending on whether it implements
1278 /// singleton iteration or co-iteration over the given conjunction.
1279 static Operation *genLoop(Merger &merger, CodeGen &codegen,
1280                           PatternRewriter &rewriter, linalg::GenericOp op,
1281                           std::vector<unsigned> &topSort, unsigned at,
1282                           bool needsUniv, BitVector &indices) {
1283   unsigned idx = topSort[at];
1284   if (indices.count() == 1) {
1285     bool isOuter = at == 0;
1286     bool isInner = at == topSort.size() - 1;
1287     return genFor(merger, codegen, rewriter, op, isOuter, isInner, idx,
1288                   indices);
1289   }
1290   return genWhile(merger, codegen, rewriter, op, idx, needsUniv, indices);
1291 }
1292 
1293 /// Generates the local variables for this loop, consisting of the sparse
1294 /// indices, restored universal dense index, and dense positions.
1295 static void genLocals(Merger &merger, CodeGen &codegen,
1296                       PatternRewriter &rewriter, linalg::GenericOp op,
1297                       std::vector<unsigned> &topSort, unsigned at,
1298                       bool needsUniv, BitVector &locals) {
1299   Location loc = op.getLoc();
1300   unsigned idx = topSort[at];
1301 
1302   // Initialize sparse indices.
1303   Value min;
1304   for (unsigned b = 0, be = locals.size(); b < be; b++) {
1305     if (locals[b] && merger.isDim(b, Dim::kSparse)) {
1306       unsigned tensor = merger.tensor(b);
1307       assert(idx == merger.index(b));
1308       Value ptr = codegen.indices[tensor][idx];
1309       Value s = codegen.pidxs[tensor][idx];
1310       Value load = genLoad(codegen, rewriter, loc, ptr, s);
1311       codegen.idxs[tensor][idx] = load;
1312       if (!needsUniv) {
1313         if (min) {
1314           Value cmp = rewriter.create<arith::CmpIOp>(
1315               loc, arith::CmpIPredicate::ult, load, min);
1316           min = rewriter.create<arith::SelectOp>(loc, cmp, load, min);
1317         } else {
1318           min = load;
1319         }
1320       }
1321     }
1322   }
1323 
1324   // Merge dense universal index over minimum.
1325   if (min) {
1326     assert(!needsUniv);
1327     codegen.loops[idx] = min;
1328   }
1329 
1330   // Initialize dense positions. Note that we generate dense indices of the
1331   // output tensor unconditionally, since they may not appear in the lattice,
1332   // but may be needed for linearized codegen.
1333   for (unsigned b = 0, be = locals.size(); b < be; b++) {
1334     if ((locals[b] || merger.isOutTensor(b, idx)) &&
1335         merger.isDim(b, Dim::kDense)) {
1336       unsigned tensor = merger.tensor(b);
1337       assert(idx == merger.index(b));
1338       unsigned pat = at;
1339       for (; pat != 0; pat--)
1340         if (codegen.pidxs[tensor][topSort[pat - 1]])
1341           break;
1342       Value p = (pat == 0) ? constantIndex(rewriter, loc, 0)
1343                            : codegen.pidxs[tensor][topSort[pat - 1]];
1344       codegen.pidxs[tensor][idx] = genAddress(
1345           codegen, rewriter, loc, codegen.sizes[idx], p, codegen.loops[idx]);
1346     }
1347   }
1348 
1349   // Move the insertion indices in lexicographic index order. During access
1350   // pattern expansion, we can skip setting the innermost dimension.
1351   if (codegen.sparseOut && !codegen.expValues) {
1352     Value pos = constantIndex(rewriter, loc, at);
1353     rewriter.create<memref::StoreOp>(loc, codegen.loops[idx], codegen.lexIdx,
1354                                      pos);
1355   }
1356 }
1357 
1358 /// Generates the induction structure for a while-loop.
1359 static void genWhileInduction(Merger &merger, CodeGen &codegen,
1360                               PatternRewriter &rewriter, linalg::GenericOp op,
1361                               unsigned idx, bool needsUniv,
1362                               BitVector &induction,
1363                               scf::WhileOp whileOp) {
1364   Location loc = op.getLoc();
1365   // Finalize each else branch of all if statements.
1366   if (codegen.redVal || codegen.expValues) {
1367     while (auto ifOp = dyn_cast_or_null<scf::IfOp>(
1368                rewriter.getInsertionBlock()->getParentOp())) {
1369       unsigned y = 0;
1370       SmallVector<Value, 4> yields;
1371       if (codegen.redVal) {
1372         yields.push_back(codegen.redVal);
1373         updateReduc(merger, codegen, ifOp.getResult(y++));
1374       }
1375       if (codegen.expValues) {
1376         yields.push_back(codegen.expCount);
1377         codegen.expCount = ifOp->getResult(y++);
1378       }
1379       assert(y == yields.size());
1380       rewriter.create<scf::YieldOp>(loc, yields);
1381       rewriter.setInsertionPointAfter(ifOp);
1382     }
1383   }
1384   rewriter.setInsertionPointToEnd(&whileOp.getAfter().front());
1385   // Finalize the induction. Note that the induction could be performed
1386   // in the individual if-branches to avoid re-evaluating the conditions.
1387   // However, that would result in a rather elaborate forest of yield
1388   // instructions during code generation. Moreover, performing the induction
1389   // after the if-statements more closely resembles code generated by TACO.
1390   unsigned o = 0;
1391   SmallVector<Value, 4> operands;
1392   Value one = constantIndex(rewriter, loc, 1);
1393   for (unsigned b = 0, be = induction.size(); b < be; b++) {
1394     if (induction[b] && merger.isDim(b, Dim::kSparse)) {
1395       unsigned tensor = merger.tensor(b);
1396       assert(idx == merger.index(b));
1397       Value op1 = codegen.idxs[tensor][idx];
1398       Value op2 = codegen.loops[idx];
1399       Value op3 = codegen.pidxs[tensor][idx];
1400       Value cmp = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
1401                                                  op1, op2);
1402       Value add = rewriter.create<arith::AddIOp>(loc, op3, one);
1403       operands.push_back(rewriter.create<arith::SelectOp>(loc, cmp, add, op3));
1404       codegen.pidxs[tensor][idx] = whileOp->getResult(o++);
1405     }
1406   }
1407   if (codegen.redVal) {
1408     operands.push_back(codegen.redVal);
1409     updateReduc(merger, codegen, whileOp->getResult(o++));
1410   }
1411   if (codegen.expValues) {
1412     operands.push_back(codegen.expCount);
1413     codegen.expCount = whileOp->getResult(o++);
1414   }
1415   if (needsUniv) {
1416     operands.push_back(
1417         rewriter.create<arith::AddIOp>(loc, codegen.loops[idx], one));
1418     codegen.loops[idx] = whileOp->getResult(o++);
1419   }
1420   assert(o == operands.size());
1421   rewriter.create<scf::YieldOp>(loc, operands);
1422   rewriter.setInsertionPointAfter(whileOp);
1423 }
1424 
1425 /// Generates the induction structure for a for-loop.
1426 static void genForInduction(Merger &merger, CodeGen &codegen,
1427                             PatternRewriter &rewriter, linalg::GenericOp op,
1428                             Operation *loop) {
1429   Location loc = op.getLoc();
1430   unsigned o = 0;
1431   SmallVector<Value, 4> operands;
1432   if (codegen.redVal) {
1433     operands.push_back(codegen.redVal);
1434     updateReduc(merger, codegen, loop->getResult(o++));
1435   }
1436   if (codegen.expValues) {
1437     operands.push_back(codegen.expCount);
1438     codegen.expCount = loop->getResult(o++);
1439   }
1440   assert(o == operands.size());
1441   if (o > 0)
1442     rewriter.create<scf::YieldOp>(loc, operands);
1443   rewriter.setInsertionPointAfter(loop);
1444 }
1445 
1446 /// Generates a single if-statement within a while-loop.
1447 static scf::IfOp genIf(Merger &merger, CodeGen &codegen,
1448                        PatternRewriter &rewriter, linalg::GenericOp op,
1449                        unsigned idx, BitVector &conditions) {
1450   Location loc = op.getLoc();
1451   SmallVector<Type, 4> types;
1452   Value cond;
1453   for (unsigned b = 0, be = conditions.size(); b < be; b++) {
1454     if (conditions[b]) {
1455       unsigned tensor = merger.tensor(b);
1456       assert(idx == merger.index(b));
1457       Value clause;
1458       if (merger.isDim(b, Dim::kSparse)) {
1459         Value op1 = codegen.idxs[tensor][idx];
1460         Value op2 = codegen.loops[idx];
1461         clause = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
1462                                                 op1, op2);
1463       } else {
1464         clause = constantI1(rewriter, loc, true);
1465       }
1466       cond = cond ? rewriter.create<arith::AndIOp>(loc, cond, clause) : clause;
1467     }
1468   }
1469   if (codegen.redVal)
1470     types.push_back(codegen.redVal.getType());
1471   if (codegen.expValues)
1472     types.push_back(rewriter.getIndexType());
1473   scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, types, cond, /*else=*/true);
1474   rewriter.setInsertionPointToStart(&ifOp.getThenRegion().front());
1475   return ifOp;
1476 }
1477 
1478 /// Generates end of true branch of if-statement within a while-loop.
1479 static void endIf(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
1480                   linalg::GenericOp op, scf::IfOp ifOp, Operation *loop,
1481                   Value redInput, Value cntInput) {
1482   SmallVector<Value, 4> operands;
1483   if (codegen.redVal) {
1484     operands.push_back(codegen.redVal);
1485     updateReduc(merger, codegen, redInput);
1486   }
1487   if (codegen.expValues) {
1488     operands.push_back(codegen.expCount);
1489     codegen.expCount = cntInput;
1490   }
1491   if (!operands.empty())
1492     rewriter.create<scf::YieldOp>(op.getLoc(), operands);
1493   rewriter.setInsertionPointToStart(&ifOp.getElseRegion().front());
1494 }
1495 
1496 //===----------------------------------------------------------------------===//
1497 // Sparse compiler synthesis methods (loop sequence).
1498 //===----------------------------------------------------------------------===//
1499 
1500 /// Starts a loop sequence at given level. Returns true if
1501 /// the universal loop index must be maintained at this level.
1502 static bool startLoopSeq(Merger &merger, CodeGen &codegen,
1503                          PatternRewriter &rewriter, linalg::GenericOp op,
1504                          std::vector<unsigned> &topSort, unsigned exp,
1505                          unsigned at, unsigned idx, unsigned ldx,
1506                          unsigned lts) {
1507   assert(codegen.curVecLength == 1);
1508   assert(!codegen.loops[idx]);
1509   // Emit invariants at this loop sequence level.
1510   genInvariants(merger, codegen, rewriter, op, exp, ldx, /*atStart=*/true);
1511   // Emit access pattern expansion for sparse tensor output.
1512   genExpansion(merger, codegen, rewriter, op, at, /*atStart=*/true);
1513   // Emit further intitialization at this loop sequence level.
1514   unsigned l0 = merger.set(lts)[0];
1515   bool needsUniv =
1516       genInit(merger, codegen, rewriter, op, topSort, at, merger.lat(l0).bits);
1517   // Maintain the universal index only if it is actually
1518   // consumed by a subsequent lattice point.
1519   if (needsUniv) {
1520     unsigned lsize = merger.set(lts).size();
1521     for (unsigned i = 1; i < lsize; i++) {
1522       unsigned li = merger.set(lts)[i];
1523       if (!merger.hasAnyDimOf(merger.lat(li).simple, Dim::kSparse))
1524         return true;
1525     }
1526   }
1527   return false;
1528 }
1529 
1530 /// Starts a single loop in current sequence.
1531 static Operation *startLoop(Merger &merger, CodeGen &codegen,
1532                             PatternRewriter &rewriter, linalg::GenericOp op,
1533                             std::vector<unsigned> &topSort, unsigned at,
1534                             unsigned li, bool needsUniv) {
1535   assert(codegen.curVecLength == 1);
1536   // Emit the for/while-loop control.
1537   Operation *loop = genLoop(merger, codegen, rewriter, op, topSort, at,
1538                             needsUniv, merger.lat(li).simple);
1539   // Emit the locals for this loop.
1540   genLocals(merger, codegen, rewriter, op, topSort, at, needsUniv,
1541             merger.lat(li).bits);
1542   return loop;
1543 }
1544 
1545 /// Ends a single loop in current sequence. Returns new values for needsUniv.
1546 static bool endLoop(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
1547                     linalg::GenericOp op, Operation *loop, unsigned idx,
1548                     unsigned li, bool needsUniv) {
1549   codegen.curVecLength = 1;
1550   // End a while-loop.
1551   if (auto whileOp = dyn_cast<scf::WhileOp>(loop)) {
1552     genWhileInduction(merger, codegen, rewriter, op, idx, needsUniv,
1553                       merger.lat(li).bits, whileOp);
1554     return needsUniv;
1555   }
1556   // End a for-loop.
1557   genForInduction(merger, codegen, rewriter, op, loop);
1558   return false;
1559 }
1560 
1561 /// Ends a loop sequence at given level.
1562 static void endLoopSeq(Merger &merger, CodeGen &codegen,
1563                        PatternRewriter &rewriter, linalg::GenericOp op,
1564                        unsigned exp, unsigned at, unsigned idx, unsigned ldx) {
1565   assert(codegen.curVecLength == 1);
1566   codegen.loops[idx] = Value();
1567   // Bring a pending reduction back from SIMD form when sequence ends.
1568   if (codegen.redVal)
1569     if (auto vtp = codegen.redVal.getType().dyn_cast<VectorType>())
1570       updateReduc(merger, codegen,
1571                   genVectorReducEnd(codegen, rewriter, op.getLoc(), vtp));
1572   // Unmark bookkeeping of invariants and loop index.
1573   genInvariants(merger, codegen, rewriter, op, exp, ldx, /*atStart=*/false);
1574   // Finalize access pattern expansion for sparse tensor output.
1575   genExpansion(merger, codegen, rewriter, op, at, /*atStart=*/false);
1576 }
1577 
1578 /// Recursively generates code while computing iteration lattices in order
1579 /// to manage the complexity of implementing co-iteration over unions
1580 /// and intersections of sparse iterations spaces.
1581 static void genStmt(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
1582                     linalg::GenericOp op, std::vector<unsigned> &topSort,
1583                     unsigned exp, unsigned at) {
1584   // At each leaf, assign remaining tensor (sub)expression to output tensor.
1585   if (at == topSort.size()) {
1586     unsigned ldx = topSort[at - 1];
1587     Value rhs = genExp(merger, codegen, rewriter, op, exp, ldx);
1588     genTensorStore(merger, codegen, rewriter, op, rhs);
1589     return;
1590   }
1591 
1592   // Construct iteration lattices for current loop index, with L0 at top.
1593   unsigned idx = topSort[at];
1594   unsigned ldx = at == 0 ? -1u : topSort[at - 1];
1595   unsigned lts = merger.optimizeSet(merger.buildLattices(exp, idx));
1596 
1597   // Start a loop sequence.
1598   bool needsUniv = startLoopSeq(merger, codegen, rewriter, op, topSort, exp, at,
1599                                 idx, ldx, lts);
1600 
1601   // Emit a loop for every lattice point L0 >= Li in this loop sequence.
1602   unsigned lsize = merger.set(lts).size();
1603   for (unsigned i = 0; i < lsize; i++) {
1604     // Start a loop.
1605     unsigned li = merger.set(lts)[i];
1606     Operation *loop =
1607         startLoop(merger, codegen, rewriter, op, topSort, at, li, needsUniv);
1608 
1609     // Visit all lattices points with Li >= Lj to generate the
1610     // loop-body, possibly with if statements for coiteration.
1611     Value redInput = codegen.redVal;
1612     Value cntInput = codegen.expCount;
1613     bool isWhile = dyn_cast<scf::WhileOp>(loop) != nullptr;
1614     for (unsigned j = 0; j < lsize; j++) {
1615       unsigned lj = merger.set(lts)[j];
1616       unsigned ej = merger.lat(lj).exp;
1617       if (li == lj || merger.latGT(li, lj)) {
1618         // Recurse into body of each branch.
1619         if (isWhile) {
1620           scf::IfOp ifOp =
1621               genIf(merger, codegen, rewriter, op, idx, merger.lat(lj).simple);
1622           genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1);
1623           endIf(merger, codegen, rewriter, op, ifOp, loop, redInput, cntInput);
1624         } else {
1625           genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1);
1626         }
1627       }
1628     }
1629 
1630     // End a loop.
1631     needsUniv =
1632         endLoop(merger, codegen, rewriter, op, loop, idx, li, needsUniv);
1633   }
1634 
1635   // End a loop sequence.
1636   endLoopSeq(merger, codegen, rewriter, op, exp, at, idx, ldx);
1637 }
1638 
1639 /// Converts the result computed by the sparse kernel into the required form.
1640 static void genResult(Merger &merger, CodeGen &codegen,
1641                       PatternRewriter &rewriter, linalg::GenericOp op) {
1642   OpOperand *lhs = op.getOutputOperand(0);
1643   Type resType = lhs->get().getType();
1644   if (getSparseTensorEncoding(resType)) {
1645     // The sparse tensor rematerializes from the original sparse tensor's
1646     // underlying sparse storage format.
1647     rewriter.replaceOpWithNewOp<LoadOp>(op, resType, lhs->get(),
1648                                         codegen.sparseOut == lhs);
1649   } else {
1650     // To rematerialize an non-annotated tensor, simply load it
1651     // from the bufferized value.
1652     Value val = codegen.buffers.back(); // value array
1653     rewriter.replaceOpWithNewOp<bufferization::ToTensorOp>(op, resType, val);
1654   }
1655 }
1656 
1657 //===----------------------------------------------------------------------===//
1658 // Sparse compiler rewriting methods.
1659 //===----------------------------------------------------------------------===//
1660 
1661 namespace {
1662 
1663 /// Sparse rewriting rule for generic Lingalg operation.
1664 struct GenericOpSparsifier : public OpRewritePattern<linalg::GenericOp> {
1665 public:
1666   GenericOpSparsifier(MLIRContext *context, SparsificationOptions o)
1667       : OpRewritePattern<linalg::GenericOp>(context), options(o) {}
1668 
1669   LogicalResult matchAndRewrite(linalg::GenericOp op,
1670                                 PatternRewriter &rewriter) const override {
1671     // Detects sparse annotations and translate the per-dimension sparsity
1672     // information for all tensors to loop indices in the kernel.
1673     assert(op.getNumOutputs() == 1);
1674     unsigned numTensors = op.getNumInputsAndOutputs();
1675     unsigned numLoops = op.iterator_types().getValue().size();
1676     Merger merger(numTensors, numLoops);
1677     if (!findSparseAnnotations(merger, op))
1678       return failure();
1679 
1680     // Computes a topologically sorted iteration graph to ensure
1681     // tensors are visited in natural index order. Fails on cycles.
1682     // This assumes that higher-level passes have already put the
1683     // tensors in each tensor expression in a feasible order.
1684     std::vector<unsigned> topSort;
1685     if (!computeIterationGraph(merger, op, topSort,
1686                                SortMask::kIncludeUndef |
1687                                    SortMask::kIncludeDense) &&
1688         !computeIterationGraph(merger, op, topSort, SortMask::kIncludeUndef) &&
1689         !computeIterationGraph(merger, op, topSort, SortMask::kIncludeDense) &&
1690         !computeIterationGraph(merger, op, topSort, SortMask::kSparseOnly))
1691       return failure();
1692 
1693     // Builds the tensor expression for the Linalg operation in SSA form.
1694     Optional<unsigned> optExp = merger.buildTensorExpFromLinalg(op);
1695     if (!optExp.hasValue())
1696       return failure();
1697     unsigned exp = optExp.getValue();
1698 
1699     // Rejects an inadmissable tensor expression.
1700     OpOperand *sparseOut = nullptr;
1701     unsigned outerParNest = 0;
1702     if (!isAdmissableTensorExp(merger, op, topSort, exp, &sparseOut,
1703                                outerParNest))
1704       return failure();
1705 
1706     // Recursively generates code.
1707     merger.setHasSparseOut(sparseOut != nullptr);
1708     CodeGen codegen(options, numTensors, numLoops, sparseOut, outerParNest);
1709     genBuffers(merger, codegen, rewriter, op);
1710     genStmt(merger, codegen, rewriter, op, topSort, exp, 0);
1711     genResult(merger, codegen, rewriter, op);
1712     return success();
1713   }
1714 
1715 private:
1716   /// Options to control sparse code generation.
1717   SparsificationOptions options;
1718 };
1719 
1720 } // namespace
1721 
1722 /// Populates the given patterns list with rewriting rules required for
1723 /// the sparsification of linear algebra operations.
1724 void mlir::populateSparsificationPatterns(
1725     RewritePatternSet &patterns, const SparsificationOptions &options) {
1726   patterns.add<GenericOpSparsifier>(patterns.getContext(), options);
1727 }
1728