1 //===- Sparsification.cpp - Implementation of sparsification --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements lowering sparse tensor types to actual sparse code.
10 //
11 // The concept of letting a compiler generate sparse code automatically was
12 // pioneered for dense linear algebra code in Fortran by [Bik96] in MT1 and
13 // formalized to tensor algebra by [Kjolstad17,20] for the Sparse Tensor
14 // Algebra Compiler (TACO). The implementation in this file closely follows
15 // the "sparse iteration theory" that forms the foundation of TACO. A rewriting
16 // rule is applied to each tensor expression in linalg (MLIR's tensor index
17 // notation) where the sparsity of tensors is indicated with annotation using
18 // a per-dimension specification of sparse/dense storage together with a
19 // specification of the order on the dimensions. Subsequently, a topologically
20 // sorted iteration graph, reflecting the required order on indices with respect
21 // to the dimensions of each tensor, is constructed to ensure that all tensors
22 // are visited in natural index order. Next, iteration lattices are constructed
23 // for the tensor expression for every index in topological order. Each
24 // iteration lattice point consists of a conjunction of tensor indices together
25 // with a tensor (sub)expression that needs to be evaluated for that
26 // conjunction. Within the lattice, iteration points are ordered according to
27 // the way indices are exhausted. As such these iteration lattices drive actual
28 // sparse code generation, which consists of a tedious but relatively
29 // straightforward one-to-one mapping from iteration lattices to combinations
30 // of for-loops, while-loops, and if-statements.
31 //
32 // [Bik96] Aart J.C. Bik. Compiler Support for Sparse Matrix Computations.
33 // PhD thesis, Leiden University, May 1996 (aartbik.com/sparse.php).
34 // [Kjolstad17] Fredrik Berg Kjolstad, Shoaib Ashraf Kamil, Stephen Chou,
35 // David Lugato, and Saman Amarasinghe. The Tensor Algebra Compiler.
36 // Proceedings of the ACM on Programming Languages, October 2017.
37 // [Kjolstad20] Fredrik Berg Kjolstad. Sparse Tensor Algebra Compilation.
38 // PhD thesis, MIT, February, 2020 (tensor-compiler.org).
39 //
40 // Implementation detail: We use llvm::SmallVector for vectors with
41 // variable lengths and std::vector for vectors with fixed lengths.
42 //===----------------------------------------------------------------------===//
43 
44 #include "mlir/Dialect/Linalg/IR/LinalgOps.h"
45 #include "mlir/Dialect/Linalg/Utils/Utils.h"
46 #include "mlir/Dialect/SCF/SCF.h"
47 #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
48 #include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
49 #include "mlir/Dialect/StandardOps/IR/Ops.h"
50 #include "mlir/Dialect/Vector/VectorOps.h"
51 #include "mlir/IR/Matchers.h"
52 #include "mlir/IR/TensorEncoding.h"
53 #include "llvm/ADT/SmallBitVector.h"
54 
55 using namespace mlir;
56 using namespace mlir::sparse_tensor;
57 
58 namespace {
59 
60 enum class Kind { kTensor, kInvariant, kMulF, kMulI, kAddF, kAddI };
61 enum class Dim { kSparse, kDense, kSingle, kUndef };
62 
63 /// Tensor expression. Represents a MLIR expression in tensor index notation.
64 /// For tensors, e0 denotes the tensor index. For invariants, the IR value is
65 /// stored directly. For binary operations, e0 and e1 denote the index of the
66 /// children tensor expressions.
67 struct TensorExp {
68   TensorExp(Kind k, unsigned x, unsigned y, Value v)
69       : kind(k), e0(x), e1(y), val(v) {
70     assert((kind == Kind::kTensor && e0 != -1u && e1 == -1u && !val) ||
71            (kind == Kind::kInvariant && e0 == -1u && e1 == -1u && val) ||
72            (kind >= Kind::kMulF && e0 != -1u && e1 != -1u && !val));
73   }
74   Kind kind;
75   /// Indices of children expression(s).
76   unsigned e0;
77   unsigned e1;
78   /// Direct link to IR for an invariant. During code generation,
79   /// field is used to cache "hoisted" loop invariant tensor loads.
80   Value val;
81 };
82 
83 /// Lattice point. Each lattice point consists of a conjunction of tensor
84 /// loop indices (encoded in a bitvector) and the index of the corresponding
85 /// tensor expression.
86 struct LatPoint {
87   LatPoint(unsigned n, unsigned e, unsigned b) : bits(n, false), exp(e) {
88     bits.set(b);
89   }
90   LatPoint(const llvm::BitVector &b, unsigned e) : bits(b), exp(e) {}
91   /// Conjunction of tensor loop indices as bitvector. This represents
92   /// all indices involved in the tensor expression
93   llvm::BitVector bits;
94   /// Simplified conjunction of tensor loop indices as bitvector. This
95   /// represents a simplified condition under which this tensor expression
96   /// must execute. Pre-computed during codegen to avoid repeated eval.
97   llvm::BitVector simple;
98   /// Index of the tensor expresssion.
99   unsigned exp;
100 };
101 
102 /// A class to handle all iteration lattice operations. This class abstracts
103 /// away from some implementation details of storing iteration lattices and
104 /// tensor expressions. This allows for fine-tuning performance characteristics
105 /// independently from the basic algorithm if bottlenecks are identified.
106 class Merger {
107 public:
108   /// Constructs a merger for the given number of tensors and loops. The
109   /// user supplies the number of tensors involved in the kernel, with the
110   /// last tensor in this set denoting the output tensor. The merger adds an
111   /// additional synthetic tensor at the end of this set to represent all
112   /// invariant expressions in the kernel.
113   Merger(unsigned t, unsigned l)
114       : outTensor(t - 1), numTensors(t + 1), numLoops(l),
115         dims(t + 1, std::vector<Dim>(l, Dim::kUndef)) {}
116 
117   /// Adds a tensor expression. Returns its index.
118   unsigned addExp(Kind k, unsigned e0, unsigned e1 = -1u, Value v = Value()) {
119     unsigned e = tensorExps.size();
120     tensorExps.push_back(TensorExp(k, e0, e1, v));
121     return e;
122   }
123   unsigned addExp(Kind k, Value v) { return addExp(k, -1u, -1u, v); }
124 
125   /// Adds an iteration lattice point. Returns its index.
126   unsigned addLat(unsigned t, unsigned i, unsigned e) {
127     assert(t < numTensors && i < numLoops);
128     unsigned p = latPoints.size();
129     latPoints.push_back(LatPoint(numLoops * numTensors, e, numTensors * i + t));
130     return p;
131   }
132 
133   /// Adds a new, initially empty, set. Returns its index.
134   unsigned addSet() {
135     unsigned s = latSets.size();
136     latSets.emplace_back(SmallVector<unsigned, 16>());
137     return s;
138   }
139 
140   /// Computes a single conjunction of two lattice points by taking the "union"
141   /// of loop indices (effectively constructing a larger "intersection" of those
142   /// indices) with a newly constructed tensor (sub)expression of given kind.
143   /// Returns the index of the new lattice point.
144   unsigned conjLatPoint(Kind kind, unsigned p0, unsigned p1) {
145     unsigned p = latPoints.size();
146     llvm::BitVector nb = llvm::BitVector(latPoints[p0].bits);
147     nb |= latPoints[p1].bits;
148     unsigned e = addExp(kind, latPoints[p0].exp, latPoints[p1].exp);
149     latPoints.push_back(LatPoint(nb, e));
150     return p;
151   }
152 
153   /// Conjunctive merge of two lattice sets L0 and L1 is conjunction of
154   /// cartesian product. Returns the index of the new set.
155   unsigned takeConj(Kind kind, unsigned s0, unsigned s1) {
156     unsigned s = addSet();
157     for (unsigned p0 : latSets[s0])
158       for (unsigned p1 : latSets[s1])
159         latSets[s].push_back(conjLatPoint(kind, p0, p1));
160     return s;
161   }
162 
163   /// Disjunctive merge of two lattice sets L0 and L1 is (L0 /\_op L1, L0, L1).
164   /// Returns the index of the new set.
165   unsigned takeDisj(Kind kind, unsigned s0, unsigned s1) {
166     unsigned s = takeConj(kind, s0, s1);
167     for (unsigned p : latSets[s0])
168       latSets[s].push_back(p);
169     for (unsigned p : latSets[s1])
170       latSets[s].push_back(p);
171     return s;
172   }
173 
174   /// Optimizes the iteration lattice points in the given set. This
175   /// method should be called right before code generation to avoid
176   /// generating redundant loops and conditions.
177   unsigned optimizeSet(unsigned s0) {
178     unsigned s = addSet();
179     assert(latSets[s0].size() != 0);
180     unsigned p0 = latSets[s0][0];
181     for (unsigned p1 : latSets[s0]) {
182       bool add = true;
183       if (p0 != p1) {
184         // Is this a straightforward copy?
185         unsigned e = latPoints[p1].exp;
186         if (exp(e).kind == Kind::kTensor && exp(e).e0 == outTensor)
187           continue;
188         // Conjunction already covered?
189         for (unsigned p2 : latSets[s]) {
190           assert(!latGT(p1, p2)); // Lj => Li would be bad
191           if (onlyDenseDiff(p2, p1)) {
192             add = false;
193             break;
194           }
195         }
196         assert(!add || latGT(p0, p1));
197       }
198       if (add)
199         latSets[s].push_back(p1);
200     }
201     for (unsigned p : latSets[s])
202       latPoints[p].simple = simplifyCond(s, p);
203     return s;
204   }
205 
206   /// Simplifies the conditions in a conjunction of a given lattice point
207   /// within the given set using just two basic rules:
208   /// (1) multiple dense conditions are reduced to single dense, and
209   /// (2) a *singleton* sparse/dense is reduced to sparse/random access.
210   llvm::BitVector simplifyCond(unsigned s, unsigned p0) {
211     // First determine if this lattice point is a *singleton*, i.e.,
212     // the last point in a lattice, no other is less than this one.
213     bool isSingleton = true;
214     for (unsigned p1 : latSets[s]) {
215       if (p0 != p1 && latGT(p0, p1)) {
216         isSingleton = false;
217         break;
218       }
219     }
220     // Now apply the two basic rules.
221     llvm::BitVector simple = latPoints[p0].bits;
222     bool reset = isSingleton && hasAnyDimOf(simple, Dim::kSparse);
223     for (unsigned b = 0, be = simple.size(); b < be; b++) {
224       if (simple[b] && !isDim(b, Dim::kSparse)) {
225         if (reset)
226           simple.reset(b);
227         reset = true;
228       }
229     }
230     return simple;
231   }
232 
233   /// Returns true if Li > Lj.
234   bool latGT(unsigned i, unsigned j) const {
235     const llvm::BitVector &bitsi = latPoints[i].bits;
236     const llvm::BitVector &bitsj = latPoints[j].bits;
237     assert(bitsi.size() == bitsj.size());
238     if (bitsi.count() > bitsj.count()) {
239       for (unsigned b = 0, be = bitsj.size(); b < be; b++)
240         if (bitsj[b] && !bitsi[b])
241           return false;
242       return true;
243     }
244     return false;
245   }
246 
247   /// Returns true if Li and Lj only differ in dense.
248   bool onlyDenseDiff(unsigned i, unsigned j) {
249     llvm::BitVector tmp = latPoints[j].bits;
250     tmp ^= latPoints[i].bits;
251     return !hasAnyDimOf(tmp, Dim::kSparse);
252   }
253 
254   /// Bit translation.
255   unsigned tensor(unsigned b) const { return b % numTensors; }
256   unsigned index(unsigned b) const { return b / numTensors; }
257 
258   /// Returns true if bit corresponds to queried dim.
259   bool isDim(unsigned b, Dim d) const { return isDim(tensor(b), index(b), d); }
260 
261   /// Returns true if tensor access at given index has queried dim.
262   bool isDim(unsigned t, unsigned i, Dim d) const {
263     assert(t < numTensors && i < numLoops);
264     return dims[t][i] == d;
265   }
266 
267   /// Returns true if any set bit corresponds to queried dim.
268   bool hasAnyDimOf(const llvm::BitVector &bits, Dim d) const {
269     for (unsigned b = 0, be = bits.size(); b < be; b++)
270       if (bits[b] && isDim(b, d))
271         return true;
272     return false;
273   }
274 
275   /// Setter
276   void setDim(unsigned t, unsigned i, Dim d) { dims[t][i] = d; }
277 
278   /// Getters.
279   TensorExp &exp(unsigned e) { return tensorExps[e]; }
280   LatPoint &lat(unsigned l) { return latPoints[l]; }
281   SmallVector<unsigned, 16> &set(unsigned s) { return latSets[s]; }
282 
283 private:
284   const unsigned outTensor;
285   const unsigned numTensors;
286   const unsigned numLoops;
287 
288   std::vector<std::vector<Dim>> dims;
289   llvm::SmallVector<TensorExp, 32> tensorExps;
290   llvm::SmallVector<LatPoint, 16> latPoints;
291   llvm::SmallVector<SmallVector<unsigned, 16>, 8> latSets;
292 };
293 
294 // Code generation.
295 struct CodeGen {
296   CodeGen(SparsificationOptions o, unsigned numTensors, unsigned numLoops)
297       : options(o), loops(numLoops), sizes(numLoops), buffers(numTensors),
298         pointers(numTensors, std::vector<Value>(numLoops)),
299         indices(numTensors, std::vector<Value>(numLoops)),
300         highs(numTensors, std::vector<Value>(numLoops)),
301         pidxs(numTensors, std::vector<Value>(numLoops)),
302         idxs(numTensors, std::vector<Value>(numLoops)), redExp(-1u), redVal(),
303         curVecLength(1), curVecMask() {}
304   /// Sparsification options.
305   SparsificationOptions options;
306   /// Universal dense indices and upper bounds (by index). The loops array
307   /// is updated with the value of the universal dense index in the current
308   /// loop. The sizes array is set once with the inferred dimension sizes.
309   std::vector<Value> loops;
310   std::vector<Value> sizes;
311   /// Buffers for storing dense and sparse numerical values (by tensor).
312   /// This array is set once during bufferization of all tensors.
313   std::vector<Value> buffers;
314   /// Sparse storage schemes (1-D): pointers and indices (by tensor and index).
315   /// This array is set once during bufferization of all sparse tensors.
316   std::vector<std::vector<Value>> pointers;
317   std::vector<std::vector<Value>> indices;
318   /// Sparse iteration information (by tensor and index). These arrays
319   /// are updated to remain current within the current loop.
320   std::vector<std::vector<Value>> highs;
321   std::vector<std::vector<Value>> pidxs;
322   std::vector<std::vector<Value>> idxs;
323   /// Current reduction, updated during code generation. When indices of a
324   /// reduction are exhausted,  all inner loops can "scalarize" the reduction.
325   // TODO: currently only done for (a chain of) innermost for-loops, where it
326   // is most effective; we could generalize to more outer and while-loops.
327   unsigned redExp;
328   Value redVal;
329   // Current vector length and mask.
330   unsigned curVecLength;
331   Value curVecMask;
332 };
333 
334 } // namespace
335 
336 // Helper method to translate dim level type to internal representation.
337 static Dim toDim(SparseTensorEncodingAttr &enc, unsigned d) {
338   if (enc) {
339     SparseTensorEncodingAttr::DimLevelType tp = enc.getDimLevelType()[d];
340     if (tp == SparseTensorEncodingAttr::DimLevelType::Compressed)
341       return Dim::kSparse;
342     if (tp == SparseTensorEncodingAttr::DimLevelType::Singleton)
343       return Dim::kSingle;
344   }
345   return Dim::kDense;
346 }
347 
348 /// Helper method to inspect sparse encodings in the tensor types.
349 /// Fills the per-dimension sparsity information for all tensors.
350 static bool findSparseAnnotations(Merger &merger, linalg::GenericOp op) {
351   bool annotated = false;
352   unsigned numTensors = op.getNumShapedOperands();
353   unsigned lhs = numTensors - 1;
354   for (unsigned t = 0; t < numTensors; t++) {
355     auto map = op.getIndexingMap(t);
356     unsigned rank = op.getShapedType(t).getRank();
357     auto enc = getSparseTensorEncoding(op.getShapedType(t));
358     if (enc) {
359       annotated = true;
360       if (enc.getDimOrdering() && !enc.getDimOrdering().isIdentity())
361         return false; // TODO: handle permutations
362       if (t == lhs)
363         return false; // TODO: handle sparse outputs
364     }
365     for (unsigned d = 0; d < rank; d++) {
366       unsigned idx = map.getDimPosition(d);
367       merger.setDim(t, idx, toDim(enc, d));
368     }
369   }
370   return annotated;
371 }
372 
373 /// A DFS helper to compute a topological sort. Note that recursion is
374 /// bounded by the number of implicit loops, which is always small.
375 /// Returns false when a cycle is detected.
376 static bool topSortDFS(unsigned i, std::vector<unsigned> &visit,
377                        std::vector<unsigned> &topSort,
378                        std::vector<std::vector<bool>> &adjM) {
379   if (visit[i] != 0)
380     return visit[i] != 1; // 1 denotes cycle!
381   visit[i] = 1;
382   for (unsigned j = 0, e = visit.size(); j < e; j++)
383     if (adjM[i][j])
384       if (!topSortDFS(j, visit, topSort, adjM))
385         return false;
386   visit[i] = 2;
387   topSort.push_back(i);
388   return true;
389 }
390 
391 /// Computes a topologically sorted iteration graph for the linalg operation.
392 /// Ensures all tensors are visited in natural index order. This is essential
393 /// for sparse storage formats since these only support access along fixed
394 /// dimensions. Even for dense storage formats, however, the natural index
395 /// order yields innermost unit-stride access with better spatial locality.
396 static bool computeIterationGraph(Merger &merger, linalg::GenericOp op,
397                                   std::vector<unsigned> &topSort,
398                                   bool sparseOnly) {
399   // Set up an n x n from/to adjacency matrix of the iteration graph
400   // for the implicit loop indices i_0 .. i_n-1.
401   unsigned n = op.getNumLoops();
402   std::vector<std::vector<bool>> adjM(n, std::vector<bool>(n, false));
403 
404   // Iterate over the indexing maps of every tensor in the tensor expression.
405   unsigned numTensors = op.getNumShapedOperands();
406   for (unsigned t = 0; t < numTensors; t++) {
407     auto map = op.getIndexingMap(t);
408     assert(map.getNumDims() == n);
409     // Skip dense tensor constraints when sparse only is requested.
410     if (sparseOnly && !getSparseTensorEncoding(op.getShapedType(t)))
411       continue;
412     // At the moment, we take the index variables in the tensor access
413     // expression in the order in which they appear (conceptually a
414     // "row-major" layout of every tensor). So, a tensor access A_ijk
415     // forces the ordering i < j < k on the loop indices.
416     // TODO: support affine map to define alternative dimension orders.
417     for (unsigned d = 1, e = map.getNumResults(); d < e; d++) {
418       unsigned f = map.getDimPosition(d - 1);
419       unsigned t = map.getDimPosition(d);
420       adjM[f][t] = true;
421     }
422   }
423 
424   // Topologically sort the iteration graph to determine loop order.
425   // Report failure for a cyclic iteration graph.
426   topSort.clear();
427   topSort.reserve(n);
428   std::vector<unsigned> visit(n, 0);
429   for (unsigned i = 0; i < n; i++)
430     if (visit[i] == 0)
431       if (!topSortDFS(i, visit, topSort, adjM))
432         return false; // cycle!
433   std::reverse(std::begin(topSort), std::end(topSort));
434   return true;
435 }
436 
437 /// Traverses the SSA tree (possibly a DAG) to build a tensor expression.
438 /// This simplifies constructing (sub)expressions during iteration lattice
439 /// building (compared to using the SSA representation everywhere).
440 static Optional<unsigned> buildTensorExp(Merger &merger, linalg::GenericOp op,
441                                          Value val) {
442   if (auto arg = val.dyn_cast<BlockArgument>()) {
443     unsigned argN = arg.getArgNumber();
444     if (arg.getOwner()->getParentOp() == op) {
445       // Any parameter of the generic op is considered a tensor,
446       // indexed by the implicit loop bounds.
447       auto map = op.getIndexingMap(argN);
448       if (map.isProjectedPermutation())
449         return merger.addExp(Kind::kTensor, argN);
450       // Cannot handle (yet).
451       return None;
452     }
453     // Any parameter of a higher op is invariant.
454     return merger.addExp(Kind::kInvariant, val);
455   }
456   Operation *def = val.getDefiningOp();
457   if (def->getBlock() != &op.region().front()) {
458     // Something defined outside is invariant.
459     return merger.addExp(Kind::kInvariant, val);
460   } else if (def->getNumOperands() == 2) {
461     // Construct binary operations if subexpressions could be built.
462     auto x = buildTensorExp(merger, op, def->getOperand(0));
463     auto y = buildTensorExp(merger, op, def->getOperand(1));
464     if (x.hasValue() && y.hasValue()) {
465       unsigned e0 = x.getValue();
466       unsigned e1 = y.getValue();
467       if (isa<MulFOp>(def))
468         return merger.addExp(Kind::kMulF, e0, e1);
469       if (isa<MulIOp>(def))
470         return merger.addExp(Kind::kMulI, e0, e1);
471       if (isa<AddFOp>(def))
472         return merger.addExp(Kind::kAddF, e0, e1);
473       if (isa<AddIOp>(def))
474         return merger.addExp(Kind::kAddI, e0, e1);
475     }
476   }
477   // Cannot build (yet).
478   return None;
479 }
480 
481 /// Builds the iteration lattices in a bottom-up traversal given the remaining
482 /// tensor (sub)expression and the next loop index in the iteration graph.
483 static unsigned buildLattices(Merger &merger, linalg::GenericOp op,
484                               unsigned exp, unsigned idx) {
485   Kind kind = merger.exp(exp).kind;
486   if (kind == Kind::kTensor || kind == Kind::kInvariant) {
487     // Either the index is really used in the tensor expression, or it is
488     // set to the undefined index in that dimension. An invariant expression
489     // is set to a synthetic tensor with undefined indices only.
490     unsigned s = merger.addSet();
491     unsigned t =
492         kind == Kind::kTensor ? merger.exp(exp).e0 : op.getNumShapedOperands();
493     merger.set(s).push_back(merger.addLat(t, idx, exp));
494     return s;
495   }
496   unsigned s0 = buildLattices(merger, op, merger.exp(exp).e0, idx);
497   unsigned s1 = buildLattices(merger, op, merger.exp(exp).e1, idx);
498   switch (kind) {
499   case Kind::kTensor:
500   case Kind::kInvariant:
501     llvm_unreachable("handled above");
502   case Kind::kMulF:
503   case Kind::kMulI:
504     return merger.takeConj(kind, s0, s1);
505   case Kind::kAddF:
506   case Kind::kAddI:
507     return merger.takeDisj(kind, s0, s1);
508   }
509   llvm_unreachable("unexpected expression kind");
510 }
511 
512 /// Maps sparse integer option to actual integral storage type.
513 static Type genIntType(PatternRewriter &rewriter, unsigned width) {
514   if (width == 0)
515     return rewriter.getIndexType();
516   return rewriter.getIntegerType(width);
517 }
518 
519 /// Detects in-place annotation on tensor argument.
520 static bool getInPlace(Value val) {
521   if (auto arg = val.dyn_cast<BlockArgument>())
522     if (auto funcOp = dyn_cast<FuncOp>(arg.getOwner()->getParentOp()))
523       if (auto attr = funcOp.getArgAttrOfType<BoolAttr>(
524               arg.getArgNumber(), linalg::LinalgDialect::kInplaceableAttrName))
525         return attr.getValue();
526   return false;
527 }
528 
529 /// Generates buffer for the output tensor.
530 static Value genOutputBuffer(CodeGen &codegen, PatternRewriter &rewriter,
531                              linalg::GenericOp op, MemRefType denseTp,
532                              ArrayRef<Value> args) {
533   Location loc = op.getLoc();
534   Value tensor = op.getOutput(0);
535   // The output tensor simply could materialize from the buffer that will
536   // be generated for the tensor present in the outs() clause. This has
537   // the major advantage that the sparse kernel only updates the nonzero
538   // positions for the output tensor.
539   if (getInPlace(tensor))
540     return rewriter.create<memref::BufferCastOp>(loc, denseTp, tensor);
541   // By default, a new buffer is allocated which is initialized to the
542   // tensor defined in the outs() clause. This is always correct but
543   // introduces a dense initialization component that may negatively
544   // impact the running complexity of the sparse kernel.
545   Value init = rewriter.create<memref::BufferCastOp>(loc, denseTp, tensor);
546   Value alloc = rewriter.create<memref::AllocOp>(loc, denseTp, args);
547   rewriter.create<linalg::CopyOp>(loc, init, alloc);
548   return alloc;
549 }
550 
551 /// Local bufferization of all dense and sparse data structures.
552 /// This code enables testing the first prototype sparse compiler.
553 // TODO: replace this with a proliferated bufferization strategy
554 static void genBuffers(Merger &merger, CodeGen &codegen,
555                        PatternRewriter &rewriter, linalg::GenericOp op) {
556   Location loc = op.getLoc();
557   unsigned numTensors = op.getNumShapedOperands();
558   unsigned numInputs = op.getNumInputs();
559   assert(numTensors == numInputs + 1);
560   // For every tensor, find lower and upper bound on dimensions, set the
561   // same bounds on loop indices, and obtain dense or sparse buffer(s).
562   SmallVector<Value, 4> args;
563   for (unsigned t = 0; t < numTensors; t++) {
564     Value tensor = t < numInputs ? op.getInput(t) : op.getOutput(0);
565     auto tensorType = op.getShapedType(t);
566     auto shape = tensorType.getShape();
567     auto map = op.getIndexingMap(t);
568     auto enc = getSparseTensorEncoding(tensorType);
569     // Scan all dimensions of current tensor.
570     args.clear();
571     for (unsigned d = 0, rank = shape.size(); d < rank; d++) {
572       unsigned i = map.getDimPosition(d);
573       // Handle sparse storage schemes.
574       if (merger.isDim(t, i, Dim::kSparse)) {
575         auto dynShape = {ShapedType::kDynamicSize};
576         auto ptrTp = MemRefType::get(
577             dynShape, genIntType(rewriter, enc.getPointerBitWidth()));
578         auto indTp = MemRefType::get(
579             dynShape, genIntType(rewriter, enc.getIndexBitWidth()));
580         Value dim = rewriter.create<ConstantIndexOp>(loc, d);
581         // Generate sparse primitives to obtains pointer and indices.
582         codegen.pointers[t][i] =
583             rewriter.create<ToPointersOp>(loc, ptrTp, tensor, dim);
584         codegen.indices[t][i] =
585             rewriter.create<ToIndicesOp>(loc, indTp, tensor, dim);
586       }
587       // Find lower and upper bound in current dimension.
588       Value up;
589       if (shape[d] == MemRefType::kDynamicSize) {
590         up = rewriter.create<memref::DimOp>(loc, tensor, d);
591         args.push_back(up);
592       } else {
593         up = rewriter.create<ConstantIndexOp>(loc, shape[d]);
594       }
595       codegen.sizes[i] = codegen.highs[t][i] = up;
596     }
597     // Perform the required bufferization. All dense inputs materialize
598     // from the input tensor. The dense output tensor needs special
599     // handling. Sparse inputs use a sparse primitive to obtain the values.
600     if (!enc) {
601       auto denseTp = MemRefType::get(shape, tensorType.getElementType());
602       if (t < numInputs)
603         codegen.buffers[t] =
604             rewriter.create<memref::BufferCastOp>(loc, denseTp, tensor);
605       else
606         codegen.buffers[t] =
607             genOutputBuffer(codegen, rewriter, op, denseTp, args);
608     } else {
609       auto dynShape = {ShapedType::kDynamicSize};
610       auto sparseTp = MemRefType::get(dynShape, tensorType.getElementType());
611       codegen.buffers[t] = rewriter.create<ToValuesOp>(loc, sparseTp, tensor);
612     }
613   }
614 }
615 
616 /// Constructs vector type.
617 static VectorType vectorType(CodeGen &codegen, Type etp) {
618   return VectorType::get(codegen.curVecLength, etp);
619 }
620 
621 /// Constructs vector type from pointer.
622 static VectorType vectorType(CodeGen &codegen, Value ptr) {
623   return vectorType(codegen, ptr.getType().cast<MemRefType>().getElementType());
624 }
625 
626 /// Constructs vector iteration mask.
627 static Value genVectorMask(CodeGen &codegen, PatternRewriter &rewriter,
628                            Value iv, Value lo, Value hi, Value step) {
629   Location loc = iv.getLoc();
630   VectorType mtp = vectorType(codegen, rewriter.getIntegerType(1));
631   // Special case if the vector length evenly divides the trip count (for
632   // example, "for i = 0, 128, 16"). A constant all-true mask is generated
633   // so that all subsequent masked memory operations are immediately folded
634   // into unconditional memory operations.
635   IntegerAttr loInt, hiInt, stepInt;
636   if (matchPattern(lo, m_Constant(&loInt)) &&
637       matchPattern(hi, m_Constant(&hiInt)) &&
638       matchPattern(step, m_Constant(&stepInt))) {
639     if (((hiInt.getInt() - loInt.getInt()) % stepInt.getInt()) == 0)
640       return rewriter.create<vector::BroadcastOp>(
641           loc, mtp, rewriter.create<ConstantIntOp>(loc, 1, 1));
642   }
643   // Otherwise, generate a vector mask that avoids overrunning the upperbound
644   // during vector execution. Here we rely on subsequent loop optimizations to
645   // avoid executing the mask in all iterations, for example, by splitting the
646   // loop into an unconditional vector loop and a scalar cleanup loop.
647   Value end = rewriter.create<SubIOp>(loc, hi, iv);
648   return rewriter.create<vector::CreateMaskOp>(loc, mtp, end);
649 }
650 
651 /// Generates a vectorized load lhs = a[ind[lo:hi]] or lhs = a[lo:hi].
652 static Value genVectorLoad(CodeGen &codegen, PatternRewriter &rewriter,
653                            Value ptr, ArrayRef<Value> args) {
654   Location loc = ptr.getLoc();
655   VectorType vtp = vectorType(codegen, ptr);
656   Value pass = rewriter.create<ConstantOp>(loc, vtp, rewriter.getZeroAttr(vtp));
657   if (args.back().getType().isa<VectorType>()) {
658     SmallVector<Value, 4> scalarArgs(args.begin(), args.end());
659     Value indexVec = args.back();
660     scalarArgs.back() = rewriter.create<ConstantIndexOp>(loc, 0);
661     return rewriter.create<vector::GatherOp>(
662         loc, vtp, ptr, scalarArgs, indexVec, codegen.curVecMask, pass);
663   }
664   return rewriter.create<vector::MaskedLoadOp>(loc, vtp, ptr, args,
665                                                codegen.curVecMask, pass);
666 }
667 
668 /// Generates a vectorized store a[ind[lo:hi]] = rhs or a[lo:hi] = rhs.
669 static void genVectorStore(CodeGen &codegen, PatternRewriter &rewriter,
670                            Value rhs, Value ptr, ArrayRef<Value> args) {
671   Location loc = ptr.getLoc();
672   if (args.back().getType().isa<VectorType>()) {
673     SmallVector<Value, 4> scalarArgs(args.begin(), args.end());
674     Value indexVec = args.back();
675     scalarArgs.back() = rewriter.create<ConstantIndexOp>(loc, 0);
676     rewriter.create<vector::ScatterOp>(loc, ptr, scalarArgs, indexVec,
677                                        codegen.curVecMask, rhs);
678     return;
679   }
680   rewriter.create<vector::MaskedStoreOp>(loc, ptr, args, codegen.curVecMask,
681                                          rhs);
682 }
683 
684 /// Generates a vectorized invariant. Here we rely on subsequent loop
685 /// optimizations to hoist the invariant broadcast out of the vector loop.
686 static Value genVectorInvariantValue(CodeGen &codegen,
687                                      PatternRewriter &rewriter, Value val) {
688   VectorType vtp = vectorType(codegen, val.getType());
689   return rewriter.create<vector::BroadcastOp>(val.getLoc(), vtp, val);
690 }
691 
692 /// Generates a load on a dense or sparse tensor.
693 static Value genTensorLoad(Merger &merger, CodeGen &codegen,
694                            PatternRewriter &rewriter, linalg::GenericOp op,
695                            unsigned exp) {
696   // Test if the load was hoisted to a higher loop nest.
697   Value val = merger.exp(exp).val;
698   if (val) {
699     if (codegen.curVecLength > 1 && !val.getType().isa<VectorType>())
700       return genVectorInvariantValue(codegen, rewriter, val);
701     return val;
702   }
703   // Actual load.
704   SmallVector<Value, 4> args;
705   unsigned tensor = merger.exp(exp).e0;
706   auto map = op.getIndexingMap(tensor);
707   auto enc = getSparseTensorEncoding(op.getShapedType(tensor));
708   for (unsigned i = 0, m = map.getNumResults(); i < m; ++i) {
709     unsigned idx = map.getDimPosition(i);
710     args.push_back(codegen.loops[idx]); // universal dense index
711     if (enc) {
712       args.clear();
713       args.push_back(codegen.pidxs[tensor][idx]); // position index
714     }
715   }
716   Location loc = op.getLoc();
717   Value ptr = codegen.buffers[tensor];
718   if (codegen.curVecLength > 1)
719     return genVectorLoad(codegen, rewriter, ptr, args);
720   return rewriter.create<memref::LoadOp>(loc, ptr, args);
721 }
722 
723 /// Generates a store on a dense tensor.
724 static void genTensorStore(Merger &merger, CodeGen &codegen,
725                            PatternRewriter &rewriter, linalg::GenericOp op,
726                            unsigned tensor, Value rhs) {
727   Location loc = op.getLoc();
728   // Test if this is a scalarized reduction.
729   unsigned lhs = op.getNumShapedOperands() - 1;
730   if (lhs == tensor && codegen.redVal) {
731     if (codegen.curVecLength > 1)
732       rhs = rewriter.create<SelectOp>(loc, codegen.curVecMask, rhs,
733                                       codegen.redVal);
734     codegen.redVal = rhs;
735     return;
736   }
737   // Actual store.
738   SmallVector<Value, 4> args;
739   auto map = op.getIndexingMap(tensor);
740   for (unsigned i = 0, m = map.getNumResults(); i < m; ++i) {
741     unsigned idx = map.getDimPosition(i);
742     args.push_back(codegen.loops[idx]); // universal dense index
743   }
744   Value ptr = codegen.buffers[tensor];
745   if (codegen.curVecLength > 1)
746     genVectorStore(codegen, rewriter, rhs, ptr, args);
747   else
748     rewriter.create<memref::StoreOp>(loc, rhs, ptr, args);
749 }
750 
751 /// Generates a pointer/index load from the sparse storage scheme. Narrower
752 /// data types need to be zero extended before casting the value into the
753 /// index type used for looping and indexing.
754 static Value genLoad(CodeGen &codegen, PatternRewriter &rewriter, Location loc,
755                      Value ptr, Value s) {
756   // See https://llvm.org/docs/GetElementPtr.html for some background on
757   // the complications described below.
758   if (codegen.curVecLength > 1) {
759     // Since the index vector is used in a subsequent gather/scatter operations,
760     // which effectively defines an unsigned pointer + signed index, we must
761     // zero extend the vector to an index width. For 8-bit and 16-bit values,
762     // an 32-bit index width suffices. For 32-bit values, zero extending the
763     // elements into 64-bit loses some performance since the 32-bit indexed
764     // gather/scatter is more efficient than the 64-bit index variant (in
765     // the future, we could introduce a flag that states the negative space
766     // of 32-bit indices is unused). For 64-bit values, there is no good way
767     // to state that the indices are unsigned, with creates the potential of
768     // incorrect address calculations in the unlikely case we need such
769     // extremely large offsets.
770     Type etp = ptr.getType().cast<MemRefType>().getElementType();
771     Value vload = genVectorLoad(codegen, rewriter, ptr, {s});
772     if (!etp.isa<IndexType>()) {
773       if (etp.getIntOrFloatBitWidth() < 32)
774         vload = rewriter.create<ZeroExtendIOp>(
775             loc, vload, vectorType(codegen, rewriter.getIntegerType(32)));
776       else if (etp.getIntOrFloatBitWidth() < 64)
777         vload = rewriter.create<ZeroExtendIOp>(
778             loc, vload, vectorType(codegen, rewriter.getIntegerType(64)));
779     }
780     return vload;
781   }
782   // For the scalar case, we simply zero extend narrower indices into 64-bit
783   // values before casting to index without a performance penalty. Here too,
784   // however, indices that already are 64-bit, in theory, cannot express the
785   // full range as explained above.
786   Value load = rewriter.create<memref::LoadOp>(loc, ptr, s);
787   if (!load.getType().isa<IndexType>()) {
788     if (load.getType().getIntOrFloatBitWidth() < 64)
789       load = rewriter.create<ZeroExtendIOp>(loc, load,
790                                             rewriter.getIntegerType(64));
791     load = rewriter.create<IndexCastOp>(loc, load, rewriter.getIndexType());
792   }
793   return load;
794 }
795 
796 /// Generates an invariant value.
797 static Value genInvariantValue(Merger &merger, CodeGen &codegen,
798                                PatternRewriter &rewriter, unsigned exp) {
799   Value val = merger.exp(exp).val;
800   if (codegen.curVecLength > 1)
801     return genVectorInvariantValue(codegen, rewriter, val);
802   return val;
803 }
804 
805 /// Generates an address computation "sz * p + i".
806 static Value genAddress(CodeGen &codegen, PatternRewriter &rewriter,
807                         Location loc, Value size, Value p, Value i) {
808   Value mul = rewriter.create<MulIOp>(loc, size, p);
809   if (auto vtp = i.getType().dyn_cast<VectorType>()) {
810     Value inv = rewriter.create<IndexCastOp>(loc, mul, vtp.getElementType());
811     mul = genVectorInvariantValue(codegen, rewriter, inv);
812   }
813   return rewriter.create<AddIOp>(loc, mul, i);
814 }
815 
816 /// Generates start of a reduction.
817 static Value genReductionStart(Merger &merger, CodeGen &codegen,
818                                PatternRewriter &rewriter,
819                                linalg::GenericOp op) {
820   if (codegen.redVal)
821     return codegen.redVal; // chained with previous for-loop
822   if (codegen.curVecLength > 1) {
823     // TODO: assumes + reductions for now
824     VectorType vtp = vectorType(codegen, codegen.buffers[codegen.redExp]);
825     return rewriter.create<ConstantOp>(op.getLoc(), vtp,
826                                        rewriter.getZeroAttr(vtp));
827   }
828   return genTensorLoad(merger, codegen, rewriter, op, codegen.redExp);
829 }
830 
831 /// Generates end of a reduction.
832 static void genReductionEnd(Merger &merger, CodeGen &codegen,
833                             PatternRewriter &rewriter, linalg::GenericOp op) {
834   Value red = codegen.redVal;
835   if (!red)
836     return;
837   assert(codegen.curVecLength == 1);
838   codegen.redVal = merger.exp(codegen.redExp).val = Value(); // end chain
839   unsigned lhs = op.getNumShapedOperands() - 1;
840   if (auto vtp = red.getType().dyn_cast<VectorType>()) {
841     // TODO: assumes + reductions for now
842     StringAttr kind = rewriter.getStringAttr("add");
843     Value ld = genTensorLoad(merger, codegen, rewriter, op, codegen.redExp);
844     // Integer reductions don't accept an accumulator.
845     if (vtp.getElementType().isa<IntegerType>()) {
846       red = rewriter.create<vector::ReductionOp>(op.getLoc(), ld.getType(),
847                                                  kind, red, ValueRange{});
848       red = rewriter.create<AddIOp>(op.getLoc(), red, ld);
849     } else {
850       red = rewriter.create<vector::ReductionOp>(op.getLoc(), ld.getType(),
851                                                  kind, red, ld);
852     }
853   }
854   genTensorStore(merger, codegen, rewriter, op, lhs, red);
855 }
856 
857 /// Recursively generates tensor expression.
858 static Value genExp(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
859                     linalg::GenericOp op, unsigned exp) {
860   if (merger.exp(exp).kind == Kind::kTensor)
861     return genTensorLoad(merger, codegen, rewriter, op, exp);
862   else if (merger.exp(exp).kind == Kind::kInvariant)
863     return genInvariantValue(merger, codegen, rewriter, exp);
864   Value v0 = genExp(merger, codegen, rewriter, op, merger.exp(exp).e0);
865   Value v1 = genExp(merger, codegen, rewriter, op, merger.exp(exp).e1);
866   switch (merger.exp(exp).kind) {
867   case Kind::kTensor:
868   case Kind::kInvariant:
869     llvm_unreachable("handled above");
870   case Kind::kMulF:
871     return rewriter.create<MulFOp>(op.getLoc(), v0, v1);
872   case Kind::kMulI:
873     return rewriter.create<MulIOp>(op.getLoc(), v0, v1);
874   case Kind::kAddF:
875     return rewriter.create<AddFOp>(op.getLoc(), v0, v1);
876   case Kind::kAddI:
877     return rewriter.create<AddIOp>(op.getLoc(), v0, v1);
878   }
879   llvm_unreachable("unexpected expression kind");
880 }
881 
882 /// Hoists loop invariant tensor loads for which indices have been exhausted.
883 static void genInvariants(Merger &merger, CodeGen &codegen,
884                           PatternRewriter &rewriter, linalg::GenericOp op,
885                           unsigned exp, unsigned ldx, bool hoist) {
886   if (merger.exp(exp).kind == Kind::kTensor) {
887     // Inspect tensor indices.
888     bool atLevel = ldx == -1u;
889     unsigned tensor = merger.exp(exp).e0;
890     auto map = op.getIndexingMap(tensor);
891     for (unsigned i = 0, m = map.getNumResults(); i < m; ++i) {
892       unsigned idx = map.getDimPosition(i);
893       if (!codegen.loops[idx])
894         return; // still in play
895       else if (idx == ldx)
896         atLevel = true;
897     }
898     // All exhausted at this level (atLevel denotes exactly at this level).
899     unsigned lhs = op.getNumShapedOperands() - 1;
900     if (lhs == tensor) {
901       codegen.redExp = hoist ? exp : -1u;
902     } else if (atLevel) {
903       merger.exp(exp).val =
904           hoist ? genTensorLoad(merger, codegen, rewriter, op, exp) : Value();
905     }
906   } else if (merger.exp(exp).kind != Kind::kInvariant) {
907     // Traverse into the binary operations. Note that we only hoist
908     // tensor loads, since subsequent MLIR/LLVM passes know how to
909     // deal with all other kinds of derived loop invariants.
910     unsigned e0 = merger.exp(exp).e0;
911     unsigned e1 = merger.exp(exp).e1;
912     genInvariants(merger, codegen, rewriter, op, e0, ldx, hoist);
913     genInvariants(merger, codegen, rewriter, op, e1, ldx, hoist);
914   }
915 }
916 
917 /// Generates initialization code for the subsequent loop sequence at
918 /// current index level. Returns true if the loop sequence needs to
919 /// maintain the universal index.
920 static bool genInit(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
921                     linalg::GenericOp op, std::vector<unsigned> &topSort,
922                     unsigned at, llvm::BitVector &inits) {
923   bool needsUniv = false;
924   Location loc = op.getLoc();
925   unsigned idx = topSort[at];
926 
927   // Initialize sparse positions.
928   for (unsigned b = 0, be = inits.size(); b < be; b++) {
929     if (inits[b]) {
930       unsigned tensor = merger.tensor(b);
931       assert(idx == merger.index(b));
932       if (merger.isDim(b, Dim::kSparse)) {
933         // Initialize sparse index.
934         unsigned pat = at;
935         for (; pat != 0; pat--) {
936           if (codegen.pidxs[tensor][topSort[pat - 1]])
937             break;
938         }
939         Value ptr = codegen.pointers[tensor][idx];
940         Value one = rewriter.create<ConstantIndexOp>(loc, 1);
941         Value p0 = (pat == 0) ? rewriter.create<ConstantIndexOp>(loc, 0)
942                               : codegen.pidxs[tensor][topSort[pat - 1]];
943         codegen.pidxs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p0);
944         Value p1 = rewriter.create<AddIOp>(loc, p0, one);
945         codegen.highs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p1);
946       } else {
947         // Dense index still in play.
948         needsUniv = true;
949       }
950     }
951   }
952 
953   // Initialize the universal dense index.
954   codegen.loops[idx] = rewriter.create<ConstantIndexOp>(loc, 0);
955   return needsUniv;
956 }
957 
958 /// Returns vectorization strategy. Any implicit inner loop in the Linalg
959 /// operation is a candidate. Whether it is actually converted to SIMD code
960 /// depends on the requested strategy.
961 static bool isVectorFor(CodeGen &codegen, bool isInner, bool isSparse) {
962   switch (codegen.options.vectorizationStrategy) {
963   case SparseVectorizationStrategy::kNone:
964     return false;
965   case SparseVectorizationStrategy::kDenseInnerLoop:
966     return isInner && !isSparse;
967   case SparseVectorizationStrategy::kAnyStorageInnerLoop:
968     return isInner;
969   }
970   llvm_unreachable("unexpected vectorization strategy");
971 }
972 
973 /// Returns parallelization strategy. Any implicit loop in the Linalg operation
974 /// that is marked "parallel" is a candidate. Whether it is actually converted
975 /// to a parallel operation depends on the requested strategy.
976 static bool isParallelFor(CodeGen &codegen, bool isOuter, bool isReduction,
977                           bool isSparse, bool isVector) {
978   switch (codegen.options.parallelizationStrategy) {
979   case SparseParallelizationStrategy::kNone:
980     return false;
981   case SparseParallelizationStrategy::kDenseOuterLoop:
982     return isOuter && !isSparse && !isReduction && !isVector;
983   case SparseParallelizationStrategy::kAnyStorageOuterLoop:
984     return isOuter && !isReduction && !isVector;
985   case SparseParallelizationStrategy::kDenseAnyLoop:
986     return !isSparse && !isReduction && !isVector;
987   case SparseParallelizationStrategy::kAnyStorageAnyLoop:
988     return !isReduction && !isVector;
989   }
990   llvm_unreachable("unexpected parallelization strategy");
991 }
992 
993 /// Checks unit strides for dense tensors. The iteration graph may have ignored
994 /// dense access patterns in order to avoid cycles (sparse access patterns are
995 /// always placed innermost), but that means dense access has become strided.
996 /// For now, we reject vectorization of such cases.
997 /// TODO: implement strided load/stores on dense arrays
998 static bool denseUnitStrides(Merger &merger, linalg::GenericOp op,
999                              unsigned idx) {
1000   unsigned numTensors = op.getNumShapedOperands();
1001   for (unsigned t = 0; t < numTensors; t++) {
1002     if (!getSparseTensorEncoding(op.getShapedType(t))) {
1003       auto map = op.getIndexingMap(t);
1004       unsigned r = map.getNumResults();
1005       for (unsigned i = 0; i < r; i++) {
1006         if (map.getDimPosition(i) == idx && i != r - 1)
1007           return false;
1008       }
1009     }
1010   }
1011   return true;
1012 }
1013 
1014 /// Generates a for-loop on a single index.
1015 static Operation *genFor(Merger &merger, CodeGen &codegen,
1016                          PatternRewriter &rewriter, linalg::GenericOp op,
1017                          bool isOuter, bool isInner, unsigned idx,
1018                          llvm::BitVector &indices) {
1019   unsigned fb = indices.find_first();
1020   unsigned tensor = merger.tensor(fb);
1021   assert(idx == merger.index(fb));
1022   auto iteratorTypes = op.iterator_types().getValue();
1023   bool isReduction = linalg::isReductionIteratorType(iteratorTypes[idx]);
1024   bool isSparse = merger.isDim(fb, Dim::kSparse);
1025   bool isVector = isVectorFor(codegen, isInner, isSparse) &&
1026                   denseUnitStrides(merger, op, idx);
1027   bool isParallel =
1028       isParallelFor(codegen, isOuter, isReduction, isSparse, isVector);
1029 
1030   // Prepare vector length.
1031   if (isVector)
1032     codegen.curVecLength = codegen.options.vectorLength;
1033 
1034   // Loop bounds and increment.
1035   Location loc = op.getLoc();
1036   Value lo = isSparse ? codegen.pidxs[tensor][idx] : codegen.loops[idx];
1037   Value hi = isSparse ? codegen.highs[tensor][idx] : codegen.sizes[idx];
1038   Value step = rewriter.create<ConstantIndexOp>(loc, codegen.curVecLength);
1039 
1040   // Emit a parallel loop.
1041   if (isParallel) {
1042     assert(!isVector);
1043     scf::ParallelOp parOp = rewriter.create<scf::ParallelOp>(loc, lo, hi, step);
1044     if (isSparse)
1045       codegen.pidxs[tensor][idx] = parOp.getInductionVars()[0];
1046     else
1047       codegen.loops[idx] = parOp.getInductionVars()[0];
1048     rewriter.setInsertionPointToStart(parOp.getBody());
1049     return parOp;
1050   }
1051 
1052   // Emit a sequential loop, potentially with a scalarized reduction.
1053   bool scalarRed = isInner && codegen.redExp != -1u;
1054   SmallVector<Value, 4> operands;
1055   if (scalarRed) {
1056     Value load = genReductionStart(merger, codegen, rewriter, op);
1057     operands.push_back(load);
1058   }
1059   scf::ForOp forOp = rewriter.create<scf::ForOp>(loc, lo, hi, step, operands);
1060   if (scalarRed) {
1061     codegen.redVal = merger.exp(codegen.redExp).val =
1062         forOp.getRegionIterArgs().front();
1063   }
1064   // Assign induction variable to sparse or dense index.
1065   Value iv = forOp.getInductionVar();
1066   if (isSparse)
1067     codegen.pidxs[tensor][idx] = iv;
1068   else
1069     codegen.loops[idx] = iv;
1070   rewriter.setInsertionPointToStart(forOp.getBody());
1071   // Share vector iteration mask between all subsequent loads/stores.
1072   if (isVector)
1073     codegen.curVecMask = genVectorMask(codegen, rewriter, iv, lo, hi, step);
1074   return forOp;
1075 }
1076 
1077 /// Emit a while-loop for co-iteration over multiple indices.
1078 static Operation *genWhile(Merger &merger, CodeGen &codegen,
1079                            PatternRewriter &rewriter, linalg::GenericOp op,
1080                            unsigned idx, bool needsUniv,
1081                            llvm::BitVector &indices) {
1082   SmallVector<Type, 4> types;
1083   SmallVector<Value, 4> operands;
1084   // Construct the while-loop with a parameter for each index.
1085   Type indexType = rewriter.getIndexType();
1086   for (unsigned b = 0, be = indices.size(); b < be; b++) {
1087     if (indices[b] && merger.isDim(b, Dim::kSparse)) {
1088       unsigned tensor = merger.tensor(b);
1089       assert(idx == merger.index(b));
1090       types.push_back(indexType);
1091       assert(codegen.pidxs[tensor][idx].getType().isa<IndexType>() &&
1092              "type mismatch for sparse index");
1093       operands.push_back(codegen.pidxs[tensor][idx]);
1094     }
1095   }
1096   if (needsUniv) {
1097     types.push_back(indexType);
1098     assert(codegen.loops[idx].getType().isa<IndexType>() &&
1099            "type mismatch for universal index");
1100     operands.push_back(codegen.loops[idx]);
1101   }
1102   Location loc = op.getLoc();
1103   scf::WhileOp whileOp = rewriter.create<scf::WhileOp>(loc, types, operands);
1104   Block *before = rewriter.createBlock(&whileOp.before(), {}, types);
1105   Block *after = rewriter.createBlock(&whileOp.after(), {}, types);
1106 
1107   // Build the "before" region, which effectively consists
1108   // of a conjunction of "i < upper" tests on all induction.
1109   rewriter.setInsertionPointToStart(&whileOp.before().front());
1110   Value cond;
1111   unsigned o = 0;
1112   for (unsigned b = 0, be = indices.size(); b < be; b++) {
1113     if (indices[b] && merger.isDim(b, Dim::kSparse)) {
1114       unsigned tensor = merger.tensor(b);
1115       assert(idx == merger.index(b));
1116       Value op1 = before->getArgument(o);
1117       Value op2 = codegen.highs[tensor][idx];
1118       Value opc = rewriter.create<CmpIOp>(loc, CmpIPredicate::ult, op1, op2);
1119       cond = cond ? rewriter.create<AndOp>(loc, cond, opc) : opc;
1120       codegen.pidxs[tensor][idx] = after->getArgument(o++);
1121     }
1122   }
1123   if (needsUniv)
1124     codegen.loops[idx] = after->getArgument(o++);
1125   assert(o == operands.size());
1126   rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments());
1127   rewriter.setInsertionPointToStart(&whileOp.after().front());
1128   return whileOp;
1129 }
1130 
1131 /// Generates a for-loop or a while-loop, depending on whether it implements
1132 /// singleton iteration or co-iteration over the given conjunction.
1133 static Operation *genLoop(Merger &merger, CodeGen &codegen,
1134                           PatternRewriter &rewriter, linalg::GenericOp op,
1135                           std::vector<unsigned> &topSort, unsigned at,
1136                           bool needsUniv, llvm::BitVector &indices) {
1137   unsigned idx = topSort[at];
1138   if (indices.count() == 1) {
1139     bool isOuter = at == 0;
1140     bool isInner = at == topSort.size() - 1;
1141     return genFor(merger, codegen, rewriter, op, isOuter, isInner, idx,
1142                   indices);
1143   }
1144   genReductionEnd(merger, codegen, rewriter, op); // cannot chain
1145   return genWhile(merger, codegen, rewriter, op, idx, needsUniv, indices);
1146 }
1147 
1148 /// Generates the local variables for this loop, consisting of the sparse
1149 /// indices, restored universal dense index, and dense positions.
1150 static void genLocals(Merger &merger, CodeGen &codegen,
1151                       PatternRewriter &rewriter, linalg::GenericOp op,
1152                       std::vector<unsigned> &topSort, unsigned at,
1153                       bool needsUniv, llvm::BitVector &locals) {
1154   Location loc = op.getLoc();
1155   unsigned idx = topSort[at];
1156 
1157   // Initialize sparse indices.
1158   Value min;
1159   for (unsigned b = 0, be = locals.size(); b < be; b++) {
1160     if (locals[b] && merger.isDim(b, Dim::kSparse)) {
1161       unsigned tensor = merger.tensor(b);
1162       assert(idx == merger.index(b));
1163       Value ptr = codegen.indices[tensor][idx];
1164       Value s = codegen.pidxs[tensor][idx];
1165       Value load = genLoad(codegen, rewriter, loc, ptr, s);
1166       codegen.idxs[tensor][idx] = load;
1167       if (!needsUniv) {
1168         if (min) {
1169           Value cmp =
1170               rewriter.create<CmpIOp>(loc, CmpIPredicate::ult, load, min);
1171           min = rewriter.create<SelectOp>(loc, cmp, load, min);
1172         } else {
1173           min = load;
1174         }
1175       }
1176     }
1177   }
1178 
1179   // Merge dense universal index over minimum.
1180   if (min) {
1181     assert(!needsUniv);
1182     codegen.loops[idx] = min;
1183   }
1184 
1185   // Initialize dense positions.
1186   for (unsigned b = 0, be = locals.size(); b < be; b++) {
1187     if (locals[b] && merger.isDim(b, Dim::kDense)) {
1188       unsigned tensor = merger.tensor(b);
1189       assert(idx == merger.index(b));
1190       unsigned pat = at;
1191       for (; pat != 0; pat--)
1192         if (codegen.pidxs[tensor][topSort[pat - 1]])
1193           break;
1194       Value p = (pat == 0) ? rewriter.create<ConstantIndexOp>(loc, 0)
1195                            : codegen.pidxs[tensor][topSort[pat - 1]];
1196       codegen.pidxs[tensor][idx] = genAddress(
1197           codegen, rewriter, loc, codegen.sizes[idx], p, codegen.loops[idx]);
1198     }
1199   }
1200 }
1201 
1202 /// Generates the induction structure for a while-loop.
1203 static void genWhileInduction(Merger &merger, CodeGen &codegen,
1204                               PatternRewriter &rewriter, linalg::GenericOp op,
1205                               unsigned idx, bool needsUniv,
1206                               llvm::BitVector &induction, ResultRange results) {
1207   Location loc = op.getLoc();
1208   unsigned o = 0;
1209   SmallVector<Value, 4> operands;
1210   Value one = rewriter.create<ConstantIndexOp>(loc, 1);
1211   for (unsigned b = 0, be = induction.size(); b < be; b++) {
1212     if (induction[b] && merger.isDim(b, Dim::kSparse)) {
1213       unsigned tensor = merger.tensor(b);
1214       assert(idx == merger.index(b));
1215       Value op1 = codegen.idxs[tensor][idx];
1216       Value op2 = codegen.loops[idx];
1217       Value op3 = codegen.pidxs[tensor][idx];
1218       Value cmp = rewriter.create<CmpIOp>(loc, CmpIPredicate::eq, op1, op2);
1219       Value add = rewriter.create<AddIOp>(loc, op3, one);
1220       operands.push_back(rewriter.create<SelectOp>(loc, cmp, add, op3));
1221       codegen.pidxs[tensor][idx] = results[o++];
1222     }
1223   }
1224   if (needsUniv) {
1225     operands.push_back(rewriter.create<AddIOp>(loc, codegen.loops[idx], one));
1226     codegen.loops[idx] = results[o++];
1227   }
1228   assert(o == operands.size());
1229   rewriter.create<scf::YieldOp>(loc, operands);
1230 }
1231 
1232 /// Generates a single if-statement within a while-loop.
1233 static scf::IfOp genIf(Merger &merger, CodeGen &codegen,
1234                        PatternRewriter &rewriter, linalg::GenericOp op,
1235                        unsigned idx, llvm::BitVector &conditions) {
1236   Location loc = op.getLoc();
1237   Value cond;
1238   for (unsigned b = 0, be = conditions.size(); b < be; b++) {
1239     if (conditions[b]) {
1240       unsigned tensor = merger.tensor(b);
1241       assert(idx == merger.index(b));
1242       Value clause;
1243       if (merger.isDim(b, Dim::kSparse)) {
1244         Value op1 = codegen.idxs[tensor][idx];
1245         Value op2 = codegen.loops[idx];
1246         clause = rewriter.create<CmpIOp>(loc, CmpIPredicate::eq, op1, op2);
1247       } else {
1248         clause = rewriter.create<ConstantIntOp>(loc, 1, 1); // true
1249       }
1250       cond = cond ? rewriter.create<AndOp>(loc, cond, clause) : clause;
1251     }
1252   }
1253   scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, cond, /*else*/ true);
1254   rewriter.setInsertionPointToStart(&ifOp.thenRegion().front());
1255   return ifOp;
1256 }
1257 
1258 /// Recursively generates code while computing iteration lattices in order
1259 /// to manage the complexity of implementing co-iteration over unions
1260 /// and intersections of sparse iterations spaces.
1261 static void genStmt(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
1262                     linalg::GenericOp op, std::vector<unsigned> &topSort,
1263                     unsigned exp, unsigned at) {
1264   // At each leaf, assign remaining tensor (sub)expression to output tensor.
1265   if (at == topSort.size()) {
1266     unsigned lhs = op.getNumShapedOperands() - 1;
1267     Value rhs = genExp(merger, codegen, rewriter, op, exp);
1268     genTensorStore(merger, codegen, rewriter, op, lhs, rhs);
1269     return;
1270   }
1271   assert(codegen.curVecLength == 1);
1272 
1273   // Construct iteration lattices for current loop index, with L0 at top.
1274   // Then emit initialization code for the loop sequence at this level.
1275   // We maintain the universal dense index if dense indices are still
1276   // in play for a non-singleton loop sequence.
1277   Location loc = op.getLoc();
1278   unsigned idx = topSort[at];
1279   unsigned lts = merger.optimizeSet(buildLattices(merger, op, exp, idx));
1280   unsigned lsize = merger.set(lts).size();
1281   assert(lsize != 0);
1282   unsigned l0 = merger.set(lts)[0];
1283   unsigned ldx = at == 0 ? -1u : topSort[at - 1];
1284   genInvariants(merger, codegen, rewriter, op, exp, ldx, /*hoist=*/true);
1285   bool needsUniv = false;
1286   if (genInit(merger, codegen, rewriter, op, topSort, at,
1287               merger.lat(l0).bits)) {
1288     // Maintain the universal index only if it is actually
1289     // consumed by a subsequent lattice point.
1290     for (unsigned i = 1; i < lsize; i++) {
1291       unsigned li = merger.set(lts)[i];
1292       if (!merger.hasAnyDimOf(merger.lat(li).simple, Dim::kSparse)) {
1293         needsUniv = true;
1294         break;
1295       }
1296     }
1297   }
1298 
1299   // Emit a loop for every lattice point L0 >= Li.
1300   for (unsigned i = 0; i < lsize; i++) {
1301     unsigned li = merger.set(lts)[i];
1302 
1303     // Emit loop.
1304     codegen.curVecLength = 1;
1305     llvm::BitVector indices = merger.lat(li).simple;
1306     Operation *loop =
1307         genLoop(merger, codegen, rewriter, op, topSort, at, needsUniv, indices);
1308     genLocals(merger, codegen, rewriter, op, topSort, at, needsUniv,
1309               merger.lat(li).bits);
1310 
1311     // Visit all lattices points with Li >= Lj to generate the
1312     // loop-body, possibly with if statements for coiteration.
1313     bool isWhile = dyn_cast<scf::WhileOp>(loop) != nullptr;
1314     for (unsigned j = 0; j < lsize; j++) {
1315       unsigned lj = merger.set(lts)[j];
1316       unsigned ej = merger.lat(lj).exp;
1317       if (li == lj || merger.latGT(li, lj)) {
1318         // Recurse into body of each branch.
1319         if (isWhile) {
1320           scf::IfOp ifOp =
1321               genIf(merger, codegen, rewriter, op, idx, merger.lat(lj).simple);
1322           genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1);
1323           rewriter.setInsertionPointToStart(&ifOp.elseRegion().front());
1324         } else {
1325           genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1);
1326         }
1327       }
1328     }
1329 
1330     // Wrap-up induction and restore insertion point.
1331     if (isWhile) {
1332       scf::WhileOp whileOp = cast<scf::WhileOp>(loop);
1333       rewriter.setInsertionPointToEnd(&whileOp.after().front());
1334       genWhileInduction(merger, codegen, rewriter, op, idx, needsUniv,
1335                         merger.lat(li).bits, whileOp.results());
1336     } else {
1337       needsUniv = false;
1338       if (codegen.redVal) {
1339         rewriter.create<scf::YieldOp>(loc, codegen.redVal);
1340         codegen.redVal = loop->getResult(0);
1341       }
1342     }
1343     rewriter.setInsertionPointAfter(loop);
1344   }
1345 
1346   // Wrap-up loop sequence.
1347   codegen.curVecLength = 1;
1348   genReductionEnd(merger, codegen, rewriter, op);
1349   genInvariants(merger, codegen, rewriter, op, exp, ldx, /*hoist=*/false);
1350   codegen.loops[idx] = Value();
1351 }
1352 
1353 namespace {
1354 
1355 /// Sparse rewriting rule for generic Lingalg operation.
1356 struct GenericOpSparsifier : public OpRewritePattern<linalg::GenericOp> {
1357 public:
1358   GenericOpSparsifier(MLIRContext *context, SparsificationOptions o)
1359       : OpRewritePattern<linalg::GenericOp>(context), options(o) {}
1360 
1361   LogicalResult matchAndRewrite(linalg::GenericOp op,
1362                                 PatternRewriter &rewriter) const override {
1363     // Detects sparse annotations and translate the per-dimension sparsity
1364     // information for all tensors to loop indices in the kernel.
1365     assert(op.getNumOutputs() == 1);
1366     unsigned numTensors = op.getNumShapedOperands();
1367     unsigned numLoops = op.iterator_types().getValue().size();
1368     Merger merger(numTensors, numLoops);
1369     if (!findSparseAnnotations(merger, op))
1370       return failure();
1371 
1372     // Computes a topologically sorted iteration graph to ensure
1373     // tensors are visited in natural index order. Fails on cycles.
1374     // This assumes that higher-level passes have already put the
1375     // tensors in each tensor expression in a feasible order.
1376     std::vector<unsigned> topSort;
1377     if (!computeIterationGraph(merger, op, topSort, /*sparseOnly=*/false) &&
1378         !computeIterationGraph(merger, op, topSort, /*sparseOnly=*/true))
1379       return failure();
1380 
1381     // Finds the terminating yield statement and builds the tensor
1382     // expression for the Linalg operation in SSA form.
1383     Operation *yield = op.region().front().getTerminator();
1384     Optional<unsigned> exp = buildTensorExp(merger, op, yield->getOperand(0));
1385     if (!exp.hasValue())
1386       return failure(); // build failure
1387 
1388     // Recursively generates code.
1389     CodeGen codegen(options, numTensors, numLoops);
1390     genBuffers(merger, codegen, rewriter, op);
1391     genStmt(merger, codegen, rewriter, op, topSort, exp.getValue(), 0);
1392     Value result = rewriter.create<memref::TensorLoadOp>(
1393         op.getLoc(), codegen.buffers.back());
1394     rewriter.replaceOp(op, result);
1395     return success();
1396   }
1397 
1398 private:
1399   /// Options to control sparse code generation.
1400   SparsificationOptions options;
1401 };
1402 
1403 } // namespace
1404 
1405 /// Populates the given patterns list with rewriting rules required for
1406 /// the sparsification of linear algebra operations.
1407 void mlir::populateSparsificationPatterns(
1408     RewritePatternSet &patterns, const SparsificationOptions &options) {
1409   patterns.add<GenericOpSparsifier>(patterns.getContext(), options);
1410 }
1411