1 //===- Sparsification.cpp - Implementation of sparsification --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements lowering sparse tensor types to actual sparse code. 10 // 11 // The concept of letting a compiler generate sparse code automatically was 12 // pioneered for dense linear algebra code in Fortran by [Bik96] in MT1 and 13 // formalized to tensor algebra by [Kjolstad17,20] for the Sparse Tensor 14 // Algebra Compiler (TACO). The implementation in this file closely follows 15 // the "sparse iteration theory" that forms the foundation of TACO. A rewriting 16 // rule is applied to each tensor expression in linalg (MLIR's tensor index 17 // notation) where the sparsity of tensors is indicated with annotation using 18 // a per-dimension specification of sparse/dense storage together with a 19 // specification of the order on the dimensions. Subsequently, a topologically 20 // sorted iteration graph, reflecting the required order on indices with respect 21 // to the dimensions of each tensor, is constructed to ensure that all tensors 22 // are visited in natural index order. Next, iteration lattices are constructed 23 // for the tensor expression for every index in topological order. Each 24 // iteration lattice point consists of a conjunction of tensor indices together 25 // with a tensor (sub)expression that needs to be evaluated for that 26 // conjunction. Within the lattice, iteration points are ordered according to 27 // the way indices are exhausted. As such these iteration lattices drive actual 28 // sparse code generation, which consists of a tedious but relatively 29 // straightforward one-to-one mapping from iteration lattices to combinations 30 // of for-loops, while-loops, and if-statements. 31 // 32 // [Bik96] Aart J.C. Bik. Compiler Support for Sparse Matrix Computations. 33 // PhD thesis, Leiden University, May 1996 (aartbik.com/sparse.php). 34 // [Kjolstad17] Fredrik Berg Kjolstad, Shoaib Ashraf Kamil, Stephen Chou, 35 // David Lugato, and Saman Amarasinghe. The Tensor Algebra Compiler. 36 // Proceedings of the ACM on Programming Languages, October 2017. 37 // [Kjolstad20] Fredrik Berg Kjolstad. Sparse Tensor Algebra Compilation. 38 // PhD thesis, MIT, February, 2020 (tensor-compiler.org). 39 // 40 // Implementation detail: We use llvm::SmallVector for vectors with 41 // variable lengths and std::vector for vectors with fixed lengths. 42 //===----------------------------------------------------------------------===// 43 44 #include "mlir/Dialect/Linalg/IR/LinalgOps.h" 45 #include "mlir/Dialect/Linalg/Utils/Utils.h" 46 #include "mlir/Dialect/SCF/SCF.h" 47 #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h" 48 #include "mlir/Dialect/SparseTensor/Transforms/Passes.h" 49 #include "mlir/Dialect/StandardOps/IR/Ops.h" 50 #include "mlir/Dialect/Vector/VectorOps.h" 51 #include "mlir/IR/Matchers.h" 52 #include "mlir/IR/TensorEncoding.h" 53 #include "llvm/ADT/SmallBitVector.h" 54 55 using namespace mlir; 56 using namespace mlir::sparse_tensor; 57 58 namespace { 59 60 enum class Kind { kTensor, kInvariant, kMulF, kMulI, kAddF, kAddI }; 61 enum class Dim { kSparse, kDense, kSingle, kUndef }; 62 63 /// Tensor expression. Represents a MLIR expression in tensor index notation. 64 /// For tensors, e0 denotes the tensor index. For invariants, the IR value is 65 /// stored directly. For binary operations, e0 and e1 denote the index of the 66 /// children tensor expressions. 67 struct TensorExp { 68 TensorExp(Kind k, unsigned x, unsigned y, Value v) 69 : kind(k), e0(x), e1(y), val(v) { 70 assert((kind == Kind::kTensor && e0 != -1u && e1 == -1u && !val) || 71 (kind == Kind::kInvariant && e0 == -1u && e1 == -1u && val) || 72 (kind >= Kind::kMulF && e0 != -1u && e1 != -1u && !val)); 73 } 74 Kind kind; 75 /// Indices of children expression(s). 76 unsigned e0; 77 unsigned e1; 78 /// Direct link to IR for an invariant. During code generation, 79 /// field is used to cache "hoisted" loop invariant tensor loads. 80 Value val; 81 }; 82 83 /// Lattice point. Each lattice point consists of a conjunction of tensor 84 /// loop indices (encoded in a bitvector) and the index of the corresponding 85 /// tensor expression. 86 struct LatPoint { 87 LatPoint(unsigned n, unsigned e, unsigned b) : bits(n, false), exp(e) { 88 bits.set(b); 89 } 90 LatPoint(const llvm::BitVector &b, unsigned e) : bits(b), exp(e) {} 91 /// Conjunction of tensor loop indices as bitvector. This represents 92 /// all indices involved in the tensor expression 93 llvm::BitVector bits; 94 /// Simplified conjunction of tensor loop indices as bitvector. This 95 /// represents a simplified condition under which this tensor expression 96 /// must execute. Pre-computed during codegen to avoid repeated eval. 97 llvm::BitVector simple; 98 /// Index of the tensor expresssion. 99 unsigned exp; 100 }; 101 102 /// A class to handle all iteration lattice operations. This class abstracts 103 /// away from some implementation details of storing iteration lattices and 104 /// tensor expressions. This allows for fine-tuning performance characteristics 105 /// independently from the basic algorithm if bottlenecks are identified. 106 class Merger { 107 public: 108 /// Constructs a merger for the given number of tensors and loops. The 109 /// user supplies the number of tensors involved in the kernel, with the 110 /// last tensor in this set denoting the output tensor. The merger adds an 111 /// additional synthetic tensor at the end of this set to represent all 112 /// invariant expressions in the kernel. 113 Merger(unsigned t, unsigned l) 114 : outTensor(t - 1), numTensors(t + 1), numLoops(l), 115 dims(t + 1, std::vector<Dim>(l, Dim::kUndef)) {} 116 117 /// Adds a tensor expression. Returns its index. 118 unsigned addExp(Kind k, unsigned e0, unsigned e1 = -1u, Value v = Value()) { 119 unsigned e = tensorExps.size(); 120 tensorExps.push_back(TensorExp(k, e0, e1, v)); 121 return e; 122 } 123 unsigned addExp(Kind k, Value v) { return addExp(k, -1u, -1u, v); } 124 125 /// Adds an iteration lattice point. Returns its index. 126 unsigned addLat(unsigned t, unsigned i, unsigned e) { 127 assert(t < numTensors && i < numLoops); 128 unsigned p = latPoints.size(); 129 latPoints.push_back(LatPoint(numLoops * numTensors, e, numTensors * i + t)); 130 return p; 131 } 132 133 /// Adds a new, initially empty, set. Returns its index. 134 unsigned addSet() { 135 unsigned s = latSets.size(); 136 latSets.emplace_back(SmallVector<unsigned, 16>()); 137 return s; 138 } 139 140 /// Computes a single conjunction of two lattice points by taking the "union" 141 /// of loop indices (effectively constructing a larger "intersection" of those 142 /// indices) with a newly constructed tensor (sub)expression of given kind. 143 /// Returns the index of the new lattice point. 144 unsigned conjLatPoint(Kind kind, unsigned p0, unsigned p1) { 145 unsigned p = latPoints.size(); 146 llvm::BitVector nb = llvm::BitVector(latPoints[p0].bits); 147 nb |= latPoints[p1].bits; 148 unsigned e = addExp(kind, latPoints[p0].exp, latPoints[p1].exp); 149 latPoints.push_back(LatPoint(nb, e)); 150 return p; 151 } 152 153 /// Conjunctive merge of two lattice sets L0 and L1 is conjunction of 154 /// cartesian product. Returns the index of the new set. 155 unsigned takeConj(Kind kind, unsigned s0, unsigned s1) { 156 unsigned s = addSet(); 157 for (unsigned p0 : latSets[s0]) 158 for (unsigned p1 : latSets[s1]) 159 latSets[s].push_back(conjLatPoint(kind, p0, p1)); 160 return s; 161 } 162 163 /// Disjunctive merge of two lattice sets L0 and L1 is (L0 /\_op L1, L0, L1). 164 /// Returns the index of the new set. 165 unsigned takeDisj(Kind kind, unsigned s0, unsigned s1) { 166 unsigned s = takeConj(kind, s0, s1); 167 for (unsigned p : latSets[s0]) 168 latSets[s].push_back(p); 169 for (unsigned p : latSets[s1]) 170 latSets[s].push_back(p); 171 return s; 172 } 173 174 /// Optimizes the iteration lattice points in the given set. This 175 /// method should be called right before code generation to avoid 176 /// generating redundant loops and conditions. 177 unsigned optimizeSet(unsigned s0) { 178 unsigned s = addSet(); 179 assert(latSets[s0].size() != 0); 180 unsigned p0 = latSets[s0][0]; 181 for (unsigned p1 : latSets[s0]) { 182 bool add = true; 183 if (p0 != p1) { 184 // Is this a straightforward copy? 185 unsigned e = latPoints[p1].exp; 186 if (exp(e).kind == Kind::kTensor && exp(e).e0 == outTensor) 187 continue; 188 // Conjunction already covered? 189 for (unsigned p2 : latSets[s]) { 190 assert(!latGT(p1, p2)); // Lj => Li would be bad 191 if (onlyDenseDiff(p2, p1)) { 192 add = false; 193 break; 194 } 195 } 196 assert(!add || latGT(p0, p1)); 197 } 198 if (add) 199 latSets[s].push_back(p1); 200 } 201 for (unsigned p : latSets[s]) 202 latPoints[p].simple = simplifyCond(s, p); 203 return s; 204 } 205 206 /// Simplifies the conditions in a conjunction of a given lattice point 207 /// within the given set using just two basic rules: 208 /// (1) multiple dense conditions are reduced to single dense, and 209 /// (2) a *singleton* sparse/dense is reduced to sparse/random access. 210 llvm::BitVector simplifyCond(unsigned s, unsigned p0) { 211 // First determine if this lattice point is a *singleton*, i.e., 212 // the last point in a lattice, no other is less than this one. 213 bool isSingleton = true; 214 for (unsigned p1 : latSets[s]) { 215 if (p0 != p1 && latGT(p0, p1)) { 216 isSingleton = false; 217 break; 218 } 219 } 220 // Now apply the two basic rules. 221 llvm::BitVector simple = latPoints[p0].bits; 222 bool reset = isSingleton && hasAnyDimOf(simple, Dim::kSparse); 223 for (unsigned b = 0, be = simple.size(); b < be; b++) { 224 if (simple[b] && !isDim(b, Dim::kSparse)) { 225 if (reset) 226 simple.reset(b); 227 reset = true; 228 } 229 } 230 return simple; 231 } 232 233 /// Returns true if Li > Lj. 234 bool latGT(unsigned i, unsigned j) const { 235 const llvm::BitVector &bitsi = latPoints[i].bits; 236 const llvm::BitVector &bitsj = latPoints[j].bits; 237 assert(bitsi.size() == bitsj.size()); 238 if (bitsi.count() > bitsj.count()) { 239 for (unsigned b = 0, be = bitsj.size(); b < be; b++) 240 if (bitsj[b] && !bitsi[b]) 241 return false; 242 return true; 243 } 244 return false; 245 } 246 247 /// Returns true if Li and Lj only differ in dense. 248 bool onlyDenseDiff(unsigned i, unsigned j) { 249 llvm::BitVector tmp = latPoints[j].bits; 250 tmp ^= latPoints[i].bits; 251 return !hasAnyDimOf(tmp, Dim::kSparse); 252 } 253 254 /// Bit translation. 255 unsigned tensor(unsigned b) const { return b % numTensors; } 256 unsigned index(unsigned b) const { return b / numTensors; } 257 258 /// Returns true if bit corresponds to queried dim. 259 bool isDim(unsigned b, Dim d) const { return isDim(tensor(b), index(b), d); } 260 261 /// Returns true if tensor access at given index has queried dim. 262 bool isDim(unsigned t, unsigned i, Dim d) const { 263 assert(t < numTensors && i < numLoops); 264 return dims[t][i] == d; 265 } 266 267 /// Returns true if any set bit corresponds to queried dim. 268 bool hasAnyDimOf(const llvm::BitVector &bits, Dim d) const { 269 for (unsigned b = 0, be = bits.size(); b < be; b++) 270 if (bits[b] && isDim(b, d)) 271 return true; 272 return false; 273 } 274 275 /// Setter 276 void setDim(unsigned t, unsigned i, Dim d) { dims[t][i] = d; } 277 278 /// Getters. 279 TensorExp &exp(unsigned e) { return tensorExps[e]; } 280 LatPoint &lat(unsigned l) { return latPoints[l]; } 281 SmallVector<unsigned, 16> &set(unsigned s) { return latSets[s]; } 282 283 private: 284 const unsigned outTensor; 285 const unsigned numTensors; 286 const unsigned numLoops; 287 288 std::vector<std::vector<Dim>> dims; 289 llvm::SmallVector<TensorExp, 32> tensorExps; 290 llvm::SmallVector<LatPoint, 16> latPoints; 291 llvm::SmallVector<SmallVector<unsigned, 16>, 8> latSets; 292 }; 293 294 // Code generation. 295 struct CodeGen { 296 CodeGen(SparsificationOptions o, unsigned numTensors, unsigned numLoops) 297 : options(o), loops(numLoops), sizes(numLoops), buffers(numTensors), 298 pointers(numTensors, std::vector<Value>(numLoops)), 299 indices(numTensors, std::vector<Value>(numLoops)), 300 highs(numTensors, std::vector<Value>(numLoops)), 301 pidxs(numTensors, std::vector<Value>(numLoops)), 302 idxs(numTensors, std::vector<Value>(numLoops)), redExp(-1u), redVal(), 303 curVecLength(1), curVecMask() {} 304 /// Sparsification options. 305 SparsificationOptions options; 306 /// Universal dense indices and upper bounds (by index). The loops array 307 /// is updated with the value of the universal dense index in the current 308 /// loop. The sizes array is set once with the inferred dimension sizes. 309 std::vector<Value> loops; 310 std::vector<Value> sizes; 311 /// Buffers for storing dense and sparse numerical values (by tensor). 312 /// This array is set once during bufferization of all tensors. 313 std::vector<Value> buffers; 314 /// Sparse storage schemes (1-D): pointers and indices (by tensor and index). 315 /// This array is set once during bufferization of all sparse tensors. 316 std::vector<std::vector<Value>> pointers; 317 std::vector<std::vector<Value>> indices; 318 /// Sparse iteration information (by tensor and index). These arrays 319 /// are updated to remain current within the current loop. 320 std::vector<std::vector<Value>> highs; 321 std::vector<std::vector<Value>> pidxs; 322 std::vector<std::vector<Value>> idxs; 323 /// Current reduction, updated during code generation. When indices of a 324 /// reduction are exhausted, all inner loops can "scalarize" the reduction. 325 // TODO: currently only done for (a chain of) innermost for-loops, where it 326 // is most effective; we could generalize to more outer and while-loops. 327 unsigned redExp; 328 Value redVal; 329 // Current vector length and mask. 330 unsigned curVecLength; 331 Value curVecMask; 332 }; 333 334 } // namespace 335 336 // Helper method to translate dim level type to internal representation. 337 static Dim toDim(SparseTensorEncodingAttr &enc, unsigned d) { 338 if (enc) { 339 SparseTensorEncodingAttr::DimLevelType tp = enc.getDimLevelType()[d]; 340 if (tp == SparseTensorEncodingAttr::DimLevelType::Compressed) 341 return Dim::kSparse; 342 if (tp == SparseTensorEncodingAttr::DimLevelType::Singleton) 343 return Dim::kSingle; 344 } 345 return Dim::kDense; 346 } 347 348 /// Helper method to inspect sparse encodings in the tensor types. 349 /// Fills the per-dimension sparsity information for all tensors. 350 static bool findSparseAnnotations(Merger &merger, linalg::GenericOp op) { 351 bool annotated = false; 352 unsigned numTensors = op.getNumShapedOperands(); 353 unsigned lhs = numTensors - 1; 354 for (unsigned t = 0; t < numTensors; t++) { 355 auto map = op.getIndexingMap(t); 356 unsigned rank = op.getShapedType(t).getRank(); 357 auto enc = getSparseTensorEncoding(op.getShapedType(t)); 358 if (enc) { 359 annotated = true; 360 if (enc.getDimOrdering() && !enc.getDimOrdering().isIdentity()) 361 return false; // TODO: handle permutations 362 if (t == lhs) 363 return false; // TODO: handle sparse outputs 364 } 365 for (unsigned d = 0; d < rank; d++) { 366 unsigned idx = map.getDimPosition(d); 367 merger.setDim(t, idx, toDim(enc, d)); 368 } 369 } 370 return annotated; 371 } 372 373 /// A DFS helper to compute a topological sort. Note that recursion is 374 /// bounded by the number of implicit loops, which is always small. 375 /// Returns false when a cycle is detected. 376 static bool topSortDFS(unsigned i, std::vector<unsigned> &visit, 377 std::vector<unsigned> &topSort, 378 std::vector<std::vector<bool>> &adjM) { 379 if (visit[i] != 0) 380 return visit[i] != 1; // 1 denotes cycle! 381 visit[i] = 1; 382 for (unsigned j = 0, e = visit.size(); j < e; j++) 383 if (adjM[i][j]) 384 if (!topSortDFS(j, visit, topSort, adjM)) 385 return false; 386 visit[i] = 2; 387 topSort.push_back(i); 388 return true; 389 } 390 391 /// Computes a topologically sorted iteration graph for the linalg operation. 392 /// Ensures all tensors are visited in natural index order. This is essential 393 /// for sparse storage formats since these only support access along fixed 394 /// dimensions. Even for dense storage formats, however, the natural index 395 /// order yields innermost unit-stride access with better spatial locality. 396 static bool computeIterationGraph(Merger &merger, linalg::GenericOp op, 397 std::vector<unsigned> &topSort, 398 bool sparseOnly) { 399 // Set up an n x n from/to adjacency matrix of the iteration graph 400 // for the implicit loop indices i_0 .. i_n-1. 401 unsigned n = op.getNumLoops(); 402 std::vector<std::vector<bool>> adjM(n, std::vector<bool>(n, false)); 403 404 // Iterate over the indexing maps of every tensor in the tensor expression. 405 unsigned numTensors = op.getNumShapedOperands(); 406 for (unsigned t = 0; t < numTensors; t++) { 407 auto map = op.getIndexingMap(t); 408 assert(map.getNumDims() == n); 409 // Skip dense tensor constraints when sparse only is requested. 410 if (sparseOnly && !getSparseTensorEncoding(op.getShapedType(t))) 411 continue; 412 // At the moment, we take the index variables in the tensor access 413 // expression in the order in which they appear (conceptually a 414 // "row-major" layout of every tensor). So, a tensor access A_ijk 415 // forces the ordering i < j < k on the loop indices. 416 // TODO: support affine map to define alternative dimension orders. 417 for (unsigned d = 1, e = map.getNumResults(); d < e; d++) { 418 unsigned f = map.getDimPosition(d - 1); 419 unsigned t = map.getDimPosition(d); 420 adjM[f][t] = true; 421 } 422 } 423 424 // Topologically sort the iteration graph to determine loop order. 425 // Report failure for a cyclic iteration graph. 426 topSort.clear(); 427 topSort.reserve(n); 428 std::vector<unsigned> visit(n, 0); 429 for (unsigned i = 0; i < n; i++) 430 if (visit[i] == 0) 431 if (!topSortDFS(i, visit, topSort, adjM)) 432 return false; // cycle! 433 std::reverse(std::begin(topSort), std::end(topSort)); 434 return true; 435 } 436 437 /// Traverses the SSA tree (possibly a DAG) to build a tensor expression. 438 /// This simplifies constructing (sub)expressions during iteration lattice 439 /// building (compared to using the SSA representation everywhere). 440 static Optional<unsigned> buildTensorExp(Merger &merger, linalg::GenericOp op, 441 Value val) { 442 if (auto arg = val.dyn_cast<BlockArgument>()) { 443 unsigned argN = arg.getArgNumber(); 444 if (arg.getOwner()->getParentOp() == op) { 445 // Any parameter of the generic op is considered a tensor, 446 // indexed by the implicit loop bounds. 447 auto map = op.getIndexingMap(argN); 448 if (map.isProjectedPermutation()) 449 return merger.addExp(Kind::kTensor, argN); 450 // Cannot handle (yet). 451 return None; 452 } 453 // Any parameter of a higher op is invariant. 454 return merger.addExp(Kind::kInvariant, val); 455 } 456 Operation *def = val.getDefiningOp(); 457 if (def->getBlock() != &op.region().front()) { 458 // Something defined outside is invariant. 459 return merger.addExp(Kind::kInvariant, val); 460 } else if (def->getNumOperands() == 2) { 461 // Construct binary operations if subexpressions could be built. 462 auto x = buildTensorExp(merger, op, def->getOperand(0)); 463 auto y = buildTensorExp(merger, op, def->getOperand(1)); 464 if (x.hasValue() && y.hasValue()) { 465 unsigned e0 = x.getValue(); 466 unsigned e1 = y.getValue(); 467 if (isa<MulFOp>(def)) 468 return merger.addExp(Kind::kMulF, e0, e1); 469 if (isa<MulIOp>(def)) 470 return merger.addExp(Kind::kMulI, e0, e1); 471 if (isa<AddFOp>(def)) 472 return merger.addExp(Kind::kAddF, e0, e1); 473 if (isa<AddIOp>(def)) 474 return merger.addExp(Kind::kAddI, e0, e1); 475 } 476 } 477 // Cannot build (yet). 478 return None; 479 } 480 481 /// Builds the iteration lattices in a bottom-up traversal given the remaining 482 /// tensor (sub)expression and the next loop index in the iteration graph. 483 static unsigned buildLattices(Merger &merger, linalg::GenericOp op, 484 unsigned exp, unsigned idx) { 485 Kind kind = merger.exp(exp).kind; 486 if (kind == Kind::kTensor || kind == Kind::kInvariant) { 487 // Either the index is really used in the tensor expression, or it is 488 // set to the undefined index in that dimension. An invariant expression 489 // is set to a synthetic tensor with undefined indices only. 490 unsigned s = merger.addSet(); 491 unsigned t = 492 kind == Kind::kTensor ? merger.exp(exp).e0 : op.getNumShapedOperands(); 493 merger.set(s).push_back(merger.addLat(t, idx, exp)); 494 return s; 495 } 496 unsigned s0 = buildLattices(merger, op, merger.exp(exp).e0, idx); 497 unsigned s1 = buildLattices(merger, op, merger.exp(exp).e1, idx); 498 switch (kind) { 499 case Kind::kTensor: 500 case Kind::kInvariant: 501 llvm_unreachable("handled above"); 502 case Kind::kMulF: 503 case Kind::kMulI: 504 return merger.takeConj(kind, s0, s1); 505 case Kind::kAddF: 506 case Kind::kAddI: 507 return merger.takeDisj(kind, s0, s1); 508 } 509 llvm_unreachable("unexpected expression kind"); 510 } 511 512 /// Maps sparse integer option to actual integral storage type. 513 static Type genIntType(PatternRewriter &rewriter, unsigned width) { 514 if (width == 0) 515 return rewriter.getIndexType(); 516 return rewriter.getIntegerType(width); 517 } 518 519 /// Detects in-place annotation on tensor argument. 520 static bool getInPlace(Value val) { 521 if (auto arg = val.dyn_cast<BlockArgument>()) 522 if (auto funcOp = dyn_cast<FuncOp>(arg.getOwner()->getParentOp())) 523 if (auto attr = funcOp.getArgAttrOfType<BoolAttr>( 524 arg.getArgNumber(), linalg::LinalgDialect::kInplaceableAttrName)) 525 return attr.getValue(); 526 return false; 527 } 528 529 /// Generates buffer for the output tensor. 530 static Value genOutputBuffer(CodeGen &codegen, PatternRewriter &rewriter, 531 linalg::GenericOp op, MemRefType denseTp, 532 ArrayRef<Value> args) { 533 Location loc = op.getLoc(); 534 Value tensor = op.getOutput(0); 535 // The output tensor simply could materialize from the buffer that will 536 // be generated for the tensor present in the outs() clause. This has 537 // the major advantage that the sparse kernel only updates the nonzero 538 // positions for the output tensor. 539 if (getInPlace(tensor)) 540 return rewriter.create<memref::BufferCastOp>(loc, denseTp, tensor); 541 // By default, a new buffer is allocated which is initialized to the 542 // tensor defined in the outs() clause. This is always correct but 543 // introduces a dense initialization component that may negatively 544 // impact the running complexity of the sparse kernel. 545 Value init = rewriter.create<memref::BufferCastOp>(loc, denseTp, tensor); 546 Value alloc = rewriter.create<memref::AllocOp>(loc, denseTp, args); 547 rewriter.create<linalg::CopyOp>(loc, init, alloc); 548 return alloc; 549 } 550 551 /// Local bufferization of all dense and sparse data structures. 552 /// This code enables testing the first prototype sparse compiler. 553 // TODO: replace this with a proliferated bufferization strategy 554 static void genBuffers(Merger &merger, CodeGen &codegen, 555 PatternRewriter &rewriter, linalg::GenericOp op) { 556 Location loc = op.getLoc(); 557 unsigned numTensors = op.getNumShapedOperands(); 558 unsigned numInputs = op.getNumInputs(); 559 assert(numTensors == numInputs + 1); 560 // For every tensor, find lower and upper bound on dimensions, set the 561 // same bounds on loop indices, and obtain dense or sparse buffer(s). 562 SmallVector<Value, 4> args; 563 for (unsigned t = 0; t < numTensors; t++) { 564 Value tensor = t < numInputs ? op.getInput(t) : op.getOutput(0); 565 auto tensorType = op.getShapedType(t); 566 auto shape = tensorType.getShape(); 567 auto map = op.getIndexingMap(t); 568 auto enc = getSparseTensorEncoding(tensorType); 569 // Scan all dimensions of current tensor. 570 args.clear(); 571 for (unsigned d = 0, rank = shape.size(); d < rank; d++) { 572 unsigned i = map.getDimPosition(d); 573 // Handle sparse storage schemes. 574 if (merger.isDim(t, i, Dim::kSparse)) { 575 auto dynShape = {ShapedType::kDynamicSize}; 576 auto ptrTp = MemRefType::get( 577 dynShape, genIntType(rewriter, enc.getPointerBitWidth())); 578 auto indTp = MemRefType::get( 579 dynShape, genIntType(rewriter, enc.getIndexBitWidth())); 580 Value dim = rewriter.create<ConstantIndexOp>(loc, d); 581 // Generate sparse primitives to obtains pointer and indices. 582 codegen.pointers[t][i] = 583 rewriter.create<ToPointersOp>(loc, ptrTp, tensor, dim); 584 codegen.indices[t][i] = 585 rewriter.create<ToIndicesOp>(loc, indTp, tensor, dim); 586 } 587 // Find lower and upper bound in current dimension. 588 Value up; 589 if (shape[d] == MemRefType::kDynamicSize) { 590 up = rewriter.create<memref::DimOp>(loc, tensor, d); 591 args.push_back(up); 592 } else { 593 up = rewriter.create<ConstantIndexOp>(loc, shape[d]); 594 } 595 codegen.sizes[i] = codegen.highs[t][i] = up; 596 } 597 // Perform the required bufferization. All dense inputs materialize 598 // from the input tensor. The dense output tensor needs special 599 // handling. Sparse inputs use a sparse primitive to obtain the values. 600 if (!enc) { 601 auto denseTp = MemRefType::get(shape, tensorType.getElementType()); 602 if (t < numInputs) 603 codegen.buffers[t] = 604 rewriter.create<memref::BufferCastOp>(loc, denseTp, tensor); 605 else 606 codegen.buffers[t] = 607 genOutputBuffer(codegen, rewriter, op, denseTp, args); 608 } else { 609 auto dynShape = {ShapedType::kDynamicSize}; 610 auto sparseTp = MemRefType::get(dynShape, tensorType.getElementType()); 611 codegen.buffers[t] = rewriter.create<ToValuesOp>(loc, sparseTp, tensor); 612 } 613 } 614 } 615 616 /// Constructs vector type. 617 static VectorType vectorType(CodeGen &codegen, Type etp) { 618 return VectorType::get(codegen.curVecLength, etp); 619 } 620 621 /// Constructs vector type from pointer. 622 static VectorType vectorType(CodeGen &codegen, Value ptr) { 623 return vectorType(codegen, ptr.getType().cast<MemRefType>().getElementType()); 624 } 625 626 /// Constructs vector iteration mask. 627 static Value genVectorMask(CodeGen &codegen, PatternRewriter &rewriter, 628 Value iv, Value lo, Value hi, Value step) { 629 Location loc = iv.getLoc(); 630 VectorType mtp = vectorType(codegen, rewriter.getIntegerType(1)); 631 // Special case if the vector length evenly divides the trip count (for 632 // example, "for i = 0, 128, 16"). A constant all-true mask is generated 633 // so that all subsequent masked memory operations are immediately folded 634 // into unconditional memory operations. 635 IntegerAttr loInt, hiInt, stepInt; 636 if (matchPattern(lo, m_Constant(&loInt)) && 637 matchPattern(hi, m_Constant(&hiInt)) && 638 matchPattern(step, m_Constant(&stepInt))) { 639 if (((hiInt.getInt() - loInt.getInt()) % stepInt.getInt()) == 0) 640 return rewriter.create<vector::BroadcastOp>( 641 loc, mtp, rewriter.create<ConstantIntOp>(loc, 1, 1)); 642 } 643 // Otherwise, generate a vector mask that avoids overrunning the upperbound 644 // during vector execution. Here we rely on subsequent loop optimizations to 645 // avoid executing the mask in all iterations, for example, by splitting the 646 // loop into an unconditional vector loop and a scalar cleanup loop. 647 Value end = rewriter.create<SubIOp>(loc, hi, iv); 648 return rewriter.create<vector::CreateMaskOp>(loc, mtp, end); 649 } 650 651 /// Generates a vectorized load lhs = a[ind[lo:hi]] or lhs = a[lo:hi]. 652 static Value genVectorLoad(CodeGen &codegen, PatternRewriter &rewriter, 653 Value ptr, ArrayRef<Value> args) { 654 Location loc = ptr.getLoc(); 655 VectorType vtp = vectorType(codegen, ptr); 656 Value pass = rewriter.create<ConstantOp>(loc, vtp, rewriter.getZeroAttr(vtp)); 657 if (args.back().getType().isa<VectorType>()) { 658 SmallVector<Value, 4> scalarArgs(args.begin(), args.end()); 659 Value indexVec = args.back(); 660 scalarArgs.back() = rewriter.create<ConstantIndexOp>(loc, 0); 661 return rewriter.create<vector::GatherOp>( 662 loc, vtp, ptr, scalarArgs, indexVec, codegen.curVecMask, pass); 663 } 664 return rewriter.create<vector::MaskedLoadOp>(loc, vtp, ptr, args, 665 codegen.curVecMask, pass); 666 } 667 668 /// Generates a vectorized store a[ind[lo:hi]] = rhs or a[lo:hi] = rhs. 669 static void genVectorStore(CodeGen &codegen, PatternRewriter &rewriter, 670 Value rhs, Value ptr, ArrayRef<Value> args) { 671 Location loc = ptr.getLoc(); 672 if (args.back().getType().isa<VectorType>()) { 673 SmallVector<Value, 4> scalarArgs(args.begin(), args.end()); 674 Value indexVec = args.back(); 675 scalarArgs.back() = rewriter.create<ConstantIndexOp>(loc, 0); 676 rewriter.create<vector::ScatterOp>(loc, ptr, scalarArgs, indexVec, 677 codegen.curVecMask, rhs); 678 return; 679 } 680 rewriter.create<vector::MaskedStoreOp>(loc, ptr, args, codegen.curVecMask, 681 rhs); 682 } 683 684 /// Generates a vectorized invariant. Here we rely on subsequent loop 685 /// optimizations to hoist the invariant broadcast out of the vector loop. 686 static Value genVectorInvariantValue(CodeGen &codegen, 687 PatternRewriter &rewriter, Value val) { 688 VectorType vtp = vectorType(codegen, val.getType()); 689 return rewriter.create<vector::BroadcastOp>(val.getLoc(), vtp, val); 690 } 691 692 /// Generates a load on a dense or sparse tensor. 693 static Value genTensorLoad(Merger &merger, CodeGen &codegen, 694 PatternRewriter &rewriter, linalg::GenericOp op, 695 unsigned exp) { 696 // Test if the load was hoisted to a higher loop nest. 697 Value val = merger.exp(exp).val; 698 if (val) { 699 if (codegen.curVecLength > 1 && !val.getType().isa<VectorType>()) 700 return genVectorInvariantValue(codegen, rewriter, val); 701 return val; 702 } 703 // Actual load. 704 SmallVector<Value, 4> args; 705 unsigned tensor = merger.exp(exp).e0; 706 auto map = op.getIndexingMap(tensor); 707 auto enc = getSparseTensorEncoding(op.getShapedType(tensor)); 708 for (unsigned i = 0, m = map.getNumResults(); i < m; ++i) { 709 unsigned idx = map.getDimPosition(i); 710 args.push_back(codegen.loops[idx]); // universal dense index 711 if (enc) { 712 args.clear(); 713 args.push_back(codegen.pidxs[tensor][idx]); // position index 714 } 715 } 716 Location loc = op.getLoc(); 717 Value ptr = codegen.buffers[tensor]; 718 if (codegen.curVecLength > 1) 719 return genVectorLoad(codegen, rewriter, ptr, args); 720 return rewriter.create<memref::LoadOp>(loc, ptr, args); 721 } 722 723 /// Generates a store on a dense tensor. 724 static void genTensorStore(Merger &merger, CodeGen &codegen, 725 PatternRewriter &rewriter, linalg::GenericOp op, 726 unsigned tensor, Value rhs) { 727 Location loc = op.getLoc(); 728 // Test if this is a scalarized reduction. 729 unsigned lhs = op.getNumShapedOperands() - 1; 730 if (lhs == tensor && codegen.redVal) { 731 if (codegen.curVecLength > 1) 732 rhs = rewriter.create<SelectOp>(loc, codegen.curVecMask, rhs, 733 codegen.redVal); 734 codegen.redVal = rhs; 735 return; 736 } 737 // Actual store. 738 SmallVector<Value, 4> args; 739 auto map = op.getIndexingMap(tensor); 740 for (unsigned i = 0, m = map.getNumResults(); i < m; ++i) { 741 unsigned idx = map.getDimPosition(i); 742 args.push_back(codegen.loops[idx]); // universal dense index 743 } 744 Value ptr = codegen.buffers[tensor]; 745 if (codegen.curVecLength > 1) 746 genVectorStore(codegen, rewriter, rhs, ptr, args); 747 else 748 rewriter.create<memref::StoreOp>(loc, rhs, ptr, args); 749 } 750 751 /// Generates a pointer/index load from the sparse storage scheme. Narrower 752 /// data types need to be zero extended before casting the value into the 753 /// index type used for looping and indexing. 754 static Value genLoad(CodeGen &codegen, PatternRewriter &rewriter, Location loc, 755 Value ptr, Value s) { 756 // See https://llvm.org/docs/GetElementPtr.html for some background on 757 // the complications described below. 758 if (codegen.curVecLength > 1) { 759 // Since the index vector is used in a subsequent gather/scatter operations, 760 // which effectively defines an unsigned pointer + signed index, we must 761 // zero extend the vector to an index width. For 8-bit and 16-bit values, 762 // an 32-bit index width suffices. For 32-bit values, zero extending the 763 // elements into 64-bit loses some performance since the 32-bit indexed 764 // gather/scatter is more efficient than the 64-bit index variant (in 765 // the future, we could introduce a flag that states the negative space 766 // of 32-bit indices is unused). For 64-bit values, there is no good way 767 // to state that the indices are unsigned, with creates the potential of 768 // incorrect address calculations in the unlikely case we need such 769 // extremely large offsets. 770 Type etp = ptr.getType().cast<MemRefType>().getElementType(); 771 Value vload = genVectorLoad(codegen, rewriter, ptr, {s}); 772 if (!etp.isa<IndexType>()) { 773 if (etp.getIntOrFloatBitWidth() < 32) 774 vload = rewriter.create<ZeroExtendIOp>( 775 loc, vload, vectorType(codegen, rewriter.getIntegerType(32))); 776 else if (etp.getIntOrFloatBitWidth() < 64) 777 vload = rewriter.create<ZeroExtendIOp>( 778 loc, vload, vectorType(codegen, rewriter.getIntegerType(64))); 779 } 780 return vload; 781 } 782 // For the scalar case, we simply zero extend narrower indices into 64-bit 783 // values before casting to index without a performance penalty. Here too, 784 // however, indices that already are 64-bit, in theory, cannot express the 785 // full range as explained above. 786 Value load = rewriter.create<memref::LoadOp>(loc, ptr, s); 787 if (!load.getType().isa<IndexType>()) { 788 if (load.getType().getIntOrFloatBitWidth() < 64) 789 load = rewriter.create<ZeroExtendIOp>(loc, load, 790 rewriter.getIntegerType(64)); 791 load = rewriter.create<IndexCastOp>(loc, load, rewriter.getIndexType()); 792 } 793 return load; 794 } 795 796 /// Generates an invariant value. 797 static Value genInvariantValue(Merger &merger, CodeGen &codegen, 798 PatternRewriter &rewriter, unsigned exp) { 799 Value val = merger.exp(exp).val; 800 if (codegen.curVecLength > 1) 801 return genVectorInvariantValue(codegen, rewriter, val); 802 return val; 803 } 804 805 /// Generates an address computation "sz * p + i". 806 static Value genAddress(CodeGen &codegen, PatternRewriter &rewriter, 807 Location loc, Value size, Value p, Value i) { 808 Value mul = rewriter.create<MulIOp>(loc, size, p); 809 if (auto vtp = i.getType().dyn_cast<VectorType>()) { 810 Value inv = rewriter.create<IndexCastOp>(loc, mul, vtp.getElementType()); 811 mul = genVectorInvariantValue(codegen, rewriter, inv); 812 } 813 return rewriter.create<AddIOp>(loc, mul, i); 814 } 815 816 /// Generates start of a reduction. 817 static Value genReductionStart(Merger &merger, CodeGen &codegen, 818 PatternRewriter &rewriter, 819 linalg::GenericOp op) { 820 if (codegen.redVal) 821 return codegen.redVal; // chained with previous for-loop 822 if (codegen.curVecLength > 1) { 823 // TODO: assumes + reductions for now 824 VectorType vtp = vectorType(codegen, codegen.buffers[codegen.redExp]); 825 return rewriter.create<ConstantOp>(op.getLoc(), vtp, 826 rewriter.getZeroAttr(vtp)); 827 } 828 return genTensorLoad(merger, codegen, rewriter, op, codegen.redExp); 829 } 830 831 /// Generates end of a reduction. 832 static void genReductionEnd(Merger &merger, CodeGen &codegen, 833 PatternRewriter &rewriter, linalg::GenericOp op) { 834 Value red = codegen.redVal; 835 if (!red) 836 return; 837 assert(codegen.curVecLength == 1); 838 codegen.redVal = merger.exp(codegen.redExp).val = Value(); // end chain 839 unsigned lhs = op.getNumShapedOperands() - 1; 840 if (auto vtp = red.getType().dyn_cast<VectorType>()) { 841 // TODO: assumes + reductions for now 842 StringAttr kind = rewriter.getStringAttr("add"); 843 Value ld = genTensorLoad(merger, codegen, rewriter, op, codegen.redExp); 844 // Integer reductions don't accept an accumulator. 845 if (vtp.getElementType().isa<IntegerType>()) { 846 red = rewriter.create<vector::ReductionOp>(op.getLoc(), ld.getType(), 847 kind, red, ValueRange{}); 848 red = rewriter.create<AddIOp>(op.getLoc(), red, ld); 849 } else { 850 red = rewriter.create<vector::ReductionOp>(op.getLoc(), ld.getType(), 851 kind, red, ld); 852 } 853 } 854 genTensorStore(merger, codegen, rewriter, op, lhs, red); 855 } 856 857 /// Recursively generates tensor expression. 858 static Value genExp(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, 859 linalg::GenericOp op, unsigned exp) { 860 if (merger.exp(exp).kind == Kind::kTensor) 861 return genTensorLoad(merger, codegen, rewriter, op, exp); 862 else if (merger.exp(exp).kind == Kind::kInvariant) 863 return genInvariantValue(merger, codegen, rewriter, exp); 864 Value v0 = genExp(merger, codegen, rewriter, op, merger.exp(exp).e0); 865 Value v1 = genExp(merger, codegen, rewriter, op, merger.exp(exp).e1); 866 switch (merger.exp(exp).kind) { 867 case Kind::kTensor: 868 case Kind::kInvariant: 869 llvm_unreachable("handled above"); 870 case Kind::kMulF: 871 return rewriter.create<MulFOp>(op.getLoc(), v0, v1); 872 case Kind::kMulI: 873 return rewriter.create<MulIOp>(op.getLoc(), v0, v1); 874 case Kind::kAddF: 875 return rewriter.create<AddFOp>(op.getLoc(), v0, v1); 876 case Kind::kAddI: 877 return rewriter.create<AddIOp>(op.getLoc(), v0, v1); 878 } 879 llvm_unreachable("unexpected expression kind"); 880 } 881 882 /// Hoists loop invariant tensor loads for which indices have been exhausted. 883 static void genInvariants(Merger &merger, CodeGen &codegen, 884 PatternRewriter &rewriter, linalg::GenericOp op, 885 unsigned exp, unsigned ldx, bool hoist) { 886 if (merger.exp(exp).kind == Kind::kTensor) { 887 // Inspect tensor indices. 888 bool atLevel = ldx == -1u; 889 unsigned tensor = merger.exp(exp).e0; 890 auto map = op.getIndexingMap(tensor); 891 for (unsigned i = 0, m = map.getNumResults(); i < m; ++i) { 892 unsigned idx = map.getDimPosition(i); 893 if (!codegen.loops[idx]) 894 return; // still in play 895 else if (idx == ldx) 896 atLevel = true; 897 } 898 // All exhausted at this level (atLevel denotes exactly at this level). 899 unsigned lhs = op.getNumShapedOperands() - 1; 900 if (lhs == tensor) { 901 codegen.redExp = hoist ? exp : -1u; 902 } else if (atLevel) { 903 merger.exp(exp).val = 904 hoist ? genTensorLoad(merger, codegen, rewriter, op, exp) : Value(); 905 } 906 } else if (merger.exp(exp).kind != Kind::kInvariant) { 907 // Traverse into the binary operations. Note that we only hoist 908 // tensor loads, since subsequent MLIR/LLVM passes know how to 909 // deal with all other kinds of derived loop invariants. 910 unsigned e0 = merger.exp(exp).e0; 911 unsigned e1 = merger.exp(exp).e1; 912 genInvariants(merger, codegen, rewriter, op, e0, ldx, hoist); 913 genInvariants(merger, codegen, rewriter, op, e1, ldx, hoist); 914 } 915 } 916 917 /// Generates initialization code for the subsequent loop sequence at 918 /// current index level. Returns true if the loop sequence needs to 919 /// maintain the universal index. 920 static bool genInit(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, 921 linalg::GenericOp op, std::vector<unsigned> &topSort, 922 unsigned at, llvm::BitVector &inits) { 923 bool needsUniv = false; 924 Location loc = op.getLoc(); 925 unsigned idx = topSort[at]; 926 927 // Initialize sparse positions. 928 for (unsigned b = 0, be = inits.size(); b < be; b++) { 929 if (inits[b]) { 930 unsigned tensor = merger.tensor(b); 931 assert(idx == merger.index(b)); 932 if (merger.isDim(b, Dim::kSparse)) { 933 // Initialize sparse index. 934 unsigned pat = at; 935 for (; pat != 0; pat--) { 936 if (codegen.pidxs[tensor][topSort[pat - 1]]) 937 break; 938 } 939 Value ptr = codegen.pointers[tensor][idx]; 940 Value one = rewriter.create<ConstantIndexOp>(loc, 1); 941 Value p0 = (pat == 0) ? rewriter.create<ConstantIndexOp>(loc, 0) 942 : codegen.pidxs[tensor][topSort[pat - 1]]; 943 codegen.pidxs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p0); 944 Value p1 = rewriter.create<AddIOp>(loc, p0, one); 945 codegen.highs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p1); 946 } else { 947 // Dense index still in play. 948 needsUniv = true; 949 } 950 } 951 } 952 953 // Initialize the universal dense index. 954 codegen.loops[idx] = rewriter.create<ConstantIndexOp>(loc, 0); 955 return needsUniv; 956 } 957 958 /// Returns vectorization strategy. Any implicit inner loop in the Linalg 959 /// operation is a candidate. Whether it is actually converted to SIMD code 960 /// depends on the requested strategy. 961 static bool isVectorFor(CodeGen &codegen, bool isInner, bool isSparse) { 962 switch (codegen.options.vectorizationStrategy) { 963 case SparseVectorizationStrategy::kNone: 964 return false; 965 case SparseVectorizationStrategy::kDenseInnerLoop: 966 return isInner && !isSparse; 967 case SparseVectorizationStrategy::kAnyStorageInnerLoop: 968 return isInner; 969 } 970 llvm_unreachable("unexpected vectorization strategy"); 971 } 972 973 /// Returns parallelization strategy. Any implicit loop in the Linalg operation 974 /// that is marked "parallel" is a candidate. Whether it is actually converted 975 /// to a parallel operation depends on the requested strategy. 976 static bool isParallelFor(CodeGen &codegen, bool isOuter, bool isReduction, 977 bool isSparse, bool isVector) { 978 switch (codegen.options.parallelizationStrategy) { 979 case SparseParallelizationStrategy::kNone: 980 return false; 981 case SparseParallelizationStrategy::kDenseOuterLoop: 982 return isOuter && !isSparse && !isReduction && !isVector; 983 case SparseParallelizationStrategy::kAnyStorageOuterLoop: 984 return isOuter && !isReduction && !isVector; 985 case SparseParallelizationStrategy::kDenseAnyLoop: 986 return !isSparse && !isReduction && !isVector; 987 case SparseParallelizationStrategy::kAnyStorageAnyLoop: 988 return !isReduction && !isVector; 989 } 990 llvm_unreachable("unexpected parallelization strategy"); 991 } 992 993 /// Checks unit strides for dense tensors. The iteration graph may have ignored 994 /// dense access patterns in order to avoid cycles (sparse access patterns are 995 /// always placed innermost), but that means dense access has become strided. 996 /// For now, we reject vectorization of such cases. 997 /// TODO: implement strided load/stores on dense arrays 998 static bool denseUnitStrides(Merger &merger, linalg::GenericOp op, 999 unsigned idx) { 1000 unsigned numTensors = op.getNumShapedOperands(); 1001 for (unsigned t = 0; t < numTensors; t++) { 1002 if (!getSparseTensorEncoding(op.getShapedType(t))) { 1003 auto map = op.getIndexingMap(t); 1004 unsigned r = map.getNumResults(); 1005 for (unsigned i = 0; i < r; i++) { 1006 if (map.getDimPosition(i) == idx && i != r - 1) 1007 return false; 1008 } 1009 } 1010 } 1011 return true; 1012 } 1013 1014 /// Generates a for-loop on a single index. 1015 static Operation *genFor(Merger &merger, CodeGen &codegen, 1016 PatternRewriter &rewriter, linalg::GenericOp op, 1017 bool isOuter, bool isInner, unsigned idx, 1018 llvm::BitVector &indices) { 1019 unsigned fb = indices.find_first(); 1020 unsigned tensor = merger.tensor(fb); 1021 assert(idx == merger.index(fb)); 1022 auto iteratorTypes = op.iterator_types().getValue(); 1023 bool isReduction = linalg::isReductionIteratorType(iteratorTypes[idx]); 1024 bool isSparse = merger.isDim(fb, Dim::kSparse); 1025 bool isVector = isVectorFor(codegen, isInner, isSparse) && 1026 denseUnitStrides(merger, op, idx); 1027 bool isParallel = 1028 isParallelFor(codegen, isOuter, isReduction, isSparse, isVector); 1029 1030 // Prepare vector length. 1031 if (isVector) 1032 codegen.curVecLength = codegen.options.vectorLength; 1033 1034 // Loop bounds and increment. 1035 Location loc = op.getLoc(); 1036 Value lo = isSparse ? codegen.pidxs[tensor][idx] : codegen.loops[idx]; 1037 Value hi = isSparse ? codegen.highs[tensor][idx] : codegen.sizes[idx]; 1038 Value step = rewriter.create<ConstantIndexOp>(loc, codegen.curVecLength); 1039 1040 // Emit a parallel loop. 1041 if (isParallel) { 1042 assert(!isVector); 1043 scf::ParallelOp parOp = rewriter.create<scf::ParallelOp>(loc, lo, hi, step); 1044 if (isSparse) 1045 codegen.pidxs[tensor][idx] = parOp.getInductionVars()[0]; 1046 else 1047 codegen.loops[idx] = parOp.getInductionVars()[0]; 1048 rewriter.setInsertionPointToStart(parOp.getBody()); 1049 return parOp; 1050 } 1051 1052 // Emit a sequential loop, potentially with a scalarized reduction. 1053 bool scalarRed = isInner && codegen.redExp != -1u; 1054 SmallVector<Value, 4> operands; 1055 if (scalarRed) { 1056 Value load = genReductionStart(merger, codegen, rewriter, op); 1057 operands.push_back(load); 1058 } 1059 scf::ForOp forOp = rewriter.create<scf::ForOp>(loc, lo, hi, step, operands); 1060 if (scalarRed) { 1061 codegen.redVal = merger.exp(codegen.redExp).val = 1062 forOp.getRegionIterArgs().front(); 1063 } 1064 // Assign induction variable to sparse or dense index. 1065 Value iv = forOp.getInductionVar(); 1066 if (isSparse) 1067 codegen.pidxs[tensor][idx] = iv; 1068 else 1069 codegen.loops[idx] = iv; 1070 rewriter.setInsertionPointToStart(forOp.getBody()); 1071 // Share vector iteration mask between all subsequent loads/stores. 1072 if (isVector) 1073 codegen.curVecMask = genVectorMask(codegen, rewriter, iv, lo, hi, step); 1074 return forOp; 1075 } 1076 1077 /// Emit a while-loop for co-iteration over multiple indices. 1078 static Operation *genWhile(Merger &merger, CodeGen &codegen, 1079 PatternRewriter &rewriter, linalg::GenericOp op, 1080 unsigned idx, bool needsUniv, 1081 llvm::BitVector &indices) { 1082 SmallVector<Type, 4> types; 1083 SmallVector<Value, 4> operands; 1084 // Construct the while-loop with a parameter for each index. 1085 Type indexType = rewriter.getIndexType(); 1086 for (unsigned b = 0, be = indices.size(); b < be; b++) { 1087 if (indices[b] && merger.isDim(b, Dim::kSparse)) { 1088 unsigned tensor = merger.tensor(b); 1089 assert(idx == merger.index(b)); 1090 types.push_back(indexType); 1091 assert(codegen.pidxs[tensor][idx].getType().isa<IndexType>() && 1092 "type mismatch for sparse index"); 1093 operands.push_back(codegen.pidxs[tensor][idx]); 1094 } 1095 } 1096 if (needsUniv) { 1097 types.push_back(indexType); 1098 assert(codegen.loops[idx].getType().isa<IndexType>() && 1099 "type mismatch for universal index"); 1100 operands.push_back(codegen.loops[idx]); 1101 } 1102 Location loc = op.getLoc(); 1103 scf::WhileOp whileOp = rewriter.create<scf::WhileOp>(loc, types, operands); 1104 Block *before = rewriter.createBlock(&whileOp.before(), {}, types); 1105 Block *after = rewriter.createBlock(&whileOp.after(), {}, types); 1106 1107 // Build the "before" region, which effectively consists 1108 // of a conjunction of "i < upper" tests on all induction. 1109 rewriter.setInsertionPointToStart(&whileOp.before().front()); 1110 Value cond; 1111 unsigned o = 0; 1112 for (unsigned b = 0, be = indices.size(); b < be; b++) { 1113 if (indices[b] && merger.isDim(b, Dim::kSparse)) { 1114 unsigned tensor = merger.tensor(b); 1115 assert(idx == merger.index(b)); 1116 Value op1 = before->getArgument(o); 1117 Value op2 = codegen.highs[tensor][idx]; 1118 Value opc = rewriter.create<CmpIOp>(loc, CmpIPredicate::ult, op1, op2); 1119 cond = cond ? rewriter.create<AndOp>(loc, cond, opc) : opc; 1120 codegen.pidxs[tensor][idx] = after->getArgument(o++); 1121 } 1122 } 1123 if (needsUniv) 1124 codegen.loops[idx] = after->getArgument(o++); 1125 assert(o == operands.size()); 1126 rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments()); 1127 rewriter.setInsertionPointToStart(&whileOp.after().front()); 1128 return whileOp; 1129 } 1130 1131 /// Generates a for-loop or a while-loop, depending on whether it implements 1132 /// singleton iteration or co-iteration over the given conjunction. 1133 static Operation *genLoop(Merger &merger, CodeGen &codegen, 1134 PatternRewriter &rewriter, linalg::GenericOp op, 1135 std::vector<unsigned> &topSort, unsigned at, 1136 bool needsUniv, llvm::BitVector &indices) { 1137 unsigned idx = topSort[at]; 1138 if (indices.count() == 1) { 1139 bool isOuter = at == 0; 1140 bool isInner = at == topSort.size() - 1; 1141 return genFor(merger, codegen, rewriter, op, isOuter, isInner, idx, 1142 indices); 1143 } 1144 genReductionEnd(merger, codegen, rewriter, op); // cannot chain 1145 return genWhile(merger, codegen, rewriter, op, idx, needsUniv, indices); 1146 } 1147 1148 /// Generates the local variables for this loop, consisting of the sparse 1149 /// indices, restored universal dense index, and dense positions. 1150 static void genLocals(Merger &merger, CodeGen &codegen, 1151 PatternRewriter &rewriter, linalg::GenericOp op, 1152 std::vector<unsigned> &topSort, unsigned at, 1153 bool needsUniv, llvm::BitVector &locals) { 1154 Location loc = op.getLoc(); 1155 unsigned idx = topSort[at]; 1156 1157 // Initialize sparse indices. 1158 Value min; 1159 for (unsigned b = 0, be = locals.size(); b < be; b++) { 1160 if (locals[b] && merger.isDim(b, Dim::kSparse)) { 1161 unsigned tensor = merger.tensor(b); 1162 assert(idx == merger.index(b)); 1163 Value ptr = codegen.indices[tensor][idx]; 1164 Value s = codegen.pidxs[tensor][idx]; 1165 Value load = genLoad(codegen, rewriter, loc, ptr, s); 1166 codegen.idxs[tensor][idx] = load; 1167 if (!needsUniv) { 1168 if (min) { 1169 Value cmp = 1170 rewriter.create<CmpIOp>(loc, CmpIPredicate::ult, load, min); 1171 min = rewriter.create<SelectOp>(loc, cmp, load, min); 1172 } else { 1173 min = load; 1174 } 1175 } 1176 } 1177 } 1178 1179 // Merge dense universal index over minimum. 1180 if (min) { 1181 assert(!needsUniv); 1182 codegen.loops[idx] = min; 1183 } 1184 1185 // Initialize dense positions. 1186 for (unsigned b = 0, be = locals.size(); b < be; b++) { 1187 if (locals[b] && merger.isDim(b, Dim::kDense)) { 1188 unsigned tensor = merger.tensor(b); 1189 assert(idx == merger.index(b)); 1190 unsigned pat = at; 1191 for (; pat != 0; pat--) 1192 if (codegen.pidxs[tensor][topSort[pat - 1]]) 1193 break; 1194 Value p = (pat == 0) ? rewriter.create<ConstantIndexOp>(loc, 0) 1195 : codegen.pidxs[tensor][topSort[pat - 1]]; 1196 codegen.pidxs[tensor][idx] = genAddress( 1197 codegen, rewriter, loc, codegen.sizes[idx], p, codegen.loops[idx]); 1198 } 1199 } 1200 } 1201 1202 /// Generates the induction structure for a while-loop. 1203 static void genWhileInduction(Merger &merger, CodeGen &codegen, 1204 PatternRewriter &rewriter, linalg::GenericOp op, 1205 unsigned idx, bool needsUniv, 1206 llvm::BitVector &induction, ResultRange results) { 1207 Location loc = op.getLoc(); 1208 unsigned o = 0; 1209 SmallVector<Value, 4> operands; 1210 Value one = rewriter.create<ConstantIndexOp>(loc, 1); 1211 for (unsigned b = 0, be = induction.size(); b < be; b++) { 1212 if (induction[b] && merger.isDim(b, Dim::kSparse)) { 1213 unsigned tensor = merger.tensor(b); 1214 assert(idx == merger.index(b)); 1215 Value op1 = codegen.idxs[tensor][idx]; 1216 Value op2 = codegen.loops[idx]; 1217 Value op3 = codegen.pidxs[tensor][idx]; 1218 Value cmp = rewriter.create<CmpIOp>(loc, CmpIPredicate::eq, op1, op2); 1219 Value add = rewriter.create<AddIOp>(loc, op3, one); 1220 operands.push_back(rewriter.create<SelectOp>(loc, cmp, add, op3)); 1221 codegen.pidxs[tensor][idx] = results[o++]; 1222 } 1223 } 1224 if (needsUniv) { 1225 operands.push_back(rewriter.create<AddIOp>(loc, codegen.loops[idx], one)); 1226 codegen.loops[idx] = results[o++]; 1227 } 1228 assert(o == operands.size()); 1229 rewriter.create<scf::YieldOp>(loc, operands); 1230 } 1231 1232 /// Generates a single if-statement within a while-loop. 1233 static scf::IfOp genIf(Merger &merger, CodeGen &codegen, 1234 PatternRewriter &rewriter, linalg::GenericOp op, 1235 unsigned idx, llvm::BitVector &conditions) { 1236 Location loc = op.getLoc(); 1237 Value cond; 1238 for (unsigned b = 0, be = conditions.size(); b < be; b++) { 1239 if (conditions[b]) { 1240 unsigned tensor = merger.tensor(b); 1241 assert(idx == merger.index(b)); 1242 Value clause; 1243 if (merger.isDim(b, Dim::kSparse)) { 1244 Value op1 = codegen.idxs[tensor][idx]; 1245 Value op2 = codegen.loops[idx]; 1246 clause = rewriter.create<CmpIOp>(loc, CmpIPredicate::eq, op1, op2); 1247 } else { 1248 clause = rewriter.create<ConstantIntOp>(loc, 1, 1); // true 1249 } 1250 cond = cond ? rewriter.create<AndOp>(loc, cond, clause) : clause; 1251 } 1252 } 1253 scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, cond, /*else*/ true); 1254 rewriter.setInsertionPointToStart(&ifOp.thenRegion().front()); 1255 return ifOp; 1256 } 1257 1258 /// Recursively generates code while computing iteration lattices in order 1259 /// to manage the complexity of implementing co-iteration over unions 1260 /// and intersections of sparse iterations spaces. 1261 static void genStmt(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, 1262 linalg::GenericOp op, std::vector<unsigned> &topSort, 1263 unsigned exp, unsigned at) { 1264 // At each leaf, assign remaining tensor (sub)expression to output tensor. 1265 if (at == topSort.size()) { 1266 unsigned lhs = op.getNumShapedOperands() - 1; 1267 Value rhs = genExp(merger, codegen, rewriter, op, exp); 1268 genTensorStore(merger, codegen, rewriter, op, lhs, rhs); 1269 return; 1270 } 1271 assert(codegen.curVecLength == 1); 1272 1273 // Construct iteration lattices for current loop index, with L0 at top. 1274 // Then emit initialization code for the loop sequence at this level. 1275 // We maintain the universal dense index if dense indices are still 1276 // in play for a non-singleton loop sequence. 1277 Location loc = op.getLoc(); 1278 unsigned idx = topSort[at]; 1279 unsigned lts = merger.optimizeSet(buildLattices(merger, op, exp, idx)); 1280 unsigned lsize = merger.set(lts).size(); 1281 assert(lsize != 0); 1282 unsigned l0 = merger.set(lts)[0]; 1283 unsigned ldx = at == 0 ? -1u : topSort[at - 1]; 1284 genInvariants(merger, codegen, rewriter, op, exp, ldx, /*hoist=*/true); 1285 bool needsUniv = false; 1286 if (genInit(merger, codegen, rewriter, op, topSort, at, 1287 merger.lat(l0).bits)) { 1288 // Maintain the universal index only if it is actually 1289 // consumed by a subsequent lattice point. 1290 for (unsigned i = 1; i < lsize; i++) { 1291 unsigned li = merger.set(lts)[i]; 1292 if (!merger.hasAnyDimOf(merger.lat(li).simple, Dim::kSparse)) { 1293 needsUniv = true; 1294 break; 1295 } 1296 } 1297 } 1298 1299 // Emit a loop for every lattice point L0 >= Li. 1300 for (unsigned i = 0; i < lsize; i++) { 1301 unsigned li = merger.set(lts)[i]; 1302 1303 // Emit loop. 1304 codegen.curVecLength = 1; 1305 llvm::BitVector indices = merger.lat(li).simple; 1306 Operation *loop = 1307 genLoop(merger, codegen, rewriter, op, topSort, at, needsUniv, indices); 1308 genLocals(merger, codegen, rewriter, op, topSort, at, needsUniv, 1309 merger.lat(li).bits); 1310 1311 // Visit all lattices points with Li >= Lj to generate the 1312 // loop-body, possibly with if statements for coiteration. 1313 bool isWhile = dyn_cast<scf::WhileOp>(loop) != nullptr; 1314 for (unsigned j = 0; j < lsize; j++) { 1315 unsigned lj = merger.set(lts)[j]; 1316 unsigned ej = merger.lat(lj).exp; 1317 if (li == lj || merger.latGT(li, lj)) { 1318 // Recurse into body of each branch. 1319 if (isWhile) { 1320 scf::IfOp ifOp = 1321 genIf(merger, codegen, rewriter, op, idx, merger.lat(lj).simple); 1322 genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1); 1323 rewriter.setInsertionPointToStart(&ifOp.elseRegion().front()); 1324 } else { 1325 genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1); 1326 } 1327 } 1328 } 1329 1330 // Wrap-up induction and restore insertion point. 1331 if (isWhile) { 1332 scf::WhileOp whileOp = cast<scf::WhileOp>(loop); 1333 rewriter.setInsertionPointToEnd(&whileOp.after().front()); 1334 genWhileInduction(merger, codegen, rewriter, op, idx, needsUniv, 1335 merger.lat(li).bits, whileOp.results()); 1336 } else { 1337 needsUniv = false; 1338 if (codegen.redVal) { 1339 rewriter.create<scf::YieldOp>(loc, codegen.redVal); 1340 codegen.redVal = loop->getResult(0); 1341 } 1342 } 1343 rewriter.setInsertionPointAfter(loop); 1344 } 1345 1346 // Wrap-up loop sequence. 1347 codegen.curVecLength = 1; 1348 genReductionEnd(merger, codegen, rewriter, op); 1349 genInvariants(merger, codegen, rewriter, op, exp, ldx, /*hoist=*/false); 1350 codegen.loops[idx] = Value(); 1351 } 1352 1353 namespace { 1354 1355 /// Sparse rewriting rule for generic Lingalg operation. 1356 struct GenericOpSparsifier : public OpRewritePattern<linalg::GenericOp> { 1357 public: 1358 GenericOpSparsifier(MLIRContext *context, SparsificationOptions o) 1359 : OpRewritePattern<linalg::GenericOp>(context), options(o) {} 1360 1361 LogicalResult matchAndRewrite(linalg::GenericOp op, 1362 PatternRewriter &rewriter) const override { 1363 // Detects sparse annotations and translate the per-dimension sparsity 1364 // information for all tensors to loop indices in the kernel. 1365 assert(op.getNumOutputs() == 1); 1366 unsigned numTensors = op.getNumShapedOperands(); 1367 unsigned numLoops = op.iterator_types().getValue().size(); 1368 Merger merger(numTensors, numLoops); 1369 if (!findSparseAnnotations(merger, op)) 1370 return failure(); 1371 1372 // Computes a topologically sorted iteration graph to ensure 1373 // tensors are visited in natural index order. Fails on cycles. 1374 // This assumes that higher-level passes have already put the 1375 // tensors in each tensor expression in a feasible order. 1376 std::vector<unsigned> topSort; 1377 if (!computeIterationGraph(merger, op, topSort, /*sparseOnly=*/false) && 1378 !computeIterationGraph(merger, op, topSort, /*sparseOnly=*/true)) 1379 return failure(); 1380 1381 // Finds the terminating yield statement and builds the tensor 1382 // expression for the Linalg operation in SSA form. 1383 Operation *yield = op.region().front().getTerminator(); 1384 Optional<unsigned> exp = buildTensorExp(merger, op, yield->getOperand(0)); 1385 if (!exp.hasValue()) 1386 return failure(); // build failure 1387 1388 // Recursively generates code. 1389 CodeGen codegen(options, numTensors, numLoops); 1390 genBuffers(merger, codegen, rewriter, op); 1391 genStmt(merger, codegen, rewriter, op, topSort, exp.getValue(), 0); 1392 Value result = rewriter.create<memref::TensorLoadOp>( 1393 op.getLoc(), codegen.buffers.back()); 1394 rewriter.replaceOp(op, result); 1395 return success(); 1396 } 1397 1398 private: 1399 /// Options to control sparse code generation. 1400 SparsificationOptions options; 1401 }; 1402 1403 } // namespace 1404 1405 /// Populates the given patterns list with rewriting rules required for 1406 /// the sparsification of linear algebra operations. 1407 void mlir::populateSparsificationPatterns( 1408 RewritePatternSet &patterns, const SparsificationOptions &options) { 1409 patterns.add<GenericOpSparsifier>(patterns.getContext(), options); 1410 } 1411