1 //===- Sparsification.cpp - Implementation of sparsification --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements converting sparse tensor types to actual sparse code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodegenUtils.h" 14 #include "mlir/Dialect/Affine/IR/AffineOps.h" 15 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 16 #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h" 17 #include "mlir/Dialect/Bufferization/IR/Bufferization.h" 18 #include "mlir/Dialect/Linalg/IR/Linalg.h" 19 #include "mlir/Dialect/Linalg/Utils/Utils.h" 20 #include "mlir/Dialect/MemRef/IR/MemRef.h" 21 #include "mlir/Dialect/SCF/SCF.h" 22 #include "mlir/Dialect/SCF/Transforms.h" 23 #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h" 24 #include "mlir/Dialect/SparseTensor/Transforms/Passes.h" 25 #include "mlir/Dialect/SparseTensor/Utils/Merger.h" 26 #include "mlir/Dialect/StandardOps/IR/Ops.h" 27 #include "mlir/Dialect/Vector/IR/VectorOps.h" 28 #include "mlir/IR/Matchers.h" 29 #include "mlir/IR/TensorEncoding.h" 30 #include "llvm/ADT/SmallBitVector.h" 31 32 using namespace mlir; 33 using namespace mlir::sparse_tensor; 34 35 //===----------------------------------------------------------------------===// 36 // Declarations of data structures. 37 //===----------------------------------------------------------------------===// 38 39 namespace { 40 41 // Iteration graph sorting. 42 enum SortMask { kSparseOnly = 0x0, kIncludeDense = 0x1, kIncludeUndef = 0x2 }; 43 44 // Reduction kinds. 45 enum Reduction { kNoReduc, kSum, kProduct, kAnd, kOr, kXor }; 46 47 // Code generation. 48 struct CodeGen { 49 CodeGen(SparsificationOptions o, unsigned numTensors, unsigned numLoops, 50 OpOperand *op, unsigned nest) 51 : options(o), loops(numLoops), sizes(numLoops), buffers(numTensors), 52 pointers(numTensors, std::vector<Value>(numLoops)), 53 indices(numTensors, std::vector<Value>(numLoops)), 54 highs(numTensors, std::vector<Value>(numLoops)), 55 pidxs(numTensors, std::vector<Value>(numLoops)), 56 idxs(numTensors, std::vector<Value>(numLoops)), redExp(-1u), redVal(), 57 redKind(kNoReduc), sparseOut(op), outerParNest(nest), lexIdx(), 58 expValues(), expFilled(), expAdded(), expCount(), curVecLength(1), 59 curVecMask() {} 60 /// Sparsification options. 61 SparsificationOptions options; 62 /// Universal dense indices and upper bounds (by index). The loops array 63 /// is updated with the value of the universal dense index in the current 64 /// loop. The sizes array is set once with the inferred dimension sizes. 65 std::vector<Value> loops; 66 std::vector<Value> sizes; 67 /// Buffers for storing dense and sparse numerical values (by tensor). 68 /// This array is set once during bufferization of all tensors. 69 std::vector<Value> buffers; 70 /// Sparse storage schemes (1-D): pointers and indices (by tensor and index). 71 /// This array is set once during bufferization of all sparse tensors. 72 std::vector<std::vector<Value>> pointers; 73 std::vector<std::vector<Value>> indices; 74 /// Sparse iteration information (by tensor and index). These arrays 75 /// are updated to remain current within the current loop. 76 std::vector<std::vector<Value>> highs; 77 std::vector<std::vector<Value>> pidxs; 78 std::vector<std::vector<Value>> idxs; 79 /// Current reduction, updated during code generation. When indices of a 80 /// reduction are exhausted, all inner loops can use a scalarized reduction. 81 unsigned redExp; 82 Value redVal; 83 Reduction redKind; 84 // Sparse tensor as output. Implemented either through direct injective 85 // insertion in lexicographic index order (where indices are updated 86 // in the temporary array `lexIdx`) or through access pattern expansion 87 // in the innermost loop nest (`expValues` through `expCount`). 88 OpOperand *sparseOut; 89 unsigned outerParNest; 90 Value lexIdx; 91 Value expValues; 92 Value expFilled; 93 Value expAdded; 94 Value expCount; 95 // Current vector length and mask. 96 unsigned curVecLength; 97 Value curVecMask; 98 }; 99 100 } // namespace 101 102 //===----------------------------------------------------------------------===// 103 // Sparse compiler analysis methods. 104 //===----------------------------------------------------------------------===// 105 106 /// Helper method to apply dimension ordering permutation. 107 static unsigned perm(const SparseTensorEncodingAttr &enc, unsigned d) { 108 if (enc) { 109 auto order = enc.getDimOrdering(); 110 if (order) { 111 assert(order.isPermutation()); 112 return order.getDimPosition(d); 113 } 114 } 115 return d; 116 } 117 118 /// Helper method to translate dim level type to internal representation. 119 static Dim toDim(const SparseTensorEncodingAttr &enc, unsigned d) { 120 if (enc) { 121 SparseTensorEncodingAttr::DimLevelType tp = enc.getDimLevelType()[d]; 122 if (tp == SparseTensorEncodingAttr::DimLevelType::Compressed) 123 return Dim::kSparse; 124 if (tp == SparseTensorEncodingAttr::DimLevelType::Singleton) 125 return Dim::kSingle; 126 } 127 return Dim::kDense; 128 } 129 130 /// Helper method to inspect affine expressions. Rejects cases where the 131 /// same index is used more than once. Also rejects affine expressions 132 /// that are not a direct index for annotated tensors. 133 // TODO: accept more affine cases for sparse tensors 134 static bool findAffine(Merger &merger, unsigned tensor, AffineExpr a, Dim dim, 135 bool isDense) { 136 switch (a.getKind()) { 137 case AffineExprKind::DimId: { 138 unsigned idx = a.cast<AffineDimExpr>().getPosition(); 139 if (!merger.isDim(tensor, idx, Dim::kUndef)) 140 return false; // used more than once 141 merger.setDim(tensor, idx, dim); 142 return true; 143 } 144 case AffineExprKind::Add: 145 case AffineExprKind::Mul: { 146 if (!isDense) 147 return false; 148 auto binOp = a.cast<AffineBinaryOpExpr>(); 149 return findAffine(merger, tensor, binOp.getLHS(), dim, isDense) && 150 findAffine(merger, tensor, binOp.getRHS(), dim, isDense); 151 } 152 case AffineExprKind::Constant: 153 return isDense; 154 default: 155 return false; 156 } 157 } 158 159 /// Helper method to inspect sparse encodings in the tensor types. 160 /// Fills the per-dimension sparsity information for all tensors. 161 /// Returns true if the sparse annotations and affine subscript 162 /// expressions of all tensors are admissable. Returns false if 163 /// no annotations are found or inadmissable constructs occur. 164 static bool findSparseAnnotations(Merger &merger, linalg::GenericOp op) { 165 bool annotated = false; 166 for (OpOperand *t : op.getInputAndOutputOperands()) { 167 auto map = op.getTiedIndexingMap(t); 168 auto enc = getSparseTensorEncoding(t->get().getType()); 169 if (enc) 170 annotated = true; 171 assert(map.getNumResults() == op.getRank(t)); 172 for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { 173 unsigned tensor = t->getOperandNumber(); 174 AffineExpr a = map.getResult(perm(enc, d)); 175 if (!findAffine(merger, tensor, a, toDim(enc, d), !enc)) 176 return false; // inadmissable affine expression 177 } 178 } 179 return annotated; 180 } 181 182 /// A DFS helper to compute a topological sort. Note that recursion is 183 /// bounded by the number of implicit loops, which is always small. 184 /// Returns false when a cycle is detected. 185 static bool topSortDFS(unsigned i, std::vector<unsigned> &visit, 186 std::vector<unsigned> &topSort, 187 std::vector<std::vector<bool>> &adjM) { 188 if (visit[i] != 0) 189 return visit[i] != 1; // 1 denotes cycle! 190 visit[i] = 1; 191 for (unsigned j = 0, e = visit.size(); j < e; j++) 192 if (adjM[i][j]) 193 if (!topSortDFS(j, visit, topSort, adjM)) 194 return false; 195 visit[i] = 2; 196 topSort.push_back(i); 197 return true; 198 } 199 200 /// Helper method to add all constraints from the indices in one affine 201 /// expression before all indices in the other affine expression. For 202 /// example i0+i1 < i2+i3+1 yields i0<i2, i0<i3, i1<i2, and i1<i3. 203 static void addAffineOrderings(std::vector<std::vector<bool>> &adjM, 204 AffineExpr a, AffineExpr b, unsigned fidx) { 205 switch (a.getKind()) { 206 case AffineExprKind::DimId: { 207 unsigned idx = a.cast<AffineDimExpr>().getPosition(); 208 if (b) 209 addAffineOrderings(adjM, b, AffineExpr(), idx); 210 else 211 adjM[fidx][idx] = true; 212 break; 213 } 214 case AffineExprKind::Add: 215 case AffineExprKind::Mul: { 216 auto binOp = a.cast<AffineBinaryOpExpr>(); 217 addAffineOrderings(adjM, binOp.getLHS(), b, fidx); 218 addAffineOrderings(adjM, binOp.getRHS(), b, fidx); 219 break; 220 } 221 default: 222 break; 223 } 224 } 225 226 /// Computes a topologically sorted iteration graph for the linalg operation. 227 /// Ensures all tensors are visited in natural index order. This is essential 228 /// for sparse storage formats since these only support access along fixed 229 /// dimensions. Even for dense storage formats, however, the natural index 230 /// order yields innermost unit-stride access with better spatial locality. 231 static bool computeIterationGraph(Merger &merger, linalg::GenericOp op, 232 std::vector<unsigned> &topSort, 233 unsigned mask) { 234 // Set up an n x n from/to adjacency matrix of the iteration graph 235 // for the implicit loop indices i_0 .. i_n-1. 236 unsigned n = op.getNumLoops(); 237 std::vector<std::vector<bool>> adjM(n, std::vector<bool>(n, false)); 238 239 // Iterate over the indexing maps of every tensor in the tensor expression. 240 for (OpOperand *t : op.getInputAndOutputOperands()) { 241 auto map = op.getTiedIndexingMap(t); 242 auto enc = getSparseTensorEncoding(t->get().getType()); 243 assert(map.getNumDims() == n); 244 // Skip dense tensor constraints when not requested. 245 if (!(mask & SortMask::kIncludeDense) && !enc) 246 continue; 247 // Each tensor expression and optional dimension ordering (row-major 248 // by default) puts an ordering constraint on the loop indices. For 249 // example, the tensor expresion A_ijk forces the ordering i < j < k 250 // on the loop indices if no explicit dimension ordering is given. 251 for (unsigned d = 1, rank = map.getNumResults(); d < rank; d++) { 252 AffineExpr f = map.getResult(perm(enc, d - 1)); 253 AffineExpr t = map.getResult(perm(enc, d)); 254 addAffineOrderings(adjM, f, t, 0); 255 } 256 // Push unrelated loops into sparse iteration space, so these 257 // will be skipped more often. 258 if (mask & SortMask::kIncludeUndef) { 259 unsigned tensor = t->getOperandNumber(); 260 for (unsigned i = 0; i < n; i++) 261 if (merger.isDim(tensor, i, Dim::kSparse)) 262 for (unsigned j = 0; j < n; j++) 263 if (merger.isDim(tensor, j, Dim::kUndef)) 264 adjM[i][j] = true; 265 } 266 } 267 268 // Topologically sort the iteration graph to determine loop order. 269 // Report failure for a cyclic iteration graph. 270 topSort.clear(); 271 topSort.reserve(n); 272 std::vector<unsigned> visit(n, 0); 273 for (unsigned i = 0; i < n; i++) 274 if (visit[i] == 0) 275 if (!topSortDFS(i, visit, topSort, adjM)) 276 return false; // cycle! 277 std::reverse(std::begin(topSort), std::end(topSort)); 278 return true; 279 } 280 281 /// Returns true if tensor has an in-place annotation. 282 static bool isInPlace(Value val) { 283 if (auto arg = val.dyn_cast<BlockArgument>()) 284 if (auto funcOp = dyn_cast<FuncOp>(arg.getOwner()->getParentOp())) 285 if (auto attr = funcOp.getArgAttrOfType<BoolAttr>( 286 arg.getArgNumber(), 287 bufferization::BufferizableOpInterface::kInplaceableAttrName)) 288 return attr.getValue(); 289 return false; 290 } 291 292 /// Returns true if tensor materializes uninitialized into the computation. 293 static bool isMaterializing(Value val) { 294 return val.getDefiningOp<linalg::InitTensorOp>() || 295 val.getDefiningOp<InitOp>(); 296 } 297 298 /// Returns true when the tensor expression is admissable for codegen. 299 /// Since all sparse input tensors are admissable, we just need to check 300 /// whether the out tensor in the tensor expression codegen is admissable. 301 /// Sets `sparseOut` to the tensor and `outerParNest` to the outer injective 302 /// nesting depth when a "truly dynamic" sparse tensor output occurs. 303 static bool isAdmissableTensorExp(Merger &merger, linalg::GenericOp op, 304 std::vector<unsigned> &topSort, unsigned exp, 305 OpOperand **sparseOut, 306 unsigned &outerParNest) { 307 OpOperand *lhs = op.getOutputOperand(0); 308 unsigned tensor = lhs->getOperandNumber(); 309 auto enc = getSparseTensorEncoding(lhs->get().getType()); 310 // An non-annotated output tensor is assumed dense, and becomes a random 311 // access n-dim memref. Admissable since insertions cannot occur. 312 if (!enc) 313 return true; 314 // An all-dense annotated "sparse" output tensor becomes a linearized random 315 // access 1-dim memref. Also admissable since insertions cannot occur. 316 bool allDense = true; 317 auto iteratorTypes = op.iterator_types().getValue(); 318 unsigned numLoops = iteratorTypes.size(); 319 for (unsigned i = 0; i < numLoops; i++) 320 if (merger.isDim(tensor, i, Dim::kSparse)) { 321 allDense = false; 322 break; 323 } 324 if (allDense) 325 return true; 326 // A tensor expression with a sparse output tensor that changes its values 327 // but not its nonzero structure, an operation called "simply dynamic" in 328 // [Bik96,Ch9], is also admissable without special codegen, provided 329 // the tensor's underlying sparse storage scheme can be modified in place. 330 if (merger.isSingleCondition(tensor, exp) && isInPlace(lhs->get())) 331 return true; 332 // Accept "truly dynamic" if the output tensor materializes uninitialized 333 // into the computation and insertions occur in lexicographic index order. 334 if (isMaterializing(lhs->get())) { 335 unsigned nest = 0; 336 for (unsigned i = 0; i < numLoops; i++) { 337 if (isReductionIterator(iteratorTypes[topSort[i]])) 338 break; // terminate at first reduction 339 nest++; 340 } 341 // Determine admissable dynamic insertion situations: 342 // (1) fully injective, since there are no reductions, 343 // (2) admissable 1-d expansion in innermost dimension. 344 if (nest >= op.getRank(lhs) - 1) { 345 *sparseOut = lhs; 346 outerParNest = nest; 347 return true; 348 } 349 } 350 return false; 351 } 352 353 //===----------------------------------------------------------------------===// 354 // Sparse compiler synthesis methods (reductions). 355 //===----------------------------------------------------------------------===// 356 357 /// Maps reduction kind to name encoding. 358 static StringRef getReductionName(Reduction kind) { 359 switch (kind) { 360 case kNoReduc: 361 break; 362 case kSum: 363 return "add"; 364 case kProduct: 365 return "mul"; 366 case kAnd: 367 return "and"; 368 case kOr: 369 return "or"; 370 case kXor: 371 return "xor"; 372 } 373 llvm_unreachable("unknown reduction kind"); 374 } 375 376 /// Maps operation to reduction. 377 static Reduction getReduction(Kind kind) { 378 switch (kind) { 379 case Kind::kAddF: 380 case Kind::kAddI: 381 case Kind::kSubF: 382 case Kind::kSubI: 383 return kSum; 384 case Kind::kMulF: 385 case Kind::kMulI: 386 return kProduct; 387 case Kind::kAndI: 388 return kAnd; 389 case Kind::kOrI: 390 return kOr; 391 case Kind::kXorI: 392 return kXor; 393 default: 394 llvm_unreachable("unexpected reduction operator"); 395 } 396 } 397 398 /// Generates an initial value for a vector reduction, following the scheme 399 /// given in Chapter 5 of "The Software Vectorization Handbook", where the 400 /// initial scalar value is correctly embedded in the vector reduction value, 401 /// and a straightforward horizontal reduction will complete the operation. 402 static Value genVectorReducInit(CodeGen &codegen, PatternRewriter &rewriter, 403 Location loc, VectorType vtp) { 404 Value r = codegen.redVal; 405 switch (codegen.redKind) { 406 case kNoReduc: 407 break; 408 case kSum: 409 case kXor: 410 // Initialize reduction vector to: | 0 | .. | 0 | r | 411 return rewriter.create<vector::InsertElementOp>( 412 loc, r, constantZero(rewriter, loc, vtp), 413 constantIndex(rewriter, loc, 0)); 414 case kProduct: 415 // Initialize reduction vector to: | 1 | .. | 1 | r | 416 return rewriter.create<vector::InsertElementOp>( 417 loc, r, constantOne(rewriter, loc, vtp), 418 constantIndex(rewriter, loc, 0)); 419 case kAnd: 420 case kOr: 421 // Initialize reduction vector to: | r | .. | r | r | 422 return rewriter.create<vector::BroadcastOp>(loc, vtp, r); 423 } 424 llvm_unreachable("unknown reduction kind"); 425 } 426 427 /// Generates final value for a vector reduction. 428 static Value genVectorReducEnd(CodeGen &codegen, PatternRewriter &rewriter, 429 Location loc, VectorType vtp) { 430 StringRef name = getReductionName(codegen.redKind); 431 StringAttr kind = rewriter.getStringAttr(name); 432 return rewriter.create<vector::ReductionOp>(loc, vtp.getElementType(), kind, 433 codegen.redVal, ValueRange{}); 434 } 435 436 /// Updates scalarized reduction value. 437 static void updateReduc(Merger &merger, CodeGen &codegen, Value reduc) { 438 assert(codegen.redKind != kNoReduc); 439 codegen.redVal = merger.exp(codegen.redExp).val = reduc; 440 } 441 442 //===----------------------------------------------------------------------===// 443 // Sparse compiler synthesis methods (statements and expressions). 444 //===----------------------------------------------------------------------===// 445 446 /// Generates buffer for the output tensor. Note that all sparse kernels 447 /// assume that when all elements are written to (viz. x(i) = y(i) * z(i)), 448 /// the output buffer is already initialized to all zeroes and only nonzeroes 449 /// values are computed and written out. For updates (viz. x(i) += y(i) * z(i)), 450 /// only nonzeroes values are used for the updates and no assumption on the 451 /// original contents of the output buffer is necessary.. 452 static Value genOutputBuffer(CodeGen &codegen, PatternRewriter &rewriter, 453 linalg::GenericOp op, MemRefType denseTp, 454 ArrayRef<Value> args) { 455 Location loc = op.getLoc(); 456 Value tensor = op.getOutputOperand(0)->get(); 457 // The output tensor simply could materialize from the buffer that will 458 // be generated for the tensor present in the outs() clause. This has 459 // the major advantage that the sparse kernel only updates the nonzero 460 // positions for the output tensor. 461 if (isInPlace(tensor)) 462 return rewriter.create<bufferization::ToMemrefOp>(loc, denseTp, tensor); 463 // By default, a new buffer is allocated which is initialized to the 464 // tensor defined in the outs() clause. This is always correct but 465 // introduces a dense initialization component that may negatively 466 // impact the running complexity of the sparse kernel. If the tensor 467 // materializes into the computation, we need to preserve the zero 468 // initialization assumption of all sparse output buffers. 469 if (isMaterializing(tensor)) { 470 Value alloc = rewriter.create<memref::AllocOp>(loc, denseTp, args); 471 Value zero = constantZero(rewriter, loc, denseTp.getElementType()); 472 rewriter.create<linalg::FillOp>(loc, zero, alloc); 473 return alloc; 474 } 475 Value init = rewriter.create<bufferization::ToMemrefOp>(loc, denseTp, tensor); 476 Value alloc = rewriter.create<memref::AllocOp>(loc, denseTp, args); 477 rewriter.create<memref::CopyOp>(loc, init, alloc); 478 return alloc; 479 } 480 481 /// Local bufferization of all dense and sparse data structures. 482 /// This code enables testing the first prototype sparse compiler. 483 // TODO: replace this with a proliferated bufferization strategy 484 static void genBuffers(Merger &merger, CodeGen &codegen, 485 PatternRewriter &rewriter, linalg::GenericOp op) { 486 Location loc = op.getLoc(); 487 assert(op.getNumInputsAndOutputs() == op.getNumInputs() + 1); 488 // For every tensor, find lower and upper bound on dimensions, set the 489 // same bounds on loop indices, and obtain dense or sparse buffer(s). 490 SmallVector<Value, 4> args; 491 for (OpOperand *t : op.getInputAndOutputOperands()) { 492 unsigned tensor = t->getOperandNumber(); 493 auto shape = op.getShape(t); 494 auto map = op.getTiedIndexingMap(t); 495 auto enc = getSparseTensorEncoding(t->get().getType()); 496 // Scan all dimensions of current tensor. 497 args.clear(); 498 for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { 499 AffineExpr a = map.getResult(perm(enc, d)); 500 if (a.getKind() != AffineExprKind::DimId) 501 continue; // compound 502 unsigned idx = a.cast<AffineDimExpr>().getPosition(); 503 // Handle sparse storage schemes. 504 if (merger.isDim(tensor, idx, Dim::kSparse)) { 505 auto dynShape = {ShapedType::kDynamicSize}; 506 auto ptrTp = 507 MemRefType::get(dynShape, getPointerOverheadType(rewriter, enc)); 508 auto indTp = 509 MemRefType::get(dynShape, getIndexOverheadType(rewriter, enc)); 510 Value dim = constantIndex(rewriter, loc, d); 511 // Generate sparse primitives to obtains pointer and indices. 512 codegen.pointers[tensor][idx] = 513 rewriter.create<ToPointersOp>(loc, ptrTp, t->get(), dim); 514 codegen.indices[tensor][idx] = 515 rewriter.create<ToIndicesOp>(loc, indTp, t->get(), dim); 516 } 517 // Find upper bound in current dimension. 518 unsigned p = perm(enc, d); 519 Value up = linalg::createOrFoldDimOp(rewriter, loc, t->get(), p); 520 if (ShapedType::isDynamic(shape[p])) 521 args.push_back(up); 522 assert(codegen.highs[tensor][idx] == nullptr); 523 codegen.sizes[idx] = codegen.highs[tensor][idx] = up; 524 } 525 // Perform the required bufferization. Dense inputs materialize 526 // from the input tensors. Dense outputs need special handling. 527 // Sparse inputs use sparse primitives to obtain the values. 528 // We also accept in-place all-dense annotated "sparse" outputs. 529 Type elementType = getElementTypeOrSelf(t->get().getType()); 530 if (!enc) { 531 // Non-annotated dense tensors. 532 auto denseTp = MemRefType::get(shape, elementType); 533 if (tensor < op.getNumInputs()) 534 codegen.buffers[tensor] = 535 rewriter.create<bufferization::ToMemrefOp>(loc, denseTp, t->get()); 536 else 537 codegen.buffers[tensor] = 538 genOutputBuffer(codegen, rewriter, op, denseTp, args); 539 } else if (t == codegen.sparseOut) { 540 // True sparse output needs a lexIdx array. 541 Value rank = constantIndex(rewriter, loc, op.getRank(t)); 542 auto dynShape = {ShapedType::kDynamicSize}; 543 auto memTp = MemRefType::get(dynShape, rewriter.getIndexType()); 544 codegen.lexIdx = rewriter.create<memref::AllocaOp>(loc, memTp, rank); 545 } else { 546 // Annotated sparse tensors. 547 auto dynShape = {ShapedType::kDynamicSize}; 548 auto sparseTp = MemRefType::get(dynShape, elementType); 549 codegen.buffers[tensor] = 550 rewriter.create<ToValuesOp>(loc, sparseTp, t->get()); 551 } 552 } 553 } 554 555 /// Constructs vector type. 556 static VectorType vectorType(CodeGen &codegen, Type etp) { 557 return VectorType::get(codegen.curVecLength, etp); 558 } 559 560 /// Constructs vector type from pointer. 561 static VectorType vectorType(CodeGen &codegen, Value ptr) { 562 return vectorType(codegen, ptr.getType().cast<MemRefType>().getElementType()); 563 } 564 565 /// Constructs vector iteration mask. 566 static Value genVectorMask(CodeGen &codegen, PatternRewriter &rewriter, 567 Value iv, Value lo, Value hi, Value step) { 568 Location loc = iv.getLoc(); 569 VectorType mtp = vectorType(codegen, rewriter.getI1Type()); 570 // Special case if the vector length evenly divides the trip count (for 571 // example, "for i = 0, 128, 16"). A constant all-true mask is generated 572 // so that all subsequent masked memory operations are immediately folded 573 // into unconditional memory operations. 574 IntegerAttr loInt, hiInt, stepInt; 575 if (matchPattern(lo, m_Constant(&loInt)) && 576 matchPattern(hi, m_Constant(&hiInt)) && 577 matchPattern(step, m_Constant(&stepInt))) { 578 if (((hiInt.getInt() - loInt.getInt()) % stepInt.getInt()) == 0) 579 return rewriter.create<vector::BroadcastOp>( 580 loc, mtp, constantI1(rewriter, loc, true)); 581 } 582 // Otherwise, generate a vector mask that avoids overrunning the upperbound 583 // during vector execution. Here we rely on subsequent loop optimizations to 584 // avoid executing the mask in all iterations, for example, by splitting the 585 // loop into an unconditional vector loop and a scalar cleanup loop. 586 auto minMap = AffineMap::get( 587 /*dimCount=*/2, /*symbolCount=*/1, 588 {rewriter.getAffineSymbolExpr(0), 589 rewriter.getAffineDimExpr(0) - rewriter.getAffineDimExpr(1)}, 590 rewriter.getContext()); 591 Value end = 592 rewriter.createOrFold<AffineMinOp>(loc, minMap, ValueRange{hi, iv, step}); 593 return rewriter.create<vector::CreateMaskOp>(loc, mtp, end); 594 } 595 596 /// Generates a vectorized load lhs = a[ind[lo:hi]] or lhs = a[lo:hi]. 597 static Value genVectorLoad(CodeGen &codegen, PatternRewriter &rewriter, 598 Value ptr, ArrayRef<Value> args) { 599 Location loc = ptr.getLoc(); 600 VectorType vtp = vectorType(codegen, ptr); 601 Value pass = constantZero(rewriter, loc, vtp); 602 if (args.back().getType().isa<VectorType>()) { 603 SmallVector<Value, 4> scalarArgs(args.begin(), args.end()); 604 Value indexVec = args.back(); 605 scalarArgs.back() = constantIndex(rewriter, loc, 0); 606 return rewriter.create<vector::GatherOp>( 607 loc, vtp, ptr, scalarArgs, indexVec, codegen.curVecMask, pass); 608 } 609 return rewriter.create<vector::MaskedLoadOp>(loc, vtp, ptr, args, 610 codegen.curVecMask, pass); 611 } 612 613 /// Generates a vectorized store a[ind[lo:hi]] = rhs or a[lo:hi] = rhs. 614 static void genVectorStore(CodeGen &codegen, PatternRewriter &rewriter, 615 Value rhs, Value ptr, ArrayRef<Value> args) { 616 Location loc = ptr.getLoc(); 617 if (args.back().getType().isa<VectorType>()) { 618 SmallVector<Value, 4> scalarArgs(args.begin(), args.end()); 619 Value indexVec = args.back(); 620 scalarArgs.back() = constantIndex(rewriter, loc, 0); 621 rewriter.create<vector::ScatterOp>(loc, ptr, scalarArgs, indexVec, 622 codegen.curVecMask, rhs); 623 return; 624 } 625 rewriter.create<vector::MaskedStoreOp>(loc, ptr, args, codegen.curVecMask, 626 rhs); 627 } 628 629 /// Generates a vectorized invariant. Here we rely on subsequent loop 630 /// optimizations to hoist the invariant broadcast out of the vector loop. 631 static Value genVectorInvariantValue(CodeGen &codegen, 632 PatternRewriter &rewriter, Value val) { 633 VectorType vtp = vectorType(codegen, val.getType()); 634 return rewriter.create<vector::BroadcastOp>(val.getLoc(), vtp, val); 635 } 636 637 /// Generates an affine expression. 638 // 639 // TODO: generalize for sparse tensor subscripts 640 // 641 static Value genAffine(CodeGen &codegen, PatternRewriter &rewriter, 642 AffineExpr a, Location loc) { 643 switch (a.getKind()) { 644 case AffineExprKind::DimId: { 645 unsigned idx = a.cast<AffineDimExpr>().getPosition(); 646 return codegen.loops[idx]; // universal dense index 647 } 648 case AffineExprKind::Add: { 649 auto binOp = a.cast<AffineBinaryOpExpr>(); 650 return rewriter.create<arith::AddIOp>( 651 loc, genAffine(codegen, rewriter, binOp.getLHS(), loc), 652 genAffine(codegen, rewriter, binOp.getRHS(), loc)); 653 } 654 case AffineExprKind::Mul: { 655 auto binOp = a.cast<AffineBinaryOpExpr>(); 656 return rewriter.create<arith::MulIOp>( 657 loc, genAffine(codegen, rewriter, binOp.getLHS(), loc), 658 genAffine(codegen, rewriter, binOp.getRHS(), loc)); 659 } 660 case AffineExprKind::Constant: { 661 int64_t c = a.cast<AffineConstantExpr>().getValue(); 662 return constantIndex(rewriter, loc, c); 663 } 664 default: 665 llvm_unreachable("unexpected affine subscript"); 666 } 667 } 668 669 /// Generates index for load/store on sparse tensor. 670 static Value genIndex(CodeGen &codegen, linalg::GenericOp op, OpOperand *t) { 671 auto map = op.getTiedIndexingMap(t); 672 auto enc = getSparseTensorEncoding(t->get().getType()); 673 AffineExpr a = map.getResult(perm(enc, map.getNumResults() - 1)); 674 assert(a.getKind() == AffineExprKind::DimId); 675 unsigned idx = a.cast<AffineDimExpr>().getPosition(); 676 return codegen.loops[idx]; 677 } 678 679 /// Generates subscript for load/store on a dense or sparse tensor. 680 static Value genSubscript(CodeGen &codegen, PatternRewriter &rewriter, 681 linalg::GenericOp op, OpOperand *t, 682 SmallVector<Value, 4> &args) { 683 unsigned tensor = t->getOperandNumber(); 684 auto map = op.getTiedIndexingMap(t); 685 auto enc = getSparseTensorEncoding(t->get().getType()); 686 unsigned rank = map.getNumResults(); 687 if (enc) { 688 // Note that currently, all sparse subscripts are simple. 689 // TODO: accept affine too? 690 AffineExpr a = map.getResult(perm(enc, rank - 1)); 691 assert(a.getKind() == AffineExprKind::DimId); 692 unsigned idx = a.cast<AffineDimExpr>().getPosition(); 693 assert(codegen.pidxs[tensor][idx] != nullptr); 694 args.push_back(codegen.pidxs[tensor][idx]); // position index 695 } else { 696 for (unsigned d = 0; d < rank; d++) { 697 AffineExpr a = map.getResult(perm(enc, d)); 698 args.push_back(genAffine(codegen, rewriter, a, op.getLoc())); 699 } 700 } 701 return codegen.buffers[tensor]; 702 } 703 704 /// Generates insertion code to implement dynamic tensor load. 705 static Value genInsertionLoad(CodeGen &codegen, PatternRewriter &rewriter, 706 linalg::GenericOp op, OpOperand *t) { 707 Location loc = op.getLoc(); 708 // Direct lexicographic index order, tensor loads as zero. 709 if (!codegen.expValues) { 710 Type tp = getElementTypeOrSelf(t->get().getType()); 711 return constantZero(rewriter, loc, tp); 712 } 713 // Load from expanded access pattern. 714 Value index = genIndex(codegen, op, t); 715 return rewriter.create<memref::LoadOp>(loc, codegen.expValues, index); 716 } 717 718 /// Generates insertion code to implement dynamic tensor store. 719 static void genInsertionStore(CodeGen &codegen, PatternRewriter &rewriter, 720 linalg::GenericOp op, OpOperand *t, Value rhs) { 721 Location loc = op.getLoc(); 722 // Direct insertion in lexicographic index order. 723 if (!codegen.expValues) { 724 rewriter.create<LexInsertOp>(loc, t->get(), codegen.lexIdx, rhs); 725 return; 726 } 727 // Generates insertion code along expanded access pattern. 728 // if (!expFilled[i]) then 729 // expFilled[i] = true 730 // expAdded[inserts++] = i 731 // endif 732 // values[i] = rhs 733 Value index = genIndex(codegen, op, t); 734 Value fval = constantI1(rewriter, loc, false); 735 Value tval = constantI1(rewriter, loc, true); 736 // If statement. 737 Value filled = rewriter.create<memref::LoadOp>(loc, codegen.expFilled, index); 738 Value cond = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq, 739 filled, fval); 740 scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, rewriter.getIndexType(), 741 cond, /*else=*/true); 742 // True branch. 743 rewriter.setInsertionPointToStart(&ifOp.getThenRegion().front()); 744 rewriter.create<memref::StoreOp>(loc, tval, codegen.expFilled, index); 745 rewriter.create<memref::StoreOp>(loc, index, codegen.expAdded, 746 codegen.expCount); 747 Value one = constantIndex(rewriter, loc, 1); 748 Value add = rewriter.create<arith::AddIOp>(loc, codegen.expCount, one); 749 rewriter.create<scf::YieldOp>(loc, add); 750 // False branch. 751 rewriter.setInsertionPointToStart(&ifOp.getElseRegion().front()); 752 rewriter.create<scf::YieldOp>(loc, codegen.expCount); 753 rewriter.setInsertionPointAfter(ifOp); 754 // Value assignment. 755 codegen.expCount = ifOp.getResult(0); 756 rewriter.create<memref::StoreOp>(loc, rhs, codegen.expValues, index); 757 } 758 759 /// Generates a load on a dense or sparse tensor. 760 static Value genTensorLoad(Merger &merger, CodeGen &codegen, 761 PatternRewriter &rewriter, linalg::GenericOp op, 762 unsigned exp) { 763 // Test if the load was hoisted to a higher loop nest. 764 Value val = merger.exp(exp).val; 765 if (val) { 766 if (codegen.curVecLength > 1 && !val.getType().isa<VectorType>()) 767 return genVectorInvariantValue(codegen, rewriter, val); 768 return val; 769 } 770 // Load during insertion. 771 OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).tensor]; 772 if (t == codegen.sparseOut) 773 return genInsertionLoad(codegen, rewriter, op, t); 774 // Actual load. 775 SmallVector<Value, 4> args; 776 Value ptr = genSubscript(codegen, rewriter, op, t, args); 777 if (codegen.curVecLength > 1) 778 return genVectorLoad(codegen, rewriter, ptr, args); 779 return rewriter.create<memref::LoadOp>(op.getLoc(), ptr, args); 780 } 781 782 /// Generates a store on a dense or sparse tensor. 783 static void genTensorStore(Merger &merger, CodeGen &codegen, 784 PatternRewriter &rewriter, linalg::GenericOp op, 785 Value rhs) { 786 Location loc = op.getLoc(); 787 // Test if this is a scalarized reduction. 788 if (codegen.redVal) { 789 if (codegen.curVecLength > 1) 790 rhs = rewriter.create<arith::SelectOp>(loc, codegen.curVecMask, rhs, 791 codegen.redVal); 792 updateReduc(merger, codegen, rhs); 793 return; 794 } 795 // Store during insertion. 796 OpOperand *t = op.getOutputOperand(0); 797 if (t == codegen.sparseOut) { 798 genInsertionStore(codegen, rewriter, op, t, rhs); 799 return; 800 } 801 // Actual store. 802 SmallVector<Value, 4> args; 803 Value ptr = genSubscript(codegen, rewriter, op, t, args); 804 if (codegen.curVecLength > 1) 805 genVectorStore(codegen, rewriter, rhs, ptr, args); 806 else 807 rewriter.create<memref::StoreOp>(loc, rhs, ptr, args); 808 } 809 810 /// Generates a pointer/index load from the sparse storage scheme. Narrower 811 /// data types need to be zero extended before casting the value into the 812 /// index type used for looping and indexing. 813 static Value genLoad(CodeGen &codegen, PatternRewriter &rewriter, Location loc, 814 Value ptr, Value s) { 815 // See https://llvm.org/docs/GetElementPtr.html for some background on 816 // the complications described below. 817 if (codegen.curVecLength > 1) { 818 // Since the index vector is used in a subsequent gather/scatter operations, 819 // which effectively defines an unsigned pointer + signed index, we must 820 // zero extend the vector to an index width. For 8-bit and 16-bit values, 821 // an 32-bit index width suffices. For 32-bit values, zero extending the 822 // elements into 64-bit loses some performance since the 32-bit indexed 823 // gather/scatter is more efficient than the 64-bit index variant (if the 824 // negative 32-bit index space is unused, the enableSIMDIndex32 flag can 825 // preserve this performance). For 64-bit values, there is no good way 826 // to state that the indices are unsigned, with creates the potential of 827 // incorrect address calculations in the unlikely case we need such 828 // extremely large offsets. 829 Type etp = ptr.getType().cast<MemRefType>().getElementType(); 830 Value vload = genVectorLoad(codegen, rewriter, ptr, {s}); 831 if (!etp.isa<IndexType>()) { 832 if (etp.getIntOrFloatBitWidth() < 32) 833 vload = rewriter.create<arith::ExtUIOp>( 834 loc, vectorType(codegen, rewriter.getI32Type()), vload); 835 else if (etp.getIntOrFloatBitWidth() < 64 && 836 !codegen.options.enableSIMDIndex32) 837 vload = rewriter.create<arith::ExtUIOp>( 838 loc, vectorType(codegen, rewriter.getI64Type()), vload); 839 } 840 return vload; 841 } 842 // For the scalar case, we simply zero extend narrower indices into 64-bit 843 // values before casting to index without a performance penalty. Here too, 844 // however, indices that already are 64-bit, in theory, cannot express the 845 // full range as explained above. 846 Value load = rewriter.create<memref::LoadOp>(loc, ptr, s); 847 if (!load.getType().isa<IndexType>()) { 848 if (load.getType().getIntOrFloatBitWidth() < 64) 849 load = rewriter.create<arith::ExtUIOp>(loc, rewriter.getI64Type(), load); 850 load = 851 rewriter.create<arith::IndexCastOp>(loc, rewriter.getIndexType(), load); 852 } 853 return load; 854 } 855 856 /// Generates an invariant value. 857 static Value genInvariantValue(Merger &merger, CodeGen &codegen, 858 PatternRewriter &rewriter, unsigned exp) { 859 Value val = merger.exp(exp).val; 860 if (codegen.curVecLength > 1) 861 return genVectorInvariantValue(codegen, rewriter, val); 862 return val; 863 } 864 865 /// Generates an address computation "sz * p + i". 866 static Value genAddress(CodeGen &codegen, PatternRewriter &rewriter, 867 Location loc, Value size, Value p, Value i) { 868 Value mul = rewriter.create<arith::MulIOp>(loc, size, p); 869 if (auto vtp = i.getType().dyn_cast<VectorType>()) { 870 Value inv = 871 rewriter.create<arith::IndexCastOp>(loc, vtp.getElementType(), mul); 872 mul = genVectorInvariantValue(codegen, rewriter, inv); 873 } 874 return rewriter.create<arith::AddIOp>(loc, mul, i); 875 } 876 877 /// Recursively generates tensor expression. 878 static Value genExp(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, 879 linalg::GenericOp op, unsigned exp) { 880 Location loc = op.getLoc(); 881 if (exp == -1u) 882 return Value(); 883 if (merger.exp(exp).kind == Kind::kTensor) 884 return genTensorLoad(merger, codegen, rewriter, op, exp); 885 if (merger.exp(exp).kind == Kind::kInvariant) 886 return genInvariantValue(merger, codegen, rewriter, exp); 887 Value v0 = genExp(merger, codegen, rewriter, op, merger.exp(exp).children.e0); 888 Value v1 = genExp(merger, codegen, rewriter, op, merger.exp(exp).children.e1); 889 return merger.buildExp(rewriter, loc, exp, v0, v1); 890 } 891 892 /// Determines if affine expression is invariant. 893 static bool isInvariantAffine(const CodeGen &codegen, AffineExpr a, 894 unsigned ldx, bool &atLevel) { 895 switch (a.getKind()) { 896 case AffineExprKind::DimId: { 897 unsigned idx = a.cast<AffineDimExpr>().getPosition(); 898 if (idx == ldx) 899 atLevel = true; 900 return codegen.loops[idx] != nullptr; // no longer in play? 901 } 902 case AffineExprKind::Add: 903 case AffineExprKind::Mul: { 904 auto binOp = a.cast<AffineBinaryOpExpr>(); 905 return isInvariantAffine(codegen, binOp.getLHS(), ldx, atLevel) && 906 isInvariantAffine(codegen, binOp.getRHS(), ldx, atLevel); 907 } 908 default: 909 return true; 910 } 911 } 912 913 /// Hoists loop invariant tensor loads for which indices have been exhausted. 914 static void genInvariants(Merger &merger, CodeGen &codegen, 915 PatternRewriter &rewriter, linalg::GenericOp op, 916 unsigned exp, unsigned ldx, bool atStart, 917 Kind last = Kind::kTensor) { 918 if (exp == -1u) 919 return; 920 if (merger.exp(exp).kind == Kind::kTensor) { 921 // Inspect tensor indices. 922 bool atLevel = ldx == -1u; 923 OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).tensor]; 924 auto map = op.getTiedIndexingMap(t); 925 auto enc = getSparseTensorEncoding(t->get().getType()); 926 for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { 927 AffineExpr a = map.getResult(perm(enc, d)); 928 if (!isInvariantAffine(codegen, a, ldx, atLevel)) 929 return; // still in play 930 } 931 // All exhausted at this level (atLevel denotes exactly at this level). 932 if (!atLevel) 933 return; 934 OpOperand *lhs = op.getOutputOperand(0); 935 if (lhs == t) { 936 // Start or end a scalarized reduction 937 if (atStart) { 938 Value load = genTensorLoad(merger, codegen, rewriter, op, exp); 939 codegen.redKind = getReduction(last); 940 codegen.redExp = exp; 941 updateReduc(merger, codegen, load); 942 } else { 943 Value redVal = codegen.redVal; 944 updateReduc(merger, codegen, Value()); 945 codegen.redExp = -1u; 946 codegen.redKind = kNoReduc; 947 genTensorStore(merger, codegen, rewriter, op, redVal); 948 } 949 } else { 950 // Start or end loop invariant hoisting of a tensor load. 951 merger.exp(exp).val = 952 atStart ? genTensorLoad(merger, codegen, rewriter, op, exp) : Value(); 953 } 954 } else if (merger.exp(exp).kind != Kind::kInvariant) { 955 // Traverse into the binary operations. Note that we only hoist 956 // tensor loads, since subsequent MLIR/LLVM passes know how to 957 // deal with all other kinds of derived loop invariants. 958 Kind last = merger.exp(exp).kind; 959 unsigned e0 = merger.exp(exp).children.e0; 960 unsigned e1 = merger.exp(exp).children.e1; 961 genInvariants(merger, codegen, rewriter, op, e0, ldx, atStart, last); 962 genInvariants(merger, codegen, rewriter, op, e1, ldx, atStart, last); 963 } 964 } 965 966 /// Generates an expanded access pattern in innermost dimension. 967 static void genExpansion(Merger &merger, CodeGen &codegen, 968 PatternRewriter &rewriter, linalg::GenericOp op, 969 unsigned at, bool atStart) { 970 OpOperand *lhs = codegen.sparseOut; 971 if (!lhs || codegen.outerParNest != op.getRank(lhs) - 1 || 972 at != codegen.outerParNest) 973 return; // not needed at this level 974 // Generate start or end of an expanded access pattern. 975 Value tensor = lhs->get(); 976 Location loc = op.getLoc(); 977 if (atStart) { 978 auto dynShape = {ShapedType::kDynamicSize}; 979 Type etp = tensor.getType().cast<ShapedType>().getElementType(); 980 Type t1 = MemRefType::get(dynShape, etp); 981 Type t2 = MemRefType::get(dynShape, rewriter.getI1Type()); 982 Type t3 = MemRefType::get(dynShape, rewriter.getIndexType()); 983 Type t4 = rewriter.getIndexType(); 984 auto res = 985 rewriter.create<ExpandOp>(loc, TypeRange({t1, t2, t3, t4}), tensor); 986 assert(res.getNumResults() == 4); 987 assert(!codegen.expValues); 988 codegen.expValues = res.getResult(0); 989 codegen.expFilled = res.getResult(1); 990 codegen.expAdded = res.getResult(2); 991 codegen.expCount = res.getResult(3); 992 } else { 993 assert(codegen.expValues); 994 rewriter.create<CompressOp>(loc, tensor, codegen.lexIdx, codegen.expValues, 995 codegen.expFilled, codegen.expAdded, 996 codegen.expCount); 997 codegen.expValues = codegen.expFilled = codegen.expAdded = 998 codegen.expCount = Value(); 999 } 1000 } 1001 1002 /// Generates initialization code for the subsequent loop sequence at 1003 /// current index level. Returns true if the loop sequence needs to 1004 /// maintain the universal index. 1005 static bool genInit(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, 1006 linalg::GenericOp op, std::vector<unsigned> &topSort, 1007 unsigned at, BitVector &inits) { 1008 bool needsUniv = false; 1009 Location loc = op.getLoc(); 1010 unsigned idx = topSort[at]; 1011 1012 // Initialize sparse positions. 1013 for (unsigned b = 0, be = inits.size(); b < be; b++) { 1014 if (inits[b]) { 1015 unsigned tensor = merger.tensor(b); 1016 assert(idx == merger.index(b)); 1017 if (merger.isDim(b, Dim::kSparse)) { 1018 // Initialize sparse index. 1019 unsigned pat = at; 1020 for (; pat != 0; pat--) { 1021 if (codegen.pidxs[tensor][topSort[pat - 1]]) 1022 break; 1023 } 1024 Value ptr = codegen.pointers[tensor][idx]; 1025 Value one = constantIndex(rewriter, loc, 1); 1026 Value p0 = (pat == 0) ? constantIndex(rewriter, loc, 0) 1027 : codegen.pidxs[tensor][topSort[pat - 1]]; 1028 codegen.pidxs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p0); 1029 Value p1 = rewriter.create<arith::AddIOp>(loc, p0, one); 1030 codegen.highs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p1); 1031 } else { 1032 // Dense index still in play. 1033 needsUniv = true; 1034 } 1035 } 1036 } 1037 1038 // Initialize the universal dense index. 1039 codegen.loops[idx] = constantIndex(rewriter, loc, 0); 1040 return needsUniv; 1041 } 1042 1043 /// Returns vectorization strategy. Any implicit inner loop in the Linalg 1044 /// operation is a candidate. Whether it is actually converted to SIMD code 1045 /// depends on the requested strategy. 1046 static bool isVectorFor(CodeGen &codegen, bool isInner, bool isSparse) { 1047 switch (codegen.options.vectorizationStrategy) { 1048 case SparseVectorizationStrategy::kNone: 1049 return false; 1050 case SparseVectorizationStrategy::kDenseInnerLoop: 1051 return isInner && !isSparse; 1052 case SparseVectorizationStrategy::kAnyStorageInnerLoop: 1053 return isInner; 1054 } 1055 llvm_unreachable("unexpected vectorization strategy"); 1056 } 1057 1058 /// Returns parallelization strategy. Any implicit loop in the Linalg operation 1059 /// that is marked "parallel" is a candidate. Whether it is actually converted 1060 /// to a parallel operation depends on the requested strategy. 1061 static bool isParallelFor(CodeGen &codegen, bool isOuter, bool isReduction, 1062 bool isSparse, bool isVector) { 1063 switch (codegen.options.parallelizationStrategy) { 1064 case SparseParallelizationStrategy::kNone: 1065 return false; 1066 case SparseParallelizationStrategy::kDenseOuterLoop: 1067 return isOuter && !isSparse && !isReduction && !isVector; 1068 case SparseParallelizationStrategy::kAnyStorageOuterLoop: 1069 return isOuter && !isReduction && !isVector; 1070 case SparseParallelizationStrategy::kDenseAnyLoop: 1071 return !isSparse && !isReduction && !isVector; 1072 case SparseParallelizationStrategy::kAnyStorageAnyLoop: 1073 return !isReduction && !isVector; 1074 } 1075 llvm_unreachable("unexpected parallelization strategy"); 1076 } 1077 1078 /// Checks unit stride for dense tensors. The iteration graph may have ignored 1079 /// dense access patterns in order to avoid cycles (sparse access patterns are 1080 /// always placed innermost), but that means dense access has become strided. 1081 /// This prevents effective vectorization. 1082 static bool denseUnitStrides(Merger &merger, linalg::GenericOp op, 1083 unsigned idx) { 1084 for (OpOperand *t : op.getInputAndOutputOperands()) { 1085 if (!getSparseTensorEncoding(t->get().getType())) { 1086 auto map = op.getTiedIndexingMap(t); 1087 for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { 1088 AffineExpr a = map.getResult(d); 1089 // Report non-unit stride if innermost index appears at an outer 1090 // dimension (true non-unit stride) or if the innermost index appears 1091 // in a compound subscript in the innermost dimension. Even if the 1092 // latter is unit stride, it does not play well with scatter/gather. 1093 // TODO: accept unit stride affine innermost like a[i,j+k+1]? 1094 if (a.isFunctionOfDim(idx) && 1095 ((d != rank - 1) || (a.getKind() != AffineExprKind::DimId))) 1096 return false; 1097 } 1098 } 1099 } 1100 return true; 1101 } 1102 1103 /// Generates a for-loop on a single index. 1104 static Operation *genFor(Merger &merger, CodeGen &codegen, 1105 PatternRewriter &rewriter, linalg::GenericOp op, 1106 bool isOuter, bool isInner, unsigned idx, 1107 BitVector &indices) { 1108 unsigned fb = indices.find_first(); 1109 unsigned tensor = merger.tensor(fb); 1110 assert(idx == merger.index(fb)); 1111 auto iteratorTypes = op.iterator_types().getValue(); 1112 bool isReduction = isReductionIterator(iteratorTypes[idx]); 1113 bool isSparse = merger.isDim(fb, Dim::kSparse); 1114 bool isVector = !codegen.sparseOut && 1115 isVectorFor(codegen, isInner, isSparse) && 1116 denseUnitStrides(merger, op, idx); 1117 bool isParallel = 1118 !codegen.sparseOut && 1119 isParallelFor(codegen, isOuter, isReduction, isSparse, isVector); 1120 1121 // Prepare vector length. 1122 if (isVector) 1123 codegen.curVecLength = codegen.options.vectorLength; 1124 1125 // Loop bounds and increment. 1126 Location loc = op.getLoc(); 1127 Value lo = isSparse ? codegen.pidxs[tensor][idx] : codegen.loops[idx]; 1128 Value hi = isSparse ? codegen.highs[tensor][idx] : codegen.sizes[idx]; 1129 Value step = constantIndex(rewriter, loc, codegen.curVecLength); 1130 1131 // Emit a parallel loop. 1132 if (isParallel) { 1133 assert(!isVector); 1134 scf::ParallelOp parOp = rewriter.create<scf::ParallelOp>(loc, lo, hi, step); 1135 if (isSparse) 1136 codegen.pidxs[tensor][idx] = parOp.getInductionVars()[0]; 1137 else 1138 codegen.loops[idx] = parOp.getInductionVars()[0]; 1139 rewriter.setInsertionPointToStart(parOp.getBody()); 1140 return parOp; 1141 } 1142 1143 // Emit a sequential or vector loop. 1144 SmallVector<Value, 4> operands; 1145 if (codegen.redVal) { 1146 // In a vector loop, bring reduction into SIMD form, if not already. 1147 if (isVector && !codegen.redVal.getType().isa<VectorType>()) { 1148 VectorType vtp = vectorType(codegen, codegen.redVal.getType()); 1149 Value vred = genVectorReducInit(codegen, rewriter, loc, vtp); 1150 updateReduc(merger, codegen, vred); 1151 } 1152 operands.push_back(codegen.redVal); 1153 } 1154 if (codegen.expValues) 1155 operands.push_back(codegen.expCount); 1156 scf::ForOp forOp = rewriter.create<scf::ForOp>(loc, lo, hi, step, operands); 1157 if (codegen.redVal) 1158 updateReduc(merger, codegen, forOp.getRegionIterArgs().front()); 1159 if (codegen.expValues) 1160 codegen.expCount = forOp.getRegionIterArgs().back(); 1161 // Assign induction variable to sparse or dense index. 1162 Value iv = forOp.getInductionVar(); 1163 if (isSparse) 1164 codegen.pidxs[tensor][idx] = iv; 1165 else 1166 codegen.loops[idx] = iv; 1167 rewriter.setInsertionPointToStart(forOp.getBody()); 1168 // Share vector iteration mask between all subsequent loads/stores. 1169 if (isVector) 1170 codegen.curVecMask = genVectorMask(codegen, rewriter, iv, lo, hi, step); 1171 return forOp; 1172 } 1173 1174 /// Emit a while-loop for co-iteration over multiple indices. 1175 static Operation *genWhile(Merger &merger, CodeGen &codegen, 1176 PatternRewriter &rewriter, linalg::GenericOp op, 1177 unsigned idx, bool needsUniv, 1178 BitVector &indices) { 1179 SmallVector<Type, 4> types; 1180 SmallVector<Value, 4> operands; 1181 // Construct the while-loop with a parameter for each index. 1182 Type indexType = rewriter.getIndexType(); 1183 for (unsigned b = 0, be = indices.size(); b < be; b++) { 1184 if (indices[b] && merger.isDim(b, Dim::kSparse)) { 1185 unsigned tensor = merger.tensor(b); 1186 assert(idx == merger.index(b)); 1187 types.push_back(indexType); 1188 operands.push_back(codegen.pidxs[tensor][idx]); 1189 } 1190 } 1191 if (codegen.redVal) { 1192 types.push_back(codegen.redVal.getType()); 1193 operands.push_back(codegen.redVal); 1194 } 1195 if (codegen.expValues) { 1196 types.push_back(indexType); 1197 operands.push_back(codegen.expCount); 1198 } 1199 if (needsUniv) { 1200 types.push_back(indexType); 1201 operands.push_back(codegen.loops[idx]); 1202 } 1203 assert(types.size() == operands.size()); 1204 Location loc = op.getLoc(); 1205 scf::WhileOp whileOp = rewriter.create<scf::WhileOp>(loc, types, operands); 1206 1207 SmallVector<Location> locs(types.size(), loc); 1208 Block *before = rewriter.createBlock(&whileOp.getBefore(), {}, types, locs); 1209 Block *after = rewriter.createBlock(&whileOp.getAfter(), {}, types, locs); 1210 1211 // Build the "before" region, which effectively consists 1212 // of a conjunction of "i < upper" tests on all induction. 1213 rewriter.setInsertionPointToStart(&whileOp.getBefore().front()); 1214 Value cond; 1215 unsigned o = 0; 1216 for (unsigned b = 0, be = indices.size(); b < be; b++) { 1217 if (indices[b] && merger.isDim(b, Dim::kSparse)) { 1218 unsigned tensor = merger.tensor(b); 1219 assert(idx == merger.index(b)); 1220 Value op1 = before->getArgument(o); 1221 Value op2 = codegen.highs[tensor][idx]; 1222 Value opc = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult, 1223 op1, op2); 1224 cond = cond ? rewriter.create<arith::AndIOp>(loc, cond, opc) : opc; 1225 codegen.pidxs[tensor][idx] = after->getArgument(o++); 1226 } 1227 } 1228 if (codegen.redVal) 1229 updateReduc(merger, codegen, after->getArgument(o++)); 1230 if (codegen.expValues) 1231 codegen.expCount = after->getArgument(o++); 1232 if (needsUniv) 1233 codegen.loops[idx] = after->getArgument(o++); 1234 assert(o == operands.size()); 1235 rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments()); 1236 rewriter.setInsertionPointToStart(&whileOp.getAfter().front()); 1237 return whileOp; 1238 } 1239 1240 /// Generates a for-loop or a while-loop, depending on whether it implements 1241 /// singleton iteration or co-iteration over the given conjunction. 1242 static Operation *genLoop(Merger &merger, CodeGen &codegen, 1243 PatternRewriter &rewriter, linalg::GenericOp op, 1244 std::vector<unsigned> &topSort, unsigned at, 1245 bool needsUniv, BitVector &indices) { 1246 unsigned idx = topSort[at]; 1247 if (indices.count() == 1) { 1248 bool isOuter = at == 0; 1249 bool isInner = at == topSort.size() - 1; 1250 return genFor(merger, codegen, rewriter, op, isOuter, isInner, idx, 1251 indices); 1252 } 1253 return genWhile(merger, codegen, rewriter, op, idx, needsUniv, indices); 1254 } 1255 1256 /// Generates the local variables for this loop, consisting of the sparse 1257 /// indices, restored universal dense index, and dense positions. 1258 static void genLocals(Merger &merger, CodeGen &codegen, 1259 PatternRewriter &rewriter, linalg::GenericOp op, 1260 std::vector<unsigned> &topSort, unsigned at, 1261 bool needsUniv, BitVector &locals) { 1262 Location loc = op.getLoc(); 1263 unsigned idx = topSort[at]; 1264 1265 // Initialize sparse indices. 1266 Value min; 1267 for (unsigned b = 0, be = locals.size(); b < be; b++) { 1268 if (locals[b] && merger.isDim(b, Dim::kSparse)) { 1269 unsigned tensor = merger.tensor(b); 1270 assert(idx == merger.index(b)); 1271 Value ptr = codegen.indices[tensor][idx]; 1272 Value s = codegen.pidxs[tensor][idx]; 1273 Value load = genLoad(codegen, rewriter, loc, ptr, s); 1274 codegen.idxs[tensor][idx] = load; 1275 if (!needsUniv) { 1276 if (min) { 1277 Value cmp = rewriter.create<arith::CmpIOp>( 1278 loc, arith::CmpIPredicate::ult, load, min); 1279 min = rewriter.create<arith::SelectOp>(loc, cmp, load, min); 1280 } else { 1281 min = load; 1282 } 1283 } 1284 } 1285 } 1286 1287 // Merge dense universal index over minimum. 1288 if (min) { 1289 assert(!needsUniv); 1290 codegen.loops[idx] = min; 1291 } 1292 1293 // Initialize dense positions. Note that we generate dense indices of the 1294 // output tensor unconditionally, since they may not appear in the lattice, 1295 // but may be needed for linearized codegen. 1296 for (unsigned b = 0, be = locals.size(); b < be; b++) { 1297 if ((locals[b] || merger.isOutTensor(b, idx)) && 1298 merger.isDim(b, Dim::kDense)) { 1299 unsigned tensor = merger.tensor(b); 1300 assert(idx == merger.index(b)); 1301 unsigned pat = at; 1302 for (; pat != 0; pat--) 1303 if (codegen.pidxs[tensor][topSort[pat - 1]]) 1304 break; 1305 Value p = (pat == 0) ? constantIndex(rewriter, loc, 0) 1306 : codegen.pidxs[tensor][topSort[pat - 1]]; 1307 codegen.pidxs[tensor][idx] = genAddress( 1308 codegen, rewriter, loc, codegen.sizes[idx], p, codegen.loops[idx]); 1309 } 1310 } 1311 1312 // Move the insertion indices in lexicographic index order. During access 1313 // pattern expansion, we can skip setting the innermost dimension. 1314 if (codegen.sparseOut && !codegen.expValues) { 1315 Value pos = constantIndex(rewriter, loc, at); 1316 rewriter.create<memref::StoreOp>(loc, codegen.loops[idx], codegen.lexIdx, 1317 pos); 1318 } 1319 } 1320 1321 /// Generates the induction structure for a while-loop. 1322 static void genWhileInduction(Merger &merger, CodeGen &codegen, 1323 PatternRewriter &rewriter, linalg::GenericOp op, 1324 unsigned idx, bool needsUniv, 1325 BitVector &induction, 1326 scf::WhileOp whileOp) { 1327 Location loc = op.getLoc(); 1328 // Finalize each else branch of all if statements. 1329 if (codegen.redVal || codegen.expValues) { 1330 while (auto ifOp = dyn_cast_or_null<scf::IfOp>( 1331 rewriter.getInsertionBlock()->getParentOp())) { 1332 unsigned y = 0; 1333 SmallVector<Value, 4> yields; 1334 if (codegen.redVal) { 1335 yields.push_back(codegen.redVal); 1336 updateReduc(merger, codegen, ifOp.getResult(y++)); 1337 } 1338 if (codegen.expValues) { 1339 yields.push_back(codegen.expCount); 1340 codegen.expCount = ifOp->getResult(y++); 1341 } 1342 assert(y == yields.size()); 1343 rewriter.create<scf::YieldOp>(loc, yields); 1344 rewriter.setInsertionPointAfter(ifOp); 1345 } 1346 } 1347 rewriter.setInsertionPointToEnd(&whileOp.getAfter().front()); 1348 // Finalize the induction. Note that the induction could be performed 1349 // in the individual if-branches to avoid re-evaluating the conditions. 1350 // However, that would result in a rather elaborate forest of yield 1351 // instructions during code generation. Moreover, performing the induction 1352 // after the if-statements more closely resembles code generated by TACO. 1353 unsigned o = 0; 1354 SmallVector<Value, 4> operands; 1355 Value one = constantIndex(rewriter, loc, 1); 1356 for (unsigned b = 0, be = induction.size(); b < be; b++) { 1357 if (induction[b] && merger.isDim(b, Dim::kSparse)) { 1358 unsigned tensor = merger.tensor(b); 1359 assert(idx == merger.index(b)); 1360 Value op1 = codegen.idxs[tensor][idx]; 1361 Value op2 = codegen.loops[idx]; 1362 Value op3 = codegen.pidxs[tensor][idx]; 1363 Value cmp = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq, 1364 op1, op2); 1365 Value add = rewriter.create<arith::AddIOp>(loc, op3, one); 1366 operands.push_back(rewriter.create<arith::SelectOp>(loc, cmp, add, op3)); 1367 codegen.pidxs[tensor][idx] = whileOp->getResult(o++); 1368 } 1369 } 1370 if (codegen.redVal) { 1371 operands.push_back(codegen.redVal); 1372 updateReduc(merger, codegen, whileOp->getResult(o++)); 1373 } 1374 if (codegen.expValues) { 1375 operands.push_back(codegen.expCount); 1376 codegen.expCount = whileOp->getResult(o++); 1377 } 1378 if (needsUniv) { 1379 operands.push_back( 1380 rewriter.create<arith::AddIOp>(loc, codegen.loops[idx], one)); 1381 codegen.loops[idx] = whileOp->getResult(o++); 1382 } 1383 assert(o == operands.size()); 1384 rewriter.create<scf::YieldOp>(loc, operands); 1385 rewriter.setInsertionPointAfter(whileOp); 1386 } 1387 1388 /// Generates the induction structure for a for-loop. 1389 static void genForInduction(Merger &merger, CodeGen &codegen, 1390 PatternRewriter &rewriter, linalg::GenericOp op, 1391 Operation *loop) { 1392 Location loc = op.getLoc(); 1393 unsigned o = 0; 1394 SmallVector<Value, 4> operands; 1395 if (codegen.redVal) { 1396 operands.push_back(codegen.redVal); 1397 updateReduc(merger, codegen, loop->getResult(o++)); 1398 } 1399 if (codegen.expValues) { 1400 operands.push_back(codegen.expCount); 1401 codegen.expCount = loop->getResult(o++); 1402 } 1403 assert(o == operands.size()); 1404 if (o > 0) 1405 rewriter.create<scf::YieldOp>(loc, operands); 1406 rewriter.setInsertionPointAfter(loop); 1407 } 1408 1409 /// Generates a single if-statement within a while-loop. 1410 static scf::IfOp genIf(Merger &merger, CodeGen &codegen, 1411 PatternRewriter &rewriter, linalg::GenericOp op, 1412 unsigned idx, BitVector &conditions) { 1413 Location loc = op.getLoc(); 1414 SmallVector<Type, 4> types; 1415 Value cond; 1416 for (unsigned b = 0, be = conditions.size(); b < be; b++) { 1417 if (conditions[b]) { 1418 unsigned tensor = merger.tensor(b); 1419 assert(idx == merger.index(b)); 1420 Value clause; 1421 if (merger.isDim(b, Dim::kSparse)) { 1422 Value op1 = codegen.idxs[tensor][idx]; 1423 Value op2 = codegen.loops[idx]; 1424 clause = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq, 1425 op1, op2); 1426 } else { 1427 clause = constantI1(rewriter, loc, true); 1428 } 1429 cond = cond ? rewriter.create<arith::AndIOp>(loc, cond, clause) : clause; 1430 } 1431 } 1432 if (codegen.redVal) 1433 types.push_back(codegen.redVal.getType()); 1434 if (codegen.expValues) 1435 types.push_back(rewriter.getIndexType()); 1436 scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, types, cond, /*else=*/true); 1437 rewriter.setInsertionPointToStart(&ifOp.getThenRegion().front()); 1438 return ifOp; 1439 } 1440 1441 /// Generates end of true branch of if-statement within a while-loop. 1442 static void endIf(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, 1443 linalg::GenericOp op, scf::IfOp ifOp, Operation *loop, 1444 Value redInput, Value cntInput) { 1445 SmallVector<Value, 4> operands; 1446 if (codegen.redVal) { 1447 operands.push_back(codegen.redVal); 1448 updateReduc(merger, codegen, redInput); 1449 } 1450 if (codegen.expValues) { 1451 operands.push_back(codegen.expCount); 1452 codegen.expCount = cntInput; 1453 } 1454 if (!operands.empty()) 1455 rewriter.create<scf::YieldOp>(op.getLoc(), operands); 1456 rewriter.setInsertionPointToStart(&ifOp.getElseRegion().front()); 1457 } 1458 1459 //===----------------------------------------------------------------------===// 1460 // Sparse compiler synthesis methods (loop sequence). 1461 //===----------------------------------------------------------------------===// 1462 1463 /// Starts a loop sequence at given level. Returns true if 1464 /// the universal loop index must be maintained at this level. 1465 static bool startLoopSeq(Merger &merger, CodeGen &codegen, 1466 PatternRewriter &rewriter, linalg::GenericOp op, 1467 std::vector<unsigned> &topSort, unsigned exp, 1468 unsigned at, unsigned idx, unsigned ldx, 1469 unsigned lts) { 1470 assert(codegen.curVecLength == 1); 1471 assert(!codegen.loops[idx]); 1472 // Emit invariants at this loop sequence level. 1473 genInvariants(merger, codegen, rewriter, op, exp, ldx, /*atStart=*/true); 1474 // Emit access pattern expansion for sparse tensor output. 1475 genExpansion(merger, codegen, rewriter, op, at, /*atStart=*/true); 1476 // Emit further intitialization at this loop sequence level. 1477 unsigned l0 = merger.set(lts)[0]; 1478 bool needsUniv = 1479 genInit(merger, codegen, rewriter, op, topSort, at, merger.lat(l0).bits); 1480 // Maintain the universal index only if it is actually 1481 // consumed by a subsequent lattice point. 1482 if (needsUniv) { 1483 unsigned lsize = merger.set(lts).size(); 1484 for (unsigned i = 1; i < lsize; i++) { 1485 unsigned li = merger.set(lts)[i]; 1486 if (!merger.hasAnyDimOf(merger.lat(li).simple, Dim::kSparse)) 1487 return true; 1488 } 1489 } 1490 return false; 1491 } 1492 1493 /// Starts a single loop in current sequence. 1494 static Operation *startLoop(Merger &merger, CodeGen &codegen, 1495 PatternRewriter &rewriter, linalg::GenericOp op, 1496 std::vector<unsigned> &topSort, unsigned at, 1497 unsigned li, bool needsUniv) { 1498 assert(codegen.curVecLength == 1); 1499 // Emit the for/while-loop control. 1500 Operation *loop = genLoop(merger, codegen, rewriter, op, topSort, at, 1501 needsUniv, merger.lat(li).simple); 1502 // Emit the locals for this loop. 1503 genLocals(merger, codegen, rewriter, op, topSort, at, needsUniv, 1504 merger.lat(li).bits); 1505 return loop; 1506 } 1507 1508 /// Ends a single loop in current sequence. Returns new values for needsUniv. 1509 static bool endLoop(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, 1510 linalg::GenericOp op, Operation *loop, unsigned idx, 1511 unsigned li, bool needsUniv) { 1512 codegen.curVecLength = 1; 1513 // End a while-loop. 1514 if (auto whileOp = dyn_cast<scf::WhileOp>(loop)) { 1515 genWhileInduction(merger, codegen, rewriter, op, idx, needsUniv, 1516 merger.lat(li).bits, whileOp); 1517 return needsUniv; 1518 } 1519 // End a for-loop. 1520 genForInduction(merger, codegen, rewriter, op, loop); 1521 return false; 1522 } 1523 1524 /// Ends a loop sequence at given level. 1525 static void endLoopSeq(Merger &merger, CodeGen &codegen, 1526 PatternRewriter &rewriter, linalg::GenericOp op, 1527 unsigned exp, unsigned at, unsigned idx, unsigned ldx) { 1528 assert(codegen.curVecLength == 1); 1529 codegen.loops[idx] = Value(); 1530 // Bring a pending reduction back from SIMD form when sequence ends. 1531 if (codegen.redVal) 1532 if (auto vtp = codegen.redVal.getType().dyn_cast<VectorType>()) 1533 updateReduc(merger, codegen, 1534 genVectorReducEnd(codegen, rewriter, op.getLoc(), vtp)); 1535 // Unmark bookkeeping of invariants and loop index. 1536 genInvariants(merger, codegen, rewriter, op, exp, ldx, /*atStart=*/false); 1537 // Finalize access pattern expansion for sparse tensor output. 1538 genExpansion(merger, codegen, rewriter, op, at, /*atStart=*/false); 1539 } 1540 1541 /// Recursively generates code while computing iteration lattices in order 1542 /// to manage the complexity of implementing co-iteration over unions 1543 /// and intersections of sparse iterations spaces. 1544 static void genStmt(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, 1545 linalg::GenericOp op, std::vector<unsigned> &topSort, 1546 unsigned exp, unsigned at) { 1547 // At each leaf, assign remaining tensor (sub)expression to output tensor. 1548 if (at == topSort.size()) { 1549 Value rhs = genExp(merger, codegen, rewriter, op, exp); 1550 genTensorStore(merger, codegen, rewriter, op, rhs); 1551 return; 1552 } 1553 1554 // Construct iteration lattices for current loop index, with L0 at top. 1555 unsigned idx = topSort[at]; 1556 unsigned ldx = at == 0 ? -1u : topSort[at - 1]; 1557 unsigned lts = merger.optimizeSet(merger.buildLattices(exp, idx)); 1558 1559 // Start a loop sequence. 1560 bool needsUniv = startLoopSeq(merger, codegen, rewriter, op, topSort, exp, at, 1561 idx, ldx, lts); 1562 1563 // Emit a loop for every lattice point L0 >= Li in this loop sequence. 1564 unsigned lsize = merger.set(lts).size(); 1565 for (unsigned i = 0; i < lsize; i++) { 1566 // Start a loop. 1567 unsigned li = merger.set(lts)[i]; 1568 Operation *loop = 1569 startLoop(merger, codegen, rewriter, op, topSort, at, li, needsUniv); 1570 1571 // Visit all lattices points with Li >= Lj to generate the 1572 // loop-body, possibly with if statements for coiteration. 1573 Value redInput = codegen.redVal; 1574 Value cntInput = codegen.expCount; 1575 bool isWhile = dyn_cast<scf::WhileOp>(loop) != nullptr; 1576 for (unsigned j = 0; j < lsize; j++) { 1577 unsigned lj = merger.set(lts)[j]; 1578 unsigned ej = merger.lat(lj).exp; 1579 if (li == lj || merger.latGT(li, lj)) { 1580 // Recurse into body of each branch. 1581 if (isWhile) { 1582 scf::IfOp ifOp = 1583 genIf(merger, codegen, rewriter, op, idx, merger.lat(lj).simple); 1584 genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1); 1585 endIf(merger, codegen, rewriter, op, ifOp, loop, redInput, cntInput); 1586 } else { 1587 genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1); 1588 } 1589 } 1590 } 1591 1592 // End a loop. 1593 needsUniv = 1594 endLoop(merger, codegen, rewriter, op, loop, idx, li, needsUniv); 1595 } 1596 1597 // End a loop sequence. 1598 endLoopSeq(merger, codegen, rewriter, op, exp, at, idx, ldx); 1599 } 1600 1601 /// Converts the result computed by the sparse kernel into the required form. 1602 static void genResult(Merger &merger, CodeGen &codegen, 1603 PatternRewriter &rewriter, linalg::GenericOp op) { 1604 OpOperand *lhs = op.getOutputOperand(0); 1605 Type resType = lhs->get().getType(); 1606 if (getSparseTensorEncoding(resType)) { 1607 // The sparse tensor rematerializes from the original sparse tensor's 1608 // underlying sparse storage format. 1609 rewriter.replaceOpWithNewOp<LoadOp>(op, resType, lhs->get(), 1610 codegen.sparseOut == lhs); 1611 } else { 1612 // To rematerialize an non-annotated tensor, simply load it 1613 // from the bufferized value. 1614 Value val = codegen.buffers.back(); // value array 1615 rewriter.replaceOpWithNewOp<bufferization::ToTensorOp>(op, resType, val); 1616 } 1617 } 1618 1619 //===----------------------------------------------------------------------===// 1620 // Sparse compiler rewriting methods. 1621 //===----------------------------------------------------------------------===// 1622 1623 namespace { 1624 1625 /// Sparse rewriting rule for generic Lingalg operation. 1626 struct GenericOpSparsifier : public OpRewritePattern<linalg::GenericOp> { 1627 public: 1628 GenericOpSparsifier(MLIRContext *context, SparsificationOptions o) 1629 : OpRewritePattern<linalg::GenericOp>(context), options(o) {} 1630 1631 LogicalResult matchAndRewrite(linalg::GenericOp op, 1632 PatternRewriter &rewriter) const override { 1633 // Detects sparse annotations and translate the per-dimension sparsity 1634 // information for all tensors to loop indices in the kernel. 1635 assert(op.getNumOutputs() == 1); 1636 unsigned numTensors = op.getNumInputsAndOutputs(); 1637 unsigned numLoops = op.iterator_types().getValue().size(); 1638 Merger merger(numTensors, numLoops); 1639 if (!findSparseAnnotations(merger, op)) 1640 return failure(); 1641 1642 // Computes a topologically sorted iteration graph to ensure 1643 // tensors are visited in natural index order. Fails on cycles. 1644 // This assumes that higher-level passes have already put the 1645 // tensors in each tensor expression in a feasible order. 1646 std::vector<unsigned> topSort; 1647 if (!computeIterationGraph(merger, op, topSort, 1648 SortMask::kIncludeUndef | 1649 SortMask::kIncludeDense) && 1650 !computeIterationGraph(merger, op, topSort, SortMask::kIncludeUndef) && 1651 !computeIterationGraph(merger, op, topSort, SortMask::kIncludeDense) && 1652 !computeIterationGraph(merger, op, topSort, SortMask::kSparseOnly)) 1653 return failure(); 1654 1655 // Builds the tensor expression for the Linalg operation in SSA form. 1656 Optional<unsigned> optExp = merger.buildTensorExpFromLinalg(op); 1657 if (!optExp.hasValue()) 1658 return failure(); 1659 unsigned exp = optExp.getValue(); 1660 1661 // Rejects an inadmissable tensor expression. 1662 OpOperand *sparseOut = nullptr; 1663 unsigned outerParNest = 0; 1664 if (!isAdmissableTensorExp(merger, op, topSort, exp, &sparseOut, 1665 outerParNest)) 1666 return failure(); 1667 1668 // Recursively generates code. 1669 merger.setHasSparseOut(sparseOut != nullptr); 1670 CodeGen codegen(options, numTensors, numLoops, sparseOut, outerParNest); 1671 genBuffers(merger, codegen, rewriter, op); 1672 genStmt(merger, codegen, rewriter, op, topSort, exp, 0); 1673 genResult(merger, codegen, rewriter, op); 1674 return success(); 1675 } 1676 1677 private: 1678 /// Options to control sparse code generation. 1679 SparsificationOptions options; 1680 }; 1681 1682 } // namespace 1683 1684 /// Populates the given patterns list with rewriting rules required for 1685 /// the sparsification of linear algebra operations. 1686 void mlir::populateSparsificationPatterns( 1687 RewritePatternSet &patterns, const SparsificationOptions &options) { 1688 patterns.add<GenericOpSparsifier>(patterns.getContext(), options); 1689 } 1690