1 //===- Sparsification.cpp - Implementation of sparsification --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements converting sparse tensor types to actual sparse code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "mlir/Dialect/Linalg/IR/LinalgOps.h"
14 #include "mlir/Dialect/Linalg/Utils/Utils.h"
15 #include "mlir/Dialect/MemRef/IR/MemRef.h"
16 #include "mlir/Dialect/SCF/SCF.h"
17 #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
18 #include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
19 #include "mlir/Dialect/SparseTensor/Utils/Merger.h"
20 #include "mlir/Dialect/StandardOps/IR/Ops.h"
21 #include "mlir/Dialect/Vector/VectorOps.h"
22 #include "mlir/IR/Matchers.h"
23 #include "mlir/IR/TensorEncoding.h"
24 #include "llvm/ADT/SmallBitVector.h"
25 
26 using namespace mlir;
27 using namespace mlir::sparse_tensor;
28 
29 namespace {
30 
31 // Code generation.
32 struct CodeGen {
33   CodeGen(SparsificationOptions o, unsigned numTensors, unsigned numLoops)
34       : options(o), loops(numLoops), sizes(numLoops), buffers(numTensors),
35         pointers(numTensors, std::vector<Value>(numLoops)),
36         indices(numTensors, std::vector<Value>(numLoops)),
37         highs(numTensors, std::vector<Value>(numLoops)),
38         pidxs(numTensors, std::vector<Value>(numLoops)),
39         idxs(numTensors, std::vector<Value>(numLoops)), redExp(-1u), redVal(),
40         curVecLength(1), curVecMask() {}
41   /// Sparsification options.
42   SparsificationOptions options;
43   /// Universal dense indices and upper bounds (by index). The loops array
44   /// is updated with the value of the universal dense index in the current
45   /// loop. The sizes array is set once with the inferred dimension sizes.
46   std::vector<Value> loops;
47   std::vector<Value> sizes;
48   /// Buffers for storing dense and sparse numerical values (by tensor).
49   /// This array is set once during bufferization of all tensors.
50   std::vector<Value> buffers;
51   /// Sparse storage schemes (1-D): pointers and indices (by tensor and index).
52   /// This array is set once during bufferization of all sparse tensors.
53   std::vector<std::vector<Value>> pointers;
54   std::vector<std::vector<Value>> indices;
55   /// Sparse iteration information (by tensor and index). These arrays
56   /// are updated to remain current within the current loop.
57   std::vector<std::vector<Value>> highs;
58   std::vector<std::vector<Value>> pidxs;
59   std::vector<std::vector<Value>> idxs;
60   /// Current reduction, updated during code generation. When indices of a
61   /// reduction are exhausted,  all inner loops can "scalarize" the reduction.
62   // TODO: currently only done for (a chain of) innermost for-loops, where it
63   // is most effective; we could generalize to more outer and while-loops.
64   unsigned redExp;
65   Value redVal;
66   // Current vector length and mask.
67   unsigned curVecLength;
68   Value curVecMask;
69 };
70 
71 } // namespace
72 
73 // Helper method to apply dimension ordering permutation.
74 static unsigned perm(SparseTensorEncodingAttr &enc, unsigned d) {
75   if (enc) {
76     auto order = enc.getDimOrdering();
77     if (order) {
78       assert(order.isPermutation());
79       return order.getDimPosition(d);
80     }
81   }
82   return d;
83 }
84 
85 // Helper method to translate dim level type to internal representation.
86 static Dim toDim(SparseTensorEncodingAttr &enc, unsigned d) {
87   if (enc) {
88     SparseTensorEncodingAttr::DimLevelType tp = enc.getDimLevelType()[d];
89     if (tp == SparseTensorEncodingAttr::DimLevelType::Compressed)
90       return Dim::kSparse;
91     if (tp == SparseTensorEncodingAttr::DimLevelType::Singleton)
92       return Dim::kSingle;
93   }
94   return Dim::kDense;
95 }
96 
97 /// Helper method to inspect sparse encodings in the tensor types.
98 /// Fills the per-dimension sparsity information for all tensors.
99 static bool findSparseAnnotations(Merger &merger, linalg::GenericOp op) {
100   bool annotated = false;
101   for (OpOperand *t : op.getInputAndOutputOperands()) {
102     auto map = op.getTiedIndexingMap(t);
103     if (!map.isProjectedPermutation())
104       return false;
105     auto enc = getSparseTensorEncoding(t->get().getType());
106     if (enc)
107       annotated = true;
108     assert(map.getNumResults() == op.getRank(t));
109     for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
110       unsigned idx = map.getDimPosition(perm(enc, d));
111       merger.setDim(t->getOperandNumber(), idx, toDim(enc, d));
112     }
113   }
114   return annotated;
115 }
116 
117 /// A DFS helper to compute a topological sort. Note that recursion is
118 /// bounded by the number of implicit loops, which is always small.
119 /// Returns false when a cycle is detected.
120 static bool topSortDFS(unsigned i, std::vector<unsigned> &visit,
121                        std::vector<unsigned> &topSort,
122                        std::vector<std::vector<bool>> &adjM) {
123   if (visit[i] != 0)
124     return visit[i] != 1; // 1 denotes cycle!
125   visit[i] = 1;
126   for (unsigned j = 0, e = visit.size(); j < e; j++)
127     if (adjM[i][j])
128       if (!topSortDFS(j, visit, topSort, adjM))
129         return false;
130   visit[i] = 2;
131   topSort.push_back(i);
132   return true;
133 }
134 
135 /// Computes a topologically sorted iteration graph for the linalg operation.
136 /// Ensures all tensors are visited in natural index order. This is essential
137 /// for sparse storage formats since these only support access along fixed
138 /// dimensions. Even for dense storage formats, however, the natural index
139 /// order yields innermost unit-stride access with better spatial locality.
140 static bool computeIterationGraph(Merger &merger, linalg::GenericOp op,
141                                   std::vector<unsigned> &topSort,
142                                   bool sparseOnly) {
143   // Set up an n x n from/to adjacency matrix of the iteration graph
144   // for the implicit loop indices i_0 .. i_n-1.
145   unsigned n = op.getNumLoops();
146   std::vector<std::vector<bool>> adjM(n, std::vector<bool>(n, false));
147 
148   // Iterate over the indexing maps of every tensor in the tensor expression.
149   for (OpOperand *t : op.getInputAndOutputOperands()) {
150     auto map = op.getTiedIndexingMap(t);
151     auto enc = getSparseTensorEncoding(t->get().getType());
152     assert(map.getNumDims() == n);
153     // Skip dense tensor constraints when sparse only is requested.
154     if (sparseOnly && !enc)
155       continue;
156     // Each tensor expression and optional dimension ordering (row-major
157     // by default) puts an ordering constraint on the loop indices. For
158     // example, the tensor expresion A_ijk forces the ordering i < j < k
159     // on the loop indices if no explicit dimension ordering is given.
160     for (unsigned d = 1, rank = map.getNumResults(); d < rank; d++) {
161       unsigned f = map.getDimPosition(perm(enc, d - 1));
162       unsigned t = map.getDimPosition(perm(enc, d));
163       adjM[f][t] = true;
164     }
165   }
166 
167   // Topologically sort the iteration graph to determine loop order.
168   // Report failure for a cyclic iteration graph.
169   topSort.clear();
170   topSort.reserve(n);
171   std::vector<unsigned> visit(n, 0);
172   for (unsigned i = 0; i < n; i++)
173     if (visit[i] == 0)
174       if (!topSortDFS(i, visit, topSort, adjM))
175         return false; // cycle!
176   std::reverse(std::begin(topSort), std::end(topSort));
177   return true;
178 }
179 
180 /// Returns true when the tensor expression is admissable for codegen.
181 /// Since all sparse input tensors are admissable, we just need to check
182 /// whether the output tensor in the tensor expression codegen is admissable.
183 static bool isAdmissableTensorExp(Merger &merger, linalg::GenericOp op,
184                                   unsigned exp) {
185   OpOperand *lhs = op.getOutputOperand(0);
186   unsigned tensor = lhs->getOperandNumber();
187   auto enc = getSparseTensorEncoding(lhs->get().getType());
188   // An non-annotated output tensor is assumed dense, and becomes a random
189   // access n-dim memref. Admissable since inserstions cannot occur.
190   if (!enc)
191     return true;
192   // An all-dense annotated "sparse" output tensor becomes a linearized random
193   // access 1-dim memref. Also admissable since insertions cannot occur.
194   bool allDense = true;
195   unsigned numLoops = op.iterator_types().getValue().size();
196   for (unsigned i = 0; i < numLoops; i++)
197     if (merger.isDim(tensor, i, Dim::kSparse)) {
198       allDense = false;
199       break;
200     }
201   if (allDense)
202     return true;
203   // A tensor expression with a sparse output tensor that changes its values
204   // but not its nonzero structure, an operation called "simply dynamic" in
205   // [Bik96,Ch9], is also admissable without special codegen.
206   if (merger.isConjunction(tensor, exp))
207     return true;
208   // Reject for now since this requires changes to the nonzero structure.
209   // TODO: implement "workspaces" [Kjolstad2019]
210   return false;
211 }
212 
213 /// Maps sparse integer option to actual integral storage type.
214 static Type genIntType(PatternRewriter &rewriter, unsigned width) {
215   if (width == 0)
216     return rewriter.getIndexType();
217   return rewriter.getIntegerType(width);
218 }
219 
220 /// Detects in-place annotation on tensor argument.
221 static bool getInPlace(Value val) {
222   if (auto arg = val.dyn_cast<BlockArgument>())
223     if (auto funcOp = dyn_cast<FuncOp>(arg.getOwner()->getParentOp()))
224       if (auto attr = funcOp.getArgAttrOfType<BoolAttr>(
225               arg.getArgNumber(), linalg::LinalgDialect::kInplaceableAttrName))
226         return attr.getValue();
227   return false;
228 }
229 
230 /// Generates buffer for the output tensor.
231 static Value genOutputBuffer(CodeGen &codegen, PatternRewriter &rewriter,
232                              linalg::GenericOp op, MemRefType denseTp,
233                              ArrayRef<Value> args) {
234   Location loc = op.getLoc();
235   Value tensor = op.getOutputOperand(0)->get();
236   // The output tensor simply could materialize from the buffer that will
237   // be generated for the tensor present in the outs() clause. This has
238   // the major advantage that the sparse kernel only updates the nonzero
239   // positions for the output tensor.
240   if (getInPlace(tensor))
241     return rewriter.create<memref::BufferCastOp>(loc, denseTp, tensor);
242   // By default, a new buffer is allocated which is initialized to the
243   // tensor defined in the outs() clause. This is always correct but
244   // introduces a dense initialization component that may negatively
245   // impact the running complexity of the sparse kernel.
246   Value init = rewriter.create<memref::BufferCastOp>(loc, denseTp, tensor);
247   Value alloc = rewriter.create<memref::AllocOp>(loc, denseTp, args);
248   rewriter.create<memref::CopyOp>(loc, init, alloc);
249   return alloc;
250 }
251 
252 /// Local bufferization of all dense and sparse data structures.
253 /// This code enables testing the first prototype sparse compiler.
254 // TODO: replace this with a proliferated bufferization strategy
255 static bool genBuffers(Merger &merger, CodeGen &codegen,
256                        PatternRewriter &rewriter, linalg::GenericOp op) {
257   Location loc = op.getLoc();
258   assert(op.getNumInputsAndOutputs() == op.getNumInputs() + 1);
259   // For every tensor, find lower and upper bound on dimensions, set the
260   // same bounds on loop indices, and obtain dense or sparse buffer(s).
261   SmallVector<Value, 4> args;
262   for (OpOperand *t : op.getInputAndOutputOperands()) {
263     unsigned tensor = t->getOperandNumber();
264     auto shape = op.getShape(t);
265     auto map = op.getTiedIndexingMap(t);
266     auto enc = getSparseTensorEncoding(t->get().getType());
267     // Scan all dimensions of current tensor.
268     args.clear();
269     for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
270       unsigned idx = map.getDimPosition(perm(enc, d));
271       // Handle sparse storage schemes.
272       if (merger.isDim(tensor, idx, Dim::kSparse)) {
273         auto dynShape = {ShapedType::kDynamicSize};
274         auto ptrTp = MemRefType::get(
275             dynShape, genIntType(rewriter, enc.getPointerBitWidth()));
276         auto indTp = MemRefType::get(
277             dynShape, genIntType(rewriter, enc.getIndexBitWidth()));
278         Value dim = rewriter.create<ConstantIndexOp>(loc, d);
279         // Generate sparse primitives to obtains pointer and indices.
280         codegen.pointers[tensor][idx] =
281             rewriter.create<ToPointersOp>(loc, ptrTp, t->get(), dim);
282         codegen.indices[tensor][idx] =
283             rewriter.create<ToIndicesOp>(loc, indTp, t->get(), dim);
284       }
285       // Find lower and upper bound in current dimension.
286       Value up;
287       if (shape[d] == MemRefType::kDynamicSize) {
288         up = rewriter.create<tensor::DimOp>(loc, t->get(), d);
289         args.push_back(up);
290       } else {
291         up = rewriter.create<ConstantIndexOp>(loc, shape[d]);
292       }
293       codegen.sizes[idx] = codegen.highs[tensor][idx] = up;
294     }
295     // Perform the required bufferization. Dense inputs materialize
296     // from the input tensors. Dense outputs need special handling.
297     // Sparse inputs use sparse primitives to obtain the values.
298     // We also accept in-place all-dense annotated "sparse" outputs.
299     Type elementType = getElementTypeOrSelf(t->get().getType());
300     if (!enc) {
301       // Non-annotated dense tensors.
302       auto denseTp = MemRefType::get(shape, elementType);
303       if (tensor < op.getNumInputs())
304         codegen.buffers[tensor] =
305             rewriter.create<memref::BufferCastOp>(loc, denseTp, t->get());
306       else
307         codegen.buffers[tensor] =
308             genOutputBuffer(codegen, rewriter, op, denseTp, args);
309     } else {
310       // Annotated sparse tensors.
311       if (tensor == op.getNumInputs() && !getInPlace(t->get()))
312         return false; // reject output if not in-place
313       auto dynShape = {ShapedType::kDynamicSize};
314       auto sparseTp = MemRefType::get(dynShape, elementType);
315       codegen.buffers[tensor] =
316           rewriter.create<ToValuesOp>(loc, sparseTp, t->get());
317     }
318   }
319   return true;
320 }
321 
322 /// Constructs vector type.
323 static VectorType vectorType(CodeGen &codegen, Type etp) {
324   return VectorType::get(codegen.curVecLength, etp);
325 }
326 
327 /// Constructs vector type from pointer.
328 static VectorType vectorType(CodeGen &codegen, Value ptr) {
329   return vectorType(codegen, ptr.getType().cast<MemRefType>().getElementType());
330 }
331 
332 /// Constructs vector iteration mask.
333 static Value genVectorMask(CodeGen &codegen, PatternRewriter &rewriter,
334                            Value iv, Value lo, Value hi, Value step) {
335   Location loc = iv.getLoc();
336   VectorType mtp = vectorType(codegen, rewriter.getIntegerType(1));
337   // Special case if the vector length evenly divides the trip count (for
338   // example, "for i = 0, 128, 16"). A constant all-true mask is generated
339   // so that all subsequent masked memory operations are immediately folded
340   // into unconditional memory operations.
341   IntegerAttr loInt, hiInt, stepInt;
342   if (matchPattern(lo, m_Constant(&loInt)) &&
343       matchPattern(hi, m_Constant(&hiInt)) &&
344       matchPattern(step, m_Constant(&stepInt))) {
345     if (((hiInt.getInt() - loInt.getInt()) % stepInt.getInt()) == 0)
346       return rewriter.create<vector::BroadcastOp>(
347           loc, mtp, rewriter.create<ConstantIntOp>(loc, 1, 1));
348   }
349   // Otherwise, generate a vector mask that avoids overrunning the upperbound
350   // during vector execution. Here we rely on subsequent loop optimizations to
351   // avoid executing the mask in all iterations, for example, by splitting the
352   // loop into an unconditional vector loop and a scalar cleanup loop.
353   Value end = rewriter.create<SubIOp>(loc, hi, iv);
354   return rewriter.create<vector::CreateMaskOp>(loc, mtp, end);
355 }
356 
357 /// Generates a vectorized load lhs = a[ind[lo:hi]] or lhs = a[lo:hi].
358 static Value genVectorLoad(CodeGen &codegen, PatternRewriter &rewriter,
359                            Value ptr, ArrayRef<Value> args) {
360   Location loc = ptr.getLoc();
361   VectorType vtp = vectorType(codegen, ptr);
362   Value pass = rewriter.create<ConstantOp>(loc, vtp, rewriter.getZeroAttr(vtp));
363   if (args.back().getType().isa<VectorType>()) {
364     SmallVector<Value, 4> scalarArgs(args.begin(), args.end());
365     Value indexVec = args.back();
366     scalarArgs.back() = rewriter.create<ConstantIndexOp>(loc, 0);
367     return rewriter.create<vector::GatherOp>(
368         loc, vtp, ptr, scalarArgs, indexVec, codegen.curVecMask, pass);
369   }
370   return rewriter.create<vector::MaskedLoadOp>(loc, vtp, ptr, args,
371                                                codegen.curVecMask, pass);
372 }
373 
374 /// Generates a vectorized store a[ind[lo:hi]] = rhs or a[lo:hi] = rhs.
375 static void genVectorStore(CodeGen &codegen, PatternRewriter &rewriter,
376                            Value rhs, Value ptr, ArrayRef<Value> args) {
377   Location loc = ptr.getLoc();
378   if (args.back().getType().isa<VectorType>()) {
379     SmallVector<Value, 4> scalarArgs(args.begin(), args.end());
380     Value indexVec = args.back();
381     scalarArgs.back() = rewriter.create<ConstantIndexOp>(loc, 0);
382     rewriter.create<vector::ScatterOp>(loc, ptr, scalarArgs, indexVec,
383                                        codegen.curVecMask, rhs);
384     return;
385   }
386   rewriter.create<vector::MaskedStoreOp>(loc, ptr, args, codegen.curVecMask,
387                                          rhs);
388 }
389 
390 /// Generates a vectorized invariant. Here we rely on subsequent loop
391 /// optimizations to hoist the invariant broadcast out of the vector loop.
392 static Value genVectorInvariantValue(CodeGen &codegen,
393                                      PatternRewriter &rewriter, Value val) {
394   VectorType vtp = vectorType(codegen, val.getType());
395   return rewriter.create<vector::BroadcastOp>(val.getLoc(), vtp, val);
396 }
397 
398 /// Generates a load on a dense or sparse tensor.
399 static Value genTensorLoad(Merger &merger, CodeGen &codegen,
400                            PatternRewriter &rewriter, linalg::GenericOp op,
401                            unsigned exp) {
402   // Test if the load was hoisted to a higher loop nest.
403   Value val = merger.exp(exp).val;
404   if (val) {
405     if (codegen.curVecLength > 1 && !val.getType().isa<VectorType>())
406       return genVectorInvariantValue(codegen, rewriter, val);
407     return val;
408   }
409   // Actual load.
410   SmallVector<Value, 4> args;
411   OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).tensor];
412   unsigned tensor = t->getOperandNumber();
413   auto map = op.getTiedIndexingMap(t);
414   auto enc = getSparseTensorEncoding(t->get().getType());
415   unsigned rank = map.getNumResults();
416   if (enc) {
417     unsigned idx = map.getDimPosition(perm(enc, rank - 1));
418     assert(codegen.pidxs[tensor][idx] != nullptr);
419     args.push_back(codegen.pidxs[tensor][idx]); // position index
420   } else {
421     for (unsigned d = 0; d < rank; d++) {
422       unsigned idx = map.getDimPosition(d);
423       args.push_back(codegen.loops[idx]); // universal dense index
424     }
425   }
426   Location loc = op.getLoc();
427   Value ptr = codegen.buffers[tensor];
428   if (codegen.curVecLength > 1)
429     return genVectorLoad(codegen, rewriter, ptr, args);
430   return rewriter.create<memref::LoadOp>(loc, ptr, args);
431 }
432 
433 /// Generates a store on a dense or sparse tensor.
434 static void genTensorStore(Merger &merger, CodeGen &codegen,
435                            PatternRewriter &rewriter, linalg::GenericOp op,
436                            OpOperand *t, Value rhs) {
437   Location loc = op.getLoc();
438   // Test if this is a scalarized reduction.
439   OpOperand *lhs = op.getOutputOperand(0);
440   if (lhs == t && codegen.redVal) {
441     if (codegen.curVecLength > 1)
442       rhs = rewriter.create<SelectOp>(loc, codegen.curVecMask, rhs,
443                                       codegen.redVal);
444     codegen.redVal = rhs;
445     return;
446   }
447   // Actual store.
448   SmallVector<Value, 4> args;
449   unsigned tensor = t->getOperandNumber();
450   auto map = op.getTiedIndexingMap(t);
451   auto enc = getSparseTensorEncoding(t->get().getType());
452   unsigned rank = map.getNumResults();
453   if (enc) {
454     unsigned idx = map.getDimPosition(perm(enc, rank - 1));
455     assert(codegen.pidxs[tensor][idx] != nullptr);
456     args.push_back(codegen.pidxs[tensor][idx]); // position index
457   } else {
458     for (unsigned d = 0; d < rank; d++) {
459       unsigned idx = map.getDimPosition(d);
460       args.push_back(codegen.loops[idx]); // universal dense index
461     }
462   }
463   Value ptr = codegen.buffers[tensor];
464   if (codegen.curVecLength > 1)
465     genVectorStore(codegen, rewriter, rhs, ptr, args);
466   else
467     rewriter.create<memref::StoreOp>(loc, rhs, ptr, args);
468 }
469 
470 /// Generates a pointer/index load from the sparse storage scheme. Narrower
471 /// data types need to be zero extended before casting the value into the
472 /// index type used for looping and indexing.
473 static Value genLoad(CodeGen &codegen, PatternRewriter &rewriter, Location loc,
474                      Value ptr, Value s) {
475   // See https://llvm.org/docs/GetElementPtr.html for some background on
476   // the complications described below.
477   if (codegen.curVecLength > 1) {
478     // Since the index vector is used in a subsequent gather/scatter operations,
479     // which effectively defines an unsigned pointer + signed index, we must
480     // zero extend the vector to an index width. For 8-bit and 16-bit values,
481     // an 32-bit index width suffices. For 32-bit values, zero extending the
482     // elements into 64-bit loses some performance since the 32-bit indexed
483     // gather/scatter is more efficient than the 64-bit index variant (if the
484     // negative 32-bit index space is unused, the enableSIMDIndex32 flag can
485     // preserve this performance). For 64-bit values, there is no good way
486     // to state that the indices are unsigned, with creates the potential of
487     // incorrect address calculations in the unlikely case we need such
488     // extremely large offsets.
489     Type etp = ptr.getType().cast<MemRefType>().getElementType();
490     Value vload = genVectorLoad(codegen, rewriter, ptr, {s});
491     if (!etp.isa<IndexType>()) {
492       if (etp.getIntOrFloatBitWidth() < 32)
493         vload = rewriter.create<ZeroExtendIOp>(
494             loc, vload, vectorType(codegen, rewriter.getIntegerType(32)));
495       else if (etp.getIntOrFloatBitWidth() < 64 &&
496                !codegen.options.enableSIMDIndex32)
497         vload = rewriter.create<ZeroExtendIOp>(
498             loc, vload, vectorType(codegen, rewriter.getIntegerType(64)));
499     }
500     return vload;
501   }
502   // For the scalar case, we simply zero extend narrower indices into 64-bit
503   // values before casting to index without a performance penalty. Here too,
504   // however, indices that already are 64-bit, in theory, cannot express the
505   // full range as explained above.
506   Value load = rewriter.create<memref::LoadOp>(loc, ptr, s);
507   if (!load.getType().isa<IndexType>()) {
508     if (load.getType().getIntOrFloatBitWidth() < 64)
509       load = rewriter.create<ZeroExtendIOp>(loc, load,
510                                             rewriter.getIntegerType(64));
511     load = rewriter.create<IndexCastOp>(loc, load, rewriter.getIndexType());
512   }
513   return load;
514 }
515 
516 /// Generates an invariant value.
517 static Value genInvariantValue(Merger &merger, CodeGen &codegen,
518                                PatternRewriter &rewriter, unsigned exp) {
519   Value val = merger.exp(exp).val;
520   if (codegen.curVecLength > 1)
521     return genVectorInvariantValue(codegen, rewriter, val);
522   return val;
523 }
524 
525 /// Generates an address computation "sz * p + i".
526 static Value genAddress(CodeGen &codegen, PatternRewriter &rewriter,
527                         Location loc, Value size, Value p, Value i) {
528   Value mul = rewriter.create<MulIOp>(loc, size, p);
529   if (auto vtp = i.getType().dyn_cast<VectorType>()) {
530     Value inv = rewriter.create<IndexCastOp>(loc, mul, vtp.getElementType());
531     mul = genVectorInvariantValue(codegen, rewriter, inv);
532   }
533   return rewriter.create<AddIOp>(loc, mul, i);
534 }
535 
536 /// Generates start of a reduction.
537 static Value genReductionStart(Merger &merger, CodeGen &codegen,
538                                PatternRewriter &rewriter,
539                                linalg::GenericOp op) {
540   if (codegen.redVal)
541     return codegen.redVal; // chained with previous for-loop
542   if (codegen.curVecLength > 1) {
543     // TODO: assumes + reductions for now
544     VectorType vtp = vectorType(codegen, codegen.buffers[codegen.redExp]);
545     return rewriter.create<ConstantOp>(op.getLoc(), vtp,
546                                        rewriter.getZeroAttr(vtp));
547   }
548   return genTensorLoad(merger, codegen, rewriter, op, codegen.redExp);
549 }
550 
551 /// Generates end of a reduction.
552 static void genReductionEnd(Merger &merger, CodeGen &codegen,
553                             PatternRewriter &rewriter, linalg::GenericOp op) {
554   Value red = codegen.redVal;
555   if (!red)
556     return;
557   assert(codegen.curVecLength == 1);
558   codegen.redVal = merger.exp(codegen.redExp).val = Value(); // end chain
559   OpOperand *lhs = op.getOutputOperand(0);
560   if (auto vtp = red.getType().dyn_cast<VectorType>()) {
561     // TODO: assumes + reductions for now
562     StringAttr kind = rewriter.getStringAttr("add");
563     Value ld = genTensorLoad(merger, codegen, rewriter, op, codegen.redExp);
564     // Integer reductions don't accept an accumulator.
565     if (vtp.getElementType().isa<IntegerType>()) {
566       red = rewriter.create<vector::ReductionOp>(op.getLoc(), ld.getType(),
567                                                  kind, red, ValueRange{});
568       red = rewriter.create<AddIOp>(op.getLoc(), red, ld);
569     } else {
570       red = rewriter.create<vector::ReductionOp>(op.getLoc(), ld.getType(),
571                                                  kind, red, ld);
572     }
573   }
574   genTensorStore(merger, codegen, rewriter, op, lhs, red);
575 }
576 
577 /// Recursively generates tensor expression.
578 static Value genExp(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
579                     linalg::GenericOp op, unsigned exp) {
580   Location loc = op.getLoc();
581   if (exp == -1u)
582     return Value();
583   if (merger.exp(exp).kind == Kind::kTensor)
584     return genTensorLoad(merger, codegen, rewriter, op, exp);
585   if (merger.exp(exp).kind == Kind::kInvariant)
586     return genInvariantValue(merger, codegen, rewriter, exp);
587   Value v0 = genExp(merger, codegen, rewriter, op, merger.exp(exp).children.e0);
588   Value v1 = genExp(merger, codegen, rewriter, op, merger.exp(exp).children.e1);
589   if (merger.exp(exp).kind == Kind::kNegI) {
590     // TODO: no negi in std, need to make zero explicit.
591     Type tp = op.getOutputTensorTypes()[0].getElementType();
592     v1 = v0;
593     v0 = rewriter.create<ConstantOp>(loc, tp, rewriter.getZeroAttr(tp));
594     if (codegen.curVecLength > 1)
595       v0 = genVectorInvariantValue(codegen, rewriter, v0);
596   }
597   return merger.buildExp(rewriter, loc, exp, v0, v1);
598 }
599 
600 /// Hoists loop invariant tensor loads for which indices have been exhausted.
601 static void genInvariants(Merger &merger, CodeGen &codegen,
602                           PatternRewriter &rewriter, linalg::GenericOp op,
603                           unsigned exp, unsigned ldx, bool hoist) {
604   if (exp == -1u)
605     return;
606   if (merger.exp(exp).kind == Kind::kTensor) {
607     // Inspect tensor indices.
608     bool atLevel = ldx == -1u;
609     OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).tensor];
610     auto map = op.getTiedIndexingMap(t);
611     auto enc = getSparseTensorEncoding(t->get().getType());
612     for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
613       unsigned idx = map.getDimPosition(perm(enc, d));
614       if (!codegen.loops[idx])
615         return; // still in play
616       else if (idx == ldx)
617         atLevel = true;
618     }
619     // All exhausted at this level (atLevel denotes exactly at this level).
620     OpOperand *lhs = op.getOutputOperand(0);
621     if (lhs == t) {
622       codegen.redExp = hoist ? exp : -1u;
623     } else if (atLevel) {
624       merger.exp(exp).val =
625           hoist ? genTensorLoad(merger, codegen, rewriter, op, exp) : Value();
626     }
627   } else if (merger.exp(exp).kind != Kind::kInvariant) {
628     // Traverse into the binary operations. Note that we only hoist
629     // tensor loads, since subsequent MLIR/LLVM passes know how to
630     // deal with all other kinds of derived loop invariants.
631     unsigned e0 = merger.exp(exp).children.e0;
632     unsigned e1 = merger.exp(exp).children.e1;
633     genInvariants(merger, codegen, rewriter, op, e0, ldx, hoist);
634     genInvariants(merger, codegen, rewriter, op, e1, ldx, hoist);
635   }
636 }
637 
638 /// Generates initialization code for the subsequent loop sequence at
639 /// current index level. Returns true if the loop sequence needs to
640 /// maintain the universal index.
641 static bool genInit(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
642                     linalg::GenericOp op, std::vector<unsigned> &topSort,
643                     unsigned at, llvm::BitVector &inits) {
644   bool needsUniv = false;
645   Location loc = op.getLoc();
646   unsigned idx = topSort[at];
647 
648   // Initialize sparse positions.
649   for (unsigned b = 0, be = inits.size(); b < be; b++) {
650     if (inits[b]) {
651       unsigned tensor = merger.tensor(b);
652       assert(idx == merger.index(b));
653       if (merger.isDim(b, Dim::kSparse)) {
654         // Initialize sparse index.
655         unsigned pat = at;
656         for (; pat != 0; pat--) {
657           if (codegen.pidxs[tensor][topSort[pat - 1]])
658             break;
659         }
660         Value ptr = codegen.pointers[tensor][idx];
661         Value one = rewriter.create<ConstantIndexOp>(loc, 1);
662         Value p0 = (pat == 0) ? rewriter.create<ConstantIndexOp>(loc, 0)
663                               : codegen.pidxs[tensor][topSort[pat - 1]];
664         codegen.pidxs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p0);
665         Value p1 = rewriter.create<AddIOp>(loc, p0, one);
666         codegen.highs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p1);
667       } else {
668         // Dense index still in play.
669         needsUniv = true;
670       }
671     }
672   }
673 
674   // Initialize the universal dense index.
675   codegen.loops[idx] = rewriter.create<ConstantIndexOp>(loc, 0);
676   return needsUniv;
677 }
678 
679 /// Returns vectorization strategy. Any implicit inner loop in the Linalg
680 /// operation is a candidate. Whether it is actually converted to SIMD code
681 /// depends on the requested strategy.
682 static bool isVectorFor(CodeGen &codegen, bool isInner, bool isSparse) {
683   switch (codegen.options.vectorizationStrategy) {
684   case SparseVectorizationStrategy::kNone:
685     return false;
686   case SparseVectorizationStrategy::kDenseInnerLoop:
687     return isInner && !isSparse;
688   case SparseVectorizationStrategy::kAnyStorageInnerLoop:
689     return isInner;
690   }
691   llvm_unreachable("unexpected vectorization strategy");
692 }
693 
694 /// Returns parallelization strategy. Any implicit loop in the Linalg operation
695 /// that is marked "parallel" is a candidate. Whether it is actually converted
696 /// to a parallel operation depends on the requested strategy.
697 static bool isParallelFor(CodeGen &codegen, bool isOuter, bool isReduction,
698                           bool isSparse, bool isVector) {
699   switch (codegen.options.parallelizationStrategy) {
700   case SparseParallelizationStrategy::kNone:
701     return false;
702   case SparseParallelizationStrategy::kDenseOuterLoop:
703     return isOuter && !isSparse && !isReduction && !isVector;
704   case SparseParallelizationStrategy::kAnyStorageOuterLoop:
705     return isOuter && !isReduction && !isVector;
706   case SparseParallelizationStrategy::kDenseAnyLoop:
707     return !isSparse && !isReduction && !isVector;
708   case SparseParallelizationStrategy::kAnyStorageAnyLoop:
709     return !isReduction && !isVector;
710   }
711   llvm_unreachable("unexpected parallelization strategy");
712 }
713 
714 /// Checks unit strides for dense tensors. The iteration graph may have ignored
715 /// dense access patterns in order to avoid cycles (sparse access patterns are
716 /// always placed innermost), but that means dense access has become strided.
717 /// For now, we reject vectorization of such cases.
718 /// TODO: implement strided load/stores on dense arrays
719 static bool denseUnitStrides(Merger &merger, linalg::GenericOp op,
720                              unsigned idx) {
721   for (OpOperand *t : op.getInputAndOutputOperands()) {
722     if (!getSparseTensorEncoding(t->get().getType())) {
723       auto map = op.getTiedIndexingMap(t);
724       for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
725         if (map.getDimPosition(d) == idx && d != rank - 1)
726           return false;
727       }
728     }
729   }
730   return true;
731 }
732 
733 /// Generates a for-loop on a single index.
734 static Operation *genFor(Merger &merger, CodeGen &codegen,
735                          PatternRewriter &rewriter, linalg::GenericOp op,
736                          bool isOuter, bool isInner, unsigned idx,
737                          llvm::BitVector &indices) {
738   unsigned fb = indices.find_first();
739   unsigned tensor = merger.tensor(fb);
740   assert(idx == merger.index(fb));
741   auto iteratorTypes = op.iterator_types().getValue();
742   bool isReduction = linalg::isReductionIteratorType(iteratorTypes[idx]);
743   bool isSparse = merger.isDim(fb, Dim::kSparse);
744   bool isVector = isVectorFor(codegen, isInner, isSparse) &&
745                   denseUnitStrides(merger, op, idx);
746   bool isParallel =
747       isParallelFor(codegen, isOuter, isReduction, isSparse, isVector);
748 
749   // Prepare vector length.
750   if (isVector)
751     codegen.curVecLength = codegen.options.vectorLength;
752 
753   // Loop bounds and increment.
754   Location loc = op.getLoc();
755   Value lo = isSparse ? codegen.pidxs[tensor][idx] : codegen.loops[idx];
756   Value hi = isSparse ? codegen.highs[tensor][idx] : codegen.sizes[idx];
757   Value step = rewriter.create<ConstantIndexOp>(loc, codegen.curVecLength);
758 
759   // Emit a parallel loop.
760   if (isParallel) {
761     assert(!isVector);
762     scf::ParallelOp parOp = rewriter.create<scf::ParallelOp>(loc, lo, hi, step);
763     if (isSparse)
764       codegen.pidxs[tensor][idx] = parOp.getInductionVars()[0];
765     else
766       codegen.loops[idx] = parOp.getInductionVars()[0];
767     rewriter.setInsertionPointToStart(parOp.getBody());
768     return parOp;
769   }
770 
771   // Emit a sequential loop, potentially with a scalarized reduction.
772   bool scalarRed = isInner && codegen.redExp != -1u;
773   SmallVector<Value, 4> operands;
774   if (scalarRed) {
775     Value load = genReductionStart(merger, codegen, rewriter, op);
776     operands.push_back(load);
777   }
778   scf::ForOp forOp = rewriter.create<scf::ForOp>(loc, lo, hi, step, operands);
779   if (scalarRed) {
780     codegen.redVal = merger.exp(codegen.redExp).val =
781         forOp.getRegionIterArgs().front();
782   }
783   // Assign induction variable to sparse or dense index.
784   Value iv = forOp.getInductionVar();
785   if (isSparse)
786     codegen.pidxs[tensor][idx] = iv;
787   else
788     codegen.loops[idx] = iv;
789   rewriter.setInsertionPointToStart(forOp.getBody());
790   // Share vector iteration mask between all subsequent loads/stores.
791   if (isVector)
792     codegen.curVecMask = genVectorMask(codegen, rewriter, iv, lo, hi, step);
793   return forOp;
794 }
795 
796 /// Emit a while-loop for co-iteration over multiple indices.
797 static Operation *genWhile(Merger &merger, CodeGen &codegen,
798                            PatternRewriter &rewriter, linalg::GenericOp op,
799                            unsigned idx, bool needsUniv,
800                            llvm::BitVector &indices) {
801   SmallVector<Type, 4> types;
802   SmallVector<Value, 4> operands;
803   // Construct the while-loop with a parameter for each index.
804   Type indexType = rewriter.getIndexType();
805   for (unsigned b = 0, be = indices.size(); b < be; b++) {
806     if (indices[b] && merger.isDim(b, Dim::kSparse)) {
807       unsigned tensor = merger.tensor(b);
808       assert(idx == merger.index(b));
809       types.push_back(indexType);
810       assert(codegen.pidxs[tensor][idx].getType().isa<IndexType>() &&
811              "type mismatch for sparse index");
812       operands.push_back(codegen.pidxs[tensor][idx]);
813     }
814   }
815   if (needsUniv) {
816     types.push_back(indexType);
817     assert(codegen.loops[idx].getType().isa<IndexType>() &&
818            "type mismatch for universal index");
819     operands.push_back(codegen.loops[idx]);
820   }
821   Location loc = op.getLoc();
822   scf::WhileOp whileOp = rewriter.create<scf::WhileOp>(loc, types, operands);
823   Block *before = rewriter.createBlock(&whileOp.before(), {}, types);
824   Block *after = rewriter.createBlock(&whileOp.after(), {}, types);
825 
826   // Build the "before" region, which effectively consists
827   // of a conjunction of "i < upper" tests on all induction.
828   rewriter.setInsertionPointToStart(&whileOp.before().front());
829   Value cond;
830   unsigned o = 0;
831   for (unsigned b = 0, be = indices.size(); b < be; b++) {
832     if (indices[b] && merger.isDim(b, Dim::kSparse)) {
833       unsigned tensor = merger.tensor(b);
834       assert(idx == merger.index(b));
835       Value op1 = before->getArgument(o);
836       Value op2 = codegen.highs[tensor][idx];
837       Value opc = rewriter.create<CmpIOp>(loc, CmpIPredicate::ult, op1, op2);
838       cond = cond ? rewriter.create<AndOp>(loc, cond, opc) : opc;
839       codegen.pidxs[tensor][idx] = after->getArgument(o++);
840     }
841   }
842   if (needsUniv)
843     codegen.loops[idx] = after->getArgument(o++);
844   assert(o == operands.size());
845   rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments());
846   rewriter.setInsertionPointToStart(&whileOp.after().front());
847   return whileOp;
848 }
849 
850 /// Generates a for-loop or a while-loop, depending on whether it implements
851 /// singleton iteration or co-iteration over the given conjunction.
852 static Operation *genLoop(Merger &merger, CodeGen &codegen,
853                           PatternRewriter &rewriter, linalg::GenericOp op,
854                           std::vector<unsigned> &topSort, unsigned at,
855                           bool needsUniv, llvm::BitVector &indices) {
856   unsigned idx = topSort[at];
857   if (indices.count() == 1) {
858     bool isOuter = at == 0;
859     bool isInner = at == topSort.size() - 1;
860     return genFor(merger, codegen, rewriter, op, isOuter, isInner, idx,
861                   indices);
862   }
863   genReductionEnd(merger, codegen, rewriter, op); // cannot chain
864   return genWhile(merger, codegen, rewriter, op, idx, needsUniv, indices);
865 }
866 
867 /// Generates the local variables for this loop, consisting of the sparse
868 /// indices, restored universal dense index, and dense positions.
869 static void genLocals(Merger &merger, CodeGen &codegen,
870                       PatternRewriter &rewriter, linalg::GenericOp op,
871                       std::vector<unsigned> &topSort, unsigned at,
872                       bool needsUniv, llvm::BitVector &locals) {
873   Location loc = op.getLoc();
874   unsigned idx = topSort[at];
875 
876   // Initialize sparse indices.
877   Value min;
878   for (unsigned b = 0, be = locals.size(); b < be; b++) {
879     if (locals[b] && merger.isDim(b, Dim::kSparse)) {
880       unsigned tensor = merger.tensor(b);
881       assert(idx == merger.index(b));
882       Value ptr = codegen.indices[tensor][idx];
883       Value s = codegen.pidxs[tensor][idx];
884       Value load = genLoad(codegen, rewriter, loc, ptr, s);
885       codegen.idxs[tensor][idx] = load;
886       if (!needsUniv) {
887         if (min) {
888           Value cmp =
889               rewriter.create<CmpIOp>(loc, CmpIPredicate::ult, load, min);
890           min = rewriter.create<SelectOp>(loc, cmp, load, min);
891         } else {
892           min = load;
893         }
894       }
895     }
896   }
897 
898   // Merge dense universal index over minimum.
899   if (min) {
900     assert(!needsUniv);
901     codegen.loops[idx] = min;
902   }
903 
904   // Initialize dense positions. Note that we generate dense indices of the
905   // output tensor unconditionally, since they may not appear in the lattice,
906   // but may be needed for linearized codegen.
907   for (unsigned b = 0, be = locals.size(); b < be; b++) {
908     if ((locals[b] || merger.isOutTensor(b, idx)) &&
909         merger.isDim(b, Dim::kDense)) {
910       unsigned tensor = merger.tensor(b);
911       assert(idx == merger.index(b));
912       unsigned pat = at;
913       for (; pat != 0; pat--)
914         if (codegen.pidxs[tensor][topSort[pat - 1]])
915           break;
916       Value p = (pat == 0) ? rewriter.create<ConstantIndexOp>(loc, 0)
917                            : codegen.pidxs[tensor][topSort[pat - 1]];
918       codegen.pidxs[tensor][idx] = genAddress(
919           codegen, rewriter, loc, codegen.sizes[idx], p, codegen.loops[idx]);
920     }
921   }
922 }
923 
924 /// Generates the induction structure for a while-loop.
925 static void genWhileInduction(Merger &merger, CodeGen &codegen,
926                               PatternRewriter &rewriter, linalg::GenericOp op,
927                               unsigned idx, bool needsUniv,
928                               llvm::BitVector &induction, ResultRange results) {
929   Location loc = op.getLoc();
930   unsigned o = 0;
931   SmallVector<Value, 4> operands;
932   Value one = rewriter.create<ConstantIndexOp>(loc, 1);
933   for (unsigned b = 0, be = induction.size(); b < be; b++) {
934     if (induction[b] && merger.isDim(b, Dim::kSparse)) {
935       unsigned tensor = merger.tensor(b);
936       assert(idx == merger.index(b));
937       Value op1 = codegen.idxs[tensor][idx];
938       Value op2 = codegen.loops[idx];
939       Value op3 = codegen.pidxs[tensor][idx];
940       Value cmp = rewriter.create<CmpIOp>(loc, CmpIPredicate::eq, op1, op2);
941       Value add = rewriter.create<AddIOp>(loc, op3, one);
942       operands.push_back(rewriter.create<SelectOp>(loc, cmp, add, op3));
943       codegen.pidxs[tensor][idx] = results[o++];
944     }
945   }
946   if (needsUniv) {
947     operands.push_back(rewriter.create<AddIOp>(loc, codegen.loops[idx], one));
948     codegen.loops[idx] = results[o++];
949   }
950   assert(o == operands.size());
951   rewriter.create<scf::YieldOp>(loc, operands);
952 }
953 
954 /// Generates a single if-statement within a while-loop.
955 static scf::IfOp genIf(Merger &merger, CodeGen &codegen,
956                        PatternRewriter &rewriter, linalg::GenericOp op,
957                        unsigned idx, llvm::BitVector &conditions) {
958   Location loc = op.getLoc();
959   Value cond;
960   for (unsigned b = 0, be = conditions.size(); b < be; b++) {
961     if (conditions[b]) {
962       unsigned tensor = merger.tensor(b);
963       assert(idx == merger.index(b));
964       Value clause;
965       if (merger.isDim(b, Dim::kSparse)) {
966         Value op1 = codegen.idxs[tensor][idx];
967         Value op2 = codegen.loops[idx];
968         clause = rewriter.create<CmpIOp>(loc, CmpIPredicate::eq, op1, op2);
969       } else {
970         clause = rewriter.create<ConstantIntOp>(loc, 1, 1); // true
971       }
972       cond = cond ? rewriter.create<AndOp>(loc, cond, clause) : clause;
973     }
974   }
975   scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, cond, /*else*/ true);
976   rewriter.setInsertionPointToStart(&ifOp.thenRegion().front());
977   return ifOp;
978 }
979 
980 /// Recursively generates code while computing iteration lattices in order
981 /// to manage the complexity of implementing co-iteration over unions
982 /// and intersections of sparse iterations spaces.
983 static void genStmt(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
984                     linalg::GenericOp op, std::vector<unsigned> &topSort,
985                     unsigned exp, unsigned at) {
986   // At each leaf, assign remaining tensor (sub)expression to output tensor.
987   if (at == topSort.size()) {
988     OpOperand *lhs = op.getOutputOperand(0);
989     Value rhs = genExp(merger, codegen, rewriter, op, exp);
990     genTensorStore(merger, codegen, rewriter, op, lhs, rhs);
991     return;
992   }
993   assert(codegen.curVecLength == 1);
994 
995   // Construct iteration lattices for current loop index, with L0 at top.
996   // Then emit initialization code for the loop sequence at this level.
997   // We maintain the universal dense index if dense indices are still
998   // in play for a non-singleton loop sequence.
999   Location loc = op.getLoc();
1000   unsigned idx = topSort[at];
1001   unsigned lts = merger.optimizeSet(merger.buildLattices(exp, idx));
1002   unsigned lsize = merger.set(lts).size();
1003   assert(lsize != 0);
1004   unsigned l0 = merger.set(lts)[0];
1005   unsigned ldx = at == 0 ? -1u : topSort[at - 1];
1006   genInvariants(merger, codegen, rewriter, op, exp, ldx, /*hoist=*/true);
1007   bool needsUniv = false;
1008   if (genInit(merger, codegen, rewriter, op, topSort, at,
1009               merger.lat(l0).bits)) {
1010     // Maintain the universal index only if it is actually
1011     // consumed by a subsequent lattice point.
1012     for (unsigned i = 1; i < lsize; i++) {
1013       unsigned li = merger.set(lts)[i];
1014       if (!merger.hasAnyDimOf(merger.lat(li).simple, Dim::kSparse)) {
1015         needsUniv = true;
1016         break;
1017       }
1018     }
1019   }
1020 
1021   // Emit a loop for every lattice point L0 >= Li.
1022   for (unsigned i = 0; i < lsize; i++) {
1023     unsigned li = merger.set(lts)[i];
1024 
1025     // Emit loop.
1026     codegen.curVecLength = 1;
1027     llvm::BitVector indices = merger.lat(li).simple;
1028     Operation *loop =
1029         genLoop(merger, codegen, rewriter, op, topSort, at, needsUniv, indices);
1030     genLocals(merger, codegen, rewriter, op, topSort, at, needsUniv,
1031               merger.lat(li).bits);
1032 
1033     // Visit all lattices points with Li >= Lj to generate the
1034     // loop-body, possibly with if statements for coiteration.
1035     bool isWhile = dyn_cast<scf::WhileOp>(loop) != nullptr;
1036     for (unsigned j = 0; j < lsize; j++) {
1037       unsigned lj = merger.set(lts)[j];
1038       unsigned ej = merger.lat(lj).exp;
1039       if (li == lj || merger.latGT(li, lj)) {
1040         // Recurse into body of each branch.
1041         if (isWhile) {
1042           scf::IfOp ifOp =
1043               genIf(merger, codegen, rewriter, op, idx, merger.lat(lj).simple);
1044           genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1);
1045           rewriter.setInsertionPointToStart(&ifOp.elseRegion().front());
1046         } else {
1047           genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1);
1048         }
1049       }
1050     }
1051 
1052     // Wrap-up induction and restore insertion point.
1053     if (isWhile) {
1054       scf::WhileOp whileOp = cast<scf::WhileOp>(loop);
1055       rewriter.setInsertionPointToEnd(&whileOp.after().front());
1056       genWhileInduction(merger, codegen, rewriter, op, idx, needsUniv,
1057                         merger.lat(li).bits, whileOp.results());
1058     } else {
1059       needsUniv = false;
1060       if (codegen.redVal) {
1061         rewriter.create<scf::YieldOp>(loc, codegen.redVal);
1062         codegen.redVal = loop->getResult(0);
1063       }
1064     }
1065     rewriter.setInsertionPointAfter(loop);
1066   }
1067 
1068   // Wrap-up loop sequence.
1069   codegen.curVecLength = 1;
1070   genReductionEnd(merger, codegen, rewriter, op);
1071   genInvariants(merger, codegen, rewriter, op, exp, ldx, /*hoist=*/false);
1072   codegen.loops[idx] = Value();
1073 }
1074 
1075 /// Converts the result computed by the sparse kernel into the required form.
1076 static void genResult(Merger &merger, CodeGen &codegen,
1077                       PatternRewriter &rewriter, linalg::GenericOp op) {
1078   Location loc = op.getLoc();
1079   OpOperand *lhs = op.getOutputOperand(0);
1080   Type resType = lhs->get().getType();
1081   unsigned tensor = lhs->getOperandNumber();
1082   auto map = op.getTiedIndexingMap(lhs);
1083   auto enc = getSparseTensorEncoding(resType);
1084   Value result = codegen.buffers.back(); // value array
1085   if (enc) {
1086     // The sparse annotation unambigiously defines the arrays needed
1087     // to "reconstruct" the sparse tensor from the storage scheme
1088     // (even though lowering should never need this eventually).
1089     SmallVector<Value, 4> args;
1090     for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
1091       unsigned idx = map.getDimPosition(perm(enc, d));
1092       if (merger.isDim(tensor, idx, Dim::kSparse)) {
1093         args.push_back(codegen.pointers[tensor][idx]);
1094         args.push_back(codegen.indices[tensor][idx]);
1095       }
1096     }
1097     args.push_back(result);
1098     result = rewriter.create<ToTensorOp>(loc, resType, args);
1099   } else {
1100     // To "reconstruct" an non-annotated tensor, sipmly load it
1101     // from the bufferized value.
1102     result = rewriter.create<memref::TensorLoadOp>(loc, resType, result);
1103   }
1104   rewriter.replaceOp(op, result);
1105 }
1106 
1107 namespace {
1108 
1109 /// Sparse rewriting rule for generic Lingalg operation.
1110 struct GenericOpSparsifier : public OpRewritePattern<linalg::GenericOp> {
1111 public:
1112   GenericOpSparsifier(MLIRContext *context, SparsificationOptions o)
1113       : OpRewritePattern<linalg::GenericOp>(context), options(o) {}
1114 
1115   LogicalResult matchAndRewrite(linalg::GenericOp op,
1116                                 PatternRewriter &rewriter) const override {
1117     // Detects sparse annotations and translate the per-dimension sparsity
1118     // information for all tensors to loop indices in the kernel.
1119     assert(op.getNumOutputs() == 1);
1120     unsigned numTensors = op.getNumInputsAndOutputs();
1121     unsigned numLoops = op.iterator_types().getValue().size();
1122     Merger merger(numTensors, numLoops);
1123     if (!findSparseAnnotations(merger, op))
1124       return failure();
1125 
1126     // Computes a topologically sorted iteration graph to ensure
1127     // tensors are visited in natural index order. Fails on cycles.
1128     // This assumes that higher-level passes have already put the
1129     // tensors in each tensor expression in a feasible order.
1130     std::vector<unsigned> topSort;
1131     if (!computeIterationGraph(merger, op, topSort, /*sparseOnly=*/false) &&
1132         !computeIterationGraph(merger, op, topSort, /*sparseOnly=*/true))
1133       return failure();
1134 
1135     // Builds the tensor expression for the Linalg operation in SSA form.
1136     Optional<unsigned> exp = merger.buildTensorExpFromLinalg(op);
1137     if (!exp.hasValue())
1138       return failure();
1139 
1140     // Rejects an inadmissable tensor expression.
1141     if (!isAdmissableTensorExp(merger, op, exp.getValue()))
1142       return failure();
1143 
1144     // Recursively generates code.
1145     CodeGen codegen(options, numTensors, numLoops);
1146     if (!genBuffers(merger, codegen, rewriter, op))
1147       return failure(); // could not bufferize
1148     genStmt(merger, codegen, rewriter, op, topSort, exp.getValue(), 0);
1149     genResult(merger, codegen, rewriter, op);
1150     return success();
1151   }
1152 
1153 private:
1154   /// Options to control sparse code generation.
1155   SparsificationOptions options;
1156 };
1157 
1158 } // namespace
1159 
1160 /// Populates the given patterns list with rewriting rules required for
1161 /// the sparsification of linear algebra operations.
1162 void mlir::populateSparsificationPatterns(
1163     RewritePatternSet &patterns, const SparsificationOptions &options) {
1164   patterns.add<GenericOpSparsifier>(patterns.getContext(), options);
1165 }
1166