196a23911SAart Bik //===- Sparsification.cpp - Implementation of sparsification --------------===//
2a2c9d4bbSAart Bik //
3a2c9d4bbSAart Bik // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4a2c9d4bbSAart Bik // See https://llvm.org/LICENSE.txt for license information.
5a2c9d4bbSAart Bik // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6a2c9d4bbSAart Bik //
7a2c9d4bbSAart Bik //===----------------------------------------------------------------------===//
8a2c9d4bbSAart Bik //
996a23911SAart Bik // This file implements lowering sparse tensor types to actual sparse code.
10a2c9d4bbSAart Bik //
11a2c9d4bbSAart Bik // The concept of letting a compiler generate sparse code automatically was
12a2c9d4bbSAart Bik // pioneered for dense linear algebra code in Fortran by [Bik96] in MT1 and
13a2c9d4bbSAart Bik // formalized to tensor algebra by [Kjolstad17,20] for the Sparse Tensor
14a2c9d4bbSAart Bik // Algebra Compiler (TACO). The implementation in this file closely follows
15a2c9d4bbSAart Bik // the "sparse iteration theory" that forms the foundation of TACO. A rewriting
16a2c9d4bbSAart Bik // rule is applied to each tensor expression in linalg (MLIR's tensor index
17a2c9d4bbSAart Bik // notation) where the sparsity of tensors is indicated with annotation using
18a2c9d4bbSAart Bik // a per-dimension specification of sparse/dense storage together with a
19a2c9d4bbSAart Bik // specification of the order on the dimensions. Subsequently, a topologically
20a2c9d4bbSAart Bik // sorted iteration graph, reflecting the required order on indices with respect
21a2c9d4bbSAart Bik // to the dimensions of each tensor, is constructed to ensure that all tensors
22a2c9d4bbSAart Bik // are visited in natural index order. Next, iteration lattices are constructed
23a2c9d4bbSAart Bik // for the tensor expression for every index in topological order. Each
24a2c9d4bbSAart Bik // iteration lattice point consists of a conjunction of tensor indices together
25a2c9d4bbSAart Bik // with a tensor (sub)expression that needs to be evaluated for that
26a2c9d4bbSAart Bik // conjunction. Within the lattice, iteration points are ordered according to
27a2c9d4bbSAart Bik // the way indices are exhausted. As such these iteration lattices drive actual
28a2c9d4bbSAart Bik // sparse code generation, which consists of a tedious but relatively
29a2c9d4bbSAart Bik // straightforward one-to-one mapping from iteration lattices to combinations
30a2c9d4bbSAart Bik // of for-loops, while-loops, and if-statements.
31a2c9d4bbSAart Bik //
32a2c9d4bbSAart Bik // [Bik96] Aart J.C. Bik. Compiler Support for Sparse Matrix Computations.
33a2c9d4bbSAart Bik // PhD thesis, Leiden University, May 1996 (aartbik.com/sparse.php).
34a2c9d4bbSAart Bik // [Kjolstad17] Fredrik Berg Kjolstad, Shoaib Ashraf Kamil, Stephen Chou,
35a2c9d4bbSAart Bik // David Lugato, and Saman Amarasinghe. The Tensor Algebra Compiler.
36a2c9d4bbSAart Bik // Proceedings of the ACM on Programming Languages, October 2017.
37a2c9d4bbSAart Bik // [Kjolstad20] Fredrik Berg Kjolstad. Sparse Tensor Algebra Compilation.
38a2c9d4bbSAart Bik // PhD thesis, MIT, February, 2020 (tensor-compiler.org).
39a2c9d4bbSAart Bik //
40a2c9d4bbSAart Bik // Implementation detail: We use llvm::SmallVector for vectors with
41a2c9d4bbSAart Bik // variable lengths and std::vector for vectors with fixed lengths.
42a2c9d4bbSAart Bik //===----------------------------------------------------------------------===//
43a2c9d4bbSAart Bik 
44a2c9d4bbSAart Bik #include "mlir/Dialect/Linalg/IR/LinalgOps.h"
45a2c9d4bbSAart Bik #include "mlir/Dialect/Linalg/Utils/Utils.h"
46a2c9d4bbSAart Bik #include "mlir/Dialect/SCF/SCF.h"
47a2c9d4bbSAart Bik #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
48a2c9d4bbSAart Bik #include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
49a2c9d4bbSAart Bik #include "mlir/Dialect/StandardOps/IR/Ops.h"
50a2c9d4bbSAart Bik #include "mlir/Dialect/Vector/VectorOps.h"
51a2c9d4bbSAart Bik #include "mlir/IR/Matchers.h"
5296a23911SAart Bik #include "mlir/IR/TensorEncoding.h"
53a2c9d4bbSAart Bik #include "llvm/ADT/SmallBitVector.h"
54a2c9d4bbSAart Bik 
55a2c9d4bbSAart Bik using namespace mlir;
5696a23911SAart Bik using namespace mlir::sparse_tensor;
57a2c9d4bbSAart Bik 
58a2c9d4bbSAart Bik namespace {
59a2c9d4bbSAart Bik 
60a2c9d4bbSAart Bik enum class Kind { kTensor, kInvariant, kMulF, kMulI, kAddF, kAddI };
6196a23911SAart Bik enum class Dim { kSparse, kDense, kSingle, kUndef };
62a2c9d4bbSAart Bik 
63a2c9d4bbSAart Bik /// Tensor expression. Represents a MLIR expression in tensor index notation.
64a2c9d4bbSAart Bik /// For tensors, e0 denotes the tensor index. For invariants, the IR value is
65a2c9d4bbSAart Bik /// stored directly. For binary operations, e0 and e1 denote the index of the
66a2c9d4bbSAart Bik /// children tensor expressions.
67a2c9d4bbSAart Bik struct TensorExp {
68a2c9d4bbSAart Bik   TensorExp(Kind k, unsigned x, unsigned y, Value v)
69a2c9d4bbSAart Bik       : kind(k), e0(x), e1(y), val(v) {
70a2c9d4bbSAart Bik     assert((kind == Kind::kTensor && e0 != -1u && e1 == -1u && !val) ||
71a2c9d4bbSAart Bik            (kind == Kind::kInvariant && e0 == -1u && e1 == -1u && val) ||
72a2c9d4bbSAart Bik            (kind >= Kind::kMulF && e0 != -1u && e1 != -1u && !val));
73a2c9d4bbSAart Bik   }
74a2c9d4bbSAart Bik   Kind kind;
75a2c9d4bbSAart Bik   /// Indices of children expression(s).
76a2c9d4bbSAart Bik   unsigned e0;
77a2c9d4bbSAart Bik   unsigned e1;
78a2c9d4bbSAart Bik   /// Direct link to IR for an invariant. During code generation,
79a2c9d4bbSAart Bik   /// field is used to cache "hoisted" loop invariant tensor loads.
80a2c9d4bbSAart Bik   Value val;
81a2c9d4bbSAart Bik };
82a2c9d4bbSAart Bik 
83a2c9d4bbSAart Bik /// Lattice point. Each lattice point consists of a conjunction of tensor
84a2c9d4bbSAart Bik /// loop indices (encoded in a bitvector) and the index of the corresponding
85a2c9d4bbSAart Bik /// tensor expression.
86a2c9d4bbSAart Bik struct LatPoint {
87a2c9d4bbSAart Bik   LatPoint(unsigned n, unsigned e, unsigned b) : bits(n, false), exp(e) {
88a2c9d4bbSAart Bik     bits.set(b);
89a2c9d4bbSAart Bik   }
90a2c9d4bbSAart Bik   LatPoint(const llvm::BitVector &b, unsigned e) : bits(b), exp(e) {}
91a2c9d4bbSAart Bik   /// Conjunction of tensor loop indices as bitvector. This represents
92a2c9d4bbSAart Bik   /// all indices involved in the tensor expression
93a2c9d4bbSAart Bik   llvm::BitVector bits;
94a2c9d4bbSAart Bik   /// Simplified conjunction of tensor loop indices as bitvector. This
95a2c9d4bbSAart Bik   /// represents a simplified condition under which this tensor expression
96a2c9d4bbSAart Bik   /// must execute. Pre-computed during codegen to avoid repeated eval.
97a2c9d4bbSAart Bik   llvm::BitVector simple;
98a2c9d4bbSAart Bik   /// Index of the tensor expresssion.
99a2c9d4bbSAart Bik   unsigned exp;
100a2c9d4bbSAart Bik };
101a2c9d4bbSAart Bik 
102a2c9d4bbSAart Bik /// A class to handle all iteration lattice operations. This class abstracts
103a2c9d4bbSAart Bik /// away from some implementation details of storing iteration lattices and
104a2c9d4bbSAart Bik /// tensor expressions. This allows for fine-tuning performance characteristics
105a2c9d4bbSAart Bik /// independently from the basic algorithm if bottlenecks are identified.
106a2c9d4bbSAart Bik class Merger {
107a2c9d4bbSAart Bik public:
108a2c9d4bbSAart Bik   /// Constructs a merger for the given number of tensors and loops. The
109a2c9d4bbSAart Bik   /// user supplies the number of tensors involved in the kernel, with the
110a2c9d4bbSAart Bik   /// last tensor in this set denoting the output tensor. The merger adds an
111a2c9d4bbSAart Bik   /// additional synthetic tensor at the end of this set to represent all
112a2c9d4bbSAart Bik   /// invariant expressions in the kernel.
113a2c9d4bbSAart Bik   Merger(unsigned t, unsigned l)
114a2c9d4bbSAart Bik       : outTensor(t - 1), numTensors(t + 1), numLoops(l),
115a2c9d4bbSAart Bik         dims(t + 1, std::vector<Dim>(l, Dim::kUndef)) {}
116a2c9d4bbSAart Bik 
117a2c9d4bbSAart Bik   /// Adds a tensor expression. Returns its index.
118a2c9d4bbSAart Bik   unsigned addExp(Kind k, unsigned e0, unsigned e1 = -1u, Value v = Value()) {
119a2c9d4bbSAart Bik     unsigned e = tensorExps.size();
120a2c9d4bbSAart Bik     tensorExps.push_back(TensorExp(k, e0, e1, v));
121a2c9d4bbSAart Bik     return e;
122a2c9d4bbSAart Bik   }
123a2c9d4bbSAart Bik   unsigned addExp(Kind k, Value v) { return addExp(k, -1u, -1u, v); }
124a2c9d4bbSAart Bik 
125a2c9d4bbSAart Bik   /// Adds an iteration lattice point. Returns its index.
126a2c9d4bbSAart Bik   unsigned addLat(unsigned t, unsigned i, unsigned e) {
127a2c9d4bbSAart Bik     assert(t < numTensors && i < numLoops);
128a2c9d4bbSAart Bik     unsigned p = latPoints.size();
129a2c9d4bbSAart Bik     latPoints.push_back(LatPoint(numLoops * numTensors, e, numTensors * i + t));
130a2c9d4bbSAart Bik     return p;
131a2c9d4bbSAart Bik   }
132a2c9d4bbSAart Bik 
133a2c9d4bbSAart Bik   /// Adds a new, initially empty, set. Returns its index.
134a2c9d4bbSAart Bik   unsigned addSet() {
135a2c9d4bbSAart Bik     unsigned s = latSets.size();
136a2c9d4bbSAart Bik     latSets.emplace_back(SmallVector<unsigned, 16>());
137a2c9d4bbSAart Bik     return s;
138a2c9d4bbSAart Bik   }
139a2c9d4bbSAart Bik 
140a2c9d4bbSAart Bik   /// Computes a single conjunction of two lattice points by taking the "union"
141a2c9d4bbSAart Bik   /// of loop indices (effectively constructing a larger "intersection" of those
142a2c9d4bbSAart Bik   /// indices) with a newly constructed tensor (sub)expression of given kind.
143a2c9d4bbSAart Bik   /// Returns the index of the new lattice point.
144a2c9d4bbSAart Bik   unsigned conjLatPoint(Kind kind, unsigned p0, unsigned p1) {
145a2c9d4bbSAart Bik     unsigned p = latPoints.size();
146a2c9d4bbSAart Bik     llvm::BitVector nb = llvm::BitVector(latPoints[p0].bits);
147a2c9d4bbSAart Bik     nb |= latPoints[p1].bits;
148a2c9d4bbSAart Bik     unsigned e = addExp(kind, latPoints[p0].exp, latPoints[p1].exp);
149a2c9d4bbSAart Bik     latPoints.push_back(LatPoint(nb, e));
150a2c9d4bbSAart Bik     return p;
151a2c9d4bbSAart Bik   }
152a2c9d4bbSAart Bik 
153a2c9d4bbSAart Bik   /// Conjunctive merge of two lattice sets L0 and L1 is conjunction of
154a2c9d4bbSAart Bik   /// cartesian product. Returns the index of the new set.
155a2c9d4bbSAart Bik   unsigned takeConj(Kind kind, unsigned s0, unsigned s1) {
156a2c9d4bbSAart Bik     unsigned s = addSet();
157a2c9d4bbSAart Bik     for (unsigned p0 : latSets[s0])
158a2c9d4bbSAart Bik       for (unsigned p1 : latSets[s1])
159a2c9d4bbSAart Bik         latSets[s].push_back(conjLatPoint(kind, p0, p1));
160a2c9d4bbSAart Bik     return s;
161a2c9d4bbSAart Bik   }
162a2c9d4bbSAart Bik 
163a2c9d4bbSAart Bik   /// Disjunctive merge of two lattice sets L0 and L1 is (L0 /\_op L1, L0, L1).
164a2c9d4bbSAart Bik   /// Returns the index of the new set.
165a2c9d4bbSAart Bik   unsigned takeDisj(Kind kind, unsigned s0, unsigned s1) {
166a2c9d4bbSAart Bik     unsigned s = takeConj(kind, s0, s1);
167a2c9d4bbSAart Bik     for (unsigned p : latSets[s0])
168a2c9d4bbSAart Bik       latSets[s].push_back(p);
169a2c9d4bbSAart Bik     for (unsigned p : latSets[s1])
170a2c9d4bbSAart Bik       latSets[s].push_back(p);
171a2c9d4bbSAart Bik     return s;
172a2c9d4bbSAart Bik   }
173a2c9d4bbSAart Bik 
174a2c9d4bbSAart Bik   /// Optimizes the iteration lattice points in the given set. This
175a2c9d4bbSAart Bik   /// method should be called right before code generation to avoid
176a2c9d4bbSAart Bik   /// generating redundant loops and conditions.
177a2c9d4bbSAart Bik   unsigned optimizeSet(unsigned s0) {
178a2c9d4bbSAart Bik     unsigned s = addSet();
179a2c9d4bbSAart Bik     assert(latSets[s0].size() != 0);
180a2c9d4bbSAart Bik     unsigned p0 = latSets[s0][0];
181a2c9d4bbSAart Bik     for (unsigned p1 : latSets[s0]) {
182a2c9d4bbSAart Bik       bool add = true;
183a2c9d4bbSAart Bik       if (p0 != p1) {
184a2c9d4bbSAart Bik         // Is this a straightforward copy?
185a2c9d4bbSAart Bik         unsigned e = latPoints[p1].exp;
186a2c9d4bbSAart Bik         if (exp(e).kind == Kind::kTensor && exp(e).e0 == outTensor)
187a2c9d4bbSAart Bik           continue;
188a2c9d4bbSAart Bik         // Conjunction already covered?
189a2c9d4bbSAart Bik         for (unsigned p2 : latSets[s]) {
190a2c9d4bbSAart Bik           assert(!latGT(p1, p2)); // Lj => Li would be bad
191a2c9d4bbSAart Bik           if (onlyDenseDiff(p2, p1)) {
192a2c9d4bbSAart Bik             add = false;
193a2c9d4bbSAart Bik             break;
194a2c9d4bbSAart Bik           }
195a2c9d4bbSAart Bik         }
196a2c9d4bbSAart Bik         assert(!add || latGT(p0, p1));
197a2c9d4bbSAart Bik       }
198a2c9d4bbSAart Bik       if (add)
199a2c9d4bbSAart Bik         latSets[s].push_back(p1);
200a2c9d4bbSAart Bik     }
201a2c9d4bbSAart Bik     for (unsigned p : latSets[s])
202a2c9d4bbSAart Bik       latPoints[p].simple = simplifyCond(s, p);
203a2c9d4bbSAart Bik     return s;
204a2c9d4bbSAart Bik   }
205a2c9d4bbSAart Bik 
206a2c9d4bbSAart Bik   /// Simplifies the conditions in a conjunction of a given lattice point
207a2c9d4bbSAart Bik   /// within the given set using just two basic rules:
208a2c9d4bbSAart Bik   /// (1) multiple dense conditions are reduced to single dense, and
209a2c9d4bbSAart Bik   /// (2) a *singleton* sparse/dense is reduced to sparse/random access.
210a2c9d4bbSAart Bik   llvm::BitVector simplifyCond(unsigned s, unsigned p0) {
211a2c9d4bbSAart Bik     // First determine if this lattice point is a *singleton*, i.e.,
212a2c9d4bbSAart Bik     // the last point in a lattice, no other is less than this one.
213a2c9d4bbSAart Bik     bool isSingleton = true;
214a2c9d4bbSAart Bik     for (unsigned p1 : latSets[s]) {
215a2c9d4bbSAart Bik       if (p0 != p1 && latGT(p0, p1)) {
216a2c9d4bbSAart Bik         isSingleton = false;
217a2c9d4bbSAart Bik         break;
218a2c9d4bbSAart Bik       }
219a2c9d4bbSAart Bik     }
220a2c9d4bbSAart Bik     // Now apply the two basic rules.
221a2c9d4bbSAart Bik     llvm::BitVector simple = latPoints[p0].bits;
222a2c9d4bbSAart Bik     bool reset = isSingleton && hasAnyDimOf(simple, Dim::kSparse);
223a2c9d4bbSAart Bik     for (unsigned b = 0, be = simple.size(); b < be; b++) {
224a2c9d4bbSAart Bik       if (simple[b] && !isDim(b, Dim::kSparse)) {
225a2c9d4bbSAart Bik         if (reset)
226a2c9d4bbSAart Bik           simple.reset(b);
227a2c9d4bbSAart Bik         reset = true;
228a2c9d4bbSAart Bik       }
229a2c9d4bbSAart Bik     }
230a2c9d4bbSAart Bik     return simple;
231a2c9d4bbSAart Bik   }
232a2c9d4bbSAart Bik 
233a2c9d4bbSAart Bik   /// Returns true if Li > Lj.
234a2c9d4bbSAart Bik   bool latGT(unsigned i, unsigned j) const {
235a2c9d4bbSAart Bik     const llvm::BitVector &bitsi = latPoints[i].bits;
236a2c9d4bbSAart Bik     const llvm::BitVector &bitsj = latPoints[j].bits;
237a2c9d4bbSAart Bik     assert(bitsi.size() == bitsj.size());
238a2c9d4bbSAart Bik     if (bitsi.count() > bitsj.count()) {
239a2c9d4bbSAart Bik       for (unsigned b = 0, be = bitsj.size(); b < be; b++)
240a2c9d4bbSAart Bik         if (bitsj[b] && !bitsi[b])
241a2c9d4bbSAart Bik           return false;
242a2c9d4bbSAart Bik       return true;
243a2c9d4bbSAart Bik     }
244a2c9d4bbSAart Bik     return false;
245a2c9d4bbSAart Bik   }
246a2c9d4bbSAart Bik 
247a2c9d4bbSAart Bik   /// Returns true if Li and Lj only differ in dense.
248a2c9d4bbSAart Bik   bool onlyDenseDiff(unsigned i, unsigned j) {
249a2c9d4bbSAart Bik     llvm::BitVector tmp = latPoints[j].bits;
250a2c9d4bbSAart Bik     tmp ^= latPoints[i].bits;
251a2c9d4bbSAart Bik     return !hasAnyDimOf(tmp, Dim::kSparse);
252a2c9d4bbSAart Bik   }
253a2c9d4bbSAart Bik 
254a2c9d4bbSAart Bik   /// Bit translation.
255a2c9d4bbSAart Bik   unsigned tensor(unsigned b) const { return b % numTensors; }
256a2c9d4bbSAart Bik   unsigned index(unsigned b) const { return b / numTensors; }
257a2c9d4bbSAart Bik 
258a2c9d4bbSAart Bik   /// Returns true if bit corresponds to queried dim.
259a2c9d4bbSAart Bik   bool isDim(unsigned b, Dim d) const { return isDim(tensor(b), index(b), d); }
260a2c9d4bbSAart Bik 
261a2c9d4bbSAart Bik   /// Returns true if tensor access at given index has queried dim.
262a2c9d4bbSAart Bik   bool isDim(unsigned t, unsigned i, Dim d) const {
263a2c9d4bbSAart Bik     assert(t < numTensors && i < numLoops);
264a2c9d4bbSAart Bik     return dims[t][i] == d;
265a2c9d4bbSAart Bik   }
266a2c9d4bbSAart Bik 
267a2c9d4bbSAart Bik   /// Returns true if any set bit corresponds to queried dim.
268a2c9d4bbSAart Bik   bool hasAnyDimOf(const llvm::BitVector &bits, Dim d) const {
269a2c9d4bbSAart Bik     for (unsigned b = 0, be = bits.size(); b < be; b++)
270a2c9d4bbSAart Bik       if (bits[b] && isDim(b, d))
271a2c9d4bbSAart Bik         return true;
272a2c9d4bbSAart Bik     return false;
273a2c9d4bbSAart Bik   }
274a2c9d4bbSAart Bik 
275a2c9d4bbSAart Bik   /// Setter
276a2c9d4bbSAart Bik   void setDim(unsigned t, unsigned i, Dim d) { dims[t][i] = d; }
277a2c9d4bbSAart Bik 
278a2c9d4bbSAart Bik   /// Getters.
279a2c9d4bbSAart Bik   TensorExp &exp(unsigned e) { return tensorExps[e]; }
280a2c9d4bbSAart Bik   LatPoint &lat(unsigned l) { return latPoints[l]; }
281a2c9d4bbSAart Bik   SmallVector<unsigned, 16> &set(unsigned s) { return latSets[s]; }
282a2c9d4bbSAart Bik 
283a2c9d4bbSAart Bik private:
284a2c9d4bbSAart Bik   const unsigned outTensor;
285a2c9d4bbSAart Bik   const unsigned numTensors;
286a2c9d4bbSAart Bik   const unsigned numLoops;
287a2c9d4bbSAart Bik 
288a2c9d4bbSAart Bik   std::vector<std::vector<Dim>> dims;
289a2c9d4bbSAart Bik   llvm::SmallVector<TensorExp, 32> tensorExps;
290a2c9d4bbSAart Bik   llvm::SmallVector<LatPoint, 16> latPoints;
291a2c9d4bbSAart Bik   llvm::SmallVector<SmallVector<unsigned, 16>, 8> latSets;
292a2c9d4bbSAart Bik };
293a2c9d4bbSAart Bik 
294a2c9d4bbSAart Bik // Code generation.
295a2c9d4bbSAart Bik struct CodeGen {
29696a23911SAart Bik   CodeGen(SparsificationOptions o, unsigned numTensors, unsigned numLoops)
297a2c9d4bbSAart Bik       : options(o), loops(numLoops), sizes(numLoops), buffers(numTensors),
298a2c9d4bbSAart Bik         pointers(numTensors, std::vector<Value>(numLoops)),
299a2c9d4bbSAart Bik         indices(numTensors, std::vector<Value>(numLoops)),
300a2c9d4bbSAart Bik         highs(numTensors, std::vector<Value>(numLoops)),
301a2c9d4bbSAart Bik         pidxs(numTensors, std::vector<Value>(numLoops)),
302a2c9d4bbSAart Bik         idxs(numTensors, std::vector<Value>(numLoops)), redExp(-1u), redVal(),
303a2c9d4bbSAart Bik         curVecLength(1), curVecMask() {}
304a2c9d4bbSAart Bik   /// Sparsification options.
30596a23911SAart Bik   SparsificationOptions options;
306a2c9d4bbSAart Bik   /// Universal dense indices and upper bounds (by index). The loops array
307a2c9d4bbSAart Bik   /// is updated with the value of the universal dense index in the current
308a2c9d4bbSAart Bik   /// loop. The sizes array is set once with the inferred dimension sizes.
309a2c9d4bbSAart Bik   std::vector<Value> loops;
310a2c9d4bbSAart Bik   std::vector<Value> sizes;
311a2c9d4bbSAart Bik   /// Buffers for storing dense and sparse numerical values (by tensor).
312a2c9d4bbSAart Bik   /// This array is set once during bufferization of all tensors.
313a2c9d4bbSAart Bik   std::vector<Value> buffers;
314a2c9d4bbSAart Bik   /// Sparse storage schemes (1-D): pointers and indices (by tensor and index).
315a2c9d4bbSAart Bik   /// This array is set once during bufferization of all sparse tensors.
316a2c9d4bbSAart Bik   std::vector<std::vector<Value>> pointers;
317a2c9d4bbSAart Bik   std::vector<std::vector<Value>> indices;
318a2c9d4bbSAart Bik   /// Sparse iteration information (by tensor and index). These arrays
319a2c9d4bbSAart Bik   /// are updated to remain current within the current loop.
320a2c9d4bbSAart Bik   std::vector<std::vector<Value>> highs;
321a2c9d4bbSAart Bik   std::vector<std::vector<Value>> pidxs;
322a2c9d4bbSAart Bik   std::vector<std::vector<Value>> idxs;
323a2c9d4bbSAart Bik   /// Current reduction, updated during code generation. When indices of a
324a2c9d4bbSAart Bik   /// reduction are exhausted,  all inner loops can "scalarize" the reduction.
325a2c9d4bbSAart Bik   // TODO: currently only done for (a chain of) innermost for-loops, where it
326a2c9d4bbSAart Bik   // is most effective; we could generalize to more outer and while-loops.
327a2c9d4bbSAart Bik   unsigned redExp;
328a2c9d4bbSAart Bik   Value redVal;
329a2c9d4bbSAart Bik   // Current vector length and mask.
330a2c9d4bbSAart Bik   unsigned curVecLength;
331a2c9d4bbSAart Bik   Value curVecMask;
332a2c9d4bbSAart Bik };
333a2c9d4bbSAart Bik 
334a2c9d4bbSAart Bik } // namespace
335a2c9d4bbSAart Bik 
33696a23911SAart Bik // Helper method to translate dim level type to internal representation.
33796a23911SAart Bik static Dim toDim(SparseTensorEncodingAttr &enc, unsigned d) {
33896a23911SAart Bik   if (enc) {
33996a23911SAart Bik     SparseTensorEncodingAttr::DimLevelType tp = enc.getDimLevelType()[d];
34096a23911SAart Bik     if (tp == SparseTensorEncodingAttr::DimLevelType::Compressed)
34196a23911SAart Bik       return Dim::kSparse;
34296a23911SAart Bik     if (tp == SparseTensorEncodingAttr::DimLevelType::Singleton)
34396a23911SAart Bik       return Dim::kSingle;
34496a23911SAart Bik   }
34596a23911SAart Bik   return Dim::kDense;
34696a23911SAart Bik }
34796a23911SAart Bik 
34896a23911SAart Bik /// Helper method to inspect sparse encodings in the tensor types.
349a2c9d4bbSAart Bik /// Fills the per-dimension sparsity information for all tensors.
350*bf9ef3efSAart Bik static bool findSparseAnnotations(Merger &merger, linalg::GenericOp op) {
351*bf9ef3efSAart Bik   bool annotated = false;
352a2c9d4bbSAart Bik   unsigned numTensors = op.getNumShapedOperands();
353*bf9ef3efSAart Bik   unsigned lhs = numTensors - 1;
354a2c9d4bbSAart Bik   for (unsigned t = 0; t < numTensors; t++) {
355a2c9d4bbSAart Bik     auto map = op.getIndexingMap(t);
356a2c9d4bbSAart Bik     unsigned rank = op.getShapedType(t).getRank();
35796a23911SAart Bik     auto enc = getSparseTensorEncoding(op.getShapedType(t));
358*bf9ef3efSAart Bik     if (enc) {
359*bf9ef3efSAart Bik       annotated = true;
360*bf9ef3efSAart Bik       if (enc.getDimOrdering() && !enc.getDimOrdering().isIdentity())
361*bf9ef3efSAart Bik         return false; // TODO: handle permutations
362*bf9ef3efSAart Bik       if (t == lhs)
363*bf9ef3efSAart Bik         return false; // TODO: handle sparse outputs
364*bf9ef3efSAart Bik     }
365a2c9d4bbSAart Bik     for (unsigned d = 0; d < rank; d++) {
366a2c9d4bbSAart Bik       unsigned idx = map.getDimPosition(d);
36796a23911SAart Bik       merger.setDim(t, idx, toDim(enc, d));
368a2c9d4bbSAart Bik     }
369a2c9d4bbSAart Bik   }
370*bf9ef3efSAart Bik   return annotated;
371a2c9d4bbSAart Bik }
372a2c9d4bbSAart Bik 
373a2c9d4bbSAart Bik /// A DFS helper to compute a topological sort. Note that recursion is
374a2c9d4bbSAart Bik /// bounded by the number of implicit loops, which is always small.
375a2c9d4bbSAart Bik /// Returns false when a cycle is detected.
376a2c9d4bbSAart Bik static bool topSortDFS(unsigned i, std::vector<unsigned> &visit,
377a2c9d4bbSAart Bik                        std::vector<unsigned> &topSort,
378a2c9d4bbSAart Bik                        std::vector<std::vector<bool>> &adjM) {
379a2c9d4bbSAart Bik   if (visit[i] != 0)
380a2c9d4bbSAart Bik     return visit[i] != 1; // 1 denotes cycle!
381a2c9d4bbSAart Bik   visit[i] = 1;
382a2c9d4bbSAart Bik   for (unsigned j = 0, e = visit.size(); j < e; j++)
383a2c9d4bbSAart Bik     if (adjM[i][j])
384a2c9d4bbSAart Bik       if (!topSortDFS(j, visit, topSort, adjM))
385a2c9d4bbSAart Bik         return false;
386a2c9d4bbSAart Bik   visit[i] = 2;
387a2c9d4bbSAart Bik   topSort.push_back(i);
388a2c9d4bbSAart Bik   return true;
389a2c9d4bbSAart Bik }
390a2c9d4bbSAart Bik 
391a2c9d4bbSAart Bik /// Computes a topologically sorted iteration graph for the linalg operation.
392a2c9d4bbSAart Bik /// Ensures all tensors are visited in natural index order. This is essential
393a2c9d4bbSAart Bik /// for sparse storage formats since these only support access along fixed
394a2c9d4bbSAart Bik /// dimensions. Even for dense storage formats, however, the natural index
395a2c9d4bbSAart Bik /// order yields innermost unit-stride access with better spatial locality.
396a2c9d4bbSAart Bik static bool computeIterationGraph(Merger &merger, linalg::GenericOp op,
397a2c9d4bbSAart Bik                                   std::vector<unsigned> &topSort,
398a2c9d4bbSAart Bik                                   bool sparseOnly) {
399a2c9d4bbSAart Bik   // Set up an n x n from/to adjacency matrix of the iteration graph
400a2c9d4bbSAart Bik   // for the implicit loop indices i_0 .. i_n-1.
401a2c9d4bbSAart Bik   unsigned n = op.getNumLoops();
402a2c9d4bbSAart Bik   std::vector<std::vector<bool>> adjM(n, std::vector<bool>(n, false));
403a2c9d4bbSAart Bik 
404a2c9d4bbSAart Bik   // Iterate over the indexing maps of every tensor in the tensor expression.
405a2c9d4bbSAart Bik   unsigned numTensors = op.getNumShapedOperands();
406a2c9d4bbSAart Bik   for (unsigned t = 0; t < numTensors; t++) {
407a2c9d4bbSAart Bik     auto map = op.getIndexingMap(t);
408a2c9d4bbSAart Bik     assert(map.getNumDims() == n);
409a2c9d4bbSAart Bik     // Skip dense tensor constraints when sparse only is requested.
41096a23911SAart Bik     if (sparseOnly && !getSparseTensorEncoding(op.getShapedType(t)))
411a2c9d4bbSAart Bik       continue;
412a2c9d4bbSAart Bik     // At the moment, we take the index variables in the tensor access
413a2c9d4bbSAart Bik     // expression in the order in which they appear (conceptually a
414a2c9d4bbSAart Bik     // "row-major" layout of every tensor). So, a tensor access A_ijk
415a2c9d4bbSAart Bik     // forces the ordering i < j < k on the loop indices.
416a2c9d4bbSAart Bik     // TODO: support affine map to define alternative dimension orders.
417a2c9d4bbSAart Bik     for (unsigned d = 1, e = map.getNumResults(); d < e; d++) {
418a2c9d4bbSAart Bik       unsigned f = map.getDimPosition(d - 1);
419a2c9d4bbSAart Bik       unsigned t = map.getDimPosition(d);
420a2c9d4bbSAart Bik       adjM[f][t] = true;
421a2c9d4bbSAart Bik     }
422a2c9d4bbSAart Bik   }
423a2c9d4bbSAart Bik 
424a2c9d4bbSAart Bik   // Topologically sort the iteration graph to determine loop order.
425a2c9d4bbSAart Bik   // Report failure for a cyclic iteration graph.
426a2c9d4bbSAart Bik   topSort.clear();
427a2c9d4bbSAart Bik   topSort.reserve(n);
428a2c9d4bbSAart Bik   std::vector<unsigned> visit(n, 0);
429a2c9d4bbSAart Bik   for (unsigned i = 0; i < n; i++)
430a2c9d4bbSAart Bik     if (visit[i] == 0)
431a2c9d4bbSAart Bik       if (!topSortDFS(i, visit, topSort, adjM))
432a2c9d4bbSAart Bik         return false; // cycle!
433a2c9d4bbSAart Bik   std::reverse(std::begin(topSort), std::end(topSort));
434a2c9d4bbSAart Bik   return true;
435a2c9d4bbSAart Bik }
436a2c9d4bbSAart Bik 
437a2c9d4bbSAart Bik /// Traverses the SSA tree (possibly a DAG) to build a tensor expression.
438a2c9d4bbSAart Bik /// This simplifies constructing (sub)expressions during iteration lattice
439a2c9d4bbSAart Bik /// building (compared to using the SSA representation everywhere).
440a2c9d4bbSAart Bik static Optional<unsigned> buildTensorExp(Merger &merger, linalg::GenericOp op,
441a2c9d4bbSAart Bik                                          Value val) {
442a2c9d4bbSAart Bik   if (auto arg = val.dyn_cast<BlockArgument>()) {
443a2c9d4bbSAart Bik     unsigned argN = arg.getArgNumber();
444a2c9d4bbSAart Bik     if (arg.getOwner()->getParentOp() == op) {
445a2c9d4bbSAart Bik       // Any parameter of the generic op is considered a tensor,
446a2c9d4bbSAart Bik       // indexed by the implicit loop bounds.
447a2c9d4bbSAart Bik       auto map = op.getIndexingMap(argN);
448a2c9d4bbSAart Bik       if (map.isProjectedPermutation())
449a2c9d4bbSAart Bik         return merger.addExp(Kind::kTensor, argN);
450a2c9d4bbSAart Bik       // Cannot handle (yet).
451a2c9d4bbSAart Bik       return None;
452a2c9d4bbSAart Bik     }
453a2c9d4bbSAart Bik     // Any parameter of a higher op is invariant.
454a2c9d4bbSAart Bik     return merger.addExp(Kind::kInvariant, val);
455a2c9d4bbSAart Bik   }
456a2c9d4bbSAart Bik   Operation *def = val.getDefiningOp();
457a2c9d4bbSAart Bik   if (def->getBlock() != &op.region().front()) {
458a2c9d4bbSAart Bik     // Something defined outside is invariant.
459a2c9d4bbSAart Bik     return merger.addExp(Kind::kInvariant, val);
460a2c9d4bbSAart Bik   } else if (def->getNumOperands() == 2) {
461a2c9d4bbSAart Bik     // Construct binary operations if subexpressions could be built.
462a2c9d4bbSAart Bik     auto x = buildTensorExp(merger, op, def->getOperand(0));
463a2c9d4bbSAart Bik     auto y = buildTensorExp(merger, op, def->getOperand(1));
464a2c9d4bbSAart Bik     if (x.hasValue() && y.hasValue()) {
465a2c9d4bbSAart Bik       unsigned e0 = x.getValue();
466a2c9d4bbSAart Bik       unsigned e1 = y.getValue();
467a2c9d4bbSAart Bik       if (isa<MulFOp>(def))
468a2c9d4bbSAart Bik         return merger.addExp(Kind::kMulF, e0, e1);
469a2c9d4bbSAart Bik       if (isa<MulIOp>(def))
470a2c9d4bbSAart Bik         return merger.addExp(Kind::kMulI, e0, e1);
471a2c9d4bbSAart Bik       if (isa<AddFOp>(def))
472a2c9d4bbSAart Bik         return merger.addExp(Kind::kAddF, e0, e1);
473a2c9d4bbSAart Bik       if (isa<AddIOp>(def))
474a2c9d4bbSAart Bik         return merger.addExp(Kind::kAddI, e0, e1);
475a2c9d4bbSAart Bik     }
476a2c9d4bbSAart Bik   }
477a2c9d4bbSAart Bik   // Cannot build (yet).
478a2c9d4bbSAart Bik   return None;
479a2c9d4bbSAart Bik }
480a2c9d4bbSAart Bik 
481a2c9d4bbSAart Bik /// Builds the iteration lattices in a bottom-up traversal given the remaining
482a2c9d4bbSAart Bik /// tensor (sub)expression and the next loop index in the iteration graph.
483a2c9d4bbSAart Bik static unsigned buildLattices(Merger &merger, linalg::GenericOp op,
484a2c9d4bbSAart Bik                               unsigned exp, unsigned idx) {
485a2c9d4bbSAart Bik   Kind kind = merger.exp(exp).kind;
486a2c9d4bbSAart Bik   if (kind == Kind::kTensor || kind == Kind::kInvariant) {
487a2c9d4bbSAart Bik     // Either the index is really used in the tensor expression, or it is
488a2c9d4bbSAart Bik     // set to the undefined index in that dimension. An invariant expression
489a2c9d4bbSAart Bik     // is set to a synthetic tensor with undefined indices only.
490a2c9d4bbSAart Bik     unsigned s = merger.addSet();
491a2c9d4bbSAart Bik     unsigned t =
492a2c9d4bbSAart Bik         kind == Kind::kTensor ? merger.exp(exp).e0 : op.getNumShapedOperands();
493a2c9d4bbSAart Bik     merger.set(s).push_back(merger.addLat(t, idx, exp));
494a2c9d4bbSAart Bik     return s;
495a2c9d4bbSAart Bik   }
496a2c9d4bbSAart Bik   unsigned s0 = buildLattices(merger, op, merger.exp(exp).e0, idx);
497a2c9d4bbSAart Bik   unsigned s1 = buildLattices(merger, op, merger.exp(exp).e1, idx);
498a2c9d4bbSAart Bik   switch (kind) {
499a2c9d4bbSAart Bik   case Kind::kTensor:
500a2c9d4bbSAart Bik   case Kind::kInvariant:
501a2c9d4bbSAart Bik     llvm_unreachable("handled above");
502a2c9d4bbSAart Bik   case Kind::kMulF:
503a2c9d4bbSAart Bik   case Kind::kMulI:
504a2c9d4bbSAart Bik     return merger.takeConj(kind, s0, s1);
505a2c9d4bbSAart Bik   case Kind::kAddF:
506a2c9d4bbSAart Bik   case Kind::kAddI:
507a2c9d4bbSAart Bik     return merger.takeDisj(kind, s0, s1);
508a2c9d4bbSAart Bik   }
509a2c9d4bbSAart Bik   llvm_unreachable("unexpected expression kind");
510a2c9d4bbSAart Bik }
511a2c9d4bbSAart Bik 
512a2c9d4bbSAart Bik /// Maps sparse integer option to actual integral storage type.
51396a23911SAart Bik static Type genIntType(PatternRewriter &rewriter, unsigned width) {
51496a23911SAart Bik   if (width == 0)
515a2c9d4bbSAart Bik     return rewriter.getIndexType();
51696a23911SAart Bik   return rewriter.getIntegerType(width);
517a2c9d4bbSAart Bik }
518a2c9d4bbSAart Bik 
5195879da49SAart Bik /// Detects in-place annotation on tensor argument.
5205879da49SAart Bik static bool getInPlace(Value val) {
5215879da49SAart Bik   if (auto arg = val.dyn_cast<BlockArgument>())
5225879da49SAart Bik     if (auto funcOp = dyn_cast<FuncOp>(arg.getOwner()->getParentOp()))
5235879da49SAart Bik       if (auto attr = funcOp.getArgAttrOfType<BoolAttr>(
5245879da49SAart Bik               arg.getArgNumber(), linalg::LinalgDialect::kInplaceableAttrName))
5255879da49SAart Bik         return attr.getValue();
5265879da49SAart Bik   return false;
5275879da49SAart Bik }
5285879da49SAart Bik 
529a2c9d4bbSAart Bik /// Generates buffer for the output tensor.
530a2c9d4bbSAart Bik static Value genOutputBuffer(CodeGen &codegen, PatternRewriter &rewriter,
531a2c9d4bbSAart Bik                              linalg::GenericOp op, MemRefType denseTp,
532a2c9d4bbSAart Bik                              ArrayRef<Value> args) {
533a2c9d4bbSAart Bik   Location loc = op.getLoc();
534a2c9d4bbSAart Bik   Value tensor = op.getOutput(0);
535a2c9d4bbSAart Bik   // The output tensor simply could materialize from the buffer that will
536a2c9d4bbSAart Bik   // be generated for the tensor present in the outs() clause. This has
537a2c9d4bbSAart Bik   // the major advantage that the sparse kernel only updates the nonzero
5385879da49SAart Bik   // positions for the output tensor.
5395879da49SAart Bik   if (getInPlace(tensor))
540a2c9d4bbSAart Bik     return rewriter.create<memref::BufferCastOp>(loc, denseTp, tensor);
541a2c9d4bbSAart Bik   // By default, a new buffer is allocated which is initialized to the
542a2c9d4bbSAart Bik   // tensor defined in the outs() clause. This is always correct but
543a2c9d4bbSAart Bik   // introduces a dense initialization component that may negatively
544a2c9d4bbSAart Bik   // impact the running complexity of the sparse kernel.
545a2c9d4bbSAart Bik   Value init = rewriter.create<memref::BufferCastOp>(loc, denseTp, tensor);
546a2c9d4bbSAart Bik   Value alloc = rewriter.create<memref::AllocOp>(loc, denseTp, args);
547a2c9d4bbSAart Bik   rewriter.create<linalg::CopyOp>(loc, init, alloc);
548a2c9d4bbSAart Bik   return alloc;
549a2c9d4bbSAart Bik }
550a2c9d4bbSAart Bik 
551a2c9d4bbSAart Bik /// Local bufferization of all dense and sparse data structures.
552a2c9d4bbSAart Bik /// This code enables testing the first prototype sparse compiler.
553a2c9d4bbSAart Bik // TODO: replace this with a proliferated bufferization strategy
554a2c9d4bbSAart Bik static void genBuffers(Merger &merger, CodeGen &codegen,
555a2c9d4bbSAart Bik                        PatternRewriter &rewriter, linalg::GenericOp op) {
556a2c9d4bbSAart Bik   Location loc = op.getLoc();
557a2c9d4bbSAart Bik   unsigned numTensors = op.getNumShapedOperands();
558a2c9d4bbSAart Bik   unsigned numInputs = op.getNumInputs();
559a2c9d4bbSAart Bik   assert(numTensors == numInputs + 1);
560a2c9d4bbSAart Bik   // For every tensor, find lower and upper bound on dimensions, set the
561a2c9d4bbSAart Bik   // same bounds on loop indices, and obtain dense or sparse buffer(s).
562a2c9d4bbSAart Bik   SmallVector<Value, 4> args;
563a2c9d4bbSAart Bik   for (unsigned t = 0; t < numTensors; t++) {
564a2c9d4bbSAart Bik     Value tensor = t < numInputs ? op.getInput(t) : op.getOutput(0);
565a2c9d4bbSAart Bik     auto tensorType = op.getShapedType(t);
566a2c9d4bbSAart Bik     auto shape = tensorType.getShape();
567a2c9d4bbSAart Bik     auto map = op.getIndexingMap(t);
56896a23911SAart Bik     auto enc = getSparseTensorEncoding(tensorType);
569a2c9d4bbSAart Bik     // Scan all dimensions of current tensor.
570a2c9d4bbSAart Bik     args.clear();
571a2c9d4bbSAart Bik     for (unsigned d = 0, rank = shape.size(); d < rank; d++) {
572a2c9d4bbSAart Bik       unsigned i = map.getDimPosition(d);
573a2c9d4bbSAart Bik       // Handle sparse storage schemes.
574a2c9d4bbSAart Bik       if (merger.isDim(t, i, Dim::kSparse)) {
575a2c9d4bbSAart Bik         auto dynShape = {ShapedType::kDynamicSize};
576a2c9d4bbSAart Bik         auto ptrTp = MemRefType::get(
57796a23911SAart Bik             dynShape, genIntType(rewriter, enc.getPointerBitWidth()));
578a2c9d4bbSAart Bik         auto indTp = MemRefType::get(
57996a23911SAart Bik             dynShape, genIntType(rewriter, enc.getIndexBitWidth()));
580a2c9d4bbSAart Bik         Value dim = rewriter.create<ConstantIndexOp>(loc, d);
581a2c9d4bbSAart Bik         // Generate sparse primitives to obtains pointer and indices.
58296a23911SAart Bik         codegen.pointers[t][i] =
58396a23911SAart Bik             rewriter.create<ToPointersOp>(loc, ptrTp, tensor, dim);
58496a23911SAart Bik         codegen.indices[t][i] =
58596a23911SAart Bik             rewriter.create<ToIndicesOp>(loc, indTp, tensor, dim);
586a2c9d4bbSAart Bik       }
587a2c9d4bbSAart Bik       // Find lower and upper bound in current dimension.
588a2c9d4bbSAart Bik       Value up;
589a2c9d4bbSAart Bik       if (shape[d] == MemRefType::kDynamicSize) {
590a2c9d4bbSAart Bik         up = rewriter.create<memref::DimOp>(loc, tensor, d);
591a2c9d4bbSAart Bik         args.push_back(up);
592a2c9d4bbSAart Bik       } else {
593a2c9d4bbSAart Bik         up = rewriter.create<ConstantIndexOp>(loc, shape[d]);
594a2c9d4bbSAart Bik       }
595a2c9d4bbSAart Bik       codegen.sizes[i] = codegen.highs[t][i] = up;
596a2c9d4bbSAart Bik     }
597a2c9d4bbSAart Bik     // Perform the required bufferization. All dense inputs materialize
598a2c9d4bbSAart Bik     // from the input tensor. The dense output tensor needs special
599a2c9d4bbSAart Bik     // handling. Sparse inputs use a sparse primitive to obtain the values.
60096a23911SAart Bik     if (!enc) {
601a2c9d4bbSAart Bik       auto denseTp = MemRefType::get(shape, tensorType.getElementType());
602a2c9d4bbSAart Bik       if (t < numInputs)
603a2c9d4bbSAart Bik         codegen.buffers[t] =
604a2c9d4bbSAart Bik             rewriter.create<memref::BufferCastOp>(loc, denseTp, tensor);
605a2c9d4bbSAart Bik       else
606a2c9d4bbSAart Bik         codegen.buffers[t] =
607a2c9d4bbSAart Bik             genOutputBuffer(codegen, rewriter, op, denseTp, args);
608a2c9d4bbSAart Bik     } else {
609a2c9d4bbSAart Bik       auto dynShape = {ShapedType::kDynamicSize};
610a2c9d4bbSAart Bik       auto sparseTp = MemRefType::get(dynShape, tensorType.getElementType());
61196a23911SAart Bik       codegen.buffers[t] = rewriter.create<ToValuesOp>(loc, sparseTp, tensor);
612a2c9d4bbSAart Bik     }
613a2c9d4bbSAart Bik   }
614a2c9d4bbSAart Bik }
615a2c9d4bbSAart Bik 
616a2c9d4bbSAart Bik /// Constructs vector type.
617a2c9d4bbSAart Bik static VectorType vectorType(CodeGen &codegen, Type etp) {
618a2c9d4bbSAart Bik   return VectorType::get(codegen.curVecLength, etp);
619a2c9d4bbSAart Bik }
620a2c9d4bbSAart Bik 
621a2c9d4bbSAart Bik /// Constructs vector type from pointer.
622a2c9d4bbSAart Bik static VectorType vectorType(CodeGen &codegen, Value ptr) {
623a2c9d4bbSAart Bik   return vectorType(codegen, ptr.getType().cast<MemRefType>().getElementType());
624a2c9d4bbSAart Bik }
625a2c9d4bbSAart Bik 
626a2c9d4bbSAart Bik /// Constructs vector iteration mask.
627a2c9d4bbSAart Bik static Value genVectorMask(CodeGen &codegen, PatternRewriter &rewriter,
628a2c9d4bbSAart Bik                            Value iv, Value lo, Value hi, Value step) {
629a2c9d4bbSAart Bik   Location loc = iv.getLoc();
630a2c9d4bbSAart Bik   VectorType mtp = vectorType(codegen, rewriter.getIntegerType(1));
631a2c9d4bbSAart Bik   // Special case if the vector length evenly divides the trip count (for
632a2c9d4bbSAart Bik   // example, "for i = 0, 128, 16"). A constant all-true mask is generated
633a2c9d4bbSAart Bik   // so that all subsequent masked memory operations are immediately folded
634a2c9d4bbSAart Bik   // into unconditional memory operations.
635a2c9d4bbSAart Bik   IntegerAttr loInt, hiInt, stepInt;
636a2c9d4bbSAart Bik   if (matchPattern(lo, m_Constant(&loInt)) &&
637a2c9d4bbSAart Bik       matchPattern(hi, m_Constant(&hiInt)) &&
638a2c9d4bbSAart Bik       matchPattern(step, m_Constant(&stepInt))) {
639a2c9d4bbSAart Bik     if (((hiInt.getInt() - loInt.getInt()) % stepInt.getInt()) == 0)
640a2c9d4bbSAart Bik       return rewriter.create<vector::BroadcastOp>(
641a2c9d4bbSAart Bik           loc, mtp, rewriter.create<ConstantIntOp>(loc, 1, 1));
642a2c9d4bbSAart Bik   }
643a2c9d4bbSAart Bik   // Otherwise, generate a vector mask that avoids overrunning the upperbound
644a2c9d4bbSAart Bik   // during vector execution. Here we rely on subsequent loop optimizations to
645a2c9d4bbSAart Bik   // avoid executing the mask in all iterations, for example, by splitting the
646a2c9d4bbSAart Bik   // loop into an unconditional vector loop and a scalar cleanup loop.
647a2c9d4bbSAart Bik   Value end = rewriter.create<SubIOp>(loc, hi, iv);
648a2c9d4bbSAart Bik   return rewriter.create<vector::CreateMaskOp>(loc, mtp, end);
649a2c9d4bbSAart Bik }
650a2c9d4bbSAart Bik 
651a2c9d4bbSAart Bik /// Generates a vectorized load lhs = a[ind[lo:hi]] or lhs = a[lo:hi].
652a2c9d4bbSAart Bik static Value genVectorLoad(CodeGen &codegen, PatternRewriter &rewriter,
653a2c9d4bbSAart Bik                            Value ptr, ArrayRef<Value> args) {
654a2c9d4bbSAart Bik   Location loc = ptr.getLoc();
655a2c9d4bbSAart Bik   VectorType vtp = vectorType(codegen, ptr);
656a2c9d4bbSAart Bik   Value pass = rewriter.create<ConstantOp>(loc, vtp, rewriter.getZeroAttr(vtp));
657a2c9d4bbSAart Bik   if (args.back().getType().isa<VectorType>()) {
658a2c9d4bbSAart Bik     SmallVector<Value, 4> scalarArgs(args.begin(), args.end());
659a2c9d4bbSAart Bik     Value indexVec = args.back();
660a2c9d4bbSAart Bik     scalarArgs.back() = rewriter.create<ConstantIndexOp>(loc, 0);
661a2c9d4bbSAart Bik     return rewriter.create<vector::GatherOp>(
662a2c9d4bbSAart Bik         loc, vtp, ptr, scalarArgs, indexVec, codegen.curVecMask, pass);
663a2c9d4bbSAart Bik   }
664a2c9d4bbSAart Bik   return rewriter.create<vector::MaskedLoadOp>(loc, vtp, ptr, args,
665a2c9d4bbSAart Bik                                                codegen.curVecMask, pass);
666a2c9d4bbSAart Bik }
667a2c9d4bbSAart Bik 
668a2c9d4bbSAart Bik /// Generates a vectorized store a[ind[lo:hi]] = rhs or a[lo:hi] = rhs.
669a2c9d4bbSAart Bik static void genVectorStore(CodeGen &codegen, PatternRewriter &rewriter,
670a2c9d4bbSAart Bik                            Value rhs, Value ptr, ArrayRef<Value> args) {
671a2c9d4bbSAart Bik   Location loc = ptr.getLoc();
672a2c9d4bbSAart Bik   if (args.back().getType().isa<VectorType>()) {
673a2c9d4bbSAart Bik     SmallVector<Value, 4> scalarArgs(args.begin(), args.end());
674a2c9d4bbSAart Bik     Value indexVec = args.back();
675a2c9d4bbSAart Bik     scalarArgs.back() = rewriter.create<ConstantIndexOp>(loc, 0);
676a2c9d4bbSAart Bik     rewriter.create<vector::ScatterOp>(loc, ptr, scalarArgs, indexVec,
677a2c9d4bbSAart Bik                                        codegen.curVecMask, rhs);
678a2c9d4bbSAart Bik     return;
679a2c9d4bbSAart Bik   }
680a2c9d4bbSAart Bik   rewriter.create<vector::MaskedStoreOp>(loc, ptr, args, codegen.curVecMask,
681a2c9d4bbSAart Bik                                          rhs);
682a2c9d4bbSAart Bik }
683a2c9d4bbSAart Bik 
684a2c9d4bbSAart Bik /// Generates a vectorized invariant. Here we rely on subsequent loop
685a2c9d4bbSAart Bik /// optimizations to hoist the invariant broadcast out of the vector loop.
686a2c9d4bbSAart Bik static Value genVectorInvariantValue(CodeGen &codegen,
687a2c9d4bbSAart Bik                                      PatternRewriter &rewriter, Value val) {
688a2c9d4bbSAart Bik   VectorType vtp = vectorType(codegen, val.getType());
689a2c9d4bbSAart Bik   return rewriter.create<vector::BroadcastOp>(val.getLoc(), vtp, val);
690a2c9d4bbSAart Bik }
691a2c9d4bbSAart Bik 
692a2c9d4bbSAart Bik /// Generates a load on a dense or sparse tensor.
693a2c9d4bbSAart Bik static Value genTensorLoad(Merger &merger, CodeGen &codegen,
694a2c9d4bbSAart Bik                            PatternRewriter &rewriter, linalg::GenericOp op,
695a2c9d4bbSAart Bik                            unsigned exp) {
696a2c9d4bbSAart Bik   // Test if the load was hoisted to a higher loop nest.
697a2c9d4bbSAart Bik   Value val = merger.exp(exp).val;
698a2c9d4bbSAart Bik   if (val) {
699a2c9d4bbSAart Bik     if (codegen.curVecLength > 1 && !val.getType().isa<VectorType>())
700a2c9d4bbSAart Bik       return genVectorInvariantValue(codegen, rewriter, val);
701a2c9d4bbSAart Bik     return val;
702a2c9d4bbSAart Bik   }
703a2c9d4bbSAart Bik   // Actual load.
704a2c9d4bbSAart Bik   SmallVector<Value, 4> args;
705a2c9d4bbSAart Bik   unsigned tensor = merger.exp(exp).e0;
706a2c9d4bbSAart Bik   auto map = op.getIndexingMap(tensor);
70796a23911SAart Bik   auto enc = getSparseTensorEncoding(op.getShapedType(tensor));
708a2c9d4bbSAart Bik   for (unsigned i = 0, m = map.getNumResults(); i < m; ++i) {
709a2c9d4bbSAart Bik     unsigned idx = map.getDimPosition(i);
710a2c9d4bbSAart Bik     args.push_back(codegen.loops[idx]); // universal dense index
71196a23911SAart Bik     if (enc) {
712a2c9d4bbSAart Bik       args.clear();
713a2c9d4bbSAart Bik       args.push_back(codegen.pidxs[tensor][idx]); // position index
714a2c9d4bbSAart Bik     }
715a2c9d4bbSAart Bik   }
716a2c9d4bbSAart Bik   Location loc = op.getLoc();
717a2c9d4bbSAart Bik   Value ptr = codegen.buffers[tensor];
718a2c9d4bbSAart Bik   if (codegen.curVecLength > 1)
719a2c9d4bbSAart Bik     return genVectorLoad(codegen, rewriter, ptr, args);
720a2c9d4bbSAart Bik   return rewriter.create<memref::LoadOp>(loc, ptr, args);
721a2c9d4bbSAart Bik }
722a2c9d4bbSAart Bik 
723a2c9d4bbSAart Bik /// Generates a store on a dense tensor.
724a2c9d4bbSAart Bik static void genTensorStore(Merger &merger, CodeGen &codegen,
725a2c9d4bbSAart Bik                            PatternRewriter &rewriter, linalg::GenericOp op,
726a2c9d4bbSAart Bik                            unsigned tensor, Value rhs) {
727a2c9d4bbSAart Bik   Location loc = op.getLoc();
728a2c9d4bbSAart Bik   // Test if this is a scalarized reduction.
729a2c9d4bbSAart Bik   unsigned lhs = op.getNumShapedOperands() - 1;
730a2c9d4bbSAart Bik   if (lhs == tensor && codegen.redVal) {
731a2c9d4bbSAart Bik     if (codegen.curVecLength > 1)
732a2c9d4bbSAart Bik       rhs = rewriter.create<SelectOp>(loc, codegen.curVecMask, rhs,
733a2c9d4bbSAart Bik                                       codegen.redVal);
734a2c9d4bbSAart Bik     codegen.redVal = rhs;
735a2c9d4bbSAart Bik     return;
736a2c9d4bbSAart Bik   }
737a2c9d4bbSAart Bik   // Actual store.
738a2c9d4bbSAart Bik   SmallVector<Value, 4> args;
739a2c9d4bbSAart Bik   auto map = op.getIndexingMap(tensor);
740a2c9d4bbSAart Bik   for (unsigned i = 0, m = map.getNumResults(); i < m; ++i) {
741a2c9d4bbSAart Bik     unsigned idx = map.getDimPosition(i);
742a2c9d4bbSAart Bik     args.push_back(codegen.loops[idx]); // universal dense index
743a2c9d4bbSAart Bik   }
744a2c9d4bbSAart Bik   Value ptr = codegen.buffers[tensor];
745a2c9d4bbSAart Bik   if (codegen.curVecLength > 1)
746a2c9d4bbSAart Bik     genVectorStore(codegen, rewriter, rhs, ptr, args);
747a2c9d4bbSAart Bik   else
748a2c9d4bbSAart Bik     rewriter.create<memref::StoreOp>(loc, rhs, ptr, args);
749a2c9d4bbSAart Bik }
750a2c9d4bbSAart Bik 
751a2c9d4bbSAart Bik /// Generates a pointer/index load from the sparse storage scheme. Narrower
752a2c9d4bbSAart Bik /// data types need to be zero extended before casting the value into the
753a2c9d4bbSAart Bik /// index type used for looping and indexing.
754a2c9d4bbSAart Bik static Value genLoad(CodeGen &codegen, PatternRewriter &rewriter, Location loc,
755a2c9d4bbSAart Bik                      Value ptr, Value s) {
756a2c9d4bbSAart Bik   // See https://llvm.org/docs/GetElementPtr.html for some background on
757a2c9d4bbSAart Bik   // the complications described below.
758a2c9d4bbSAart Bik   if (codegen.curVecLength > 1) {
759a2c9d4bbSAart Bik     // Since the index vector is used in a subsequent gather/scatter operations,
760a2c9d4bbSAart Bik     // which effectively defines an unsigned pointer + signed index, we must
761a2c9d4bbSAart Bik     // zero extend the vector to an index width. For 8-bit and 16-bit values,
762a2c9d4bbSAart Bik     // an 32-bit index width suffices. For 32-bit values, zero extending the
763a2c9d4bbSAart Bik     // elements into 64-bit loses some performance since the 32-bit indexed
764a2c9d4bbSAart Bik     // gather/scatter is more efficient than the 64-bit index variant (in
765a2c9d4bbSAart Bik     // the future, we could introduce a flag that states the negative space
766a2c9d4bbSAart Bik     // of 32-bit indices is unused). For 64-bit values, there is no good way
767a2c9d4bbSAart Bik     // to state that the indices are unsigned, with creates the potential of
768a2c9d4bbSAart Bik     // incorrect address calculations in the unlikely case we need such
769a2c9d4bbSAart Bik     // extremely large offsets.
770a2c9d4bbSAart Bik     Type etp = ptr.getType().cast<MemRefType>().getElementType();
771a2c9d4bbSAart Bik     Value vload = genVectorLoad(codegen, rewriter, ptr, {s});
772a2c9d4bbSAart Bik     if (!etp.isa<IndexType>()) {
773a2c9d4bbSAart Bik       if (etp.getIntOrFloatBitWidth() < 32)
774a2c9d4bbSAart Bik         vload = rewriter.create<ZeroExtendIOp>(
775a2c9d4bbSAart Bik             loc, vload, vectorType(codegen, rewriter.getIntegerType(32)));
776a2c9d4bbSAart Bik       else if (etp.getIntOrFloatBitWidth() < 64)
777a2c9d4bbSAart Bik         vload = rewriter.create<ZeroExtendIOp>(
778a2c9d4bbSAart Bik             loc, vload, vectorType(codegen, rewriter.getIntegerType(64)));
779a2c9d4bbSAart Bik     }
780a2c9d4bbSAart Bik     return vload;
781a2c9d4bbSAart Bik   }
782a2c9d4bbSAart Bik   // For the scalar case, we simply zero extend narrower indices into 64-bit
783a2c9d4bbSAart Bik   // values before casting to index without a performance penalty. Here too,
784a2c9d4bbSAart Bik   // however, indices that already are 64-bit, in theory, cannot express the
785a2c9d4bbSAart Bik   // full range as explained above.
786a2c9d4bbSAart Bik   Value load = rewriter.create<memref::LoadOp>(loc, ptr, s);
787a2c9d4bbSAart Bik   if (!load.getType().isa<IndexType>()) {
788a2c9d4bbSAart Bik     if (load.getType().getIntOrFloatBitWidth() < 64)
789a2c9d4bbSAart Bik       load = rewriter.create<ZeroExtendIOp>(loc, load,
790a2c9d4bbSAart Bik                                             rewriter.getIntegerType(64));
791a2c9d4bbSAart Bik     load = rewriter.create<IndexCastOp>(loc, load, rewriter.getIndexType());
792a2c9d4bbSAart Bik   }
793a2c9d4bbSAart Bik   return load;
794a2c9d4bbSAart Bik }
795a2c9d4bbSAart Bik 
796a2c9d4bbSAart Bik /// Generates an invariant value.
797a2c9d4bbSAart Bik static Value genInvariantValue(Merger &merger, CodeGen &codegen,
798a2c9d4bbSAart Bik                                PatternRewriter &rewriter, unsigned exp) {
799a2c9d4bbSAart Bik   Value val = merger.exp(exp).val;
800a2c9d4bbSAart Bik   if (codegen.curVecLength > 1)
801a2c9d4bbSAart Bik     return genVectorInvariantValue(codegen, rewriter, val);
802a2c9d4bbSAart Bik   return val;
803a2c9d4bbSAart Bik }
804a2c9d4bbSAart Bik 
805a2c9d4bbSAart Bik /// Generates an address computation "sz * p + i".
806a2c9d4bbSAart Bik static Value genAddress(CodeGen &codegen, PatternRewriter &rewriter,
807a2c9d4bbSAart Bik                         Location loc, Value size, Value p, Value i) {
808a2c9d4bbSAart Bik   Value mul = rewriter.create<MulIOp>(loc, size, p);
809a2c9d4bbSAart Bik   if (auto vtp = i.getType().dyn_cast<VectorType>()) {
810a2c9d4bbSAart Bik     Value inv = rewriter.create<IndexCastOp>(loc, mul, vtp.getElementType());
811a2c9d4bbSAart Bik     mul = genVectorInvariantValue(codegen, rewriter, inv);
812a2c9d4bbSAart Bik   }
813a2c9d4bbSAart Bik   return rewriter.create<AddIOp>(loc, mul, i);
814a2c9d4bbSAart Bik }
815a2c9d4bbSAart Bik 
816a2c9d4bbSAart Bik /// Generates start of a reduction.
817a2c9d4bbSAart Bik static Value genReductionStart(Merger &merger, CodeGen &codegen,
818a2c9d4bbSAart Bik                                PatternRewriter &rewriter,
819a2c9d4bbSAart Bik                                linalg::GenericOp op) {
820a2c9d4bbSAart Bik   if (codegen.redVal)
821a2c9d4bbSAart Bik     return codegen.redVal; // chained with previous for-loop
822a2c9d4bbSAart Bik   if (codegen.curVecLength > 1) {
823a2c9d4bbSAart Bik     // TODO: assumes + reductions for now
824a2c9d4bbSAart Bik     VectorType vtp = vectorType(codegen, codegen.buffers[codegen.redExp]);
825a2c9d4bbSAart Bik     return rewriter.create<ConstantOp>(op.getLoc(), vtp,
826a2c9d4bbSAart Bik                                        rewriter.getZeroAttr(vtp));
827a2c9d4bbSAart Bik   }
828a2c9d4bbSAart Bik   return genTensorLoad(merger, codegen, rewriter, op, codegen.redExp);
829a2c9d4bbSAart Bik }
830a2c9d4bbSAart Bik 
831a2c9d4bbSAart Bik /// Generates end of a reduction.
832a2c9d4bbSAart Bik static void genReductionEnd(Merger &merger, CodeGen &codegen,
833a2c9d4bbSAart Bik                             PatternRewriter &rewriter, linalg::GenericOp op) {
834a2c9d4bbSAart Bik   Value red = codegen.redVal;
835a2c9d4bbSAart Bik   if (!red)
836a2c9d4bbSAart Bik     return;
837a2c9d4bbSAart Bik   assert(codegen.curVecLength == 1);
838a2c9d4bbSAart Bik   codegen.redVal = merger.exp(codegen.redExp).val = Value(); // end chain
839a2c9d4bbSAart Bik   unsigned lhs = op.getNumShapedOperands() - 1;
840a2c9d4bbSAart Bik   if (auto vtp = red.getType().dyn_cast<VectorType>()) {
841a2c9d4bbSAart Bik     // TODO: assumes + reductions for now
842a2c9d4bbSAart Bik     StringAttr kind = rewriter.getStringAttr("add");
843a2c9d4bbSAart Bik     Value ld = genTensorLoad(merger, codegen, rewriter, op, codegen.redExp);
844a2c9d4bbSAart Bik     // Integer reductions don't accept an accumulator.
845a2c9d4bbSAart Bik     if (vtp.getElementType().isa<IntegerType>()) {
846a2c9d4bbSAart Bik       red = rewriter.create<vector::ReductionOp>(op.getLoc(), ld.getType(),
847a2c9d4bbSAart Bik                                                  kind, red, ValueRange{});
848a2c9d4bbSAart Bik       red = rewriter.create<AddIOp>(op.getLoc(), red, ld);
849a2c9d4bbSAart Bik     } else {
850a2c9d4bbSAart Bik       red = rewriter.create<vector::ReductionOp>(op.getLoc(), ld.getType(),
851a2c9d4bbSAart Bik                                                  kind, red, ld);
852a2c9d4bbSAart Bik     }
853a2c9d4bbSAart Bik   }
854a2c9d4bbSAart Bik   genTensorStore(merger, codegen, rewriter, op, lhs, red);
855a2c9d4bbSAart Bik }
856a2c9d4bbSAart Bik 
857a2c9d4bbSAart Bik /// Recursively generates tensor expression.
858a2c9d4bbSAart Bik static Value genExp(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
859a2c9d4bbSAart Bik                     linalg::GenericOp op, unsigned exp) {
860a2c9d4bbSAart Bik   if (merger.exp(exp).kind == Kind::kTensor)
861a2c9d4bbSAart Bik     return genTensorLoad(merger, codegen, rewriter, op, exp);
862a2c9d4bbSAart Bik   else if (merger.exp(exp).kind == Kind::kInvariant)
863a2c9d4bbSAart Bik     return genInvariantValue(merger, codegen, rewriter, exp);
864a2c9d4bbSAart Bik   Value v0 = genExp(merger, codegen, rewriter, op, merger.exp(exp).e0);
865a2c9d4bbSAart Bik   Value v1 = genExp(merger, codegen, rewriter, op, merger.exp(exp).e1);
866a2c9d4bbSAart Bik   switch (merger.exp(exp).kind) {
867a2c9d4bbSAart Bik   case Kind::kTensor:
868a2c9d4bbSAart Bik   case Kind::kInvariant:
869a2c9d4bbSAart Bik     llvm_unreachable("handled above");
870a2c9d4bbSAart Bik   case Kind::kMulF:
871a2c9d4bbSAart Bik     return rewriter.create<MulFOp>(op.getLoc(), v0, v1);
872a2c9d4bbSAart Bik   case Kind::kMulI:
873a2c9d4bbSAart Bik     return rewriter.create<MulIOp>(op.getLoc(), v0, v1);
874a2c9d4bbSAart Bik   case Kind::kAddF:
875a2c9d4bbSAart Bik     return rewriter.create<AddFOp>(op.getLoc(), v0, v1);
876a2c9d4bbSAart Bik   case Kind::kAddI:
877a2c9d4bbSAart Bik     return rewriter.create<AddIOp>(op.getLoc(), v0, v1);
878a2c9d4bbSAart Bik   }
879a2c9d4bbSAart Bik   llvm_unreachable("unexpected expression kind");
880a2c9d4bbSAart Bik }
881a2c9d4bbSAart Bik 
882a2c9d4bbSAart Bik /// Hoists loop invariant tensor loads for which indices have been exhausted.
883a2c9d4bbSAart Bik static void genInvariants(Merger &merger, CodeGen &codegen,
884a2c9d4bbSAart Bik                           PatternRewriter &rewriter, linalg::GenericOp op,
885a2c9d4bbSAart Bik                           unsigned exp, unsigned ldx, bool hoist) {
886a2c9d4bbSAart Bik   if (merger.exp(exp).kind == Kind::kTensor) {
887a2c9d4bbSAart Bik     // Inspect tensor indices.
888a2c9d4bbSAart Bik     bool atLevel = ldx == -1u;
889a2c9d4bbSAart Bik     unsigned tensor = merger.exp(exp).e0;
890a2c9d4bbSAart Bik     auto map = op.getIndexingMap(tensor);
891a2c9d4bbSAart Bik     for (unsigned i = 0, m = map.getNumResults(); i < m; ++i) {
892a2c9d4bbSAart Bik       unsigned idx = map.getDimPosition(i);
893a2c9d4bbSAart Bik       if (!codegen.loops[idx])
894a2c9d4bbSAart Bik         return; // still in play
895a2c9d4bbSAart Bik       else if (idx == ldx)
896a2c9d4bbSAart Bik         atLevel = true;
897a2c9d4bbSAart Bik     }
898a2c9d4bbSAart Bik     // All exhausted at this level (atLevel denotes exactly at this level).
899a2c9d4bbSAart Bik     unsigned lhs = op.getNumShapedOperands() - 1;
900a2c9d4bbSAart Bik     if (lhs == tensor) {
901a2c9d4bbSAart Bik       codegen.redExp = hoist ? exp : -1u;
902a2c9d4bbSAart Bik     } else if (atLevel) {
903a2c9d4bbSAart Bik       merger.exp(exp).val =
904a2c9d4bbSAart Bik           hoist ? genTensorLoad(merger, codegen, rewriter, op, exp) : Value();
905a2c9d4bbSAart Bik     }
906a2c9d4bbSAart Bik   } else if (merger.exp(exp).kind != Kind::kInvariant) {
907a2c9d4bbSAart Bik     // Traverse into the binary operations. Note that we only hoist
908a2c9d4bbSAart Bik     // tensor loads, since subsequent MLIR/LLVM passes know how to
909a2c9d4bbSAart Bik     // deal with all other kinds of derived loop invariants.
910a2c9d4bbSAart Bik     unsigned e0 = merger.exp(exp).e0;
911a2c9d4bbSAart Bik     unsigned e1 = merger.exp(exp).e1;
912a2c9d4bbSAart Bik     genInvariants(merger, codegen, rewriter, op, e0, ldx, hoist);
913a2c9d4bbSAart Bik     genInvariants(merger, codegen, rewriter, op, e1, ldx, hoist);
914a2c9d4bbSAart Bik   }
915a2c9d4bbSAart Bik }
916a2c9d4bbSAart Bik 
917a2c9d4bbSAart Bik /// Generates initialization code for the subsequent loop sequence at
918a2c9d4bbSAart Bik /// current index level. Returns true if the loop sequence needs to
919a2c9d4bbSAart Bik /// maintain the universal index.
920a2c9d4bbSAart Bik static bool genInit(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
921a2c9d4bbSAart Bik                     linalg::GenericOp op, std::vector<unsigned> &topSort,
922a2c9d4bbSAart Bik                     unsigned at, llvm::BitVector &inits) {
923a2c9d4bbSAart Bik   bool needsUniv = false;
924a2c9d4bbSAart Bik   Location loc = op.getLoc();
925a2c9d4bbSAart Bik   unsigned idx = topSort[at];
926a2c9d4bbSAart Bik 
927a2c9d4bbSAart Bik   // Initialize sparse positions.
928a2c9d4bbSAart Bik   for (unsigned b = 0, be = inits.size(); b < be; b++) {
929a2c9d4bbSAart Bik     if (inits[b]) {
930a2c9d4bbSAart Bik       unsigned tensor = merger.tensor(b);
931a2c9d4bbSAart Bik       assert(idx == merger.index(b));
932a2c9d4bbSAart Bik       if (merger.isDim(b, Dim::kSparse)) {
933a2c9d4bbSAart Bik         // Initialize sparse index.
934a2c9d4bbSAart Bik         unsigned pat = at;
935a2c9d4bbSAart Bik         for (; pat != 0; pat--) {
936a2c9d4bbSAart Bik           if (codegen.pidxs[tensor][topSort[pat - 1]])
937a2c9d4bbSAart Bik             break;
938a2c9d4bbSAart Bik         }
939a2c9d4bbSAart Bik         Value ptr = codegen.pointers[tensor][idx];
940a2c9d4bbSAart Bik         Value one = rewriter.create<ConstantIndexOp>(loc, 1);
941a2c9d4bbSAart Bik         Value p0 = (pat == 0) ? rewriter.create<ConstantIndexOp>(loc, 0)
942a2c9d4bbSAart Bik                               : codegen.pidxs[tensor][topSort[pat - 1]];
943a2c9d4bbSAart Bik         codegen.pidxs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p0);
944a2c9d4bbSAart Bik         Value p1 = rewriter.create<AddIOp>(loc, p0, one);
945a2c9d4bbSAart Bik         codegen.highs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p1);
946a2c9d4bbSAart Bik       } else {
947a2c9d4bbSAart Bik         // Dense index still in play.
948a2c9d4bbSAart Bik         needsUniv = true;
949a2c9d4bbSAart Bik       }
950a2c9d4bbSAart Bik     }
951a2c9d4bbSAart Bik   }
952a2c9d4bbSAart Bik 
953a2c9d4bbSAart Bik   // Initialize the universal dense index.
954a2c9d4bbSAart Bik   codegen.loops[idx] = rewriter.create<ConstantIndexOp>(loc, 0);
955a2c9d4bbSAart Bik   return needsUniv;
956a2c9d4bbSAart Bik }
957a2c9d4bbSAart Bik 
958a2c9d4bbSAart Bik /// Returns vectorization strategy. Any implicit inner loop in the Linalg
959a2c9d4bbSAart Bik /// operation is a candidate. Whether it is actually converted to SIMD code
960a2c9d4bbSAart Bik /// depends on the requested strategy.
961a2c9d4bbSAart Bik static bool isVectorFor(CodeGen &codegen, bool isInner, bool isSparse) {
962a2c9d4bbSAart Bik   switch (codegen.options.vectorizationStrategy) {
963a2c9d4bbSAart Bik   case SparseVectorizationStrategy::kNone:
964a2c9d4bbSAart Bik     return false;
965a2c9d4bbSAart Bik   case SparseVectorizationStrategy::kDenseInnerLoop:
966a2c9d4bbSAart Bik     return isInner && !isSparse;
967a2c9d4bbSAart Bik   case SparseVectorizationStrategy::kAnyStorageInnerLoop:
968a2c9d4bbSAart Bik     return isInner;
969a2c9d4bbSAart Bik   }
970a2c9d4bbSAart Bik   llvm_unreachable("unexpected vectorization strategy");
971a2c9d4bbSAart Bik }
972a2c9d4bbSAart Bik 
973a2c9d4bbSAart Bik /// Returns parallelization strategy. Any implicit loop in the Linalg operation
974a2c9d4bbSAart Bik /// that is marked "parallel" is a candidate. Whether it is actually converted
975a2c9d4bbSAart Bik /// to a parallel operation depends on the requested strategy.
976a2c9d4bbSAart Bik static bool isParallelFor(CodeGen &codegen, bool isOuter, bool isReduction,
977a2c9d4bbSAart Bik                           bool isSparse, bool isVector) {
978a2c9d4bbSAart Bik   switch (codegen.options.parallelizationStrategy) {
979a2c9d4bbSAart Bik   case SparseParallelizationStrategy::kNone:
980a2c9d4bbSAart Bik     return false;
981a2c9d4bbSAart Bik   case SparseParallelizationStrategy::kDenseOuterLoop:
982a2c9d4bbSAart Bik     return isOuter && !isSparse && !isReduction && !isVector;
983a2c9d4bbSAart Bik   case SparseParallelizationStrategy::kAnyStorageOuterLoop:
984a2c9d4bbSAart Bik     return isOuter && !isReduction && !isVector;
985a2c9d4bbSAart Bik   case SparseParallelizationStrategy::kDenseAnyLoop:
986a2c9d4bbSAart Bik     return !isSparse && !isReduction && !isVector;
987a2c9d4bbSAart Bik   case SparseParallelizationStrategy::kAnyStorageAnyLoop:
988a2c9d4bbSAart Bik     return !isReduction && !isVector;
989a2c9d4bbSAart Bik   }
990a2c9d4bbSAart Bik   llvm_unreachable("unexpected parallelization strategy");
991a2c9d4bbSAart Bik }
992a2c9d4bbSAart Bik 
993a2c9d4bbSAart Bik /// Checks unit strides for dense tensors. The iteration graph may have ignored
994a2c9d4bbSAart Bik /// dense access patterns in order to avoid cycles (sparse access patterns are
995a2c9d4bbSAart Bik /// always placed innermost), but that means dense access has become strided.
996a2c9d4bbSAart Bik /// For now, we reject vectorization of such cases.
997a2c9d4bbSAart Bik /// TODO: implement strided load/stores on dense arrays
998a2c9d4bbSAart Bik static bool denseUnitStrides(Merger &merger, linalg::GenericOp op,
999a2c9d4bbSAart Bik                              unsigned idx) {
1000a2c9d4bbSAart Bik   unsigned numTensors = op.getNumShapedOperands();
1001a2c9d4bbSAart Bik   for (unsigned t = 0; t < numTensors; t++) {
100296a23911SAart Bik     if (!getSparseTensorEncoding(op.getShapedType(t))) {
1003a2c9d4bbSAart Bik       auto map = op.getIndexingMap(t);
1004a2c9d4bbSAart Bik       unsigned r = map.getNumResults();
1005a2c9d4bbSAart Bik       for (unsigned i = 0; i < r; i++) {
1006a2c9d4bbSAart Bik         if (map.getDimPosition(i) == idx && i != r - 1)
1007a2c9d4bbSAart Bik           return false;
1008a2c9d4bbSAart Bik       }
1009a2c9d4bbSAart Bik     }
1010a2c9d4bbSAart Bik   }
1011a2c9d4bbSAart Bik   return true;
1012a2c9d4bbSAart Bik }
1013a2c9d4bbSAart Bik 
1014a2c9d4bbSAart Bik /// Generates a for-loop on a single index.
1015a2c9d4bbSAart Bik static Operation *genFor(Merger &merger, CodeGen &codegen,
1016a2c9d4bbSAart Bik                          PatternRewriter &rewriter, linalg::GenericOp op,
1017a2c9d4bbSAart Bik                          bool isOuter, bool isInner, unsigned idx,
1018a2c9d4bbSAart Bik                          llvm::BitVector &indices) {
1019a2c9d4bbSAart Bik   unsigned fb = indices.find_first();
1020a2c9d4bbSAart Bik   unsigned tensor = merger.tensor(fb);
1021a2c9d4bbSAart Bik   assert(idx == merger.index(fb));
1022a2c9d4bbSAart Bik   auto iteratorTypes = op.iterator_types().getValue();
1023a2c9d4bbSAart Bik   bool isReduction = linalg::isReductionIteratorType(iteratorTypes[idx]);
1024a2c9d4bbSAart Bik   bool isSparse = merger.isDim(fb, Dim::kSparse);
1025a2c9d4bbSAart Bik   bool isVector = isVectorFor(codegen, isInner, isSparse) &&
1026a2c9d4bbSAart Bik                   denseUnitStrides(merger, op, idx);
1027a2c9d4bbSAart Bik   bool isParallel =
1028a2c9d4bbSAart Bik       isParallelFor(codegen, isOuter, isReduction, isSparse, isVector);
1029a2c9d4bbSAart Bik 
1030a2c9d4bbSAart Bik   // Prepare vector length.
1031a2c9d4bbSAart Bik   if (isVector)
1032a2c9d4bbSAart Bik     codegen.curVecLength = codegen.options.vectorLength;
1033a2c9d4bbSAart Bik 
1034a2c9d4bbSAart Bik   // Loop bounds and increment.
1035a2c9d4bbSAart Bik   Location loc = op.getLoc();
1036a2c9d4bbSAart Bik   Value lo = isSparse ? codegen.pidxs[tensor][idx] : codegen.loops[idx];
1037a2c9d4bbSAart Bik   Value hi = isSparse ? codegen.highs[tensor][idx] : codegen.sizes[idx];
1038a2c9d4bbSAart Bik   Value step = rewriter.create<ConstantIndexOp>(loc, codegen.curVecLength);
1039a2c9d4bbSAart Bik 
1040a2c9d4bbSAart Bik   // Emit a parallel loop.
1041a2c9d4bbSAart Bik   if (isParallel) {
1042a2c9d4bbSAart Bik     assert(!isVector);
1043a2c9d4bbSAart Bik     scf::ParallelOp parOp = rewriter.create<scf::ParallelOp>(loc, lo, hi, step);
1044a2c9d4bbSAart Bik     if (isSparse)
1045a2c9d4bbSAart Bik       codegen.pidxs[tensor][idx] = parOp.getInductionVars()[0];
1046a2c9d4bbSAart Bik     else
1047a2c9d4bbSAart Bik       codegen.loops[idx] = parOp.getInductionVars()[0];
1048a2c9d4bbSAart Bik     rewriter.setInsertionPointToStart(parOp.getBody());
1049a2c9d4bbSAart Bik     return parOp;
1050a2c9d4bbSAart Bik   }
1051a2c9d4bbSAart Bik 
1052a2c9d4bbSAart Bik   // Emit a sequential loop, potentially with a scalarized reduction.
1053a2c9d4bbSAart Bik   bool scalarRed = isInner && codegen.redExp != -1u;
1054a2c9d4bbSAart Bik   SmallVector<Value, 4> operands;
1055a2c9d4bbSAart Bik   if (scalarRed) {
1056a2c9d4bbSAart Bik     Value load = genReductionStart(merger, codegen, rewriter, op);
1057a2c9d4bbSAart Bik     operands.push_back(load);
1058a2c9d4bbSAart Bik   }
1059a2c9d4bbSAart Bik   scf::ForOp forOp = rewriter.create<scf::ForOp>(loc, lo, hi, step, operands);
1060a2c9d4bbSAart Bik   if (scalarRed) {
1061a2c9d4bbSAart Bik     codegen.redVal = merger.exp(codegen.redExp).val =
1062a2c9d4bbSAart Bik         forOp.getRegionIterArgs().front();
1063a2c9d4bbSAart Bik   }
1064a2c9d4bbSAart Bik   // Assign induction variable to sparse or dense index.
1065a2c9d4bbSAart Bik   Value iv = forOp.getInductionVar();
1066a2c9d4bbSAart Bik   if (isSparse)
1067a2c9d4bbSAart Bik     codegen.pidxs[tensor][idx] = iv;
1068a2c9d4bbSAart Bik   else
1069a2c9d4bbSAart Bik     codegen.loops[idx] = iv;
1070a2c9d4bbSAart Bik   rewriter.setInsertionPointToStart(forOp.getBody());
1071a2c9d4bbSAart Bik   // Share vector iteration mask between all subsequent loads/stores.
1072a2c9d4bbSAart Bik   if (isVector)
1073a2c9d4bbSAart Bik     codegen.curVecMask = genVectorMask(codegen, rewriter, iv, lo, hi, step);
1074a2c9d4bbSAart Bik   return forOp;
1075a2c9d4bbSAart Bik }
1076a2c9d4bbSAart Bik 
1077a2c9d4bbSAart Bik /// Emit a while-loop for co-iteration over multiple indices.
1078a2c9d4bbSAart Bik static Operation *genWhile(Merger &merger, CodeGen &codegen,
1079a2c9d4bbSAart Bik                            PatternRewriter &rewriter, linalg::GenericOp op,
1080a2c9d4bbSAart Bik                            unsigned idx, bool needsUniv,
1081a2c9d4bbSAart Bik                            llvm::BitVector &indices) {
1082a2c9d4bbSAart Bik   SmallVector<Type, 4> types;
1083a2c9d4bbSAart Bik   SmallVector<Value, 4> operands;
1084a2c9d4bbSAart Bik   // Construct the while-loop with a parameter for each index.
1085a2c9d4bbSAart Bik   Type indexType = rewriter.getIndexType();
1086a2c9d4bbSAart Bik   for (unsigned b = 0, be = indices.size(); b < be; b++) {
1087a2c9d4bbSAart Bik     if (indices[b] && merger.isDim(b, Dim::kSparse)) {
1088a2c9d4bbSAart Bik       unsigned tensor = merger.tensor(b);
1089a2c9d4bbSAart Bik       assert(idx == merger.index(b));
1090a2c9d4bbSAart Bik       types.push_back(indexType);
1091a2c9d4bbSAart Bik       assert(codegen.pidxs[tensor][idx].getType().isa<IndexType>() &&
1092a2c9d4bbSAart Bik              "type mismatch for sparse index");
1093a2c9d4bbSAart Bik       operands.push_back(codegen.pidxs[tensor][idx]);
1094a2c9d4bbSAart Bik     }
1095a2c9d4bbSAart Bik   }
1096a2c9d4bbSAart Bik   if (needsUniv) {
1097a2c9d4bbSAart Bik     types.push_back(indexType);
1098a2c9d4bbSAart Bik     assert(codegen.loops[idx].getType().isa<IndexType>() &&
1099a2c9d4bbSAart Bik            "type mismatch for universal index");
1100a2c9d4bbSAart Bik     operands.push_back(codegen.loops[idx]);
1101a2c9d4bbSAart Bik   }
1102a2c9d4bbSAart Bik   Location loc = op.getLoc();
1103a2c9d4bbSAart Bik   scf::WhileOp whileOp = rewriter.create<scf::WhileOp>(loc, types, operands);
1104a2c9d4bbSAart Bik   Block *before = rewriter.createBlock(&whileOp.before(), {}, types);
1105a2c9d4bbSAart Bik   Block *after = rewriter.createBlock(&whileOp.after(), {}, types);
1106a2c9d4bbSAart Bik 
1107a2c9d4bbSAart Bik   // Build the "before" region, which effectively consists
1108a2c9d4bbSAart Bik   // of a conjunction of "i < upper" tests on all induction.
1109a2c9d4bbSAart Bik   rewriter.setInsertionPointToStart(&whileOp.before().front());
1110a2c9d4bbSAart Bik   Value cond;
1111a2c9d4bbSAart Bik   unsigned o = 0;
1112a2c9d4bbSAart Bik   for (unsigned b = 0, be = indices.size(); b < be; b++) {
1113a2c9d4bbSAart Bik     if (indices[b] && merger.isDim(b, Dim::kSparse)) {
1114a2c9d4bbSAart Bik       unsigned tensor = merger.tensor(b);
1115a2c9d4bbSAart Bik       assert(idx == merger.index(b));
1116a2c9d4bbSAart Bik       Value op1 = before->getArgument(o);
1117a2c9d4bbSAart Bik       Value op2 = codegen.highs[tensor][idx];
1118a2c9d4bbSAart Bik       Value opc = rewriter.create<CmpIOp>(loc, CmpIPredicate::ult, op1, op2);
1119a2c9d4bbSAart Bik       cond = cond ? rewriter.create<AndOp>(loc, cond, opc) : opc;
1120a2c9d4bbSAart Bik       codegen.pidxs[tensor][idx] = after->getArgument(o++);
1121a2c9d4bbSAart Bik     }
1122a2c9d4bbSAart Bik   }
1123a2c9d4bbSAart Bik   if (needsUniv)
1124a2c9d4bbSAart Bik     codegen.loops[idx] = after->getArgument(o++);
1125a2c9d4bbSAart Bik   assert(o == operands.size());
1126a2c9d4bbSAart Bik   rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments());
1127a2c9d4bbSAart Bik   rewriter.setInsertionPointToStart(&whileOp.after().front());
1128a2c9d4bbSAart Bik   return whileOp;
1129a2c9d4bbSAart Bik }
1130a2c9d4bbSAart Bik 
1131a2c9d4bbSAart Bik /// Generates a for-loop or a while-loop, depending on whether it implements
1132a2c9d4bbSAart Bik /// singleton iteration or co-iteration over the given conjunction.
1133a2c9d4bbSAart Bik static Operation *genLoop(Merger &merger, CodeGen &codegen,
1134a2c9d4bbSAart Bik                           PatternRewriter &rewriter, linalg::GenericOp op,
1135a2c9d4bbSAart Bik                           std::vector<unsigned> &topSort, unsigned at,
1136a2c9d4bbSAart Bik                           bool needsUniv, llvm::BitVector &indices) {
1137a2c9d4bbSAart Bik   unsigned idx = topSort[at];
1138a2c9d4bbSAart Bik   if (indices.count() == 1) {
1139a2c9d4bbSAart Bik     bool isOuter = at == 0;
1140a2c9d4bbSAart Bik     bool isInner = at == topSort.size() - 1;
1141a2c9d4bbSAart Bik     return genFor(merger, codegen, rewriter, op, isOuter, isInner, idx,
1142a2c9d4bbSAart Bik                   indices);
1143a2c9d4bbSAart Bik   }
1144a2c9d4bbSAart Bik   genReductionEnd(merger, codegen, rewriter, op); // cannot chain
1145a2c9d4bbSAart Bik   return genWhile(merger, codegen, rewriter, op, idx, needsUniv, indices);
1146a2c9d4bbSAart Bik }
1147a2c9d4bbSAart Bik 
1148a2c9d4bbSAart Bik /// Generates the local variables for this loop, consisting of the sparse
1149a2c9d4bbSAart Bik /// indices, restored universal dense index, and dense positions.
1150a2c9d4bbSAart Bik static void genLocals(Merger &merger, CodeGen &codegen,
1151a2c9d4bbSAart Bik                       PatternRewriter &rewriter, linalg::GenericOp op,
1152a2c9d4bbSAart Bik                       std::vector<unsigned> &topSort, unsigned at,
1153a2c9d4bbSAart Bik                       bool needsUniv, llvm::BitVector &locals) {
1154a2c9d4bbSAart Bik   Location loc = op.getLoc();
1155a2c9d4bbSAart Bik   unsigned idx = topSort[at];
1156a2c9d4bbSAart Bik 
1157a2c9d4bbSAart Bik   // Initialize sparse indices.
1158a2c9d4bbSAart Bik   Value min;
1159a2c9d4bbSAart Bik   for (unsigned b = 0, be = locals.size(); b < be; b++) {
1160a2c9d4bbSAart Bik     if (locals[b] && merger.isDim(b, Dim::kSparse)) {
1161a2c9d4bbSAart Bik       unsigned tensor = merger.tensor(b);
1162a2c9d4bbSAart Bik       assert(idx == merger.index(b));
1163a2c9d4bbSAart Bik       Value ptr = codegen.indices[tensor][idx];
1164a2c9d4bbSAart Bik       Value s = codegen.pidxs[tensor][idx];
1165a2c9d4bbSAart Bik       Value load = genLoad(codegen, rewriter, loc, ptr, s);
1166a2c9d4bbSAart Bik       codegen.idxs[tensor][idx] = load;
1167a2c9d4bbSAart Bik       if (!needsUniv) {
1168a2c9d4bbSAart Bik         if (min) {
1169a2c9d4bbSAart Bik           Value cmp =
1170a2c9d4bbSAart Bik               rewriter.create<CmpIOp>(loc, CmpIPredicate::ult, load, min);
1171a2c9d4bbSAart Bik           min = rewriter.create<SelectOp>(loc, cmp, load, min);
1172a2c9d4bbSAart Bik         } else {
1173a2c9d4bbSAart Bik           min = load;
1174a2c9d4bbSAart Bik         }
1175a2c9d4bbSAart Bik       }
1176a2c9d4bbSAart Bik     }
1177a2c9d4bbSAart Bik   }
1178a2c9d4bbSAart Bik 
1179a2c9d4bbSAart Bik   // Merge dense universal index over minimum.
1180a2c9d4bbSAart Bik   if (min) {
1181a2c9d4bbSAart Bik     assert(!needsUniv);
1182a2c9d4bbSAart Bik     codegen.loops[idx] = min;
1183a2c9d4bbSAart Bik   }
1184a2c9d4bbSAart Bik 
1185a2c9d4bbSAart Bik   // Initialize dense positions.
1186a2c9d4bbSAart Bik   for (unsigned b = 0, be = locals.size(); b < be; b++) {
1187a2c9d4bbSAart Bik     if (locals[b] && merger.isDim(b, Dim::kDense)) {
1188a2c9d4bbSAart Bik       unsigned tensor = merger.tensor(b);
1189a2c9d4bbSAart Bik       assert(idx == merger.index(b));
1190a2c9d4bbSAart Bik       unsigned pat = at;
1191a2c9d4bbSAart Bik       for (; pat != 0; pat--)
1192a2c9d4bbSAart Bik         if (codegen.pidxs[tensor][topSort[pat - 1]])
1193a2c9d4bbSAart Bik           break;
1194a2c9d4bbSAart Bik       Value p = (pat == 0) ? rewriter.create<ConstantIndexOp>(loc, 0)
1195a2c9d4bbSAart Bik                            : codegen.pidxs[tensor][topSort[pat - 1]];
1196a2c9d4bbSAart Bik       codegen.pidxs[tensor][idx] = genAddress(
1197a2c9d4bbSAart Bik           codegen, rewriter, loc, codegen.sizes[idx], p, codegen.loops[idx]);
1198a2c9d4bbSAart Bik     }
1199a2c9d4bbSAart Bik   }
1200a2c9d4bbSAart Bik }
1201a2c9d4bbSAart Bik 
1202a2c9d4bbSAart Bik /// Generates the induction structure for a while-loop.
1203a2c9d4bbSAart Bik static void genWhileInduction(Merger &merger, CodeGen &codegen,
1204a2c9d4bbSAart Bik                               PatternRewriter &rewriter, linalg::GenericOp op,
1205a2c9d4bbSAart Bik                               unsigned idx, bool needsUniv,
1206a2c9d4bbSAart Bik                               llvm::BitVector &induction, ResultRange results) {
1207a2c9d4bbSAart Bik   Location loc = op.getLoc();
1208a2c9d4bbSAart Bik   unsigned o = 0;
1209a2c9d4bbSAart Bik   SmallVector<Value, 4> operands;
1210a2c9d4bbSAart Bik   Value one = rewriter.create<ConstantIndexOp>(loc, 1);
1211a2c9d4bbSAart Bik   for (unsigned b = 0, be = induction.size(); b < be; b++) {
1212a2c9d4bbSAart Bik     if (induction[b] && merger.isDim(b, Dim::kSparse)) {
1213a2c9d4bbSAart Bik       unsigned tensor = merger.tensor(b);
1214a2c9d4bbSAart Bik       assert(idx == merger.index(b));
1215a2c9d4bbSAart Bik       Value op1 = codegen.idxs[tensor][idx];
1216a2c9d4bbSAart Bik       Value op2 = codegen.loops[idx];
1217a2c9d4bbSAart Bik       Value op3 = codegen.pidxs[tensor][idx];
1218a2c9d4bbSAart Bik       Value cmp = rewriter.create<CmpIOp>(loc, CmpIPredicate::eq, op1, op2);
1219a2c9d4bbSAart Bik       Value add = rewriter.create<AddIOp>(loc, op3, one);
1220a2c9d4bbSAart Bik       operands.push_back(rewriter.create<SelectOp>(loc, cmp, add, op3));
1221a2c9d4bbSAart Bik       codegen.pidxs[tensor][idx] = results[o++];
1222a2c9d4bbSAart Bik     }
1223a2c9d4bbSAart Bik   }
1224a2c9d4bbSAart Bik   if (needsUniv) {
1225a2c9d4bbSAart Bik     operands.push_back(rewriter.create<AddIOp>(loc, codegen.loops[idx], one));
1226a2c9d4bbSAart Bik     codegen.loops[idx] = results[o++];
1227a2c9d4bbSAart Bik   }
1228a2c9d4bbSAart Bik   assert(o == operands.size());
1229a2c9d4bbSAart Bik   rewriter.create<scf::YieldOp>(loc, operands);
1230a2c9d4bbSAart Bik }
1231a2c9d4bbSAart Bik 
1232a2c9d4bbSAart Bik /// Generates a single if-statement within a while-loop.
1233a2c9d4bbSAart Bik static scf::IfOp genIf(Merger &merger, CodeGen &codegen,
1234a2c9d4bbSAart Bik                        PatternRewriter &rewriter, linalg::GenericOp op,
1235a2c9d4bbSAart Bik                        unsigned idx, llvm::BitVector &conditions) {
1236a2c9d4bbSAart Bik   Location loc = op.getLoc();
1237a2c9d4bbSAart Bik   Value cond;
1238a2c9d4bbSAart Bik   for (unsigned b = 0, be = conditions.size(); b < be; b++) {
1239a2c9d4bbSAart Bik     if (conditions[b]) {
1240a2c9d4bbSAart Bik       unsigned tensor = merger.tensor(b);
1241a2c9d4bbSAart Bik       assert(idx == merger.index(b));
1242a2c9d4bbSAart Bik       Value clause;
1243a2c9d4bbSAart Bik       if (merger.isDim(b, Dim::kSparse)) {
1244a2c9d4bbSAart Bik         Value op1 = codegen.idxs[tensor][idx];
1245a2c9d4bbSAart Bik         Value op2 = codegen.loops[idx];
1246a2c9d4bbSAart Bik         clause = rewriter.create<CmpIOp>(loc, CmpIPredicate::eq, op1, op2);
1247a2c9d4bbSAart Bik       } else {
1248a2c9d4bbSAart Bik         clause = rewriter.create<ConstantIntOp>(loc, 1, 1); // true
1249a2c9d4bbSAart Bik       }
1250a2c9d4bbSAart Bik       cond = cond ? rewriter.create<AndOp>(loc, cond, clause) : clause;
1251a2c9d4bbSAart Bik     }
1252a2c9d4bbSAart Bik   }
1253a2c9d4bbSAart Bik   scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, cond, /*else*/ true);
1254a2c9d4bbSAart Bik   rewriter.setInsertionPointToStart(&ifOp.thenRegion().front());
1255a2c9d4bbSAart Bik   return ifOp;
1256a2c9d4bbSAart Bik }
1257a2c9d4bbSAart Bik 
1258a2c9d4bbSAart Bik /// Recursively generates code while computing iteration lattices in order
1259a2c9d4bbSAart Bik /// to manage the complexity of implementing co-iteration over unions
1260a2c9d4bbSAart Bik /// and intersections of sparse iterations spaces.
1261a2c9d4bbSAart Bik static void genStmt(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
1262a2c9d4bbSAart Bik                     linalg::GenericOp op, std::vector<unsigned> &topSort,
1263a2c9d4bbSAart Bik                     unsigned exp, unsigned at) {
1264a2c9d4bbSAart Bik   // At each leaf, assign remaining tensor (sub)expression to output tensor.
1265a2c9d4bbSAart Bik   if (at == topSort.size()) {
1266a2c9d4bbSAart Bik     unsigned lhs = op.getNumShapedOperands() - 1;
1267a2c9d4bbSAart Bik     Value rhs = genExp(merger, codegen, rewriter, op, exp);
1268a2c9d4bbSAart Bik     genTensorStore(merger, codegen, rewriter, op, lhs, rhs);
1269a2c9d4bbSAart Bik     return;
1270a2c9d4bbSAart Bik   }
1271a2c9d4bbSAart Bik   assert(codegen.curVecLength == 1);
1272a2c9d4bbSAart Bik 
1273a2c9d4bbSAart Bik   // Construct iteration lattices for current loop index, with L0 at top.
1274a2c9d4bbSAart Bik   // Then emit initialization code for the loop sequence at this level.
1275a2c9d4bbSAart Bik   // We maintain the universal dense index if dense indices are still
1276a2c9d4bbSAart Bik   // in play for a non-singleton loop sequence.
1277a2c9d4bbSAart Bik   Location loc = op.getLoc();
1278a2c9d4bbSAart Bik   unsigned idx = topSort[at];
1279a2c9d4bbSAart Bik   unsigned lts = merger.optimizeSet(buildLattices(merger, op, exp, idx));
1280a2c9d4bbSAart Bik   unsigned lsize = merger.set(lts).size();
1281a2c9d4bbSAart Bik   assert(lsize != 0);
1282a2c9d4bbSAart Bik   unsigned l0 = merger.set(lts)[0];
1283a2c9d4bbSAart Bik   unsigned ldx = at == 0 ? -1u : topSort[at - 1];
1284a2c9d4bbSAart Bik   genInvariants(merger, codegen, rewriter, op, exp, ldx, /*hoist=*/true);
1285a2c9d4bbSAart Bik   bool needsUniv = false;
1286a2c9d4bbSAart Bik   if (genInit(merger, codegen, rewriter, op, topSort, at,
1287a2c9d4bbSAart Bik               merger.lat(l0).bits)) {
1288a2c9d4bbSAart Bik     // Maintain the universal index only if it is actually
1289a2c9d4bbSAart Bik     // consumed by a subsequent lattice point.
1290a2c9d4bbSAart Bik     for (unsigned i = 1; i < lsize; i++) {
1291a2c9d4bbSAart Bik       unsigned li = merger.set(lts)[i];
1292a2c9d4bbSAart Bik       if (!merger.hasAnyDimOf(merger.lat(li).simple, Dim::kSparse)) {
1293a2c9d4bbSAart Bik         needsUniv = true;
1294a2c9d4bbSAart Bik         break;
1295a2c9d4bbSAart Bik       }
1296a2c9d4bbSAart Bik     }
1297a2c9d4bbSAart Bik   }
1298a2c9d4bbSAart Bik 
1299a2c9d4bbSAart Bik   // Emit a loop for every lattice point L0 >= Li.
1300a2c9d4bbSAart Bik   for (unsigned i = 0; i < lsize; i++) {
1301a2c9d4bbSAart Bik     unsigned li = merger.set(lts)[i];
1302a2c9d4bbSAart Bik 
1303a2c9d4bbSAart Bik     // Emit loop.
1304a2c9d4bbSAart Bik     codegen.curVecLength = 1;
1305a2c9d4bbSAart Bik     llvm::BitVector indices = merger.lat(li).simple;
1306a2c9d4bbSAart Bik     Operation *loop =
1307a2c9d4bbSAart Bik         genLoop(merger, codegen, rewriter, op, topSort, at, needsUniv, indices);
1308a2c9d4bbSAart Bik     genLocals(merger, codegen, rewriter, op, topSort, at, needsUniv,
1309a2c9d4bbSAart Bik               merger.lat(li).bits);
1310a2c9d4bbSAart Bik 
1311a2c9d4bbSAart Bik     // Visit all lattices points with Li >= Lj to generate the
1312a2c9d4bbSAart Bik     // loop-body, possibly with if statements for coiteration.
1313a2c9d4bbSAart Bik     bool isWhile = dyn_cast<scf::WhileOp>(loop) != nullptr;
1314a2c9d4bbSAart Bik     for (unsigned j = 0; j < lsize; j++) {
1315a2c9d4bbSAart Bik       unsigned lj = merger.set(lts)[j];
1316a2c9d4bbSAart Bik       unsigned ej = merger.lat(lj).exp;
1317a2c9d4bbSAart Bik       if (li == lj || merger.latGT(li, lj)) {
1318a2c9d4bbSAart Bik         // Recurse into body of each branch.
1319a2c9d4bbSAart Bik         if (isWhile) {
1320a2c9d4bbSAart Bik           scf::IfOp ifOp =
1321a2c9d4bbSAart Bik               genIf(merger, codegen, rewriter, op, idx, merger.lat(lj).simple);
1322a2c9d4bbSAart Bik           genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1);
1323a2c9d4bbSAart Bik           rewriter.setInsertionPointToStart(&ifOp.elseRegion().front());
1324a2c9d4bbSAart Bik         } else {
1325a2c9d4bbSAart Bik           genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1);
1326a2c9d4bbSAart Bik         }
1327a2c9d4bbSAart Bik       }
1328a2c9d4bbSAart Bik     }
1329a2c9d4bbSAart Bik 
1330a2c9d4bbSAart Bik     // Wrap-up induction and restore insertion point.
1331a2c9d4bbSAart Bik     if (isWhile) {
1332a2c9d4bbSAart Bik       scf::WhileOp whileOp = cast<scf::WhileOp>(loop);
1333a2c9d4bbSAart Bik       rewriter.setInsertionPointToEnd(&whileOp.after().front());
1334a2c9d4bbSAart Bik       genWhileInduction(merger, codegen, rewriter, op, idx, needsUniv,
1335a2c9d4bbSAart Bik                         merger.lat(li).bits, whileOp.results());
1336a2c9d4bbSAart Bik     } else {
1337a2c9d4bbSAart Bik       needsUniv = false;
1338a2c9d4bbSAart Bik       if (codegen.redVal) {
1339a2c9d4bbSAart Bik         rewriter.create<scf::YieldOp>(loc, codegen.redVal);
1340a2c9d4bbSAart Bik         codegen.redVal = loop->getResult(0);
1341a2c9d4bbSAart Bik       }
1342a2c9d4bbSAart Bik     }
1343a2c9d4bbSAart Bik     rewriter.setInsertionPointAfter(loop);
1344a2c9d4bbSAart Bik   }
1345a2c9d4bbSAart Bik 
1346a2c9d4bbSAart Bik   // Wrap-up loop sequence.
1347a2c9d4bbSAart Bik   codegen.curVecLength = 1;
1348a2c9d4bbSAart Bik   genReductionEnd(merger, codegen, rewriter, op);
1349a2c9d4bbSAart Bik   genInvariants(merger, codegen, rewriter, op, exp, ldx, /*hoist=*/false);
1350a2c9d4bbSAart Bik   codegen.loops[idx] = Value();
1351a2c9d4bbSAart Bik }
1352a2c9d4bbSAart Bik 
1353a2c9d4bbSAart Bik namespace {
1354a2c9d4bbSAart Bik 
1355a2c9d4bbSAart Bik /// Sparse rewriting rule for generic Lingalg operation.
1356a2c9d4bbSAart Bik struct GenericOpSparsifier : public OpRewritePattern<linalg::GenericOp> {
1357a2c9d4bbSAart Bik public:
1358a2c9d4bbSAart Bik   GenericOpSparsifier(MLIRContext *context, SparsificationOptions o)
1359a2c9d4bbSAart Bik       : OpRewritePattern<linalg::GenericOp>(context), options(o) {}
1360a2c9d4bbSAart Bik 
1361a2c9d4bbSAart Bik   LogicalResult matchAndRewrite(linalg::GenericOp op,
1362a2c9d4bbSAart Bik                                 PatternRewriter &rewriter) const override {
1363a2c9d4bbSAart Bik     // Detects sparse annotations and translate the per-dimension sparsity
1364a2c9d4bbSAart Bik     // information for all tensors to loop indices in the kernel.
1365a2c9d4bbSAart Bik     assert(op.getNumOutputs() == 1);
1366a2c9d4bbSAart Bik     unsigned numTensors = op.getNumShapedOperands();
1367a2c9d4bbSAart Bik     unsigned numLoops = op.iterator_types().getValue().size();
1368a2c9d4bbSAart Bik     Merger merger(numTensors, numLoops);
1369*bf9ef3efSAart Bik     if (!findSparseAnnotations(merger, op))
1370*bf9ef3efSAart Bik       return failure();
1371a2c9d4bbSAart Bik 
1372a2c9d4bbSAart Bik     // Computes a topologically sorted iteration graph to ensure
1373a2c9d4bbSAart Bik     // tensors are visited in natural index order. Fails on cycles.
1374a2c9d4bbSAart Bik     // This assumes that higher-level passes have already put the
1375a2c9d4bbSAart Bik     // tensors in each tensor expression in a feasible order.
1376a2c9d4bbSAart Bik     std::vector<unsigned> topSort;
1377a2c9d4bbSAart Bik     if (!computeIterationGraph(merger, op, topSort, /*sparseOnly=*/false) &&
1378a2c9d4bbSAart Bik         !computeIterationGraph(merger, op, topSort, /*sparseOnly=*/true))
1379a2c9d4bbSAart Bik       return failure();
1380a2c9d4bbSAart Bik 
1381a2c9d4bbSAart Bik     // Finds the terminating yield statement and builds the tensor
1382a2c9d4bbSAart Bik     // expression for the Linalg operation in SSA form.
1383a2c9d4bbSAart Bik     Operation *yield = op.region().front().getTerminator();
1384a2c9d4bbSAart Bik     Optional<unsigned> exp = buildTensorExp(merger, op, yield->getOperand(0));
1385a2c9d4bbSAart Bik     if (!exp.hasValue())
1386a2c9d4bbSAart Bik       return failure(); // build failure
1387a2c9d4bbSAart Bik 
1388a2c9d4bbSAart Bik     // Recursively generates code.
1389a2c9d4bbSAart Bik     CodeGen codegen(options, numTensors, numLoops);
1390a2c9d4bbSAart Bik     genBuffers(merger, codegen, rewriter, op);
1391a2c9d4bbSAart Bik     genStmt(merger, codegen, rewriter, op, topSort, exp.getValue(), 0);
1392a2c9d4bbSAart Bik     Value result = rewriter.create<memref::TensorLoadOp>(
1393a2c9d4bbSAart Bik         op.getLoc(), codegen.buffers.back());
1394a2c9d4bbSAart Bik     rewriter.replaceOp(op, result);
1395a2c9d4bbSAart Bik     return success();
1396a2c9d4bbSAart Bik   }
1397a2c9d4bbSAart Bik 
1398a2c9d4bbSAart Bik private:
1399a2c9d4bbSAart Bik   /// Options to control sparse code generation.
1400a2c9d4bbSAart Bik   SparsificationOptions options;
1401a2c9d4bbSAart Bik };
1402a2c9d4bbSAart Bik 
1403a2c9d4bbSAart Bik } // namespace
1404a2c9d4bbSAart Bik 
1405a2c9d4bbSAart Bik /// Populates the given patterns list with rewriting rules required for
1406a2c9d4bbSAart Bik /// the sparsification of linear algebra operations.
1407a2c9d4bbSAart Bik void mlir::populateSparsificationPatterns(
1408a2c9d4bbSAart Bik     RewritePatternSet &patterns, const SparsificationOptions &options) {
1409a2c9d4bbSAart Bik   patterns.add<GenericOpSparsifier>(patterns.getContext(), options);
1410a2c9d4bbSAart Bik }
1411