196a23911SAart Bik //===- Sparsification.cpp - Implementation of sparsification --------------===// 2a2c9d4bbSAart Bik // 3a2c9d4bbSAart Bik // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4a2c9d4bbSAart Bik // See https://llvm.org/LICENSE.txt for license information. 5a2c9d4bbSAart Bik // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6a2c9d4bbSAart Bik // 7a2c9d4bbSAart Bik //===----------------------------------------------------------------------===// 8a2c9d4bbSAart Bik // 996a23911SAart Bik // This file implements lowering sparse tensor types to actual sparse code. 10a2c9d4bbSAart Bik // 11a2c9d4bbSAart Bik // The concept of letting a compiler generate sparse code automatically was 12a2c9d4bbSAart Bik // pioneered for dense linear algebra code in Fortran by [Bik96] in MT1 and 13a2c9d4bbSAart Bik // formalized to tensor algebra by [Kjolstad17,20] for the Sparse Tensor 14a2c9d4bbSAart Bik // Algebra Compiler (TACO). The implementation in this file closely follows 15a2c9d4bbSAart Bik // the "sparse iteration theory" that forms the foundation of TACO. A rewriting 16a2c9d4bbSAart Bik // rule is applied to each tensor expression in linalg (MLIR's tensor index 17a2c9d4bbSAart Bik // notation) where the sparsity of tensors is indicated with annotation using 18a2c9d4bbSAart Bik // a per-dimension specification of sparse/dense storage together with a 19a2c9d4bbSAart Bik // specification of the order on the dimensions. Subsequently, a topologically 20a2c9d4bbSAart Bik // sorted iteration graph, reflecting the required order on indices with respect 21a2c9d4bbSAart Bik // to the dimensions of each tensor, is constructed to ensure that all tensors 22a2c9d4bbSAart Bik // are visited in natural index order. Next, iteration lattices are constructed 23a2c9d4bbSAart Bik // for the tensor expression for every index in topological order. Each 24a2c9d4bbSAart Bik // iteration lattice point consists of a conjunction of tensor indices together 25a2c9d4bbSAart Bik // with a tensor (sub)expression that needs to be evaluated for that 26a2c9d4bbSAart Bik // conjunction. Within the lattice, iteration points are ordered according to 27a2c9d4bbSAart Bik // the way indices are exhausted. As such these iteration lattices drive actual 28a2c9d4bbSAart Bik // sparse code generation, which consists of a tedious but relatively 29a2c9d4bbSAart Bik // straightforward one-to-one mapping from iteration lattices to combinations 30a2c9d4bbSAart Bik // of for-loops, while-loops, and if-statements. 31a2c9d4bbSAart Bik // 32a2c9d4bbSAart Bik // [Bik96] Aart J.C. Bik. Compiler Support for Sparse Matrix Computations. 33a2c9d4bbSAart Bik // PhD thesis, Leiden University, May 1996 (aartbik.com/sparse.php). 34a2c9d4bbSAart Bik // [Kjolstad17] Fredrik Berg Kjolstad, Shoaib Ashraf Kamil, Stephen Chou, 35a2c9d4bbSAart Bik // David Lugato, and Saman Amarasinghe. The Tensor Algebra Compiler. 36a2c9d4bbSAart Bik // Proceedings of the ACM on Programming Languages, October 2017. 37a2c9d4bbSAart Bik // [Kjolstad20] Fredrik Berg Kjolstad. Sparse Tensor Algebra Compilation. 38a2c9d4bbSAart Bik // PhD thesis, MIT, February, 2020 (tensor-compiler.org). 39a2c9d4bbSAart Bik // 40a2c9d4bbSAart Bik // Implementation detail: We use llvm::SmallVector for vectors with 41a2c9d4bbSAart Bik // variable lengths and std::vector for vectors with fixed lengths. 42a2c9d4bbSAart Bik //===----------------------------------------------------------------------===// 43a2c9d4bbSAart Bik 44a2c9d4bbSAart Bik #include "mlir/Dialect/Linalg/IR/LinalgOps.h" 45a2c9d4bbSAart Bik #include "mlir/Dialect/Linalg/Utils/Utils.h" 4666f878ceSMatthias Springer #include "mlir/Dialect/MemRef/IR/MemRef.h" 47a2c9d4bbSAart Bik #include "mlir/Dialect/SCF/SCF.h" 48a2c9d4bbSAart Bik #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h" 49a2c9d4bbSAart Bik #include "mlir/Dialect/SparseTensor/Transforms/Passes.h" 50744146f6SGus Smith #include "mlir/Dialect/SparseTensor/Utils/Merger.h" 51a2c9d4bbSAart Bik #include "mlir/Dialect/StandardOps/IR/Ops.h" 52a2c9d4bbSAart Bik #include "mlir/Dialect/Vector/VectorOps.h" 53a2c9d4bbSAart Bik #include "mlir/IR/Matchers.h" 5496a23911SAart Bik #include "mlir/IR/TensorEncoding.h" 55a2c9d4bbSAart Bik #include "llvm/ADT/SmallBitVector.h" 56a2c9d4bbSAart Bik 57a2c9d4bbSAart Bik using namespace mlir; 5896a23911SAart Bik using namespace mlir::sparse_tensor; 59a2c9d4bbSAart Bik 60a2c9d4bbSAart Bik namespace { 61a2c9d4bbSAart Bik 62a2c9d4bbSAart Bik // Code generation. 63a2c9d4bbSAart Bik struct CodeGen { 6496a23911SAart Bik CodeGen(SparsificationOptions o, unsigned numTensors, unsigned numLoops) 65a2c9d4bbSAart Bik : options(o), loops(numLoops), sizes(numLoops), buffers(numTensors), 66a2c9d4bbSAart Bik pointers(numTensors, std::vector<Value>(numLoops)), 67a2c9d4bbSAart Bik indices(numTensors, std::vector<Value>(numLoops)), 68a2c9d4bbSAart Bik highs(numTensors, std::vector<Value>(numLoops)), 69a2c9d4bbSAart Bik pidxs(numTensors, std::vector<Value>(numLoops)), 70a2c9d4bbSAart Bik idxs(numTensors, std::vector<Value>(numLoops)), redExp(-1u), redVal(), 71a2c9d4bbSAart Bik curVecLength(1), curVecMask() {} 72a2c9d4bbSAart Bik /// Sparsification options. 7396a23911SAart Bik SparsificationOptions options; 74a2c9d4bbSAart Bik /// Universal dense indices and upper bounds (by index). The loops array 75a2c9d4bbSAart Bik /// is updated with the value of the universal dense index in the current 76a2c9d4bbSAart Bik /// loop. The sizes array is set once with the inferred dimension sizes. 77a2c9d4bbSAart Bik std::vector<Value> loops; 78a2c9d4bbSAart Bik std::vector<Value> sizes; 79a2c9d4bbSAart Bik /// Buffers for storing dense and sparse numerical values (by tensor). 80a2c9d4bbSAart Bik /// This array is set once during bufferization of all tensors. 81a2c9d4bbSAart Bik std::vector<Value> buffers; 82a2c9d4bbSAart Bik /// Sparse storage schemes (1-D): pointers and indices (by tensor and index). 83a2c9d4bbSAart Bik /// This array is set once during bufferization of all sparse tensors. 84a2c9d4bbSAart Bik std::vector<std::vector<Value>> pointers; 85a2c9d4bbSAart Bik std::vector<std::vector<Value>> indices; 86a2c9d4bbSAart Bik /// Sparse iteration information (by tensor and index). These arrays 87a2c9d4bbSAart Bik /// are updated to remain current within the current loop. 88a2c9d4bbSAart Bik std::vector<std::vector<Value>> highs; 89a2c9d4bbSAart Bik std::vector<std::vector<Value>> pidxs; 90a2c9d4bbSAart Bik std::vector<std::vector<Value>> idxs; 91a2c9d4bbSAart Bik /// Current reduction, updated during code generation. When indices of a 92a2c9d4bbSAart Bik /// reduction are exhausted, all inner loops can "scalarize" the reduction. 93a2c9d4bbSAart Bik // TODO: currently only done for (a chain of) innermost for-loops, where it 94a2c9d4bbSAart Bik // is most effective; we could generalize to more outer and while-loops. 95a2c9d4bbSAart Bik unsigned redExp; 96a2c9d4bbSAart Bik Value redVal; 97a2c9d4bbSAart Bik // Current vector length and mask. 98a2c9d4bbSAart Bik unsigned curVecLength; 99a2c9d4bbSAart Bik Value curVecMask; 100a2c9d4bbSAart Bik }; 101a2c9d4bbSAart Bik 102a2c9d4bbSAart Bik } // namespace 103a2c9d4bbSAart Bik 104c194b49cSAart Bik // Helper method to apply dimension ordering permutation. 105c194b49cSAart Bik static unsigned perm(SparseTensorEncodingAttr &enc, unsigned d) { 106c194b49cSAart Bik if (enc) { 107c194b49cSAart Bik auto order = enc.getDimOrdering(); 108c194b49cSAart Bik if (order) { 109c194b49cSAart Bik assert(order.isPermutation()); 110c194b49cSAart Bik return order.getDimPosition(d); 111c194b49cSAart Bik } 112c194b49cSAart Bik } 113c194b49cSAart Bik return d; 114c194b49cSAart Bik } 115c194b49cSAart Bik 11696a23911SAart Bik // Helper method to translate dim level type to internal representation. 11796a23911SAart Bik static Dim toDim(SparseTensorEncodingAttr &enc, unsigned d) { 11896a23911SAart Bik if (enc) { 11996a23911SAart Bik SparseTensorEncodingAttr::DimLevelType tp = enc.getDimLevelType()[d]; 12096a23911SAart Bik if (tp == SparseTensorEncodingAttr::DimLevelType::Compressed) 12196a23911SAart Bik return Dim::kSparse; 12296a23911SAart Bik if (tp == SparseTensorEncodingAttr::DimLevelType::Singleton) 12396a23911SAart Bik return Dim::kSingle; 12496a23911SAart Bik } 12596a23911SAart Bik return Dim::kDense; 12696a23911SAart Bik } 12796a23911SAart Bik 12896a23911SAart Bik /// Helper method to inspect sparse encodings in the tensor types. 129a2c9d4bbSAart Bik /// Fills the per-dimension sparsity information for all tensors. 130bf9ef3efSAart Bik static bool findSparseAnnotations(Merger &merger, linalg::GenericOp op) { 131bf9ef3efSAart Bik bool annotated = false; 1322f2b5b7dSTobias Gysi for (OpOperand *t : op.getInputAndOutputOperands()) { 1332f2b5b7dSTobias Gysi auto map = op.getTiedIndexingMap(t); 134c194b49cSAart Bik if (!map.isProjectedPermutation()) 135c194b49cSAart Bik return false; 1362f2b5b7dSTobias Gysi auto enc = getSparseTensorEncoding(t->get().getType()); 137727a63e0SAart Bik if (enc) 138bf9ef3efSAart Bik annotated = true; 1392f2b5b7dSTobias Gysi assert(map.getNumResults() == op.getRank(t)); 140c194b49cSAart Bik for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { 141c194b49cSAart Bik unsigned idx = map.getDimPosition(perm(enc, d)); 1422f2b5b7dSTobias Gysi merger.setDim(t->getOperandNumber(), idx, toDim(enc, d)); 143a2c9d4bbSAart Bik } 144a2c9d4bbSAart Bik } 145bf9ef3efSAart Bik return annotated; 146a2c9d4bbSAart Bik } 147a2c9d4bbSAart Bik 148a2c9d4bbSAart Bik /// A DFS helper to compute a topological sort. Note that recursion is 149a2c9d4bbSAart Bik /// bounded by the number of implicit loops, which is always small. 150a2c9d4bbSAart Bik /// Returns false when a cycle is detected. 151a2c9d4bbSAart Bik static bool topSortDFS(unsigned i, std::vector<unsigned> &visit, 152a2c9d4bbSAart Bik std::vector<unsigned> &topSort, 153a2c9d4bbSAart Bik std::vector<std::vector<bool>> &adjM) { 154a2c9d4bbSAart Bik if (visit[i] != 0) 155a2c9d4bbSAart Bik return visit[i] != 1; // 1 denotes cycle! 156a2c9d4bbSAart Bik visit[i] = 1; 157a2c9d4bbSAart Bik for (unsigned j = 0, e = visit.size(); j < e; j++) 158a2c9d4bbSAart Bik if (adjM[i][j]) 159a2c9d4bbSAart Bik if (!topSortDFS(j, visit, topSort, adjM)) 160a2c9d4bbSAart Bik return false; 161a2c9d4bbSAart Bik visit[i] = 2; 162a2c9d4bbSAart Bik topSort.push_back(i); 163a2c9d4bbSAart Bik return true; 164a2c9d4bbSAart Bik } 165a2c9d4bbSAart Bik 166a2c9d4bbSAart Bik /// Computes a topologically sorted iteration graph for the linalg operation. 167a2c9d4bbSAart Bik /// Ensures all tensors are visited in natural index order. This is essential 168a2c9d4bbSAart Bik /// for sparse storage formats since these only support access along fixed 169a2c9d4bbSAart Bik /// dimensions. Even for dense storage formats, however, the natural index 170a2c9d4bbSAart Bik /// order yields innermost unit-stride access with better spatial locality. 171a2c9d4bbSAart Bik static bool computeIterationGraph(Merger &merger, linalg::GenericOp op, 172a2c9d4bbSAart Bik std::vector<unsigned> &topSort, 173a2c9d4bbSAart Bik bool sparseOnly) { 174a2c9d4bbSAart Bik // Set up an n x n from/to adjacency matrix of the iteration graph 175a2c9d4bbSAart Bik // for the implicit loop indices i_0 .. i_n-1. 176a2c9d4bbSAart Bik unsigned n = op.getNumLoops(); 177a2c9d4bbSAart Bik std::vector<std::vector<bool>> adjM(n, std::vector<bool>(n, false)); 178a2c9d4bbSAart Bik 179a2c9d4bbSAart Bik // Iterate over the indexing maps of every tensor in the tensor expression. 1802f2b5b7dSTobias Gysi for (OpOperand *t : op.getInputAndOutputOperands()) { 1812f2b5b7dSTobias Gysi auto map = op.getTiedIndexingMap(t); 1822f2b5b7dSTobias Gysi auto enc = getSparseTensorEncoding(t->get().getType()); 183a2c9d4bbSAart Bik assert(map.getNumDims() == n); 184a2c9d4bbSAart Bik // Skip dense tensor constraints when sparse only is requested. 185c194b49cSAart Bik if (sparseOnly && !enc) 186a2c9d4bbSAart Bik continue; 187c194b49cSAart Bik // Each tensor expression and optional dimension ordering (row-major 188c194b49cSAart Bik // by default) puts an ordering constraint on the loop indices. For 189c194b49cSAart Bik // example, the tensor expresion A_ijk forces the ordering i < j < k 190c194b49cSAart Bik // on the loop indices if no explicit dimension ordering is given. 191c194b49cSAart Bik for (unsigned d = 1, rank = map.getNumResults(); d < rank; d++) { 192c194b49cSAart Bik unsigned f = map.getDimPosition(perm(enc, d - 1)); 193c194b49cSAart Bik unsigned t = map.getDimPosition(perm(enc, d)); 194a2c9d4bbSAart Bik adjM[f][t] = true; 195a2c9d4bbSAart Bik } 196a2c9d4bbSAart Bik } 197a2c9d4bbSAart Bik 198a2c9d4bbSAart Bik // Topologically sort the iteration graph to determine loop order. 199a2c9d4bbSAart Bik // Report failure for a cyclic iteration graph. 200a2c9d4bbSAart Bik topSort.clear(); 201a2c9d4bbSAart Bik topSort.reserve(n); 202a2c9d4bbSAart Bik std::vector<unsigned> visit(n, 0); 203a2c9d4bbSAart Bik for (unsigned i = 0; i < n; i++) 204a2c9d4bbSAart Bik if (visit[i] == 0) 205a2c9d4bbSAart Bik if (!topSortDFS(i, visit, topSort, adjM)) 206a2c9d4bbSAart Bik return false; // cycle! 207a2c9d4bbSAart Bik std::reverse(std::begin(topSort), std::end(topSort)); 208a2c9d4bbSAart Bik return true; 209a2c9d4bbSAart Bik } 210a2c9d4bbSAart Bik 21136b66ab9SAart Bik /// Returns true if given tensor co-iterates with conjunction only. 21236b66ab9SAart Bik /// For the output tensor, this defines a "simply dynamic" operation. 21336b66ab9SAart Bik /// For instance: A(I) = A(I) * B(I) * C(I) 21436b66ab9SAart Bik static unsigned isConjunction(Merger &merger, unsigned tensor, unsigned exp) { 21536b66ab9SAart Bik switch (merger.exp(exp).kind) { 21636b66ab9SAart Bik case Kind::kTensor: 2174569c14aSGus Smith return merger.exp(exp).tensor == tensor; 21836b66ab9SAart Bik case Kind::kMulF: 21936b66ab9SAart Bik case Kind::kMulI: 2204569c14aSGus Smith return isConjunction(merger, tensor, merger.exp(exp).children.e0) || 2214569c14aSGus Smith isConjunction(merger, tensor, merger.exp(exp).children.e1); 22236b66ab9SAart Bik default: 22336b66ab9SAart Bik return false; 22436b66ab9SAart Bik } 22536b66ab9SAart Bik } 22636b66ab9SAart Bik 22736b66ab9SAart Bik /// Returns true when the tensor expression is admissable for codegen. 22836b66ab9SAart Bik /// Since all sparse input tensors are admissable, we just need to check 22936b66ab9SAart Bik /// whether the output tensor in the tensor expression codegen is admissable. 23036b66ab9SAart Bik static bool isAdmissableTensorExp(Merger &merger, linalg::GenericOp op, 23136b66ab9SAart Bik unsigned exp) { 23236b66ab9SAart Bik OpOperand *lhs = op.getOutputOperand(0); 23336b66ab9SAart Bik unsigned tensor = lhs->getOperandNumber(); 23436b66ab9SAart Bik auto enc = getSparseTensorEncoding(lhs->get().getType()); 23536b66ab9SAart Bik // An non-annotated output tensor is assumed dense, and becomes a random 23636b66ab9SAart Bik // access n-dim memref. Admissable since inserstions cannot occur. 23736b66ab9SAart Bik if (!enc) 23836b66ab9SAart Bik return true; 23936b66ab9SAart Bik // An all-dense annotated "sparse" output tensor becomes a linearized random 24036b66ab9SAart Bik // access 1-dim memref. Also admissable since insertions cannot occur. 24136b66ab9SAart Bik bool allDense = true; 24236b66ab9SAart Bik unsigned numLoops = op.iterator_types().getValue().size(); 24336b66ab9SAart Bik for (unsigned i = 0; i < numLoops; i++) 24436b66ab9SAart Bik if (merger.isDim(tensor, i, Dim::kSparse)) { 24536b66ab9SAart Bik allDense = false; 24636b66ab9SAart Bik break; 24736b66ab9SAart Bik } 24836b66ab9SAart Bik if (allDense) 24936b66ab9SAart Bik return true; 25036b66ab9SAart Bik // A tensor expression with a sparse output tensor that changes its values 25136b66ab9SAart Bik // but not its nonzero structure, an operation called "simply dynamic" in 25236b66ab9SAart Bik // [Bik96,Ch9], is also admissable without special codegen. 25336b66ab9SAart Bik if (isConjunction(merger, tensor, exp)) 25436b66ab9SAart Bik return true; 25536b66ab9SAart Bik // Reject for now since this requires changes to the nonzero structure. 25636b66ab9SAart Bik // TODO: implement "workspaces" [Kjolstad2019] 25736b66ab9SAart Bik return false; 25836b66ab9SAart Bik } 25936b66ab9SAart Bik 260a2c9d4bbSAart Bik /// Maps sparse integer option to actual integral storage type. 26196a23911SAart Bik static Type genIntType(PatternRewriter &rewriter, unsigned width) { 26296a23911SAart Bik if (width == 0) 263a2c9d4bbSAart Bik return rewriter.getIndexType(); 26496a23911SAart Bik return rewriter.getIntegerType(width); 265a2c9d4bbSAart Bik } 266a2c9d4bbSAart Bik 2675879da49SAart Bik /// Detects in-place annotation on tensor argument. 2685879da49SAart Bik static bool getInPlace(Value val) { 2695879da49SAart Bik if (auto arg = val.dyn_cast<BlockArgument>()) 2705879da49SAart Bik if (auto funcOp = dyn_cast<FuncOp>(arg.getOwner()->getParentOp())) 2715879da49SAart Bik if (auto attr = funcOp.getArgAttrOfType<BoolAttr>( 2725879da49SAart Bik arg.getArgNumber(), linalg::LinalgDialect::kInplaceableAttrName)) 2735879da49SAart Bik return attr.getValue(); 2745879da49SAart Bik return false; 2755879da49SAart Bik } 2765879da49SAart Bik 277a2c9d4bbSAart Bik /// Generates buffer for the output tensor. 278a2c9d4bbSAart Bik static Value genOutputBuffer(CodeGen &codegen, PatternRewriter &rewriter, 279a2c9d4bbSAart Bik linalg::GenericOp op, MemRefType denseTp, 280a2c9d4bbSAart Bik ArrayRef<Value> args) { 281a2c9d4bbSAart Bik Location loc = op.getLoc(); 2822f2b5b7dSTobias Gysi Value tensor = op.getOutputOperand(0)->get(); 283a2c9d4bbSAart Bik // The output tensor simply could materialize from the buffer that will 284a2c9d4bbSAart Bik // be generated for the tensor present in the outs() clause. This has 285a2c9d4bbSAart Bik // the major advantage that the sparse kernel only updates the nonzero 2865879da49SAart Bik // positions for the output tensor. 2875879da49SAart Bik if (getInPlace(tensor)) 288a2c9d4bbSAart Bik return rewriter.create<memref::BufferCastOp>(loc, denseTp, tensor); 289a2c9d4bbSAart Bik // By default, a new buffer is allocated which is initialized to the 290a2c9d4bbSAart Bik // tensor defined in the outs() clause. This is always correct but 291a2c9d4bbSAart Bik // introduces a dense initialization component that may negatively 292a2c9d4bbSAart Bik // impact the running complexity of the sparse kernel. 293a2c9d4bbSAart Bik Value init = rewriter.create<memref::BufferCastOp>(loc, denseTp, tensor); 294a2c9d4bbSAart Bik Value alloc = rewriter.create<memref::AllocOp>(loc, denseTp, args); 295a2c9d4bbSAart Bik rewriter.create<linalg::CopyOp>(loc, init, alloc); 296a2c9d4bbSAart Bik return alloc; 297a2c9d4bbSAart Bik } 298a2c9d4bbSAart Bik 299a2c9d4bbSAart Bik /// Local bufferization of all dense and sparse data structures. 300a2c9d4bbSAart Bik /// This code enables testing the first prototype sparse compiler. 301a2c9d4bbSAart Bik // TODO: replace this with a proliferated bufferization strategy 302727a63e0SAart Bik static bool genBuffers(Merger &merger, CodeGen &codegen, 303a2c9d4bbSAart Bik PatternRewriter &rewriter, linalg::GenericOp op) { 304a2c9d4bbSAart Bik Location loc = op.getLoc(); 3052f2b5b7dSTobias Gysi assert(op.getNumInputsAndOutputs() == op.getNumInputs() + 1); 306a2c9d4bbSAart Bik // For every tensor, find lower and upper bound on dimensions, set the 307a2c9d4bbSAart Bik // same bounds on loop indices, and obtain dense or sparse buffer(s). 308a2c9d4bbSAart Bik SmallVector<Value, 4> args; 3092f2b5b7dSTobias Gysi for (OpOperand *t : op.getInputAndOutputOperands()) { 310727a63e0SAart Bik unsigned tensor = t->getOperandNumber(); 3112f2b5b7dSTobias Gysi auto shape = op.getShape(t); 3122f2b5b7dSTobias Gysi auto map = op.getTiedIndexingMap(t); 3132f2b5b7dSTobias Gysi auto enc = getSparseTensorEncoding(t->get().getType()); 314a2c9d4bbSAart Bik // Scan all dimensions of current tensor. 315a2c9d4bbSAart Bik args.clear(); 316c194b49cSAart Bik for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { 317c194b49cSAart Bik unsigned idx = map.getDimPosition(perm(enc, d)); 318a2c9d4bbSAart Bik // Handle sparse storage schemes. 319727a63e0SAart Bik if (merger.isDim(tensor, idx, Dim::kSparse)) { 320a2c9d4bbSAart Bik auto dynShape = {ShapedType::kDynamicSize}; 321a2c9d4bbSAart Bik auto ptrTp = MemRefType::get( 32296a23911SAart Bik dynShape, genIntType(rewriter, enc.getPointerBitWidth())); 323a2c9d4bbSAart Bik auto indTp = MemRefType::get( 32496a23911SAart Bik dynShape, genIntType(rewriter, enc.getIndexBitWidth())); 325a2c9d4bbSAart Bik Value dim = rewriter.create<ConstantIndexOp>(loc, d); 326a2c9d4bbSAart Bik // Generate sparse primitives to obtains pointer and indices. 327727a63e0SAart Bik codegen.pointers[tensor][idx] = 3282f2b5b7dSTobias Gysi rewriter.create<ToPointersOp>(loc, ptrTp, t->get(), dim); 329727a63e0SAart Bik codegen.indices[tensor][idx] = 3302f2b5b7dSTobias Gysi rewriter.create<ToIndicesOp>(loc, indTp, t->get(), dim); 331a2c9d4bbSAart Bik } 332a2c9d4bbSAart Bik // Find lower and upper bound in current dimension. 333a2c9d4bbSAart Bik Value up; 334a2c9d4bbSAart Bik if (shape[d] == MemRefType::kDynamicSize) { 335c0a6318dSMatthias Springer up = createOrFoldDimOp(rewriter, loc, t->get(), d); 336a2c9d4bbSAart Bik args.push_back(up); 337a2c9d4bbSAart Bik } else { 338a2c9d4bbSAart Bik up = rewriter.create<ConstantIndexOp>(loc, shape[d]); 339a2c9d4bbSAart Bik } 340727a63e0SAart Bik codegen.sizes[idx] = codegen.highs[tensor][idx] = up; 341a2c9d4bbSAart Bik } 342727a63e0SAart Bik // Perform the required bufferization. Dense inputs materialize 343727a63e0SAart Bik // from the input tensors. Dense outputs need special handling. 344727a63e0SAart Bik // Sparse inputs use sparse primitives to obtain the values. 345727a63e0SAart Bik // We also accept in-place all-dense annotated "sparse" outputs. 3462f2b5b7dSTobias Gysi Type elementType = getElementTypeOrSelf(t->get().getType()); 34796a23911SAart Bik if (!enc) { 348727a63e0SAart Bik // Non-annotated dense tensors. 3492f2b5b7dSTobias Gysi auto denseTp = MemRefType::get(shape, elementType); 350727a63e0SAart Bik if (tensor < op.getNumInputs()) 351727a63e0SAart Bik codegen.buffers[tensor] = 3522f2b5b7dSTobias Gysi rewriter.create<memref::BufferCastOp>(loc, denseTp, t->get()); 353a2c9d4bbSAart Bik else 354727a63e0SAart Bik codegen.buffers[tensor] = 355a2c9d4bbSAart Bik genOutputBuffer(codegen, rewriter, op, denseTp, args); 356a2c9d4bbSAart Bik } else { 357727a63e0SAart Bik // Annotated sparse tensors. 358727a63e0SAart Bik if (tensor == op.getNumInputs() && !getInPlace(t->get())) 359727a63e0SAart Bik return false; // reject output if not in-place 360a2c9d4bbSAart Bik auto dynShape = {ShapedType::kDynamicSize}; 3612f2b5b7dSTobias Gysi auto sparseTp = MemRefType::get(dynShape, elementType); 362727a63e0SAart Bik codegen.buffers[tensor] = 3632f2b5b7dSTobias Gysi rewriter.create<ToValuesOp>(loc, sparseTp, t->get()); 364a2c9d4bbSAart Bik } 365a2c9d4bbSAart Bik } 366727a63e0SAart Bik return true; 367a2c9d4bbSAart Bik } 368a2c9d4bbSAart Bik 369a2c9d4bbSAart Bik /// Constructs vector type. 370a2c9d4bbSAart Bik static VectorType vectorType(CodeGen &codegen, Type etp) { 371a2c9d4bbSAart Bik return VectorType::get(codegen.curVecLength, etp); 372a2c9d4bbSAart Bik } 373a2c9d4bbSAart Bik 374a2c9d4bbSAart Bik /// Constructs vector type from pointer. 375a2c9d4bbSAart Bik static VectorType vectorType(CodeGen &codegen, Value ptr) { 376a2c9d4bbSAart Bik return vectorType(codegen, ptr.getType().cast<MemRefType>().getElementType()); 377a2c9d4bbSAart Bik } 378a2c9d4bbSAart Bik 379a2c9d4bbSAart Bik /// Constructs vector iteration mask. 380a2c9d4bbSAart Bik static Value genVectorMask(CodeGen &codegen, PatternRewriter &rewriter, 381a2c9d4bbSAart Bik Value iv, Value lo, Value hi, Value step) { 382a2c9d4bbSAart Bik Location loc = iv.getLoc(); 383a2c9d4bbSAart Bik VectorType mtp = vectorType(codegen, rewriter.getIntegerType(1)); 384a2c9d4bbSAart Bik // Special case if the vector length evenly divides the trip count (for 385a2c9d4bbSAart Bik // example, "for i = 0, 128, 16"). A constant all-true mask is generated 386a2c9d4bbSAart Bik // so that all subsequent masked memory operations are immediately folded 387a2c9d4bbSAart Bik // into unconditional memory operations. 388a2c9d4bbSAart Bik IntegerAttr loInt, hiInt, stepInt; 389a2c9d4bbSAart Bik if (matchPattern(lo, m_Constant(&loInt)) && 390a2c9d4bbSAart Bik matchPattern(hi, m_Constant(&hiInt)) && 391a2c9d4bbSAart Bik matchPattern(step, m_Constant(&stepInt))) { 392a2c9d4bbSAart Bik if (((hiInt.getInt() - loInt.getInt()) % stepInt.getInt()) == 0) 393a2c9d4bbSAart Bik return rewriter.create<vector::BroadcastOp>( 394a2c9d4bbSAart Bik loc, mtp, rewriter.create<ConstantIntOp>(loc, 1, 1)); 395a2c9d4bbSAart Bik } 396a2c9d4bbSAart Bik // Otherwise, generate a vector mask that avoids overrunning the upperbound 397a2c9d4bbSAart Bik // during vector execution. Here we rely on subsequent loop optimizations to 398a2c9d4bbSAart Bik // avoid executing the mask in all iterations, for example, by splitting the 399a2c9d4bbSAart Bik // loop into an unconditional vector loop and a scalar cleanup loop. 400a2c9d4bbSAart Bik Value end = rewriter.create<SubIOp>(loc, hi, iv); 401a2c9d4bbSAart Bik return rewriter.create<vector::CreateMaskOp>(loc, mtp, end); 402a2c9d4bbSAart Bik } 403a2c9d4bbSAart Bik 404a2c9d4bbSAart Bik /// Generates a vectorized load lhs = a[ind[lo:hi]] or lhs = a[lo:hi]. 405a2c9d4bbSAart Bik static Value genVectorLoad(CodeGen &codegen, PatternRewriter &rewriter, 406a2c9d4bbSAart Bik Value ptr, ArrayRef<Value> args) { 407a2c9d4bbSAart Bik Location loc = ptr.getLoc(); 408a2c9d4bbSAart Bik VectorType vtp = vectorType(codegen, ptr); 409a2c9d4bbSAart Bik Value pass = rewriter.create<ConstantOp>(loc, vtp, rewriter.getZeroAttr(vtp)); 410a2c9d4bbSAart Bik if (args.back().getType().isa<VectorType>()) { 411a2c9d4bbSAart Bik SmallVector<Value, 4> scalarArgs(args.begin(), args.end()); 412a2c9d4bbSAart Bik Value indexVec = args.back(); 413a2c9d4bbSAart Bik scalarArgs.back() = rewriter.create<ConstantIndexOp>(loc, 0); 414a2c9d4bbSAart Bik return rewriter.create<vector::GatherOp>( 415a2c9d4bbSAart Bik loc, vtp, ptr, scalarArgs, indexVec, codegen.curVecMask, pass); 416a2c9d4bbSAart Bik } 417a2c9d4bbSAart Bik return rewriter.create<vector::MaskedLoadOp>(loc, vtp, ptr, args, 418a2c9d4bbSAart Bik codegen.curVecMask, pass); 419a2c9d4bbSAart Bik } 420a2c9d4bbSAart Bik 421a2c9d4bbSAart Bik /// Generates a vectorized store a[ind[lo:hi]] = rhs or a[lo:hi] = rhs. 422a2c9d4bbSAart Bik static void genVectorStore(CodeGen &codegen, PatternRewriter &rewriter, 423a2c9d4bbSAart Bik Value rhs, Value ptr, ArrayRef<Value> args) { 424a2c9d4bbSAart Bik Location loc = ptr.getLoc(); 425a2c9d4bbSAart Bik if (args.back().getType().isa<VectorType>()) { 426a2c9d4bbSAart Bik SmallVector<Value, 4> scalarArgs(args.begin(), args.end()); 427a2c9d4bbSAart Bik Value indexVec = args.back(); 428a2c9d4bbSAart Bik scalarArgs.back() = rewriter.create<ConstantIndexOp>(loc, 0); 429a2c9d4bbSAart Bik rewriter.create<vector::ScatterOp>(loc, ptr, scalarArgs, indexVec, 430a2c9d4bbSAart Bik codegen.curVecMask, rhs); 431a2c9d4bbSAart Bik return; 432a2c9d4bbSAart Bik } 433a2c9d4bbSAart Bik rewriter.create<vector::MaskedStoreOp>(loc, ptr, args, codegen.curVecMask, 434a2c9d4bbSAart Bik rhs); 435a2c9d4bbSAart Bik } 436a2c9d4bbSAart Bik 437a2c9d4bbSAart Bik /// Generates a vectorized invariant. Here we rely on subsequent loop 438a2c9d4bbSAart Bik /// optimizations to hoist the invariant broadcast out of the vector loop. 439a2c9d4bbSAart Bik static Value genVectorInvariantValue(CodeGen &codegen, 440a2c9d4bbSAart Bik PatternRewriter &rewriter, Value val) { 441a2c9d4bbSAart Bik VectorType vtp = vectorType(codegen, val.getType()); 442a2c9d4bbSAart Bik return rewriter.create<vector::BroadcastOp>(val.getLoc(), vtp, val); 443a2c9d4bbSAart Bik } 444a2c9d4bbSAart Bik 445a2c9d4bbSAart Bik /// Generates a load on a dense or sparse tensor. 446a2c9d4bbSAart Bik static Value genTensorLoad(Merger &merger, CodeGen &codegen, 447a2c9d4bbSAart Bik PatternRewriter &rewriter, linalg::GenericOp op, 448a2c9d4bbSAart Bik unsigned exp) { 449a2c9d4bbSAart Bik // Test if the load was hoisted to a higher loop nest. 450a2c9d4bbSAart Bik Value val = merger.exp(exp).val; 451a2c9d4bbSAart Bik if (val) { 452a2c9d4bbSAart Bik if (codegen.curVecLength > 1 && !val.getType().isa<VectorType>()) 453a2c9d4bbSAart Bik return genVectorInvariantValue(codegen, rewriter, val); 454a2c9d4bbSAart Bik return val; 455a2c9d4bbSAart Bik } 456a2c9d4bbSAart Bik // Actual load. 457a2c9d4bbSAart Bik SmallVector<Value, 4> args; 4584569c14aSGus Smith OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).tensor]; 459727a63e0SAart Bik unsigned tensor = t->getOperandNumber(); 460727a63e0SAart Bik auto map = op.getTiedIndexingMap(t); 461727a63e0SAart Bik auto enc = getSparseTensorEncoding(t->get().getType()); 462727a63e0SAart Bik unsigned rank = map.getNumResults(); 46396a23911SAart Bik if (enc) { 464727a63e0SAart Bik unsigned idx = map.getDimPosition(perm(enc, rank - 1)); 465727a63e0SAart Bik assert(codegen.pidxs[tensor][idx] != nullptr); 466727a63e0SAart Bik args.push_back(codegen.pidxs[tensor][idx]); // position index 467727a63e0SAart Bik } else { 468727a63e0SAart Bik for (unsigned d = 0; d < rank; d++) { 469727a63e0SAart Bik unsigned idx = map.getDimPosition(d); 470727a63e0SAart Bik args.push_back(codegen.loops[idx]); // universal dense index 471a2c9d4bbSAart Bik } 472a2c9d4bbSAart Bik } 473a2c9d4bbSAart Bik Location loc = op.getLoc(); 474727a63e0SAart Bik Value ptr = codegen.buffers[tensor]; 475a2c9d4bbSAart Bik if (codegen.curVecLength > 1) 476a2c9d4bbSAart Bik return genVectorLoad(codegen, rewriter, ptr, args); 477a2c9d4bbSAart Bik return rewriter.create<memref::LoadOp>(loc, ptr, args); 478a2c9d4bbSAart Bik } 479a2c9d4bbSAart Bik 480727a63e0SAart Bik /// Generates a store on a dense or sparse tensor. 481a2c9d4bbSAart Bik static void genTensorStore(Merger &merger, CodeGen &codegen, 482a2c9d4bbSAart Bik PatternRewriter &rewriter, linalg::GenericOp op, 483727a63e0SAart Bik OpOperand *t, Value rhs) { 484a2c9d4bbSAart Bik Location loc = op.getLoc(); 485a2c9d4bbSAart Bik // Test if this is a scalarized reduction. 4862f2b5b7dSTobias Gysi OpOperand *lhs = op.getOutputOperand(0); 487727a63e0SAart Bik if (lhs == t && codegen.redVal) { 488a2c9d4bbSAart Bik if (codegen.curVecLength > 1) 489a2c9d4bbSAart Bik rhs = rewriter.create<SelectOp>(loc, codegen.curVecMask, rhs, 490a2c9d4bbSAart Bik codegen.redVal); 491a2c9d4bbSAart Bik codegen.redVal = rhs; 492a2c9d4bbSAart Bik return; 493a2c9d4bbSAart Bik } 494a2c9d4bbSAart Bik // Actual store. 495a2c9d4bbSAart Bik SmallVector<Value, 4> args; 496727a63e0SAart Bik unsigned tensor = t->getOperandNumber(); 497727a63e0SAart Bik auto map = op.getTiedIndexingMap(t); 498727a63e0SAart Bik auto enc = getSparseTensorEncoding(t->get().getType()); 499727a63e0SAart Bik unsigned rank = map.getNumResults(); 500727a63e0SAart Bik if (enc) { 501727a63e0SAart Bik unsigned idx = map.getDimPosition(perm(enc, rank - 1)); 502727a63e0SAart Bik assert(codegen.pidxs[tensor][idx] != nullptr); 503727a63e0SAart Bik args.push_back(codegen.pidxs[tensor][idx]); // position index 504727a63e0SAart Bik } else { 505727a63e0SAart Bik for (unsigned d = 0; d < rank; d++) { 506c194b49cSAart Bik unsigned idx = map.getDimPosition(d); 507a2c9d4bbSAart Bik args.push_back(codegen.loops[idx]); // universal dense index 508a2c9d4bbSAart Bik } 509727a63e0SAart Bik } 510727a63e0SAart Bik Value ptr = codegen.buffers[tensor]; 511a2c9d4bbSAart Bik if (codegen.curVecLength > 1) 512a2c9d4bbSAart Bik genVectorStore(codegen, rewriter, rhs, ptr, args); 513a2c9d4bbSAart Bik else 514a2c9d4bbSAart Bik rewriter.create<memref::StoreOp>(loc, rhs, ptr, args); 515a2c9d4bbSAart Bik } 516a2c9d4bbSAart Bik 517a2c9d4bbSAart Bik /// Generates a pointer/index load from the sparse storage scheme. Narrower 518a2c9d4bbSAart Bik /// data types need to be zero extended before casting the value into the 519a2c9d4bbSAart Bik /// index type used for looping and indexing. 520a2c9d4bbSAart Bik static Value genLoad(CodeGen &codegen, PatternRewriter &rewriter, Location loc, 521a2c9d4bbSAart Bik Value ptr, Value s) { 522a2c9d4bbSAart Bik // See https://llvm.org/docs/GetElementPtr.html for some background on 523a2c9d4bbSAart Bik // the complications described below. 524a2c9d4bbSAart Bik if (codegen.curVecLength > 1) { 525a2c9d4bbSAart Bik // Since the index vector is used in a subsequent gather/scatter operations, 526a2c9d4bbSAart Bik // which effectively defines an unsigned pointer + signed index, we must 527a2c9d4bbSAart Bik // zero extend the vector to an index width. For 8-bit and 16-bit values, 528a2c9d4bbSAart Bik // an 32-bit index width suffices. For 32-bit values, zero extending the 529a2c9d4bbSAart Bik // elements into 64-bit loses some performance since the 32-bit indexed 53086e9bc1aSAart Bik // gather/scatter is more efficient than the 64-bit index variant (if the 53186e9bc1aSAart Bik // negative 32-bit index space is unused, the enableSIMDIndex32 flag can 532727a63e0SAart Bik // preserve this performance). For 64-bit values, there is no good way 533a2c9d4bbSAart Bik // to state that the indices are unsigned, with creates the potential of 534a2c9d4bbSAart Bik // incorrect address calculations in the unlikely case we need such 535a2c9d4bbSAart Bik // extremely large offsets. 536a2c9d4bbSAart Bik Type etp = ptr.getType().cast<MemRefType>().getElementType(); 537a2c9d4bbSAart Bik Value vload = genVectorLoad(codegen, rewriter, ptr, {s}); 538a2c9d4bbSAart Bik if (!etp.isa<IndexType>()) { 539a2c9d4bbSAart Bik if (etp.getIntOrFloatBitWidth() < 32) 540a2c9d4bbSAart Bik vload = rewriter.create<ZeroExtendIOp>( 541a2c9d4bbSAart Bik loc, vload, vectorType(codegen, rewriter.getIntegerType(32))); 54286e9bc1aSAart Bik else if (etp.getIntOrFloatBitWidth() < 64 && 54386e9bc1aSAart Bik !codegen.options.enableSIMDIndex32) 544a2c9d4bbSAart Bik vload = rewriter.create<ZeroExtendIOp>( 545a2c9d4bbSAart Bik loc, vload, vectorType(codegen, rewriter.getIntegerType(64))); 546a2c9d4bbSAart Bik } 547a2c9d4bbSAart Bik return vload; 548a2c9d4bbSAart Bik } 549a2c9d4bbSAart Bik // For the scalar case, we simply zero extend narrower indices into 64-bit 550a2c9d4bbSAart Bik // values before casting to index without a performance penalty. Here too, 551a2c9d4bbSAart Bik // however, indices that already are 64-bit, in theory, cannot express the 552a2c9d4bbSAart Bik // full range as explained above. 553a2c9d4bbSAart Bik Value load = rewriter.create<memref::LoadOp>(loc, ptr, s); 554a2c9d4bbSAart Bik if (!load.getType().isa<IndexType>()) { 555a2c9d4bbSAart Bik if (load.getType().getIntOrFloatBitWidth() < 64) 556a2c9d4bbSAart Bik load = rewriter.create<ZeroExtendIOp>(loc, load, 557a2c9d4bbSAart Bik rewriter.getIntegerType(64)); 558a2c9d4bbSAart Bik load = rewriter.create<IndexCastOp>(loc, load, rewriter.getIndexType()); 559a2c9d4bbSAart Bik } 560a2c9d4bbSAart Bik return load; 561a2c9d4bbSAart Bik } 562a2c9d4bbSAart Bik 563a2c9d4bbSAart Bik /// Generates an invariant value. 564a2c9d4bbSAart Bik static Value genInvariantValue(Merger &merger, CodeGen &codegen, 565a2c9d4bbSAart Bik PatternRewriter &rewriter, unsigned exp) { 566a2c9d4bbSAart Bik Value val = merger.exp(exp).val; 567a2c9d4bbSAart Bik if (codegen.curVecLength > 1) 568a2c9d4bbSAart Bik return genVectorInvariantValue(codegen, rewriter, val); 569a2c9d4bbSAart Bik return val; 570a2c9d4bbSAart Bik } 571a2c9d4bbSAart Bik 572a2c9d4bbSAart Bik /// Generates an address computation "sz * p + i". 573a2c9d4bbSAart Bik static Value genAddress(CodeGen &codegen, PatternRewriter &rewriter, 574a2c9d4bbSAart Bik Location loc, Value size, Value p, Value i) { 575a2c9d4bbSAart Bik Value mul = rewriter.create<MulIOp>(loc, size, p); 576a2c9d4bbSAart Bik if (auto vtp = i.getType().dyn_cast<VectorType>()) { 577a2c9d4bbSAart Bik Value inv = rewriter.create<IndexCastOp>(loc, mul, vtp.getElementType()); 578a2c9d4bbSAart Bik mul = genVectorInvariantValue(codegen, rewriter, inv); 579a2c9d4bbSAart Bik } 580a2c9d4bbSAart Bik return rewriter.create<AddIOp>(loc, mul, i); 581a2c9d4bbSAart Bik } 582a2c9d4bbSAart Bik 583a2c9d4bbSAart Bik /// Generates start of a reduction. 584a2c9d4bbSAart Bik static Value genReductionStart(Merger &merger, CodeGen &codegen, 585a2c9d4bbSAart Bik PatternRewriter &rewriter, 586a2c9d4bbSAart Bik linalg::GenericOp op) { 587a2c9d4bbSAart Bik if (codegen.redVal) 588a2c9d4bbSAart Bik return codegen.redVal; // chained with previous for-loop 589a2c9d4bbSAart Bik if (codegen.curVecLength > 1) { 590a2c9d4bbSAart Bik // TODO: assumes + reductions for now 591a2c9d4bbSAart Bik VectorType vtp = vectorType(codegen, codegen.buffers[codegen.redExp]); 592a2c9d4bbSAart Bik return rewriter.create<ConstantOp>(op.getLoc(), vtp, 593a2c9d4bbSAart Bik rewriter.getZeroAttr(vtp)); 594a2c9d4bbSAart Bik } 595a2c9d4bbSAart Bik return genTensorLoad(merger, codegen, rewriter, op, codegen.redExp); 596a2c9d4bbSAart Bik } 597a2c9d4bbSAart Bik 598a2c9d4bbSAart Bik /// Generates end of a reduction. 599a2c9d4bbSAart Bik static void genReductionEnd(Merger &merger, CodeGen &codegen, 600a2c9d4bbSAart Bik PatternRewriter &rewriter, linalg::GenericOp op) { 601a2c9d4bbSAart Bik Value red = codegen.redVal; 602a2c9d4bbSAart Bik if (!red) 603a2c9d4bbSAart Bik return; 604a2c9d4bbSAart Bik assert(codegen.curVecLength == 1); 605a2c9d4bbSAart Bik codegen.redVal = merger.exp(codegen.redExp).val = Value(); // end chain 6062f2b5b7dSTobias Gysi OpOperand *lhs = op.getOutputOperand(0); 607a2c9d4bbSAart Bik if (auto vtp = red.getType().dyn_cast<VectorType>()) { 608a2c9d4bbSAart Bik // TODO: assumes + reductions for now 609a2c9d4bbSAart Bik StringAttr kind = rewriter.getStringAttr("add"); 610a2c9d4bbSAart Bik Value ld = genTensorLoad(merger, codegen, rewriter, op, codegen.redExp); 611a2c9d4bbSAart Bik // Integer reductions don't accept an accumulator. 612a2c9d4bbSAart Bik if (vtp.getElementType().isa<IntegerType>()) { 613a2c9d4bbSAart Bik red = rewriter.create<vector::ReductionOp>(op.getLoc(), ld.getType(), 614a2c9d4bbSAart Bik kind, red, ValueRange{}); 615a2c9d4bbSAart Bik red = rewriter.create<AddIOp>(op.getLoc(), red, ld); 616a2c9d4bbSAart Bik } else { 617a2c9d4bbSAart Bik red = rewriter.create<vector::ReductionOp>(op.getLoc(), ld.getType(), 618a2c9d4bbSAart Bik kind, red, ld); 619a2c9d4bbSAart Bik } 620a2c9d4bbSAart Bik } 621a2c9d4bbSAart Bik genTensorStore(merger, codegen, rewriter, op, lhs, red); 622a2c9d4bbSAart Bik } 623a2c9d4bbSAart Bik 624a2c9d4bbSAart Bik /// Recursively generates tensor expression. 625a2c9d4bbSAart Bik static Value genExp(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, 626a2c9d4bbSAart Bik linalg::GenericOp op, unsigned exp) { 627*b8a021dbSAart Bik Location loc = op.getLoc(); 628a2c9d4bbSAart Bik if (merger.exp(exp).kind == Kind::kTensor) 629a2c9d4bbSAart Bik return genTensorLoad(merger, codegen, rewriter, op, exp); 630*b8a021dbSAart Bik if (merger.exp(exp).kind == Kind::kInvariant) 631a2c9d4bbSAart Bik return genInvariantValue(merger, codegen, rewriter, exp); 632*b8a021dbSAart Bik if (merger.exp(exp).kind == Kind::kZero) { 633*b8a021dbSAart Bik Type tp = op.getOutputTensorTypes()[0].getElementType(); 634*b8a021dbSAart Bik merger.exp(exp).val = 635*b8a021dbSAart Bik rewriter.create<ConstantOp>(loc, tp, rewriter.getZeroAttr(tp)); 636*b8a021dbSAart Bik return genInvariantValue(merger, codegen, rewriter, exp); 637*b8a021dbSAart Bik } 6384569c14aSGus Smith Value v0 = genExp(merger, codegen, rewriter, op, merger.exp(exp).children.e0); 6394569c14aSGus Smith Value v1 = genExp(merger, codegen, rewriter, op, merger.exp(exp).children.e1); 640a2c9d4bbSAart Bik switch (merger.exp(exp).kind) { 641a2c9d4bbSAart Bik case Kind::kTensor: 642a2c9d4bbSAart Bik case Kind::kInvariant: 643*b8a021dbSAart Bik case Kind::kZero: 644a2c9d4bbSAart Bik llvm_unreachable("handled above"); 645a2c9d4bbSAart Bik case Kind::kMulF: 646*b8a021dbSAart Bik return rewriter.create<MulFOp>(loc, v0, v1); 647a2c9d4bbSAart Bik case Kind::kMulI: 648*b8a021dbSAart Bik return rewriter.create<MulIOp>(loc, v0, v1); 649a2c9d4bbSAart Bik case Kind::kAddF: 650*b8a021dbSAart Bik return rewriter.create<AddFOp>(loc, v0, v1); 651a2c9d4bbSAart Bik case Kind::kAddI: 652*b8a021dbSAart Bik return rewriter.create<AddIOp>(loc, v0, v1); 653*b8a021dbSAart Bik case Kind::kSubF: 654*b8a021dbSAart Bik return rewriter.create<SubFOp>(loc, v0, v1); 655*b8a021dbSAart Bik case Kind::kSubI: 656*b8a021dbSAart Bik return rewriter.create<SubIOp>(loc, v0, v1); 657a2c9d4bbSAart Bik } 658a2c9d4bbSAart Bik llvm_unreachable("unexpected expression kind"); 659a2c9d4bbSAart Bik } 660a2c9d4bbSAart Bik 661a2c9d4bbSAart Bik /// Hoists loop invariant tensor loads for which indices have been exhausted. 662a2c9d4bbSAart Bik static void genInvariants(Merger &merger, CodeGen &codegen, 663a2c9d4bbSAart Bik PatternRewriter &rewriter, linalg::GenericOp op, 664a2c9d4bbSAart Bik unsigned exp, unsigned ldx, bool hoist) { 665a2c9d4bbSAart Bik if (merger.exp(exp).kind == Kind::kTensor) { 666a2c9d4bbSAart Bik // Inspect tensor indices. 667a2c9d4bbSAart Bik bool atLevel = ldx == -1u; 6684569c14aSGus Smith OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).tensor]; 669619bfe8bSAart Bik auto map = op.getTiedIndexingMap(t); 670619bfe8bSAart Bik auto enc = getSparseTensorEncoding(t->get().getType()); 671c194b49cSAart Bik for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { 672c194b49cSAart Bik unsigned idx = map.getDimPosition(perm(enc, d)); 673a2c9d4bbSAart Bik if (!codegen.loops[idx]) 674a2c9d4bbSAart Bik return; // still in play 675a2c9d4bbSAart Bik else if (idx == ldx) 676a2c9d4bbSAart Bik atLevel = true; 677a2c9d4bbSAart Bik } 678a2c9d4bbSAart Bik // All exhausted at this level (atLevel denotes exactly at this level). 6792f2b5b7dSTobias Gysi OpOperand *lhs = op.getOutputOperand(0); 680619bfe8bSAart Bik if (lhs == t) { 681a2c9d4bbSAart Bik codegen.redExp = hoist ? exp : -1u; 682a2c9d4bbSAart Bik } else if (atLevel) { 683a2c9d4bbSAart Bik merger.exp(exp).val = 684a2c9d4bbSAart Bik hoist ? genTensorLoad(merger, codegen, rewriter, op, exp) : Value(); 685a2c9d4bbSAart Bik } 686*b8a021dbSAart Bik } else if (merger.exp(exp).kind != Kind::kInvariant && 687*b8a021dbSAart Bik merger.exp(exp).kind != Kind::kZero) { 688a2c9d4bbSAart Bik // Traverse into the binary operations. Note that we only hoist 689a2c9d4bbSAart Bik // tensor loads, since subsequent MLIR/LLVM passes know how to 690a2c9d4bbSAart Bik // deal with all other kinds of derived loop invariants. 6914569c14aSGus Smith unsigned e0 = merger.exp(exp).children.e0; 6924569c14aSGus Smith unsigned e1 = merger.exp(exp).children.e1; 693a2c9d4bbSAart Bik genInvariants(merger, codegen, rewriter, op, e0, ldx, hoist); 694a2c9d4bbSAart Bik genInvariants(merger, codegen, rewriter, op, e1, ldx, hoist); 695a2c9d4bbSAart Bik } 696a2c9d4bbSAart Bik } 697a2c9d4bbSAart Bik 698a2c9d4bbSAart Bik /// Generates initialization code for the subsequent loop sequence at 699a2c9d4bbSAart Bik /// current index level. Returns true if the loop sequence needs to 700a2c9d4bbSAart Bik /// maintain the universal index. 701a2c9d4bbSAart Bik static bool genInit(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, 702a2c9d4bbSAart Bik linalg::GenericOp op, std::vector<unsigned> &topSort, 703a2c9d4bbSAart Bik unsigned at, llvm::BitVector &inits) { 704a2c9d4bbSAart Bik bool needsUniv = false; 705a2c9d4bbSAart Bik Location loc = op.getLoc(); 706a2c9d4bbSAart Bik unsigned idx = topSort[at]; 707a2c9d4bbSAart Bik 708a2c9d4bbSAart Bik // Initialize sparse positions. 709a2c9d4bbSAart Bik for (unsigned b = 0, be = inits.size(); b < be; b++) { 710a2c9d4bbSAart Bik if (inits[b]) { 711a2c9d4bbSAart Bik unsigned tensor = merger.tensor(b); 712a2c9d4bbSAart Bik assert(idx == merger.index(b)); 713a2c9d4bbSAart Bik if (merger.isDim(b, Dim::kSparse)) { 714a2c9d4bbSAart Bik // Initialize sparse index. 715a2c9d4bbSAart Bik unsigned pat = at; 716a2c9d4bbSAart Bik for (; pat != 0; pat--) { 717a2c9d4bbSAart Bik if (codegen.pidxs[tensor][topSort[pat - 1]]) 718a2c9d4bbSAart Bik break; 719a2c9d4bbSAart Bik } 720a2c9d4bbSAart Bik Value ptr = codegen.pointers[tensor][idx]; 721a2c9d4bbSAart Bik Value one = rewriter.create<ConstantIndexOp>(loc, 1); 722a2c9d4bbSAart Bik Value p0 = (pat == 0) ? rewriter.create<ConstantIndexOp>(loc, 0) 723a2c9d4bbSAart Bik : codegen.pidxs[tensor][topSort[pat - 1]]; 724a2c9d4bbSAart Bik codegen.pidxs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p0); 725a2c9d4bbSAart Bik Value p1 = rewriter.create<AddIOp>(loc, p0, one); 726a2c9d4bbSAart Bik codegen.highs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p1); 727a2c9d4bbSAart Bik } else { 728a2c9d4bbSAart Bik // Dense index still in play. 729a2c9d4bbSAart Bik needsUniv = true; 730a2c9d4bbSAart Bik } 731a2c9d4bbSAart Bik } 732a2c9d4bbSAart Bik } 733a2c9d4bbSAart Bik 734a2c9d4bbSAart Bik // Initialize the universal dense index. 735a2c9d4bbSAart Bik codegen.loops[idx] = rewriter.create<ConstantIndexOp>(loc, 0); 736a2c9d4bbSAart Bik return needsUniv; 737a2c9d4bbSAart Bik } 738a2c9d4bbSAart Bik 739a2c9d4bbSAart Bik /// Returns vectorization strategy. Any implicit inner loop in the Linalg 740a2c9d4bbSAart Bik /// operation is a candidate. Whether it is actually converted to SIMD code 741a2c9d4bbSAart Bik /// depends on the requested strategy. 742a2c9d4bbSAart Bik static bool isVectorFor(CodeGen &codegen, bool isInner, bool isSparse) { 743a2c9d4bbSAart Bik switch (codegen.options.vectorizationStrategy) { 744a2c9d4bbSAart Bik case SparseVectorizationStrategy::kNone: 745a2c9d4bbSAart Bik return false; 746a2c9d4bbSAart Bik case SparseVectorizationStrategy::kDenseInnerLoop: 747a2c9d4bbSAart Bik return isInner && !isSparse; 748a2c9d4bbSAart Bik case SparseVectorizationStrategy::kAnyStorageInnerLoop: 749a2c9d4bbSAart Bik return isInner; 750a2c9d4bbSAart Bik } 751a2c9d4bbSAart Bik llvm_unreachable("unexpected vectorization strategy"); 752a2c9d4bbSAart Bik } 753a2c9d4bbSAart Bik 754a2c9d4bbSAart Bik /// Returns parallelization strategy. Any implicit loop in the Linalg operation 755a2c9d4bbSAart Bik /// that is marked "parallel" is a candidate. Whether it is actually converted 756a2c9d4bbSAart Bik /// to a parallel operation depends on the requested strategy. 757a2c9d4bbSAart Bik static bool isParallelFor(CodeGen &codegen, bool isOuter, bool isReduction, 758a2c9d4bbSAart Bik bool isSparse, bool isVector) { 759a2c9d4bbSAart Bik switch (codegen.options.parallelizationStrategy) { 760a2c9d4bbSAart Bik case SparseParallelizationStrategy::kNone: 761a2c9d4bbSAart Bik return false; 762a2c9d4bbSAart Bik case SparseParallelizationStrategy::kDenseOuterLoop: 763a2c9d4bbSAart Bik return isOuter && !isSparse && !isReduction && !isVector; 764a2c9d4bbSAart Bik case SparseParallelizationStrategy::kAnyStorageOuterLoop: 765a2c9d4bbSAart Bik return isOuter && !isReduction && !isVector; 766a2c9d4bbSAart Bik case SparseParallelizationStrategy::kDenseAnyLoop: 767a2c9d4bbSAart Bik return !isSparse && !isReduction && !isVector; 768a2c9d4bbSAart Bik case SparseParallelizationStrategy::kAnyStorageAnyLoop: 769a2c9d4bbSAart Bik return !isReduction && !isVector; 770a2c9d4bbSAart Bik } 771a2c9d4bbSAart Bik llvm_unreachable("unexpected parallelization strategy"); 772a2c9d4bbSAart Bik } 773a2c9d4bbSAart Bik 774a2c9d4bbSAart Bik /// Checks unit strides for dense tensors. The iteration graph may have ignored 775a2c9d4bbSAart Bik /// dense access patterns in order to avoid cycles (sparse access patterns are 776a2c9d4bbSAart Bik /// always placed innermost), but that means dense access has become strided. 777a2c9d4bbSAart Bik /// For now, we reject vectorization of such cases. 778a2c9d4bbSAart Bik /// TODO: implement strided load/stores on dense arrays 779a2c9d4bbSAart Bik static bool denseUnitStrides(Merger &merger, linalg::GenericOp op, 780a2c9d4bbSAart Bik unsigned idx) { 7812f2b5b7dSTobias Gysi for (OpOperand *t : op.getInputAndOutputOperands()) { 7822f2b5b7dSTobias Gysi if (!getSparseTensorEncoding(t->get().getType())) { 7832f2b5b7dSTobias Gysi auto map = op.getTiedIndexingMap(t); 784c194b49cSAart Bik for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { 785c194b49cSAart Bik if (map.getDimPosition(d) == idx && d != rank - 1) 786a2c9d4bbSAart Bik return false; 787a2c9d4bbSAart Bik } 788a2c9d4bbSAart Bik } 789a2c9d4bbSAart Bik } 790a2c9d4bbSAart Bik return true; 791a2c9d4bbSAart Bik } 792a2c9d4bbSAart Bik 793a2c9d4bbSAart Bik /// Generates a for-loop on a single index. 794a2c9d4bbSAart Bik static Operation *genFor(Merger &merger, CodeGen &codegen, 795a2c9d4bbSAart Bik PatternRewriter &rewriter, linalg::GenericOp op, 796a2c9d4bbSAart Bik bool isOuter, bool isInner, unsigned idx, 797a2c9d4bbSAart Bik llvm::BitVector &indices) { 798a2c9d4bbSAart Bik unsigned fb = indices.find_first(); 799a2c9d4bbSAart Bik unsigned tensor = merger.tensor(fb); 800a2c9d4bbSAart Bik assert(idx == merger.index(fb)); 801a2c9d4bbSAart Bik auto iteratorTypes = op.iterator_types().getValue(); 802a2c9d4bbSAart Bik bool isReduction = linalg::isReductionIteratorType(iteratorTypes[idx]); 803a2c9d4bbSAart Bik bool isSparse = merger.isDim(fb, Dim::kSparse); 804a2c9d4bbSAart Bik bool isVector = isVectorFor(codegen, isInner, isSparse) && 805a2c9d4bbSAart Bik denseUnitStrides(merger, op, idx); 806a2c9d4bbSAart Bik bool isParallel = 807a2c9d4bbSAart Bik isParallelFor(codegen, isOuter, isReduction, isSparse, isVector); 808a2c9d4bbSAart Bik 809a2c9d4bbSAart Bik // Prepare vector length. 810a2c9d4bbSAart Bik if (isVector) 811a2c9d4bbSAart Bik codegen.curVecLength = codegen.options.vectorLength; 812a2c9d4bbSAart Bik 813a2c9d4bbSAart Bik // Loop bounds and increment. 814a2c9d4bbSAart Bik Location loc = op.getLoc(); 815a2c9d4bbSAart Bik Value lo = isSparse ? codegen.pidxs[tensor][idx] : codegen.loops[idx]; 816a2c9d4bbSAart Bik Value hi = isSparse ? codegen.highs[tensor][idx] : codegen.sizes[idx]; 817a2c9d4bbSAart Bik Value step = rewriter.create<ConstantIndexOp>(loc, codegen.curVecLength); 818a2c9d4bbSAart Bik 819a2c9d4bbSAart Bik // Emit a parallel loop. 820a2c9d4bbSAart Bik if (isParallel) { 821a2c9d4bbSAart Bik assert(!isVector); 822a2c9d4bbSAart Bik scf::ParallelOp parOp = rewriter.create<scf::ParallelOp>(loc, lo, hi, step); 823a2c9d4bbSAart Bik if (isSparse) 824a2c9d4bbSAart Bik codegen.pidxs[tensor][idx] = parOp.getInductionVars()[0]; 825a2c9d4bbSAart Bik else 826a2c9d4bbSAart Bik codegen.loops[idx] = parOp.getInductionVars()[0]; 827a2c9d4bbSAart Bik rewriter.setInsertionPointToStart(parOp.getBody()); 828a2c9d4bbSAart Bik return parOp; 829a2c9d4bbSAart Bik } 830a2c9d4bbSAart Bik 831a2c9d4bbSAart Bik // Emit a sequential loop, potentially with a scalarized reduction. 832a2c9d4bbSAart Bik bool scalarRed = isInner && codegen.redExp != -1u; 833a2c9d4bbSAart Bik SmallVector<Value, 4> operands; 834a2c9d4bbSAart Bik if (scalarRed) { 835a2c9d4bbSAart Bik Value load = genReductionStart(merger, codegen, rewriter, op); 836a2c9d4bbSAart Bik operands.push_back(load); 837a2c9d4bbSAart Bik } 838a2c9d4bbSAart Bik scf::ForOp forOp = rewriter.create<scf::ForOp>(loc, lo, hi, step, operands); 839a2c9d4bbSAart Bik if (scalarRed) { 840a2c9d4bbSAart Bik codegen.redVal = merger.exp(codegen.redExp).val = 841a2c9d4bbSAart Bik forOp.getRegionIterArgs().front(); 842a2c9d4bbSAart Bik } 843a2c9d4bbSAart Bik // Assign induction variable to sparse or dense index. 844a2c9d4bbSAart Bik Value iv = forOp.getInductionVar(); 845a2c9d4bbSAart Bik if (isSparse) 846a2c9d4bbSAart Bik codegen.pidxs[tensor][idx] = iv; 847a2c9d4bbSAart Bik else 848a2c9d4bbSAart Bik codegen.loops[idx] = iv; 849a2c9d4bbSAart Bik rewriter.setInsertionPointToStart(forOp.getBody()); 850a2c9d4bbSAart Bik // Share vector iteration mask between all subsequent loads/stores. 851a2c9d4bbSAart Bik if (isVector) 852a2c9d4bbSAart Bik codegen.curVecMask = genVectorMask(codegen, rewriter, iv, lo, hi, step); 853a2c9d4bbSAart Bik return forOp; 854a2c9d4bbSAart Bik } 855a2c9d4bbSAart Bik 856a2c9d4bbSAart Bik /// Emit a while-loop for co-iteration over multiple indices. 857a2c9d4bbSAart Bik static Operation *genWhile(Merger &merger, CodeGen &codegen, 858a2c9d4bbSAart Bik PatternRewriter &rewriter, linalg::GenericOp op, 859a2c9d4bbSAart Bik unsigned idx, bool needsUniv, 860a2c9d4bbSAart Bik llvm::BitVector &indices) { 861a2c9d4bbSAart Bik SmallVector<Type, 4> types; 862a2c9d4bbSAart Bik SmallVector<Value, 4> operands; 863a2c9d4bbSAart Bik // Construct the while-loop with a parameter for each index. 864a2c9d4bbSAart Bik Type indexType = rewriter.getIndexType(); 865a2c9d4bbSAart Bik for (unsigned b = 0, be = indices.size(); b < be; b++) { 866a2c9d4bbSAart Bik if (indices[b] && merger.isDim(b, Dim::kSparse)) { 867a2c9d4bbSAart Bik unsigned tensor = merger.tensor(b); 868a2c9d4bbSAart Bik assert(idx == merger.index(b)); 869a2c9d4bbSAart Bik types.push_back(indexType); 870a2c9d4bbSAart Bik assert(codegen.pidxs[tensor][idx].getType().isa<IndexType>() && 871a2c9d4bbSAart Bik "type mismatch for sparse index"); 872a2c9d4bbSAart Bik operands.push_back(codegen.pidxs[tensor][idx]); 873a2c9d4bbSAart Bik } 874a2c9d4bbSAart Bik } 875a2c9d4bbSAart Bik if (needsUniv) { 876a2c9d4bbSAart Bik types.push_back(indexType); 877a2c9d4bbSAart Bik assert(codegen.loops[idx].getType().isa<IndexType>() && 878a2c9d4bbSAart Bik "type mismatch for universal index"); 879a2c9d4bbSAart Bik operands.push_back(codegen.loops[idx]); 880a2c9d4bbSAart Bik } 881a2c9d4bbSAart Bik Location loc = op.getLoc(); 882a2c9d4bbSAart Bik scf::WhileOp whileOp = rewriter.create<scf::WhileOp>(loc, types, operands); 883a2c9d4bbSAart Bik Block *before = rewriter.createBlock(&whileOp.before(), {}, types); 884a2c9d4bbSAart Bik Block *after = rewriter.createBlock(&whileOp.after(), {}, types); 885a2c9d4bbSAart Bik 886a2c9d4bbSAart Bik // Build the "before" region, which effectively consists 887a2c9d4bbSAart Bik // of a conjunction of "i < upper" tests on all induction. 888a2c9d4bbSAart Bik rewriter.setInsertionPointToStart(&whileOp.before().front()); 889a2c9d4bbSAart Bik Value cond; 890a2c9d4bbSAart Bik unsigned o = 0; 891a2c9d4bbSAart Bik for (unsigned b = 0, be = indices.size(); b < be; b++) { 892a2c9d4bbSAart Bik if (indices[b] && merger.isDim(b, Dim::kSparse)) { 893a2c9d4bbSAart Bik unsigned tensor = merger.tensor(b); 894a2c9d4bbSAart Bik assert(idx == merger.index(b)); 895a2c9d4bbSAart Bik Value op1 = before->getArgument(o); 896a2c9d4bbSAart Bik Value op2 = codegen.highs[tensor][idx]; 897a2c9d4bbSAart Bik Value opc = rewriter.create<CmpIOp>(loc, CmpIPredicate::ult, op1, op2); 898a2c9d4bbSAart Bik cond = cond ? rewriter.create<AndOp>(loc, cond, opc) : opc; 899a2c9d4bbSAart Bik codegen.pidxs[tensor][idx] = after->getArgument(o++); 900a2c9d4bbSAart Bik } 901a2c9d4bbSAart Bik } 902a2c9d4bbSAart Bik if (needsUniv) 903a2c9d4bbSAart Bik codegen.loops[idx] = after->getArgument(o++); 904a2c9d4bbSAart Bik assert(o == operands.size()); 905a2c9d4bbSAart Bik rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments()); 906a2c9d4bbSAart Bik rewriter.setInsertionPointToStart(&whileOp.after().front()); 907a2c9d4bbSAart Bik return whileOp; 908a2c9d4bbSAart Bik } 909a2c9d4bbSAart Bik 910a2c9d4bbSAart Bik /// Generates a for-loop or a while-loop, depending on whether it implements 911a2c9d4bbSAart Bik /// singleton iteration or co-iteration over the given conjunction. 912a2c9d4bbSAart Bik static Operation *genLoop(Merger &merger, CodeGen &codegen, 913a2c9d4bbSAart Bik PatternRewriter &rewriter, linalg::GenericOp op, 914a2c9d4bbSAart Bik std::vector<unsigned> &topSort, unsigned at, 915a2c9d4bbSAart Bik bool needsUniv, llvm::BitVector &indices) { 916a2c9d4bbSAart Bik unsigned idx = topSort[at]; 917a2c9d4bbSAart Bik if (indices.count() == 1) { 918a2c9d4bbSAart Bik bool isOuter = at == 0; 919a2c9d4bbSAart Bik bool isInner = at == topSort.size() - 1; 920a2c9d4bbSAart Bik return genFor(merger, codegen, rewriter, op, isOuter, isInner, idx, 921a2c9d4bbSAart Bik indices); 922a2c9d4bbSAart Bik } 923a2c9d4bbSAart Bik genReductionEnd(merger, codegen, rewriter, op); // cannot chain 924a2c9d4bbSAart Bik return genWhile(merger, codegen, rewriter, op, idx, needsUniv, indices); 925a2c9d4bbSAart Bik } 926a2c9d4bbSAart Bik 927a2c9d4bbSAart Bik /// Generates the local variables for this loop, consisting of the sparse 928a2c9d4bbSAart Bik /// indices, restored universal dense index, and dense positions. 929a2c9d4bbSAart Bik static void genLocals(Merger &merger, CodeGen &codegen, 930a2c9d4bbSAart Bik PatternRewriter &rewriter, linalg::GenericOp op, 931a2c9d4bbSAart Bik std::vector<unsigned> &topSort, unsigned at, 932a2c9d4bbSAart Bik bool needsUniv, llvm::BitVector &locals) { 933a2c9d4bbSAart Bik Location loc = op.getLoc(); 934a2c9d4bbSAart Bik unsigned idx = topSort[at]; 935a2c9d4bbSAart Bik 936a2c9d4bbSAart Bik // Initialize sparse indices. 937a2c9d4bbSAart Bik Value min; 938a2c9d4bbSAart Bik for (unsigned b = 0, be = locals.size(); b < be; b++) { 939a2c9d4bbSAart Bik if (locals[b] && merger.isDim(b, Dim::kSparse)) { 940a2c9d4bbSAart Bik unsigned tensor = merger.tensor(b); 941a2c9d4bbSAart Bik assert(idx == merger.index(b)); 942a2c9d4bbSAart Bik Value ptr = codegen.indices[tensor][idx]; 943a2c9d4bbSAart Bik Value s = codegen.pidxs[tensor][idx]; 944a2c9d4bbSAart Bik Value load = genLoad(codegen, rewriter, loc, ptr, s); 945a2c9d4bbSAart Bik codegen.idxs[tensor][idx] = load; 946a2c9d4bbSAart Bik if (!needsUniv) { 947a2c9d4bbSAart Bik if (min) { 948a2c9d4bbSAart Bik Value cmp = 949a2c9d4bbSAart Bik rewriter.create<CmpIOp>(loc, CmpIPredicate::ult, load, min); 950a2c9d4bbSAart Bik min = rewriter.create<SelectOp>(loc, cmp, load, min); 951a2c9d4bbSAart Bik } else { 952a2c9d4bbSAart Bik min = load; 953a2c9d4bbSAart Bik } 954a2c9d4bbSAart Bik } 955a2c9d4bbSAart Bik } 956a2c9d4bbSAart Bik } 957a2c9d4bbSAart Bik 958a2c9d4bbSAart Bik // Merge dense universal index over minimum. 959a2c9d4bbSAart Bik if (min) { 960a2c9d4bbSAart Bik assert(!needsUniv); 961a2c9d4bbSAart Bik codegen.loops[idx] = min; 962a2c9d4bbSAart Bik } 963a2c9d4bbSAart Bik 964727a63e0SAart Bik // Initialize dense positions. Note that we generate dense indices of the 965727a63e0SAart Bik // output tensor unconditionally, since they may not appear in the lattice, 966727a63e0SAart Bik // but may be needed for linearized codegen. 967a2c9d4bbSAart Bik for (unsigned b = 0, be = locals.size(); b < be; b++) { 968727a63e0SAart Bik if ((locals[b] || merger.isOutTensor(b, idx)) && 969727a63e0SAart Bik merger.isDim(b, Dim::kDense)) { 970a2c9d4bbSAart Bik unsigned tensor = merger.tensor(b); 971a2c9d4bbSAart Bik assert(idx == merger.index(b)); 972a2c9d4bbSAart Bik unsigned pat = at; 973a2c9d4bbSAart Bik for (; pat != 0; pat--) 974a2c9d4bbSAart Bik if (codegen.pidxs[tensor][topSort[pat - 1]]) 975a2c9d4bbSAart Bik break; 976a2c9d4bbSAart Bik Value p = (pat == 0) ? rewriter.create<ConstantIndexOp>(loc, 0) 977a2c9d4bbSAart Bik : codegen.pidxs[tensor][topSort[pat - 1]]; 978a2c9d4bbSAart Bik codegen.pidxs[tensor][idx] = genAddress( 979a2c9d4bbSAart Bik codegen, rewriter, loc, codegen.sizes[idx], p, codegen.loops[idx]); 980a2c9d4bbSAart Bik } 981a2c9d4bbSAart Bik } 982a2c9d4bbSAart Bik } 983a2c9d4bbSAart Bik 984a2c9d4bbSAart Bik /// Generates the induction structure for a while-loop. 985a2c9d4bbSAart Bik static void genWhileInduction(Merger &merger, CodeGen &codegen, 986a2c9d4bbSAart Bik PatternRewriter &rewriter, linalg::GenericOp op, 987a2c9d4bbSAart Bik unsigned idx, bool needsUniv, 988a2c9d4bbSAart Bik llvm::BitVector &induction, ResultRange results) { 989a2c9d4bbSAart Bik Location loc = op.getLoc(); 990a2c9d4bbSAart Bik unsigned o = 0; 991a2c9d4bbSAart Bik SmallVector<Value, 4> operands; 992a2c9d4bbSAart Bik Value one = rewriter.create<ConstantIndexOp>(loc, 1); 993a2c9d4bbSAart Bik for (unsigned b = 0, be = induction.size(); b < be; b++) { 994a2c9d4bbSAart Bik if (induction[b] && merger.isDim(b, Dim::kSparse)) { 995a2c9d4bbSAart Bik unsigned tensor = merger.tensor(b); 996a2c9d4bbSAart Bik assert(idx == merger.index(b)); 997a2c9d4bbSAart Bik Value op1 = codegen.idxs[tensor][idx]; 998a2c9d4bbSAart Bik Value op2 = codegen.loops[idx]; 999a2c9d4bbSAart Bik Value op3 = codegen.pidxs[tensor][idx]; 1000a2c9d4bbSAart Bik Value cmp = rewriter.create<CmpIOp>(loc, CmpIPredicate::eq, op1, op2); 1001a2c9d4bbSAart Bik Value add = rewriter.create<AddIOp>(loc, op3, one); 1002a2c9d4bbSAart Bik operands.push_back(rewriter.create<SelectOp>(loc, cmp, add, op3)); 1003a2c9d4bbSAart Bik codegen.pidxs[tensor][idx] = results[o++]; 1004a2c9d4bbSAart Bik } 1005a2c9d4bbSAart Bik } 1006a2c9d4bbSAart Bik if (needsUniv) { 1007a2c9d4bbSAart Bik operands.push_back(rewriter.create<AddIOp>(loc, codegen.loops[idx], one)); 1008a2c9d4bbSAart Bik codegen.loops[idx] = results[o++]; 1009a2c9d4bbSAart Bik } 1010a2c9d4bbSAart Bik assert(o == operands.size()); 1011a2c9d4bbSAart Bik rewriter.create<scf::YieldOp>(loc, operands); 1012a2c9d4bbSAart Bik } 1013a2c9d4bbSAart Bik 1014a2c9d4bbSAart Bik /// Generates a single if-statement within a while-loop. 1015a2c9d4bbSAart Bik static scf::IfOp genIf(Merger &merger, CodeGen &codegen, 1016a2c9d4bbSAart Bik PatternRewriter &rewriter, linalg::GenericOp op, 1017a2c9d4bbSAart Bik unsigned idx, llvm::BitVector &conditions) { 1018a2c9d4bbSAart Bik Location loc = op.getLoc(); 1019a2c9d4bbSAart Bik Value cond; 1020a2c9d4bbSAart Bik for (unsigned b = 0, be = conditions.size(); b < be; b++) { 1021a2c9d4bbSAart Bik if (conditions[b]) { 1022a2c9d4bbSAart Bik unsigned tensor = merger.tensor(b); 1023a2c9d4bbSAart Bik assert(idx == merger.index(b)); 1024a2c9d4bbSAart Bik Value clause; 1025a2c9d4bbSAart Bik if (merger.isDim(b, Dim::kSparse)) { 1026a2c9d4bbSAart Bik Value op1 = codegen.idxs[tensor][idx]; 1027a2c9d4bbSAart Bik Value op2 = codegen.loops[idx]; 1028a2c9d4bbSAart Bik clause = rewriter.create<CmpIOp>(loc, CmpIPredicate::eq, op1, op2); 1029a2c9d4bbSAart Bik } else { 1030a2c9d4bbSAart Bik clause = rewriter.create<ConstantIntOp>(loc, 1, 1); // true 1031a2c9d4bbSAart Bik } 1032a2c9d4bbSAart Bik cond = cond ? rewriter.create<AndOp>(loc, cond, clause) : clause; 1033a2c9d4bbSAart Bik } 1034a2c9d4bbSAart Bik } 1035a2c9d4bbSAart Bik scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, cond, /*else*/ true); 1036a2c9d4bbSAart Bik rewriter.setInsertionPointToStart(&ifOp.thenRegion().front()); 1037a2c9d4bbSAart Bik return ifOp; 1038a2c9d4bbSAart Bik } 1039a2c9d4bbSAart Bik 1040a2c9d4bbSAart Bik /// Recursively generates code while computing iteration lattices in order 1041a2c9d4bbSAart Bik /// to manage the complexity of implementing co-iteration over unions 1042a2c9d4bbSAart Bik /// and intersections of sparse iterations spaces. 1043a2c9d4bbSAart Bik static void genStmt(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, 1044a2c9d4bbSAart Bik linalg::GenericOp op, std::vector<unsigned> &topSort, 1045a2c9d4bbSAart Bik unsigned exp, unsigned at) { 1046a2c9d4bbSAart Bik // At each leaf, assign remaining tensor (sub)expression to output tensor. 1047a2c9d4bbSAart Bik if (at == topSort.size()) { 10482f2b5b7dSTobias Gysi OpOperand *lhs = op.getOutputOperand(0); 1049a2c9d4bbSAart Bik Value rhs = genExp(merger, codegen, rewriter, op, exp); 1050a2c9d4bbSAart Bik genTensorStore(merger, codegen, rewriter, op, lhs, rhs); 1051a2c9d4bbSAart Bik return; 1052a2c9d4bbSAart Bik } 1053a2c9d4bbSAart Bik assert(codegen.curVecLength == 1); 1054a2c9d4bbSAart Bik 1055a2c9d4bbSAart Bik // Construct iteration lattices for current loop index, with L0 at top. 1056a2c9d4bbSAart Bik // Then emit initialization code for the loop sequence at this level. 1057a2c9d4bbSAart Bik // We maintain the universal dense index if dense indices are still 1058a2c9d4bbSAart Bik // in play for a non-singleton loop sequence. 1059a2c9d4bbSAart Bik Location loc = op.getLoc(); 1060a2c9d4bbSAart Bik unsigned idx = topSort[at]; 1061043ce4e6SGus Smith unsigned lts = merger.optimizeSet(merger.buildLattices(exp, idx)); 1062a2c9d4bbSAart Bik unsigned lsize = merger.set(lts).size(); 1063a2c9d4bbSAart Bik assert(lsize != 0); 1064a2c9d4bbSAart Bik unsigned l0 = merger.set(lts)[0]; 1065a2c9d4bbSAart Bik unsigned ldx = at == 0 ? -1u : topSort[at - 1]; 1066a2c9d4bbSAart Bik genInvariants(merger, codegen, rewriter, op, exp, ldx, /*hoist=*/true); 1067a2c9d4bbSAart Bik bool needsUniv = false; 1068a2c9d4bbSAart Bik if (genInit(merger, codegen, rewriter, op, topSort, at, 1069a2c9d4bbSAart Bik merger.lat(l0).bits)) { 1070a2c9d4bbSAart Bik // Maintain the universal index only if it is actually 1071a2c9d4bbSAart Bik // consumed by a subsequent lattice point. 1072a2c9d4bbSAart Bik for (unsigned i = 1; i < lsize; i++) { 1073a2c9d4bbSAart Bik unsigned li = merger.set(lts)[i]; 1074a2c9d4bbSAart Bik if (!merger.hasAnyDimOf(merger.lat(li).simple, Dim::kSparse)) { 1075a2c9d4bbSAart Bik needsUniv = true; 1076a2c9d4bbSAart Bik break; 1077a2c9d4bbSAart Bik } 1078a2c9d4bbSAart Bik } 1079a2c9d4bbSAart Bik } 1080a2c9d4bbSAart Bik 1081a2c9d4bbSAart Bik // Emit a loop for every lattice point L0 >= Li. 1082a2c9d4bbSAart Bik for (unsigned i = 0; i < lsize; i++) { 1083a2c9d4bbSAart Bik unsigned li = merger.set(lts)[i]; 1084a2c9d4bbSAart Bik 1085a2c9d4bbSAart Bik // Emit loop. 1086a2c9d4bbSAart Bik codegen.curVecLength = 1; 1087a2c9d4bbSAart Bik llvm::BitVector indices = merger.lat(li).simple; 1088a2c9d4bbSAart Bik Operation *loop = 1089a2c9d4bbSAart Bik genLoop(merger, codegen, rewriter, op, topSort, at, needsUniv, indices); 1090a2c9d4bbSAart Bik genLocals(merger, codegen, rewriter, op, topSort, at, needsUniv, 1091a2c9d4bbSAart Bik merger.lat(li).bits); 1092a2c9d4bbSAart Bik 1093a2c9d4bbSAart Bik // Visit all lattices points with Li >= Lj to generate the 1094a2c9d4bbSAart Bik // loop-body, possibly with if statements for coiteration. 1095a2c9d4bbSAart Bik bool isWhile = dyn_cast<scf::WhileOp>(loop) != nullptr; 1096a2c9d4bbSAart Bik for (unsigned j = 0; j < lsize; j++) { 1097a2c9d4bbSAart Bik unsigned lj = merger.set(lts)[j]; 1098a2c9d4bbSAart Bik unsigned ej = merger.lat(lj).exp; 1099a2c9d4bbSAart Bik if (li == lj || merger.latGT(li, lj)) { 1100a2c9d4bbSAart Bik // Recurse into body of each branch. 1101a2c9d4bbSAart Bik if (isWhile) { 1102a2c9d4bbSAart Bik scf::IfOp ifOp = 1103a2c9d4bbSAart Bik genIf(merger, codegen, rewriter, op, idx, merger.lat(lj).simple); 1104a2c9d4bbSAart Bik genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1); 1105a2c9d4bbSAart Bik rewriter.setInsertionPointToStart(&ifOp.elseRegion().front()); 1106a2c9d4bbSAart Bik } else { 1107a2c9d4bbSAart Bik genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1); 1108a2c9d4bbSAart Bik } 1109a2c9d4bbSAart Bik } 1110a2c9d4bbSAart Bik } 1111a2c9d4bbSAart Bik 1112a2c9d4bbSAart Bik // Wrap-up induction and restore insertion point. 1113a2c9d4bbSAart Bik if (isWhile) { 1114a2c9d4bbSAart Bik scf::WhileOp whileOp = cast<scf::WhileOp>(loop); 1115a2c9d4bbSAart Bik rewriter.setInsertionPointToEnd(&whileOp.after().front()); 1116a2c9d4bbSAart Bik genWhileInduction(merger, codegen, rewriter, op, idx, needsUniv, 1117a2c9d4bbSAart Bik merger.lat(li).bits, whileOp.results()); 1118a2c9d4bbSAart Bik } else { 1119a2c9d4bbSAart Bik needsUniv = false; 1120a2c9d4bbSAart Bik if (codegen.redVal) { 1121a2c9d4bbSAart Bik rewriter.create<scf::YieldOp>(loc, codegen.redVal); 1122a2c9d4bbSAart Bik codegen.redVal = loop->getResult(0); 1123a2c9d4bbSAart Bik } 1124a2c9d4bbSAart Bik } 1125a2c9d4bbSAart Bik rewriter.setInsertionPointAfter(loop); 1126a2c9d4bbSAart Bik } 1127a2c9d4bbSAart Bik 1128a2c9d4bbSAart Bik // Wrap-up loop sequence. 1129a2c9d4bbSAart Bik codegen.curVecLength = 1; 1130a2c9d4bbSAart Bik genReductionEnd(merger, codegen, rewriter, op); 1131a2c9d4bbSAart Bik genInvariants(merger, codegen, rewriter, op, exp, ldx, /*hoist=*/false); 1132a2c9d4bbSAart Bik codegen.loops[idx] = Value(); 1133a2c9d4bbSAart Bik } 1134a2c9d4bbSAart Bik 1135727a63e0SAart Bik /// Converts the result computed by the sparse kernel into the required form. 113636b66ab9SAart Bik static void genResult(Merger &merger, CodeGen &codegen, 113736b66ab9SAart Bik PatternRewriter &rewriter, linalg::GenericOp op) { 113836b66ab9SAart Bik Location loc = op.getLoc(); 113936b66ab9SAart Bik OpOperand *lhs = op.getOutputOperand(0); 114036b66ab9SAart Bik Type resType = lhs->get().getType(); 114136b66ab9SAart Bik unsigned tensor = lhs->getOperandNumber(); 114236b66ab9SAart Bik auto map = op.getTiedIndexingMap(lhs); 114336b66ab9SAart Bik auto enc = getSparseTensorEncoding(resType); 114436b66ab9SAart Bik Value result = codegen.buffers.back(); // value array 114536b66ab9SAart Bik if (enc) { 114636b66ab9SAart Bik // The sparse annotation unambigiously defines the arrays needed 114736b66ab9SAart Bik // to "reconstruct" the sparse tensor from the storage scheme 114836b66ab9SAart Bik // (even though lowering should never need this eventually). 114936b66ab9SAart Bik SmallVector<Value, 4> args; 115036b66ab9SAart Bik for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { 115136b66ab9SAart Bik unsigned idx = map.getDimPosition(perm(enc, d)); 115236b66ab9SAart Bik if (merger.isDim(tensor, idx, Dim::kSparse)) { 115336b66ab9SAart Bik args.push_back(codegen.pointers[tensor][idx]); 115436b66ab9SAart Bik args.push_back(codegen.indices[tensor][idx]); 115536b66ab9SAart Bik } 115636b66ab9SAart Bik } 115736b66ab9SAart Bik args.push_back(result); 115836b66ab9SAart Bik result = rewriter.create<ToTensorOp>(loc, resType, args); 115936b66ab9SAart Bik } else { 116036b66ab9SAart Bik // To "reconstruct" an non-annotated tensor, sipmly load it 116136b66ab9SAart Bik // from the bufferized value. 116236b66ab9SAart Bik result = rewriter.create<memref::TensorLoadOp>(loc, resType, result); 116336b66ab9SAart Bik } 1164727a63e0SAart Bik rewriter.replaceOp(op, result); 1165727a63e0SAart Bik } 1166727a63e0SAart Bik 1167a2c9d4bbSAart Bik namespace { 1168a2c9d4bbSAart Bik 1169a2c9d4bbSAart Bik /// Sparse rewriting rule for generic Lingalg operation. 1170a2c9d4bbSAart Bik struct GenericOpSparsifier : public OpRewritePattern<linalg::GenericOp> { 1171a2c9d4bbSAart Bik public: 1172a2c9d4bbSAart Bik GenericOpSparsifier(MLIRContext *context, SparsificationOptions o) 1173a2c9d4bbSAart Bik : OpRewritePattern<linalg::GenericOp>(context), options(o) {} 1174a2c9d4bbSAart Bik 1175a2c9d4bbSAart Bik LogicalResult matchAndRewrite(linalg::GenericOp op, 1176a2c9d4bbSAart Bik PatternRewriter &rewriter) const override { 1177a2c9d4bbSAart Bik // Detects sparse annotations and translate the per-dimension sparsity 1178a2c9d4bbSAart Bik // information for all tensors to loop indices in the kernel. 1179a2c9d4bbSAart Bik assert(op.getNumOutputs() == 1); 11802f2b5b7dSTobias Gysi unsigned numTensors = op.getNumInputsAndOutputs(); 1181a2c9d4bbSAart Bik unsigned numLoops = op.iterator_types().getValue().size(); 1182a2c9d4bbSAart Bik Merger merger(numTensors, numLoops); 1183bf9ef3efSAart Bik if (!findSparseAnnotations(merger, op)) 1184bf9ef3efSAart Bik return failure(); 1185a2c9d4bbSAart Bik 1186a2c9d4bbSAart Bik // Computes a topologically sorted iteration graph to ensure 1187a2c9d4bbSAart Bik // tensors are visited in natural index order. Fails on cycles. 1188a2c9d4bbSAart Bik // This assumes that higher-level passes have already put the 1189a2c9d4bbSAart Bik // tensors in each tensor expression in a feasible order. 1190a2c9d4bbSAart Bik std::vector<unsigned> topSort; 1191a2c9d4bbSAart Bik if (!computeIterationGraph(merger, op, topSort, /*sparseOnly=*/false) && 1192a2c9d4bbSAart Bik !computeIterationGraph(merger, op, topSort, /*sparseOnly=*/true)) 1193a2c9d4bbSAart Bik return failure(); 1194a2c9d4bbSAart Bik 1195266a7414SAart Bik // Builds the tensor expression for the Linalg operation in SSA form. 1196266a7414SAart Bik Optional<unsigned> exp = merger.buildTensorExpFromLinalg(op); 1197a2c9d4bbSAart Bik if (!exp.hasValue()) 1198266a7414SAart Bik return failure(); 1199a2c9d4bbSAart Bik 1200266a7414SAart Bik // Rejects an inadmissable tensor expression. 120136b66ab9SAart Bik if (!isAdmissableTensorExp(merger, op, exp.getValue())) 120236b66ab9SAart Bik return failure(); 120336b66ab9SAart Bik 1204a2c9d4bbSAart Bik // Recursively generates code. 1205a2c9d4bbSAart Bik CodeGen codegen(options, numTensors, numLoops); 1206727a63e0SAart Bik if (!genBuffers(merger, codegen, rewriter, op)) 1207727a63e0SAart Bik return failure(); // could not bufferize 1208a2c9d4bbSAart Bik genStmt(merger, codegen, rewriter, op, topSort, exp.getValue(), 0); 120936b66ab9SAart Bik genResult(merger, codegen, rewriter, op); 1210a2c9d4bbSAart Bik return success(); 1211a2c9d4bbSAart Bik } 1212a2c9d4bbSAart Bik 1213a2c9d4bbSAart Bik private: 1214a2c9d4bbSAart Bik /// Options to control sparse code generation. 1215a2c9d4bbSAart Bik SparsificationOptions options; 1216a2c9d4bbSAart Bik }; 1217a2c9d4bbSAart Bik 1218a2c9d4bbSAart Bik } // namespace 1219a2c9d4bbSAart Bik 1220a2c9d4bbSAart Bik /// Populates the given patterns list with rewriting rules required for 1221a2c9d4bbSAart Bik /// the sparsification of linear algebra operations. 1222a2c9d4bbSAart Bik void mlir::populateSparsificationPatterns( 1223a2c9d4bbSAart Bik RewritePatternSet &patterns, const SparsificationOptions &options) { 1224a2c9d4bbSAart Bik patterns.add<GenericOpSparsifier>(patterns.getContext(), options); 1225a2c9d4bbSAart Bik } 1226