196a23911SAart Bik //===- Sparsification.cpp - Implementation of sparsification --------------===//
2a2c9d4bbSAart Bik //
3a2c9d4bbSAart Bik // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4a2c9d4bbSAart Bik // See https://llvm.org/LICENSE.txt for license information.
5a2c9d4bbSAart Bik // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6a2c9d4bbSAart Bik //
7a2c9d4bbSAart Bik //===----------------------------------------------------------------------===//
8a2c9d4bbSAart Bik //
9160399c7SAart Bik // This file implements converting sparse tensor types to actual sparse code.
10a2c9d4bbSAart Bik //
11a2c9d4bbSAart Bik //===----------------------------------------------------------------------===//
12a2c9d4bbSAart Bik 
1376a18618SMatthias Springer #include "mlir/Dialect/Affine/IR/AffineOps.h"
14*a54f4eaeSMogball #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
15a2c9d4bbSAart Bik #include "mlir/Dialect/Linalg/IR/LinalgOps.h"
16a2c9d4bbSAart Bik #include "mlir/Dialect/Linalg/Utils/Utils.h"
1766f878ceSMatthias Springer #include "mlir/Dialect/MemRef/IR/MemRef.h"
18a2c9d4bbSAart Bik #include "mlir/Dialect/SCF/SCF.h"
1976a18618SMatthias Springer #include "mlir/Dialect/SCF/Transforms.h"
20a2c9d4bbSAart Bik #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
21a2c9d4bbSAart Bik #include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
22744146f6SGus Smith #include "mlir/Dialect/SparseTensor/Utils/Merger.h"
23a2c9d4bbSAart Bik #include "mlir/Dialect/StandardOps/IR/Ops.h"
24a2c9d4bbSAart Bik #include "mlir/Dialect/Vector/VectorOps.h"
25a2c9d4bbSAart Bik #include "mlir/IR/Matchers.h"
2696a23911SAart Bik #include "mlir/IR/TensorEncoding.h"
27a2c9d4bbSAart Bik #include "llvm/ADT/SmallBitVector.h"
28a2c9d4bbSAart Bik 
29a2c9d4bbSAart Bik using namespace mlir;
3096a23911SAart Bik using namespace mlir::sparse_tensor;
31a2c9d4bbSAart Bik 
325da21338SAart Bik //===----------------------------------------------------------------------===//
335da21338SAart Bik // Declarations of data structures.
345da21338SAart Bik //===----------------------------------------------------------------------===//
355da21338SAart Bik 
36a2c9d4bbSAart Bik namespace {
37a2c9d4bbSAart Bik 
38b6d1a31cSAart Bik // Iteration graph sorting.
39b6d1a31cSAart Bik enum SortMask { kSparseOnly = 0x0, kIncludeDense = 0x1, kIncludeUndef = 0x2 };
40b6d1a31cSAart Bik 
415da21338SAart Bik // Reduction kinds.
425da21338SAart Bik enum Reduction { kSum, kProduct, kAnd, kOr, kXor };
435da21338SAart Bik 
44a2c9d4bbSAart Bik // Code generation.
45a2c9d4bbSAart Bik struct CodeGen {
4696a23911SAart Bik   CodeGen(SparsificationOptions o, unsigned numTensors, unsigned numLoops)
47a2c9d4bbSAart Bik       : options(o), loops(numLoops), sizes(numLoops), buffers(numTensors),
48a2c9d4bbSAart Bik         pointers(numTensors, std::vector<Value>(numLoops)),
49a2c9d4bbSAart Bik         indices(numTensors, std::vector<Value>(numLoops)),
50a2c9d4bbSAart Bik         highs(numTensors, std::vector<Value>(numLoops)),
51a2c9d4bbSAart Bik         pidxs(numTensors, std::vector<Value>(numLoops)),
52a2c9d4bbSAart Bik         idxs(numTensors, std::vector<Value>(numLoops)), redExp(-1u), redVal(),
53a2c9d4bbSAart Bik         curVecLength(1), curVecMask() {}
54a2c9d4bbSAart Bik   /// Sparsification options.
5596a23911SAart Bik   SparsificationOptions options;
56a2c9d4bbSAart Bik   /// Universal dense indices and upper bounds (by index). The loops array
57a2c9d4bbSAart Bik   /// is updated with the value of the universal dense index in the current
58a2c9d4bbSAart Bik   /// loop. The sizes array is set once with the inferred dimension sizes.
59a2c9d4bbSAart Bik   std::vector<Value> loops;
60a2c9d4bbSAart Bik   std::vector<Value> sizes;
61a2c9d4bbSAart Bik   /// Buffers for storing dense and sparse numerical values (by tensor).
62a2c9d4bbSAart Bik   /// This array is set once during bufferization of all tensors.
63a2c9d4bbSAart Bik   std::vector<Value> buffers;
64a2c9d4bbSAart Bik   /// Sparse storage schemes (1-D): pointers and indices (by tensor and index).
65a2c9d4bbSAart Bik   /// This array is set once during bufferization of all sparse tensors.
66a2c9d4bbSAart Bik   std::vector<std::vector<Value>> pointers;
67a2c9d4bbSAart Bik   std::vector<std::vector<Value>> indices;
68a2c9d4bbSAart Bik   /// Sparse iteration information (by tensor and index). These arrays
69a2c9d4bbSAart Bik   /// are updated to remain current within the current loop.
70a2c9d4bbSAart Bik   std::vector<std::vector<Value>> highs;
71a2c9d4bbSAart Bik   std::vector<std::vector<Value>> pidxs;
72a2c9d4bbSAart Bik   std::vector<std::vector<Value>> idxs;
73a2c9d4bbSAart Bik   /// Current reduction, updated during code generation. When indices of a
74a2c9d4bbSAart Bik   /// reduction are exhausted,  all inner loops can "scalarize" the reduction.
75a2c9d4bbSAart Bik   // TODO: currently only done for (a chain of) innermost for-loops, where it
76a2c9d4bbSAart Bik   // is most effective; we could generalize to more outer and while-loops.
77a2c9d4bbSAart Bik   unsigned redExp;
78a2c9d4bbSAart Bik   Value redVal;
795da21338SAart Bik   Reduction redKind;
80a2c9d4bbSAart Bik   // Current vector length and mask.
81a2c9d4bbSAart Bik   unsigned curVecLength;
82a2c9d4bbSAart Bik   Value curVecMask;
83a2c9d4bbSAart Bik };
84a2c9d4bbSAart Bik 
85a2c9d4bbSAart Bik } // namespace
86a2c9d4bbSAart Bik 
875da21338SAart Bik //===----------------------------------------------------------------------===//
885da21338SAart Bik // Sparse compiler analysis methods.
895da21338SAart Bik //===----------------------------------------------------------------------===//
905da21338SAart Bik 
915da21338SAart Bik /// Helper method to apply dimension ordering permutation.
925da21338SAart Bik static unsigned perm(const SparseTensorEncodingAttr &enc, unsigned d) {
93c194b49cSAart Bik   if (enc) {
94c194b49cSAart Bik     auto order = enc.getDimOrdering();
95c194b49cSAart Bik     if (order) {
96c194b49cSAart Bik       assert(order.isPermutation());
97c194b49cSAart Bik       return order.getDimPosition(d);
98c194b49cSAart Bik     }
99c194b49cSAart Bik   }
100c194b49cSAart Bik   return d;
101c194b49cSAart Bik }
102c194b49cSAart Bik 
1035da21338SAart Bik /// Helper method to translate dim level type to internal representation.
1045da21338SAart Bik static Dim toDim(const SparseTensorEncodingAttr &enc, unsigned d) {
10596a23911SAart Bik   if (enc) {
10696a23911SAart Bik     SparseTensorEncodingAttr::DimLevelType tp = enc.getDimLevelType()[d];
10796a23911SAart Bik     if (tp == SparseTensorEncodingAttr::DimLevelType::Compressed)
10896a23911SAart Bik       return Dim::kSparse;
10996a23911SAart Bik     if (tp == SparseTensorEncodingAttr::DimLevelType::Singleton)
11096a23911SAart Bik       return Dim::kSingle;
11196a23911SAart Bik   }
11296a23911SAart Bik   return Dim::kDense;
11396a23911SAart Bik }
11496a23911SAart Bik 
115b1d44e59SAart Bik /// Helper method to inspect affine expressions. Rejects cases where the
116b1d44e59SAart Bik /// same index is used in more than one dimension of a tensor. Also rejects
117b1d44e59SAart Bik /// affine expressions that are not a direct index for annotated tensors.
118b1d44e59SAart Bik /// TODO: accept more affine cases for sparse tensors
119b1d44e59SAart Bik static bool findAffine(Merger &merger, unsigned tensor, AffineExpr a, Dim dim,
120b1d44e59SAart Bik                        bool isDense) {
121b1d44e59SAart Bik   switch (a.getKind()) {
122b1d44e59SAart Bik   case AffineExprKind::DimId: {
123b1d44e59SAart Bik     unsigned idx = a.cast<AffineDimExpr>().getPosition();
124b1d44e59SAart Bik     if (!merger.isDim(tensor, idx, Dim::kUndef))
125b1d44e59SAart Bik       return false; // used more than once
126b1d44e59SAart Bik     merger.setDim(tensor, idx, dim);
127b1d44e59SAart Bik     return true;
128b1d44e59SAart Bik   }
129b1d44e59SAart Bik   case AffineExprKind::Add:
130b1d44e59SAart Bik   case AffineExprKind::Mul: {
131b1d44e59SAart Bik     if (!isDense)
132b1d44e59SAart Bik       return false;
133b1d44e59SAart Bik     auto binOp = a.cast<AffineBinaryOpExpr>();
134b1d44e59SAart Bik     return findAffine(merger, tensor, binOp.getLHS(), dim, isDense) &&
135b1d44e59SAart Bik            findAffine(merger, tensor, binOp.getRHS(), dim, isDense);
136b1d44e59SAart Bik   }
137b1d44e59SAart Bik   case AffineExprKind::Constant:
138b1d44e59SAart Bik     return isDense;
139b1d44e59SAart Bik   default:
140b1d44e59SAart Bik     return false;
141b1d44e59SAart Bik   }
142b1d44e59SAart Bik }
143b1d44e59SAart Bik 
14496a23911SAart Bik /// Helper method to inspect sparse encodings in the tensor types.
145a2c9d4bbSAart Bik /// Fills the per-dimension sparsity information for all tensors.
146b1d44e59SAart Bik /// Returns true if the sparse annotations and affine subscript
147b1d44e59SAart Bik /// expressions of all tensors are admissable. Returns false if
148b1d44e59SAart Bik /// no annotations are found or inadmissable constructs occur.
149bf9ef3efSAart Bik static bool findSparseAnnotations(Merger &merger, linalg::GenericOp op) {
150bf9ef3efSAart Bik   bool annotated = false;
1512f2b5b7dSTobias Gysi   for (OpOperand *t : op.getInputAndOutputOperands()) {
1522f2b5b7dSTobias Gysi     auto map = op.getTiedIndexingMap(t);
1532f2b5b7dSTobias Gysi     auto enc = getSparseTensorEncoding(t->get().getType());
154727a63e0SAart Bik     if (enc)
155bf9ef3efSAart Bik       annotated = true;
1562f2b5b7dSTobias Gysi     assert(map.getNumResults() == op.getRank(t));
157c194b49cSAart Bik     for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
158b1d44e59SAart Bik       unsigned tensor = t->getOperandNumber();
159b1d44e59SAart Bik       AffineExpr a = map.getResult(perm(enc, d));
160b1d44e59SAart Bik       if (!findAffine(merger, tensor, a, toDim(enc, d), !enc))
161b1d44e59SAart Bik         return false; // inadmissable affine expression
162a2c9d4bbSAart Bik     }
163a2c9d4bbSAart Bik   }
164bf9ef3efSAart Bik   return annotated;
165a2c9d4bbSAart Bik }
166a2c9d4bbSAart Bik 
167a2c9d4bbSAart Bik /// A DFS helper to compute a topological sort. Note that recursion is
168a2c9d4bbSAart Bik /// bounded by the number of implicit loops, which is always small.
169a2c9d4bbSAart Bik /// Returns false when a cycle is detected.
170a2c9d4bbSAart Bik static bool topSortDFS(unsigned i, std::vector<unsigned> &visit,
171a2c9d4bbSAart Bik                        std::vector<unsigned> &topSort,
172a2c9d4bbSAart Bik                        std::vector<std::vector<bool>> &adjM) {
173a2c9d4bbSAart Bik   if (visit[i] != 0)
174a2c9d4bbSAart Bik     return visit[i] != 1; // 1 denotes cycle!
175a2c9d4bbSAart Bik   visit[i] = 1;
176a2c9d4bbSAart Bik   for (unsigned j = 0, e = visit.size(); j < e; j++)
177a2c9d4bbSAart Bik     if (adjM[i][j])
178a2c9d4bbSAart Bik       if (!topSortDFS(j, visit, topSort, adjM))
179a2c9d4bbSAart Bik         return false;
180a2c9d4bbSAart Bik   visit[i] = 2;
181a2c9d4bbSAart Bik   topSort.push_back(i);
182a2c9d4bbSAart Bik   return true;
183a2c9d4bbSAart Bik }
184a2c9d4bbSAart Bik 
185b1d44e59SAart Bik /// Helper method to add all constraints from the indices in one affine
186b1d44e59SAart Bik /// expression before all indices in the other affine expression. For
187b1d44e59SAart Bik /// example i0+i1 < i2+i3+1 yields i0<i2, i0<i3, i1<i2, and i1<i3.
188b1d44e59SAart Bik static void addAffineOrderings(std::vector<std::vector<bool>> &adjM,
189b1d44e59SAart Bik                                AffineExpr a, AffineExpr b, unsigned fidx) {
190b1d44e59SAart Bik   switch (a.getKind()) {
191b1d44e59SAart Bik   case AffineExprKind::DimId: {
192b1d44e59SAart Bik     unsigned idx = a.cast<AffineDimExpr>().getPosition();
193b1d44e59SAart Bik     if (b)
194b1d44e59SAart Bik       addAffineOrderings(adjM, b, AffineExpr(), idx);
195b1d44e59SAart Bik     else
196b1d44e59SAart Bik       adjM[fidx][idx] = true;
197b1d44e59SAart Bik     break;
198b1d44e59SAart Bik   }
199b1d44e59SAart Bik   case AffineExprKind::Add:
200b1d44e59SAart Bik   case AffineExprKind::Mul: {
201b1d44e59SAart Bik     auto binOp = a.cast<AffineBinaryOpExpr>();
202b1d44e59SAart Bik     addAffineOrderings(adjM, binOp.getLHS(), b, fidx);
203b1d44e59SAart Bik     addAffineOrderings(adjM, binOp.getRHS(), b, fidx);
204b1d44e59SAart Bik     break;
205b1d44e59SAart Bik   }
206b1d44e59SAart Bik   default:
207b1d44e59SAart Bik     break;
208b1d44e59SAart Bik   }
209b1d44e59SAart Bik }
210b1d44e59SAart Bik 
211a2c9d4bbSAart Bik /// Computes a topologically sorted iteration graph for the linalg operation.
212a2c9d4bbSAart Bik /// Ensures all tensors are visited in natural index order. This is essential
213a2c9d4bbSAart Bik /// for sparse storage formats since these only support access along fixed
214a2c9d4bbSAart Bik /// dimensions. Even for dense storage formats, however, the natural index
215a2c9d4bbSAart Bik /// order yields innermost unit-stride access with better spatial locality.
216a2c9d4bbSAart Bik static bool computeIterationGraph(Merger &merger, linalg::GenericOp op,
217a2c9d4bbSAart Bik                                   std::vector<unsigned> &topSort,
218b6d1a31cSAart Bik                                   unsigned mask) {
219a2c9d4bbSAart Bik   // Set up an n x n from/to adjacency matrix of the iteration graph
220a2c9d4bbSAart Bik   // for the implicit loop indices i_0 .. i_n-1.
221a2c9d4bbSAart Bik   unsigned n = op.getNumLoops();
222a2c9d4bbSAart Bik   std::vector<std::vector<bool>> adjM(n, std::vector<bool>(n, false));
223a2c9d4bbSAart Bik 
224a2c9d4bbSAart Bik   // Iterate over the indexing maps of every tensor in the tensor expression.
2252f2b5b7dSTobias Gysi   for (OpOperand *t : op.getInputAndOutputOperands()) {
2262f2b5b7dSTobias Gysi     auto map = op.getTiedIndexingMap(t);
2272f2b5b7dSTobias Gysi     auto enc = getSparseTensorEncoding(t->get().getType());
228a2c9d4bbSAart Bik     assert(map.getNumDims() == n);
229b6d1a31cSAart Bik     // Skip dense tensor constraints when not requested.
230b6d1a31cSAart Bik     if (!(mask & SortMask::kIncludeDense) && !enc)
231a2c9d4bbSAart Bik       continue;
232c194b49cSAart Bik     // Each tensor expression and optional dimension ordering (row-major
233c194b49cSAart Bik     // by default) puts an ordering constraint on the loop indices. For
234c194b49cSAart Bik     // example, the tensor expresion A_ijk forces the ordering i < j < k
235c194b49cSAart Bik     // on the loop indices if no explicit dimension ordering is given.
236c194b49cSAart Bik     for (unsigned d = 1, rank = map.getNumResults(); d < rank; d++) {
237b1d44e59SAart Bik       AffineExpr f = map.getResult(perm(enc, d - 1));
238b1d44e59SAart Bik       AffineExpr t = map.getResult(perm(enc, d));
239b1d44e59SAart Bik       addAffineOrderings(adjM, f, t, 0);
240a2c9d4bbSAart Bik     }
241b6d1a31cSAart Bik     // Push unrelated loops into sparse iteration space, so these
242b6d1a31cSAart Bik     // will be skipped more often.
243b6d1a31cSAart Bik     if (mask & SortMask::kIncludeUndef) {
244b6d1a31cSAart Bik       unsigned tensor = t->getOperandNumber();
245b6d1a31cSAart Bik       for (unsigned i = 0; i < n; i++)
246b6d1a31cSAart Bik         if (merger.isDim(tensor, i, Dim::kSparse))
247b6d1a31cSAart Bik           for (unsigned j = 0; j < n; j++)
248b6d1a31cSAart Bik             if (merger.isDim(tensor, j, Dim::kUndef))
249b6d1a31cSAart Bik               adjM[i][j] = true;
250b6d1a31cSAart Bik     }
251a2c9d4bbSAart Bik   }
252a2c9d4bbSAart Bik 
253a2c9d4bbSAart Bik   // Topologically sort the iteration graph to determine loop order.
254a2c9d4bbSAart Bik   // Report failure for a cyclic iteration graph.
255a2c9d4bbSAart Bik   topSort.clear();
256a2c9d4bbSAart Bik   topSort.reserve(n);
257a2c9d4bbSAart Bik   std::vector<unsigned> visit(n, 0);
258a2c9d4bbSAart Bik   for (unsigned i = 0; i < n; i++)
259a2c9d4bbSAart Bik     if (visit[i] == 0)
260a2c9d4bbSAart Bik       if (!topSortDFS(i, visit, topSort, adjM))
261a2c9d4bbSAart Bik         return false; // cycle!
262a2c9d4bbSAart Bik   std::reverse(std::begin(topSort), std::end(topSort));
263a2c9d4bbSAart Bik   return true;
264a2c9d4bbSAart Bik }
265a2c9d4bbSAart Bik 
26636b66ab9SAart Bik /// Returns true when the tensor expression is admissable for codegen.
26736b66ab9SAart Bik /// Since all sparse input tensors are admissable, we just need to check
26836b66ab9SAart Bik /// whether the output tensor in the tensor expression codegen is admissable.
26936b66ab9SAart Bik static bool isAdmissableTensorExp(Merger &merger, linalg::GenericOp op,
27036b66ab9SAart Bik                                   unsigned exp) {
27136b66ab9SAart Bik   OpOperand *lhs = op.getOutputOperand(0);
27236b66ab9SAart Bik   unsigned tensor = lhs->getOperandNumber();
27336b66ab9SAart Bik   auto enc = getSparseTensorEncoding(lhs->get().getType());
27436b66ab9SAart Bik   // An non-annotated output tensor is assumed dense, and becomes a random
275b1d44e59SAart Bik   // access n-dim memref. Admissable since insertions cannot occur.
27636b66ab9SAart Bik   if (!enc)
27736b66ab9SAart Bik     return true;
27836b66ab9SAart Bik   // An all-dense annotated "sparse" output tensor becomes a linearized random
27936b66ab9SAart Bik   // access 1-dim memref. Also admissable since insertions cannot occur.
28036b66ab9SAart Bik   bool allDense = true;
28136b66ab9SAart Bik   unsigned numLoops = op.iterator_types().getValue().size();
28236b66ab9SAart Bik   for (unsigned i = 0; i < numLoops; i++)
28336b66ab9SAart Bik     if (merger.isDim(tensor, i, Dim::kSparse)) {
28436b66ab9SAart Bik       allDense = false;
28536b66ab9SAart Bik       break;
28636b66ab9SAart Bik     }
28736b66ab9SAart Bik   if (allDense)
28836b66ab9SAart Bik     return true;
28936b66ab9SAart Bik   // A tensor expression with a sparse output tensor that changes its values
29036b66ab9SAart Bik   // but not its nonzero structure, an operation called "simply dynamic" in
29136b66ab9SAart Bik   // [Bik96,Ch9], is also admissable without special codegen.
29245b3cfe8SAart Bik   if (merger.isConjunction(tensor, exp))
29336b66ab9SAart Bik     return true;
29436b66ab9SAart Bik   // Reject for now since this requires changes to the nonzero structure.
29536b66ab9SAart Bik   // TODO: implement "workspaces" [Kjolstad2019]
29636b66ab9SAart Bik   return false;
29736b66ab9SAart Bik }
29836b66ab9SAart Bik 
2995da21338SAart Bik //===----------------------------------------------------------------------===//
3005da21338SAart Bik // Sparse compiler synthesis methods.
3015da21338SAart Bik //===----------------------------------------------------------------------===//
3025da21338SAart Bik 
3035da21338SAart Bik /// Maps reduction kind to name encoding.
3045da21338SAart Bik static StringRef getReductionName(Reduction kind) {
3055da21338SAart Bik   switch (kind) {
3065da21338SAart Bik   case kSum:
3075da21338SAart Bik     return "add";
3085da21338SAart Bik   case kProduct:
3095da21338SAart Bik     return "mul";
3105da21338SAart Bik   case kAnd:
3115da21338SAart Bik     return "and";
3125da21338SAart Bik   case kOr:
3135da21338SAart Bik     return "or";
3145da21338SAart Bik   case kXor:
3155da21338SAart Bik     return "xor";
3165da21338SAart Bik   }
3175da21338SAart Bik   llvm_unreachable("unknown reduction kind");
3185da21338SAart Bik }
3195da21338SAart Bik 
3205da21338SAart Bik /// Maps operation to reduction.
3215da21338SAart Bik static Reduction getReduction(Kind kind) {
3225da21338SAart Bik   switch (kind) {
3235da21338SAart Bik   case Kind::kAddF:
3245da21338SAart Bik   case Kind::kAddI:
3255da21338SAart Bik   case Kind::kSubF:
3265da21338SAart Bik   case Kind::kSubI:
3275da21338SAart Bik     return kSum;
3285da21338SAart Bik   case Kind::kMulF:
3295da21338SAart Bik   case Kind::kMulI:
3305da21338SAart Bik     return kProduct;
3315da21338SAart Bik   case Kind::kAndI:
3325da21338SAart Bik     return kAnd;
3335da21338SAart Bik   case Kind::kOrI:
3345da21338SAart Bik     return kOr;
3355da21338SAart Bik   case Kind::kXorI:
3365da21338SAart Bik     return kXor;
3375da21338SAart Bik   default:
3385da21338SAart Bik     llvm_unreachable("unexpected reduction operator");
3395da21338SAart Bik   }
3405da21338SAart Bik }
3415da21338SAart Bik 
3425da21338SAart Bik /// Generates an initial value for a vector reductions, following the scheme
3435da21338SAart Bik /// given in Chapter 5 of "The Software Vectorization Handbook", where the
3445da21338SAart Bik /// initial scalar value is correctly embedded in the vector reduction value,
3455da21338SAart Bik /// and a straightforward horizontal reduction will complete the operation.
3465da21338SAart Bik static Value genReductionInit(PatternRewriter &rewriter, Location loc,
3475da21338SAart Bik                               Reduction kind, VectorType vtp, Value r) {
3485da21338SAart Bik   switch (kind) {
3495da21338SAart Bik   case kSum:
3505da21338SAart Bik   case kXor: {
3515da21338SAart Bik     // Initialize reduction vector to: | 0 | .. | 0 | r |
3525da21338SAart Bik     Attribute zero = rewriter.getZeroAttr(vtp);
3535da21338SAart Bik     Value vec = rewriter.create<ConstantOp>(loc, vtp, zero);
3545da21338SAart Bik     return rewriter.create<vector::InsertElementOp>(loc, r, vec, 0);
3555da21338SAart Bik   }
3565da21338SAart Bik   case kProduct: {
3575da21338SAart Bik     // Initialize reduction vector to: | 1 | .. | 1 | r |
3585da21338SAart Bik     Type etp = vtp.getElementType();
3595da21338SAart Bik     Attribute one;
3605da21338SAart Bik     if (etp.isa<FloatType>())
3615da21338SAart Bik       one = rewriter.getFloatAttr(etp, 1.0);
3625da21338SAart Bik     else
3635da21338SAart Bik       one = rewriter.getIntegerAttr(etp, 1);
3645da21338SAart Bik     Value vec =
3655da21338SAart Bik         rewriter.create<ConstantOp>(loc, vtp, DenseElementsAttr::get(vtp, one));
3665da21338SAart Bik     return rewriter.create<vector::InsertElementOp>(loc, r, vec, 0);
3675da21338SAart Bik   }
3685da21338SAart Bik   case kAnd:
3695da21338SAart Bik   case kOr:
3705da21338SAart Bik     // Initialize reduction vector to: | r | .. | r | r |
3715da21338SAart Bik     return rewriter.create<vector::BroadcastOp>(loc, vtp, r);
3725da21338SAart Bik   }
3735da21338SAart Bik   llvm_unreachable("unknown reduction kind");
3745da21338SAart Bik }
3755da21338SAart Bik 
376a2c9d4bbSAart Bik /// Maps sparse integer option to actual integral storage type.
37796a23911SAart Bik static Type genIntType(PatternRewriter &rewriter, unsigned width) {
37896a23911SAart Bik   if (width == 0)
379a2c9d4bbSAart Bik     return rewriter.getIndexType();
38096a23911SAart Bik   return rewriter.getIntegerType(width);
381a2c9d4bbSAart Bik }
382a2c9d4bbSAart Bik 
3835879da49SAart Bik /// Detects in-place annotation on tensor argument.
3845879da49SAart Bik static bool getInPlace(Value val) {
3855879da49SAart Bik   if (auto arg = val.dyn_cast<BlockArgument>())
3865879da49SAart Bik     if (auto funcOp = dyn_cast<FuncOp>(arg.getOwner()->getParentOp()))
3875879da49SAart Bik       if (auto attr = funcOp.getArgAttrOfType<BoolAttr>(
3885879da49SAart Bik               arg.getArgNumber(), linalg::LinalgDialect::kInplaceableAttrName))
3895879da49SAart Bik         return attr.getValue();
3905879da49SAart Bik   return false;
3915879da49SAart Bik }
3925879da49SAart Bik 
393ec97a205SAart Bik /// Generates buffer for the output tensor. Note that all sparse kernels
394ec97a205SAart Bik /// assume that when all elements are written to (viz. x(i) = y(i) * z(i)),
395ec97a205SAart Bik /// the output buffer is already initialized to all zeroes and only nonzeroes
396ec97a205SAart Bik /// values are computed and written out. For updates (viz. x(i) += y(i) * z(i)),
397ec97a205SAart Bik /// only nonzeroes values are used for the updates and no assumption on the
398ec97a205SAart Bik /// original contents of the output buffer is necessary..
399a2c9d4bbSAart Bik static Value genOutputBuffer(CodeGen &codegen, PatternRewriter &rewriter,
400a2c9d4bbSAart Bik                              linalg::GenericOp op, MemRefType denseTp,
401a2c9d4bbSAart Bik                              ArrayRef<Value> args) {
402a2c9d4bbSAart Bik   Location loc = op.getLoc();
4032f2b5b7dSTobias Gysi   Value tensor = op.getOutputOperand(0)->get();
404a2c9d4bbSAart Bik   // The output tensor simply could materialize from the buffer that will
405a2c9d4bbSAart Bik   // be generated for the tensor present in the outs() clause. This has
406a2c9d4bbSAart Bik   // the major advantage that the sparse kernel only updates the nonzero
4075879da49SAart Bik   // positions for the output tensor.
4085879da49SAart Bik   if (getInPlace(tensor))
409a2c9d4bbSAart Bik     return rewriter.create<memref::BufferCastOp>(loc, denseTp, tensor);
410a2c9d4bbSAart Bik   // By default, a new buffer is allocated which is initialized to the
411a2c9d4bbSAart Bik   // tensor defined in the outs() clause. This is always correct but
412a2c9d4bbSAart Bik   // introduces a dense initialization component that may negatively
413ec97a205SAart Bik   // impact the running complexity of the sparse kernel. If the tensor
414ec97a205SAart Bik   // materializes within this method, we need to preserve the zero
415ec97a205SAart Bik   // initialization assumption of all sparse output buffers.
416ec97a205SAart Bik   if (auto init = tensor.getDefiningOp<linalg::InitTensorOp>()) {
417ec97a205SAart Bik     Type tp = denseTp.getElementType();
418ec97a205SAart Bik     Value alloc = rewriter.create<memref::AllocOp>(loc, denseTp, args);
419ec97a205SAart Bik     Value zero = rewriter.create<ConstantOp>(loc, tp, rewriter.getZeroAttr(tp));
420ec97a205SAart Bik     rewriter.create<linalg::FillOp>(loc, zero, alloc);
421ec97a205SAart Bik     return alloc;
422ec97a205SAart Bik   }
423a2c9d4bbSAart Bik   Value init = rewriter.create<memref::BufferCastOp>(loc, denseTp, tensor);
424a2c9d4bbSAart Bik   Value alloc = rewriter.create<memref::AllocOp>(loc, denseTp, args);
42568ac2e53SAart Bik   rewriter.create<memref::CopyOp>(loc, init, alloc);
426a2c9d4bbSAart Bik   return alloc;
427a2c9d4bbSAart Bik }
428a2c9d4bbSAart Bik 
429a2c9d4bbSAart Bik /// Local bufferization of all dense and sparse data structures.
430a2c9d4bbSAart Bik /// This code enables testing the first prototype sparse compiler.
431a2c9d4bbSAart Bik // TODO: replace this with a proliferated bufferization strategy
432727a63e0SAart Bik static bool genBuffers(Merger &merger, CodeGen &codegen,
433a2c9d4bbSAart Bik                        PatternRewriter &rewriter, linalg::GenericOp op) {
434a2c9d4bbSAart Bik   Location loc = op.getLoc();
4352f2b5b7dSTobias Gysi   assert(op.getNumInputsAndOutputs() == op.getNumInputs() + 1);
436a2c9d4bbSAart Bik   // For every tensor, find lower and upper bound on dimensions, set the
437a2c9d4bbSAart Bik   // same bounds on loop indices, and obtain dense or sparse buffer(s).
438a2c9d4bbSAart Bik   SmallVector<Value, 4> args;
4392f2b5b7dSTobias Gysi   for (OpOperand *t : op.getInputAndOutputOperands()) {
440727a63e0SAart Bik     unsigned tensor = t->getOperandNumber();
4412f2b5b7dSTobias Gysi     auto shape = op.getShape(t);
4422f2b5b7dSTobias Gysi     auto map = op.getTiedIndexingMap(t);
4432f2b5b7dSTobias Gysi     auto enc = getSparseTensorEncoding(t->get().getType());
444a2c9d4bbSAart Bik     // Scan all dimensions of current tensor.
445a2c9d4bbSAart Bik     args.clear();
446c194b49cSAart Bik     for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
447b1d44e59SAart Bik       AffineExpr a = map.getResult(perm(enc, d));
448b1d44e59SAart Bik       if (a.getKind() != AffineExprKind::DimId)
449b1d44e59SAart Bik         continue; // compound
450b1d44e59SAart Bik       unsigned idx = a.cast<AffineDimExpr>().getPosition();
451a2c9d4bbSAart Bik       // Handle sparse storage schemes.
452727a63e0SAart Bik       if (merger.isDim(tensor, idx, Dim::kSparse)) {
453a2c9d4bbSAart Bik         auto dynShape = {ShapedType::kDynamicSize};
454a2c9d4bbSAart Bik         auto ptrTp = MemRefType::get(
45596a23911SAart Bik             dynShape, genIntType(rewriter, enc.getPointerBitWidth()));
456a2c9d4bbSAart Bik         auto indTp = MemRefType::get(
45796a23911SAart Bik             dynShape, genIntType(rewriter, enc.getIndexBitWidth()));
458*a54f4eaeSMogball         Value dim = rewriter.create<arith::ConstantIndexOp>(loc, d);
459a2c9d4bbSAart Bik         // Generate sparse primitives to obtains pointer and indices.
460727a63e0SAart Bik         codegen.pointers[tensor][idx] =
4612f2b5b7dSTobias Gysi             rewriter.create<ToPointersOp>(loc, ptrTp, t->get(), dim);
462727a63e0SAart Bik         codegen.indices[tensor][idx] =
4632f2b5b7dSTobias Gysi             rewriter.create<ToIndicesOp>(loc, indTp, t->get(), dim);
464a2c9d4bbSAart Bik       }
465d37d72eaSAart Bik       // Find upper bound in current dimension.
466817303efSAart Bik       unsigned p = perm(enc, d);
467d37d72eaSAart Bik       Value up = linalg::createOrFoldDimOp(rewriter, loc, t->get(), p);
468d37d72eaSAart Bik       if (shape[p] == MemRefType::kDynamicSize)
469a2c9d4bbSAart Bik         args.push_back(up);
470817303efSAart Bik       assert(codegen.highs[tensor][idx] == nullptr);
471727a63e0SAart Bik       codegen.sizes[idx] = codegen.highs[tensor][idx] = up;
472a2c9d4bbSAart Bik     }
473727a63e0SAart Bik     // Perform the required bufferization. Dense inputs materialize
474727a63e0SAart Bik     // from the input tensors. Dense outputs need special handling.
475727a63e0SAart Bik     // Sparse inputs use sparse primitives to obtain the values.
476727a63e0SAart Bik     // We also accept in-place all-dense annotated "sparse" outputs.
4772f2b5b7dSTobias Gysi     Type elementType = getElementTypeOrSelf(t->get().getType());
47896a23911SAart Bik     if (!enc) {
479727a63e0SAart Bik       // Non-annotated dense tensors.
4802f2b5b7dSTobias Gysi       auto denseTp = MemRefType::get(shape, elementType);
481727a63e0SAart Bik       if (tensor < op.getNumInputs())
482727a63e0SAart Bik         codegen.buffers[tensor] =
4832f2b5b7dSTobias Gysi             rewriter.create<memref::BufferCastOp>(loc, denseTp, t->get());
484a2c9d4bbSAart Bik       else
485727a63e0SAart Bik         codegen.buffers[tensor] =
486a2c9d4bbSAart Bik             genOutputBuffer(codegen, rewriter, op, denseTp, args);
487a2c9d4bbSAart Bik     } else {
488727a63e0SAart Bik       // Annotated sparse tensors.
489727a63e0SAart Bik       if (tensor == op.getNumInputs() && !getInPlace(t->get()))
490727a63e0SAart Bik         return false; // reject output if not in-place
491a2c9d4bbSAart Bik       auto dynShape = {ShapedType::kDynamicSize};
4922f2b5b7dSTobias Gysi       auto sparseTp = MemRefType::get(dynShape, elementType);
493727a63e0SAart Bik       codegen.buffers[tensor] =
4942f2b5b7dSTobias Gysi           rewriter.create<ToValuesOp>(loc, sparseTp, t->get());
495a2c9d4bbSAart Bik     }
496a2c9d4bbSAart Bik   }
497727a63e0SAart Bik   return true;
498a2c9d4bbSAart Bik }
499a2c9d4bbSAart Bik 
500a2c9d4bbSAart Bik /// Constructs vector type.
501a2c9d4bbSAart Bik static VectorType vectorType(CodeGen &codegen, Type etp) {
502a2c9d4bbSAart Bik   return VectorType::get(codegen.curVecLength, etp);
503a2c9d4bbSAart Bik }
504a2c9d4bbSAart Bik 
505a2c9d4bbSAart Bik /// Constructs vector type from pointer.
506a2c9d4bbSAart Bik static VectorType vectorType(CodeGen &codegen, Value ptr) {
507a2c9d4bbSAart Bik   return vectorType(codegen, ptr.getType().cast<MemRefType>().getElementType());
508a2c9d4bbSAart Bik }
509a2c9d4bbSAart Bik 
510a2c9d4bbSAart Bik /// Constructs vector iteration mask.
511a2c9d4bbSAart Bik static Value genVectorMask(CodeGen &codegen, PatternRewriter &rewriter,
512a2c9d4bbSAart Bik                            Value iv, Value lo, Value hi, Value step) {
513a2c9d4bbSAart Bik   Location loc = iv.getLoc();
514a2c9d4bbSAart Bik   VectorType mtp = vectorType(codegen, rewriter.getIntegerType(1));
515a2c9d4bbSAart Bik   // Special case if the vector length evenly divides the trip count (for
516a2c9d4bbSAart Bik   // example, "for i = 0, 128, 16"). A constant all-true mask is generated
517a2c9d4bbSAart Bik   // so that all subsequent masked memory operations are immediately folded
518a2c9d4bbSAart Bik   // into unconditional memory operations.
519a2c9d4bbSAart Bik   IntegerAttr loInt, hiInt, stepInt;
520a2c9d4bbSAart Bik   if (matchPattern(lo, m_Constant(&loInt)) &&
521a2c9d4bbSAart Bik       matchPattern(hi, m_Constant(&hiInt)) &&
522a2c9d4bbSAart Bik       matchPattern(step, m_Constant(&stepInt))) {
523a2c9d4bbSAart Bik     if (((hiInt.getInt() - loInt.getInt()) % stepInt.getInt()) == 0)
524a2c9d4bbSAart Bik       return rewriter.create<vector::BroadcastOp>(
525*a54f4eaeSMogball           loc, mtp, rewriter.create<arith::ConstantIntOp>(loc, 1, 1));
526a2c9d4bbSAart Bik   }
527a2c9d4bbSAart Bik   // Otherwise, generate a vector mask that avoids overrunning the upperbound
528a2c9d4bbSAart Bik   // during vector execution. Here we rely on subsequent loop optimizations to
529a2c9d4bbSAart Bik   // avoid executing the mask in all iterations, for example, by splitting the
530a2c9d4bbSAart Bik   // loop into an unconditional vector loop and a scalar cleanup loop.
53176a18618SMatthias Springer   auto minMap = AffineMap::get(
53276a18618SMatthias Springer       /*dimCount=*/2, /*symbolCount=*/1,
53376a18618SMatthias Springer       {rewriter.getAffineSymbolExpr(0),
53476a18618SMatthias Springer        rewriter.getAffineDimExpr(0) - rewriter.getAffineDimExpr(1)},
53576a18618SMatthias Springer       rewriter.getContext());
53676a18618SMatthias Springer   Value end =
53776a18618SMatthias Springer       rewriter.createOrFold<AffineMinOp>(loc, minMap, ValueRange{hi, iv, step});
538a2c9d4bbSAart Bik   return rewriter.create<vector::CreateMaskOp>(loc, mtp, end);
539a2c9d4bbSAart Bik }
540a2c9d4bbSAart Bik 
541a2c9d4bbSAart Bik /// Generates a vectorized load lhs = a[ind[lo:hi]] or lhs = a[lo:hi].
542a2c9d4bbSAart Bik static Value genVectorLoad(CodeGen &codegen, PatternRewriter &rewriter,
543a2c9d4bbSAart Bik                            Value ptr, ArrayRef<Value> args) {
544a2c9d4bbSAart Bik   Location loc = ptr.getLoc();
545a2c9d4bbSAart Bik   VectorType vtp = vectorType(codegen, ptr);
546*a54f4eaeSMogball   Value pass =
547*a54f4eaeSMogball       rewriter.create<arith::ConstantOp>(loc, vtp, rewriter.getZeroAttr(vtp));
548a2c9d4bbSAart Bik   if (args.back().getType().isa<VectorType>()) {
549a2c9d4bbSAart Bik     SmallVector<Value, 4> scalarArgs(args.begin(), args.end());
550a2c9d4bbSAart Bik     Value indexVec = args.back();
551*a54f4eaeSMogball     scalarArgs.back() = rewriter.create<arith::ConstantIndexOp>(loc, 0);
552a2c9d4bbSAart Bik     return rewriter.create<vector::GatherOp>(
553a2c9d4bbSAart Bik         loc, vtp, ptr, scalarArgs, indexVec, codegen.curVecMask, pass);
554a2c9d4bbSAart Bik   }
555a2c9d4bbSAart Bik   return rewriter.create<vector::MaskedLoadOp>(loc, vtp, ptr, args,
556a2c9d4bbSAart Bik                                                codegen.curVecMask, pass);
557a2c9d4bbSAart Bik }
558a2c9d4bbSAart Bik 
559a2c9d4bbSAart Bik /// Generates a vectorized store a[ind[lo:hi]] = rhs or a[lo:hi] = rhs.
560a2c9d4bbSAart Bik static void genVectorStore(CodeGen &codegen, PatternRewriter &rewriter,
561a2c9d4bbSAart Bik                            Value rhs, Value ptr, ArrayRef<Value> args) {
562a2c9d4bbSAart Bik   Location loc = ptr.getLoc();
563a2c9d4bbSAart Bik   if (args.back().getType().isa<VectorType>()) {
564a2c9d4bbSAart Bik     SmallVector<Value, 4> scalarArgs(args.begin(), args.end());
565a2c9d4bbSAart Bik     Value indexVec = args.back();
566*a54f4eaeSMogball     scalarArgs.back() = rewriter.create<arith::ConstantIndexOp>(loc, 0);
567a2c9d4bbSAart Bik     rewriter.create<vector::ScatterOp>(loc, ptr, scalarArgs, indexVec,
568a2c9d4bbSAart Bik                                        codegen.curVecMask, rhs);
569a2c9d4bbSAart Bik     return;
570a2c9d4bbSAart Bik   }
571a2c9d4bbSAart Bik   rewriter.create<vector::MaskedStoreOp>(loc, ptr, args, codegen.curVecMask,
572a2c9d4bbSAart Bik                                          rhs);
573a2c9d4bbSAart Bik }
574a2c9d4bbSAart Bik 
575a2c9d4bbSAart Bik /// Generates a vectorized invariant. Here we rely on subsequent loop
576a2c9d4bbSAart Bik /// optimizations to hoist the invariant broadcast out of the vector loop.
577a2c9d4bbSAart Bik static Value genVectorInvariantValue(CodeGen &codegen,
578a2c9d4bbSAart Bik                                      PatternRewriter &rewriter, Value val) {
579a2c9d4bbSAart Bik   VectorType vtp = vectorType(codegen, val.getType());
580a2c9d4bbSAart Bik   return rewriter.create<vector::BroadcastOp>(val.getLoc(), vtp, val);
581a2c9d4bbSAart Bik }
582a2c9d4bbSAart Bik 
583b1d44e59SAart Bik /// Generates an affine expression.
584b1d44e59SAart Bik //
585b1d44e59SAart Bik // TODO: generalize for sparse tensor subscripts
586b1d44e59SAart Bik //
587b1d44e59SAart Bik static Value genAffine(CodeGen &codegen, PatternRewriter &rewriter,
588b1d44e59SAart Bik                        AffineExpr a, Location loc) {
589b1d44e59SAart Bik   switch (a.getKind()) {
590b1d44e59SAart Bik   case AffineExprKind::DimId: {
591b1d44e59SAart Bik     unsigned idx = a.cast<AffineDimExpr>().getPosition();
592b1d44e59SAart Bik     return codegen.loops[idx]; // universal dense index
593b1d44e59SAart Bik   }
594b1d44e59SAart Bik   case AffineExprKind::Add: {
595b1d44e59SAart Bik     auto binOp = a.cast<AffineBinaryOpExpr>();
596*a54f4eaeSMogball     return rewriter.create<arith::AddIOp>(
597b1d44e59SAart Bik         loc, genAffine(codegen, rewriter, binOp.getLHS(), loc),
598b1d44e59SAart Bik         genAffine(codegen, rewriter, binOp.getRHS(), loc));
599b1d44e59SAart Bik   }
600b1d44e59SAart Bik   case AffineExprKind::Mul: {
601b1d44e59SAart Bik     auto binOp = a.cast<AffineBinaryOpExpr>();
602*a54f4eaeSMogball     return rewriter.create<arith::MulIOp>(
603b1d44e59SAart Bik         loc, genAffine(codegen, rewriter, binOp.getLHS(), loc),
604b1d44e59SAart Bik         genAffine(codegen, rewriter, binOp.getRHS(), loc));
605b1d44e59SAart Bik   }
606b1d44e59SAart Bik   case AffineExprKind::Constant: {
607b1d44e59SAart Bik     int64_t c = a.cast<AffineConstantExpr>().getValue();
608*a54f4eaeSMogball     return rewriter.create<arith::ConstantIndexOp>(loc, c);
609b1d44e59SAart Bik   }
610b1d44e59SAart Bik   default:
611b1d44e59SAart Bik     llvm_unreachable("unexpected affine subscript");
612b1d44e59SAart Bik   }
613b1d44e59SAart Bik }
614b1d44e59SAart Bik 
615b1d44e59SAart Bik /// Generates subscript for load/store on a dense or sparse tensor.
616b1d44e59SAart Bik static Value genSubscript(CodeGen &codegen, PatternRewriter &rewriter,
617b1d44e59SAart Bik                           linalg::GenericOp op, OpOperand *t,
618b1d44e59SAart Bik                           SmallVector<Value, 4> &args) {
619b1d44e59SAart Bik   unsigned tensor = t->getOperandNumber();
620b1d44e59SAart Bik   auto map = op.getTiedIndexingMap(t);
621b1d44e59SAart Bik   auto enc = getSparseTensorEncoding(t->get().getType());
622b1d44e59SAart Bik   unsigned rank = map.getNumResults();
623b1d44e59SAart Bik   if (enc) {
624b1d44e59SAart Bik     // Note that currently, all sparse subscripts are simple.
625b1d44e59SAart Bik     // TODO: accept affine too?
626b1d44e59SAart Bik     unsigned idx = map.getDimPosition(perm(enc, rank - 1));
627b1d44e59SAart Bik     assert(codegen.pidxs[tensor][idx] != nullptr);
628b1d44e59SAart Bik     args.push_back(codegen.pidxs[tensor][idx]); // position index
629b1d44e59SAart Bik   } else {
630b1d44e59SAart Bik     for (unsigned d = 0; d < rank; d++) {
631b1d44e59SAart Bik       AffineExpr a = map.getResult(perm(enc, d));
632b1d44e59SAart Bik       args.push_back(genAffine(codegen, rewriter, a, op.getLoc()));
633b1d44e59SAart Bik     }
634b1d44e59SAart Bik   }
635b1d44e59SAart Bik   return codegen.buffers[tensor];
636b1d44e59SAart Bik }
637b1d44e59SAart Bik 
638a2c9d4bbSAart Bik /// Generates a load on a dense or sparse tensor.
639a2c9d4bbSAart Bik static Value genTensorLoad(Merger &merger, CodeGen &codegen,
640a2c9d4bbSAart Bik                            PatternRewriter &rewriter, linalg::GenericOp op,
641a2c9d4bbSAart Bik                            unsigned exp) {
642a2c9d4bbSAart Bik   // Test if the load was hoisted to a higher loop nest.
643a2c9d4bbSAart Bik   Value val = merger.exp(exp).val;
644a2c9d4bbSAart Bik   if (val) {
645a2c9d4bbSAart Bik     if (codegen.curVecLength > 1 && !val.getType().isa<VectorType>())
646a2c9d4bbSAart Bik       return genVectorInvariantValue(codegen, rewriter, val);
647a2c9d4bbSAart Bik     return val;
648a2c9d4bbSAart Bik   }
649a2c9d4bbSAart Bik   // Actual load.
650a2c9d4bbSAart Bik   SmallVector<Value, 4> args;
6514569c14aSGus Smith   OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).tensor];
652b1d44e59SAart Bik   Value ptr = genSubscript(codegen, rewriter, op, t, args);
653a2c9d4bbSAart Bik   if (codegen.curVecLength > 1)
654a2c9d4bbSAart Bik     return genVectorLoad(codegen, rewriter, ptr, args);
655b1d44e59SAart Bik   return rewriter.create<memref::LoadOp>(op.getLoc(), ptr, args);
656a2c9d4bbSAart Bik }
657a2c9d4bbSAart Bik 
658727a63e0SAart Bik /// Generates a store on a dense or sparse tensor.
659a2c9d4bbSAart Bik static void genTensorStore(Merger &merger, CodeGen &codegen,
660a2c9d4bbSAart Bik                            PatternRewriter &rewriter, linalg::GenericOp op,
661b1d44e59SAart Bik                            Value rhs) {
662a2c9d4bbSAart Bik   // Test if this is a scalarized reduction.
663b1d44e59SAart Bik   if (codegen.redVal) {
664a2c9d4bbSAart Bik     if (codegen.curVecLength > 1)
665b1d44e59SAart Bik       rhs = rewriter.create<SelectOp>(op.getLoc(), codegen.curVecMask, rhs,
666a2c9d4bbSAart Bik                                       codegen.redVal);
667a2c9d4bbSAart Bik     codegen.redVal = rhs;
668a2c9d4bbSAart Bik     return;
669a2c9d4bbSAart Bik   }
670a2c9d4bbSAart Bik   // Actual store.
671a2c9d4bbSAart Bik   SmallVector<Value, 4> args;
672b1d44e59SAart Bik   OpOperand *t = op.getOutputOperand(0);
673b1d44e59SAart Bik   Value ptr = genSubscript(codegen, rewriter, op, t, args);
674a2c9d4bbSAart Bik   if (codegen.curVecLength > 1)
675a2c9d4bbSAart Bik     genVectorStore(codegen, rewriter, rhs, ptr, args);
676a2c9d4bbSAart Bik   else
677b1d44e59SAart Bik     rewriter.create<memref::StoreOp>(op.getLoc(), rhs, ptr, args);
678a2c9d4bbSAart Bik }
679a2c9d4bbSAart Bik 
680a2c9d4bbSAart Bik /// Generates a pointer/index load from the sparse storage scheme. Narrower
681a2c9d4bbSAart Bik /// data types need to be zero extended before casting the value into the
682a2c9d4bbSAart Bik /// index type used for looping and indexing.
683a2c9d4bbSAart Bik static Value genLoad(CodeGen &codegen, PatternRewriter &rewriter, Location loc,
684a2c9d4bbSAart Bik                      Value ptr, Value s) {
685a2c9d4bbSAart Bik   // See https://llvm.org/docs/GetElementPtr.html for some background on
686a2c9d4bbSAart Bik   // the complications described below.
687a2c9d4bbSAart Bik   if (codegen.curVecLength > 1) {
688a2c9d4bbSAart Bik     // Since the index vector is used in a subsequent gather/scatter operations,
689a2c9d4bbSAart Bik     // which effectively defines an unsigned pointer + signed index, we must
690a2c9d4bbSAart Bik     // zero extend the vector to an index width. For 8-bit and 16-bit values,
691a2c9d4bbSAart Bik     // an 32-bit index width suffices. For 32-bit values, zero extending the
692a2c9d4bbSAart Bik     // elements into 64-bit loses some performance since the 32-bit indexed
69386e9bc1aSAart Bik     // gather/scatter is more efficient than the 64-bit index variant (if the
69486e9bc1aSAart Bik     // negative 32-bit index space is unused, the enableSIMDIndex32 flag can
695727a63e0SAart Bik     // preserve this performance). For 64-bit values, there is no good way
696a2c9d4bbSAart Bik     // to state that the indices are unsigned, with creates the potential of
697a2c9d4bbSAart Bik     // incorrect address calculations in the unlikely case we need such
698a2c9d4bbSAart Bik     // extremely large offsets.
699a2c9d4bbSAart Bik     Type etp = ptr.getType().cast<MemRefType>().getElementType();
700a2c9d4bbSAart Bik     Value vload = genVectorLoad(codegen, rewriter, ptr, {s});
701a2c9d4bbSAart Bik     if (!etp.isa<IndexType>()) {
702a2c9d4bbSAart Bik       if (etp.getIntOrFloatBitWidth() < 32)
703*a54f4eaeSMogball         vload = rewriter.create<arith::ExtUIOp>(
704a2c9d4bbSAart Bik             loc, vload, vectorType(codegen, rewriter.getIntegerType(32)));
70586e9bc1aSAart Bik       else if (etp.getIntOrFloatBitWidth() < 64 &&
70686e9bc1aSAart Bik                !codegen.options.enableSIMDIndex32)
707*a54f4eaeSMogball         vload = rewriter.create<arith::ExtUIOp>(
708a2c9d4bbSAart Bik             loc, vload, vectorType(codegen, rewriter.getIntegerType(64)));
709a2c9d4bbSAart Bik     }
710a2c9d4bbSAart Bik     return vload;
711a2c9d4bbSAart Bik   }
712a2c9d4bbSAart Bik   // For the scalar case, we simply zero extend narrower indices into 64-bit
713a2c9d4bbSAart Bik   // values before casting to index without a performance penalty. Here too,
714a2c9d4bbSAart Bik   // however, indices that already are 64-bit, in theory, cannot express the
715a2c9d4bbSAart Bik   // full range as explained above.
716a2c9d4bbSAart Bik   Value load = rewriter.create<memref::LoadOp>(loc, ptr, s);
717a2c9d4bbSAart Bik   if (!load.getType().isa<IndexType>()) {
718a2c9d4bbSAart Bik     if (load.getType().getIntOrFloatBitWidth() < 64)
719*a54f4eaeSMogball       load = rewriter.create<arith::ExtUIOp>(loc, load,
720a2c9d4bbSAart Bik                                              rewriter.getIntegerType(64));
721*a54f4eaeSMogball     load =
722*a54f4eaeSMogball         rewriter.create<arith::IndexCastOp>(loc, load, rewriter.getIndexType());
723a2c9d4bbSAart Bik   }
724a2c9d4bbSAart Bik   return load;
725a2c9d4bbSAart Bik }
726a2c9d4bbSAart Bik 
727a2c9d4bbSAart Bik /// Generates an invariant value.
728a2c9d4bbSAart Bik static Value genInvariantValue(Merger &merger, CodeGen &codegen,
729a2c9d4bbSAart Bik                                PatternRewriter &rewriter, unsigned exp) {
730a2c9d4bbSAart Bik   Value val = merger.exp(exp).val;
731a2c9d4bbSAart Bik   if (codegen.curVecLength > 1)
732a2c9d4bbSAart Bik     return genVectorInvariantValue(codegen, rewriter, val);
733a2c9d4bbSAart Bik   return val;
734a2c9d4bbSAart Bik }
735a2c9d4bbSAart Bik 
736a2c9d4bbSAart Bik /// Generates an address computation "sz * p + i".
737a2c9d4bbSAart Bik static Value genAddress(CodeGen &codegen, PatternRewriter &rewriter,
738a2c9d4bbSAart Bik                         Location loc, Value size, Value p, Value i) {
739*a54f4eaeSMogball   Value mul = rewriter.create<arith::MulIOp>(loc, size, p);
740a2c9d4bbSAart Bik   if (auto vtp = i.getType().dyn_cast<VectorType>()) {
741*a54f4eaeSMogball     Value inv =
742*a54f4eaeSMogball         rewriter.create<arith::IndexCastOp>(loc, mul, vtp.getElementType());
743a2c9d4bbSAart Bik     mul = genVectorInvariantValue(codegen, rewriter, inv);
744a2c9d4bbSAart Bik   }
745*a54f4eaeSMogball   return rewriter.create<arith::AddIOp>(loc, mul, i);
746a2c9d4bbSAart Bik }
747a2c9d4bbSAart Bik 
748a2c9d4bbSAart Bik /// Generates start of a reduction.
749a2c9d4bbSAart Bik static Value genReductionStart(Merger &merger, CodeGen &codegen,
750a2c9d4bbSAart Bik                                PatternRewriter &rewriter,
751a2c9d4bbSAart Bik                                linalg::GenericOp op) {
752a2c9d4bbSAart Bik   if (codegen.redVal)
753a2c9d4bbSAart Bik     return codegen.redVal; // chained with previous for-loop
7545da21338SAart Bik   // Generate vector or scalar start of a reduction.
7555da21338SAart Bik   unsigned vl = codegen.curVecLength;
7565da21338SAart Bik   if (vl > 1) {
757a2c9d4bbSAart Bik     VectorType vtp = vectorType(codegen, codegen.buffers[codegen.redExp]);
7585da21338SAart Bik     assert(!merger.exp(codegen.redExp).val);
7595da21338SAart Bik     codegen.curVecLength = 1;
7605da21338SAart Bik     Value load = genTensorLoad(merger, codegen, rewriter, op, codegen.redExp);
7615da21338SAart Bik     codegen.curVecLength = vl;
7625da21338SAart Bik     return genReductionInit(rewriter, op.getLoc(), codegen.redKind, vtp, load);
763a2c9d4bbSAart Bik   }
764a2c9d4bbSAart Bik   return genTensorLoad(merger, codegen, rewriter, op, codegen.redExp);
765a2c9d4bbSAart Bik }
766a2c9d4bbSAart Bik 
767a2c9d4bbSAart Bik /// Generates end of a reduction.
768a2c9d4bbSAart Bik static void genReductionEnd(Merger &merger, CodeGen &codegen,
769a2c9d4bbSAart Bik                             PatternRewriter &rewriter, linalg::GenericOp op) {
770a2c9d4bbSAart Bik   Value red = codegen.redVal;
771a2c9d4bbSAart Bik   if (!red)
772a2c9d4bbSAart Bik     return;
773a2c9d4bbSAart Bik   assert(codegen.curVecLength == 1);
774a2c9d4bbSAart Bik   codegen.redVal = merger.exp(codegen.redExp).val = Value(); // end chain
7755da21338SAart Bik   // Generate vector or scalar end of a reduction.
776a2c9d4bbSAart Bik   if (auto vtp = red.getType().dyn_cast<VectorType>()) {
7775da21338SAart Bik     StringRef name = getReductionName(codegen.redKind);
7785da21338SAart Bik     StringAttr kind = rewriter.getStringAttr(name);
7795da21338SAart Bik     red = rewriter.create<vector::ReductionOp>(
7805da21338SAart Bik         op.getLoc(), vtp.getElementType(), kind, red, ValueRange{});
781a2c9d4bbSAart Bik   }
782b1d44e59SAart Bik   genTensorStore(merger, codegen, rewriter, op, red);
783a2c9d4bbSAart Bik }
784a2c9d4bbSAart Bik 
785a2c9d4bbSAart Bik /// Recursively generates tensor expression.
786a2c9d4bbSAart Bik static Value genExp(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
787a2c9d4bbSAart Bik                     linalg::GenericOp op, unsigned exp) {
788b8a021dbSAart Bik   Location loc = op.getLoc();
789123e8dfcSAart Bik   if (exp == -1u)
790123e8dfcSAart Bik     return Value();
791a2c9d4bbSAart Bik   if (merger.exp(exp).kind == Kind::kTensor)
792a2c9d4bbSAart Bik     return genTensorLoad(merger, codegen, rewriter, op, exp);
793b8a021dbSAart Bik   if (merger.exp(exp).kind == Kind::kInvariant)
794a2c9d4bbSAart Bik     return genInvariantValue(merger, codegen, rewriter, exp);
7954569c14aSGus Smith   Value v0 = genExp(merger, codegen, rewriter, op, merger.exp(exp).children.e0);
7964569c14aSGus Smith   Value v1 = genExp(merger, codegen, rewriter, op, merger.exp(exp).children.e1);
79745b3cfe8SAart Bik   return merger.buildExp(rewriter, loc, exp, v0, v1);
798a2c9d4bbSAart Bik }
799a2c9d4bbSAart Bik 
800b1d44e59SAart Bik /// Determines if affine expression is invariant.
801b1d44e59SAart Bik static bool isInvariantAffine(const CodeGen &codegen, AffineExpr a,
802b1d44e59SAart Bik                               unsigned ldx, bool &atLevel) {
803b1d44e59SAart Bik   switch (a.getKind()) {
804b1d44e59SAart Bik   case AffineExprKind::DimId: {
805b1d44e59SAart Bik     unsigned idx = a.cast<AffineDimExpr>().getPosition();
806b1d44e59SAart Bik     if (idx == ldx)
807b1d44e59SAart Bik       atLevel = true;
808b1d44e59SAart Bik     return codegen.loops[idx] != nullptr; // no longer in play?
809b1d44e59SAart Bik   }
810b1d44e59SAart Bik   case AffineExprKind::Add:
811b1d44e59SAart Bik   case AffineExprKind::Mul: {
812b1d44e59SAart Bik     auto binOp = a.cast<AffineBinaryOpExpr>();
813b1d44e59SAart Bik     return isInvariantAffine(codegen, binOp.getLHS(), ldx, atLevel) &&
814b1d44e59SAart Bik            isInvariantAffine(codegen, binOp.getRHS(), ldx, atLevel);
815b1d44e59SAart Bik   }
816b1d44e59SAart Bik   default:
817b1d44e59SAart Bik     return true;
818b1d44e59SAart Bik   }
819b1d44e59SAart Bik }
820b1d44e59SAart Bik 
821a2c9d4bbSAart Bik /// Hoists loop invariant tensor loads for which indices have been exhausted.
822a2c9d4bbSAart Bik static void genInvariants(Merger &merger, CodeGen &codegen,
823a2c9d4bbSAart Bik                           PatternRewriter &rewriter, linalg::GenericOp op,
8245da21338SAart Bik                           unsigned exp, unsigned ldx, bool hoist,
8255da21338SAart Bik                           Kind last = Kind::kTensor) {
826123e8dfcSAart Bik   if (exp == -1u)
827123e8dfcSAart Bik     return;
828a2c9d4bbSAart Bik   if (merger.exp(exp).kind == Kind::kTensor) {
829a2c9d4bbSAart Bik     // Inspect tensor indices.
830a2c9d4bbSAart Bik     bool atLevel = ldx == -1u;
8314569c14aSGus Smith     OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).tensor];
832619bfe8bSAart Bik     auto map = op.getTiedIndexingMap(t);
833619bfe8bSAart Bik     auto enc = getSparseTensorEncoding(t->get().getType());
834c194b49cSAart Bik     for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
835b1d44e59SAart Bik       AffineExpr a = map.getResult(perm(enc, d));
836b1d44e59SAart Bik       if (!isInvariantAffine(codegen, a, ldx, atLevel))
837a2c9d4bbSAart Bik         return; // still in play
838a2c9d4bbSAart Bik     }
839a2c9d4bbSAart Bik     // All exhausted at this level (atLevel denotes exactly at this level).
8402f2b5b7dSTobias Gysi     OpOperand *lhs = op.getOutputOperand(0);
841619bfe8bSAart Bik     if (lhs == t) {
842a2c9d4bbSAart Bik       codegen.redExp = hoist ? exp : -1u;
8435da21338SAart Bik       codegen.redKind = getReduction(last);
844a2c9d4bbSAart Bik     } else if (atLevel) {
845a2c9d4bbSAart Bik       merger.exp(exp).val =
846a2c9d4bbSAart Bik           hoist ? genTensorLoad(merger, codegen, rewriter, op, exp) : Value();
847a2c9d4bbSAart Bik     }
848123e8dfcSAart Bik   } else if (merger.exp(exp).kind != Kind::kInvariant) {
849a2c9d4bbSAart Bik     // Traverse into the binary operations. Note that we only hoist
850a2c9d4bbSAart Bik     // tensor loads, since subsequent MLIR/LLVM passes know how to
851a2c9d4bbSAart Bik     // deal with all other kinds of derived loop invariants.
8525da21338SAart Bik     Kind last = merger.exp(exp).kind;
8534569c14aSGus Smith     unsigned e0 = merger.exp(exp).children.e0;
8544569c14aSGus Smith     unsigned e1 = merger.exp(exp).children.e1;
8555da21338SAart Bik     genInvariants(merger, codegen, rewriter, op, e0, ldx, hoist, last);
8565da21338SAart Bik     genInvariants(merger, codegen, rewriter, op, e1, ldx, hoist, last);
857a2c9d4bbSAart Bik   }
858a2c9d4bbSAart Bik }
859a2c9d4bbSAart Bik 
860a2c9d4bbSAart Bik /// Generates initialization code for the subsequent loop sequence at
861a2c9d4bbSAart Bik /// current index level. Returns true if the loop sequence needs to
862a2c9d4bbSAart Bik /// maintain the universal index.
863a2c9d4bbSAart Bik static bool genInit(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
864a2c9d4bbSAart Bik                     linalg::GenericOp op, std::vector<unsigned> &topSort,
865a2c9d4bbSAart Bik                     unsigned at, llvm::BitVector &inits) {
866a2c9d4bbSAart Bik   bool needsUniv = false;
867a2c9d4bbSAart Bik   Location loc = op.getLoc();
868a2c9d4bbSAart Bik   unsigned idx = topSort[at];
869a2c9d4bbSAart Bik 
870a2c9d4bbSAart Bik   // Initialize sparse positions.
871a2c9d4bbSAart Bik   for (unsigned b = 0, be = inits.size(); b < be; b++) {
872a2c9d4bbSAart Bik     if (inits[b]) {
873a2c9d4bbSAart Bik       unsigned tensor = merger.tensor(b);
874a2c9d4bbSAart Bik       assert(idx == merger.index(b));
875a2c9d4bbSAart Bik       if (merger.isDim(b, Dim::kSparse)) {
876a2c9d4bbSAart Bik         // Initialize sparse index.
877a2c9d4bbSAart Bik         unsigned pat = at;
878a2c9d4bbSAart Bik         for (; pat != 0; pat--) {
879a2c9d4bbSAart Bik           if (codegen.pidxs[tensor][topSort[pat - 1]])
880a2c9d4bbSAart Bik             break;
881a2c9d4bbSAart Bik         }
882a2c9d4bbSAart Bik         Value ptr = codegen.pointers[tensor][idx];
883*a54f4eaeSMogball         Value one = rewriter.create<arith::ConstantIndexOp>(loc, 1);
884*a54f4eaeSMogball         Value p0 = (pat == 0) ? rewriter.create<arith::ConstantIndexOp>(loc, 0)
885a2c9d4bbSAart Bik                               : codegen.pidxs[tensor][topSort[pat - 1]];
886a2c9d4bbSAart Bik         codegen.pidxs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p0);
887*a54f4eaeSMogball         Value p1 = rewriter.create<arith::AddIOp>(loc, p0, one);
888a2c9d4bbSAart Bik         codegen.highs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p1);
889a2c9d4bbSAart Bik       } else {
890a2c9d4bbSAart Bik         // Dense index still in play.
891a2c9d4bbSAart Bik         needsUniv = true;
892a2c9d4bbSAart Bik       }
893a2c9d4bbSAart Bik     }
894a2c9d4bbSAart Bik   }
895a2c9d4bbSAart Bik 
896a2c9d4bbSAart Bik   // Initialize the universal dense index.
897*a54f4eaeSMogball   codegen.loops[idx] = rewriter.create<arith::ConstantIndexOp>(loc, 0);
898a2c9d4bbSAart Bik   return needsUniv;
899a2c9d4bbSAart Bik }
900a2c9d4bbSAart Bik 
901a2c9d4bbSAart Bik /// Returns vectorization strategy. Any implicit inner loop in the Linalg
902a2c9d4bbSAart Bik /// operation is a candidate. Whether it is actually converted to SIMD code
903a2c9d4bbSAart Bik /// depends on the requested strategy.
904a2c9d4bbSAart Bik static bool isVectorFor(CodeGen &codegen, bool isInner, bool isSparse) {
905a2c9d4bbSAart Bik   switch (codegen.options.vectorizationStrategy) {
906a2c9d4bbSAart Bik   case SparseVectorizationStrategy::kNone:
907a2c9d4bbSAart Bik     return false;
908a2c9d4bbSAart Bik   case SparseVectorizationStrategy::kDenseInnerLoop:
909a2c9d4bbSAart Bik     return isInner && !isSparse;
910a2c9d4bbSAart Bik   case SparseVectorizationStrategy::kAnyStorageInnerLoop:
911a2c9d4bbSAart Bik     return isInner;
912a2c9d4bbSAart Bik   }
913a2c9d4bbSAart Bik   llvm_unreachable("unexpected vectorization strategy");
914a2c9d4bbSAart Bik }
915a2c9d4bbSAart Bik 
916a2c9d4bbSAart Bik /// Returns parallelization strategy. Any implicit loop in the Linalg operation
917a2c9d4bbSAart Bik /// that is marked "parallel" is a candidate. Whether it is actually converted
918a2c9d4bbSAart Bik /// to a parallel operation depends on the requested strategy.
919a2c9d4bbSAart Bik static bool isParallelFor(CodeGen &codegen, bool isOuter, bool isReduction,
920a2c9d4bbSAart Bik                           bool isSparse, bool isVector) {
921a2c9d4bbSAart Bik   switch (codegen.options.parallelizationStrategy) {
922a2c9d4bbSAart Bik   case SparseParallelizationStrategy::kNone:
923a2c9d4bbSAart Bik     return false;
924a2c9d4bbSAart Bik   case SparseParallelizationStrategy::kDenseOuterLoop:
925a2c9d4bbSAart Bik     return isOuter && !isSparse && !isReduction && !isVector;
926a2c9d4bbSAart Bik   case SparseParallelizationStrategy::kAnyStorageOuterLoop:
927a2c9d4bbSAart Bik     return isOuter && !isReduction && !isVector;
928a2c9d4bbSAart Bik   case SparseParallelizationStrategy::kDenseAnyLoop:
929a2c9d4bbSAart Bik     return !isSparse && !isReduction && !isVector;
930a2c9d4bbSAart Bik   case SparseParallelizationStrategy::kAnyStorageAnyLoop:
931a2c9d4bbSAart Bik     return !isReduction && !isVector;
932a2c9d4bbSAart Bik   }
933a2c9d4bbSAart Bik   llvm_unreachable("unexpected parallelization strategy");
934a2c9d4bbSAart Bik }
935a2c9d4bbSAart Bik 
936849f016cSAart Bik /// Checks unit stride for dense tensors. The iteration graph may have ignored
937a2c9d4bbSAart Bik /// dense access patterns in order to avoid cycles (sparse access patterns are
938a2c9d4bbSAart Bik /// always placed innermost), but that means dense access has become strided.
939849f016cSAart Bik /// This prevents effective vectorization.
940a2c9d4bbSAart Bik static bool denseUnitStrides(Merger &merger, linalg::GenericOp op,
941849f016cSAart Bik                              unsigned idx) {
9422f2b5b7dSTobias Gysi   for (OpOperand *t : op.getInputAndOutputOperands()) {
9432f2b5b7dSTobias Gysi     if (!getSparseTensorEncoding(t->get().getType())) {
9442f2b5b7dSTobias Gysi       auto map = op.getTiedIndexingMap(t);
945c194b49cSAart Bik       for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
946b1d44e59SAart Bik         AffineExpr a = map.getResult(d);
947849f016cSAart Bik         // Report non-unit stride if innermost index appears at an outer
948849f016cSAart Bik         // dimension (true non-unit stride) or if the innermost index appears
949849f016cSAart Bik         // in a compound subscript in the innermost dimension. Even if the
950849f016cSAart Bik         // latter is unit stride, it does not play well with scatter/gather.
951849f016cSAart Bik         if (a.isFunctionOfDim(idx) &&
952849f016cSAart Bik             ((d != rank - 1) || (a.getKind() != AffineExprKind::DimId)))
953a2c9d4bbSAart Bik           return false;
954a2c9d4bbSAart Bik       }
955a2c9d4bbSAart Bik     }
956a2c9d4bbSAart Bik   }
957a2c9d4bbSAart Bik   return true;
958a2c9d4bbSAart Bik }
959a2c9d4bbSAart Bik 
960a2c9d4bbSAart Bik /// Generates a for-loop on a single index.
961a2c9d4bbSAart Bik static Operation *genFor(Merger &merger, CodeGen &codegen,
962a2c9d4bbSAart Bik                          PatternRewriter &rewriter, linalg::GenericOp op,
963a2c9d4bbSAart Bik                          bool isOuter, bool isInner, unsigned idx,
964a2c9d4bbSAart Bik                          llvm::BitVector &indices) {
965a2c9d4bbSAart Bik   unsigned fb = indices.find_first();
966a2c9d4bbSAart Bik   unsigned tensor = merger.tensor(fb);
967a2c9d4bbSAart Bik   assert(idx == merger.index(fb));
968a2c9d4bbSAart Bik   auto iteratorTypes = op.iterator_types().getValue();
969583a7542STobias Gysi   bool isReduction = isReductionIterator(iteratorTypes[idx]);
970a2c9d4bbSAart Bik   bool isSparse = merger.isDim(fb, Dim::kSparse);
971a2c9d4bbSAart Bik   bool isVector = isVectorFor(codegen, isInner, isSparse) &&
972a2c9d4bbSAart Bik                   denseUnitStrides(merger, op, idx);
973a2c9d4bbSAart Bik   bool isParallel =
974a2c9d4bbSAart Bik       isParallelFor(codegen, isOuter, isReduction, isSparse, isVector);
975a2c9d4bbSAart Bik 
976a2c9d4bbSAart Bik   // Prepare vector length.
977a2c9d4bbSAart Bik   if (isVector)
978a2c9d4bbSAart Bik     codegen.curVecLength = codegen.options.vectorLength;
979a2c9d4bbSAart Bik 
980a2c9d4bbSAart Bik   // Loop bounds and increment.
981a2c9d4bbSAart Bik   Location loc = op.getLoc();
982a2c9d4bbSAart Bik   Value lo = isSparse ? codegen.pidxs[tensor][idx] : codegen.loops[idx];
983a2c9d4bbSAart Bik   Value hi = isSparse ? codegen.highs[tensor][idx] : codegen.sizes[idx];
984*a54f4eaeSMogball   Value step =
985*a54f4eaeSMogball       rewriter.create<arith::ConstantIndexOp>(loc, codegen.curVecLength);
986a2c9d4bbSAart Bik 
987a2c9d4bbSAart Bik   // Emit a parallel loop.
988a2c9d4bbSAart Bik   if (isParallel) {
989a2c9d4bbSAart Bik     assert(!isVector);
990a2c9d4bbSAart Bik     scf::ParallelOp parOp = rewriter.create<scf::ParallelOp>(loc, lo, hi, step);
991a2c9d4bbSAart Bik     if (isSparse)
992a2c9d4bbSAart Bik       codegen.pidxs[tensor][idx] = parOp.getInductionVars()[0];
993a2c9d4bbSAart Bik     else
994a2c9d4bbSAart Bik       codegen.loops[idx] = parOp.getInductionVars()[0];
995a2c9d4bbSAart Bik     rewriter.setInsertionPointToStart(parOp.getBody());
996a2c9d4bbSAart Bik     return parOp;
997a2c9d4bbSAart Bik   }
998a2c9d4bbSAart Bik 
999a2c9d4bbSAart Bik   // Emit a sequential loop, potentially with a scalarized reduction.
1000a2c9d4bbSAart Bik   bool scalarRed = isInner && codegen.redExp != -1u;
1001a2c9d4bbSAart Bik   SmallVector<Value, 4> operands;
1002a2c9d4bbSAart Bik   if (scalarRed) {
1003a2c9d4bbSAart Bik     Value load = genReductionStart(merger, codegen, rewriter, op);
1004a2c9d4bbSAart Bik     operands.push_back(load);
1005a2c9d4bbSAart Bik   }
1006a2c9d4bbSAart Bik   scf::ForOp forOp = rewriter.create<scf::ForOp>(loc, lo, hi, step, operands);
1007a2c9d4bbSAart Bik   if (scalarRed) {
1008a2c9d4bbSAart Bik     codegen.redVal = merger.exp(codegen.redExp).val =
1009a2c9d4bbSAart Bik         forOp.getRegionIterArgs().front();
1010a2c9d4bbSAart Bik   }
1011a2c9d4bbSAart Bik   // Assign induction variable to sparse or dense index.
1012a2c9d4bbSAart Bik   Value iv = forOp.getInductionVar();
1013a2c9d4bbSAart Bik   if (isSparse)
1014a2c9d4bbSAart Bik     codegen.pidxs[tensor][idx] = iv;
1015a2c9d4bbSAart Bik   else
1016a2c9d4bbSAart Bik     codegen.loops[idx] = iv;
1017a2c9d4bbSAart Bik   rewriter.setInsertionPointToStart(forOp.getBody());
1018a2c9d4bbSAart Bik   // Share vector iteration mask between all subsequent loads/stores.
1019a2c9d4bbSAart Bik   if (isVector)
1020a2c9d4bbSAart Bik     codegen.curVecMask = genVectorMask(codegen, rewriter, iv, lo, hi, step);
1021a2c9d4bbSAart Bik   return forOp;
1022a2c9d4bbSAart Bik }
1023a2c9d4bbSAart Bik 
1024a2c9d4bbSAart Bik /// Emit a while-loop for co-iteration over multiple indices.
1025a2c9d4bbSAart Bik static Operation *genWhile(Merger &merger, CodeGen &codegen,
1026a2c9d4bbSAart Bik                            PatternRewriter &rewriter, linalg::GenericOp op,
1027a2c9d4bbSAart Bik                            unsigned idx, bool needsUniv,
1028a2c9d4bbSAart Bik                            llvm::BitVector &indices) {
1029a2c9d4bbSAart Bik   SmallVector<Type, 4> types;
1030a2c9d4bbSAart Bik   SmallVector<Value, 4> operands;
1031a2c9d4bbSAart Bik   // Construct the while-loop with a parameter for each index.
1032a2c9d4bbSAart Bik   Type indexType = rewriter.getIndexType();
1033a2c9d4bbSAart Bik   for (unsigned b = 0, be = indices.size(); b < be; b++) {
1034a2c9d4bbSAart Bik     if (indices[b] && merger.isDim(b, Dim::kSparse)) {
1035a2c9d4bbSAart Bik       unsigned tensor = merger.tensor(b);
1036a2c9d4bbSAart Bik       assert(idx == merger.index(b));
1037a2c9d4bbSAart Bik       types.push_back(indexType);
1038a2c9d4bbSAart Bik       assert(codegen.pidxs[tensor][idx].getType().isa<IndexType>() &&
1039a2c9d4bbSAart Bik              "type mismatch for sparse index");
1040a2c9d4bbSAart Bik       operands.push_back(codegen.pidxs[tensor][idx]);
1041a2c9d4bbSAart Bik     }
1042a2c9d4bbSAart Bik   }
1043a2c9d4bbSAart Bik   if (needsUniv) {
1044a2c9d4bbSAart Bik     types.push_back(indexType);
1045a2c9d4bbSAart Bik     assert(codegen.loops[idx].getType().isa<IndexType>() &&
1046a2c9d4bbSAart Bik            "type mismatch for universal index");
1047a2c9d4bbSAart Bik     operands.push_back(codegen.loops[idx]);
1048a2c9d4bbSAart Bik   }
1049a2c9d4bbSAart Bik   Location loc = op.getLoc();
1050a2c9d4bbSAart Bik   scf::WhileOp whileOp = rewriter.create<scf::WhileOp>(loc, types, operands);
1051a2c9d4bbSAart Bik   Block *before = rewriter.createBlock(&whileOp.before(), {}, types);
1052a2c9d4bbSAart Bik   Block *after = rewriter.createBlock(&whileOp.after(), {}, types);
1053a2c9d4bbSAart Bik 
1054a2c9d4bbSAart Bik   // Build the "before" region, which effectively consists
1055a2c9d4bbSAart Bik   // of a conjunction of "i < upper" tests on all induction.
1056a2c9d4bbSAart Bik   rewriter.setInsertionPointToStart(&whileOp.before().front());
1057a2c9d4bbSAart Bik   Value cond;
1058a2c9d4bbSAart Bik   unsigned o = 0;
1059a2c9d4bbSAart Bik   for (unsigned b = 0, be = indices.size(); b < be; b++) {
1060a2c9d4bbSAart Bik     if (indices[b] && merger.isDim(b, Dim::kSparse)) {
1061a2c9d4bbSAart Bik       unsigned tensor = merger.tensor(b);
1062a2c9d4bbSAart Bik       assert(idx == merger.index(b));
1063a2c9d4bbSAart Bik       Value op1 = before->getArgument(o);
1064a2c9d4bbSAart Bik       Value op2 = codegen.highs[tensor][idx];
1065*a54f4eaeSMogball       Value opc = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult,
1066*a54f4eaeSMogball                                                  op1, op2);
1067*a54f4eaeSMogball       cond = cond ? rewriter.create<arith::AndIOp>(loc, cond, opc) : opc;
1068a2c9d4bbSAart Bik       codegen.pidxs[tensor][idx] = after->getArgument(o++);
1069a2c9d4bbSAart Bik     }
1070a2c9d4bbSAart Bik   }
1071a2c9d4bbSAart Bik   if (needsUniv)
1072a2c9d4bbSAart Bik     codegen.loops[idx] = after->getArgument(o++);
1073a2c9d4bbSAart Bik   assert(o == operands.size());
1074a2c9d4bbSAart Bik   rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments());
1075a2c9d4bbSAart Bik   rewriter.setInsertionPointToStart(&whileOp.after().front());
1076a2c9d4bbSAart Bik   return whileOp;
1077a2c9d4bbSAart Bik }
1078a2c9d4bbSAart Bik 
1079a2c9d4bbSAart Bik /// Generates a for-loop or a while-loop, depending on whether it implements
1080a2c9d4bbSAart Bik /// singleton iteration or co-iteration over the given conjunction.
1081a2c9d4bbSAart Bik static Operation *genLoop(Merger &merger, CodeGen &codegen,
1082a2c9d4bbSAart Bik                           PatternRewriter &rewriter, linalg::GenericOp op,
1083a2c9d4bbSAart Bik                           std::vector<unsigned> &topSort, unsigned at,
1084a2c9d4bbSAart Bik                           bool needsUniv, llvm::BitVector &indices) {
1085a2c9d4bbSAart Bik   unsigned idx = topSort[at];
1086a2c9d4bbSAart Bik   if (indices.count() == 1) {
1087a2c9d4bbSAart Bik     bool isOuter = at == 0;
1088a2c9d4bbSAart Bik     bool isInner = at == topSort.size() - 1;
1089a2c9d4bbSAart Bik     return genFor(merger, codegen, rewriter, op, isOuter, isInner, idx,
1090a2c9d4bbSAart Bik                   indices);
1091a2c9d4bbSAart Bik   }
1092a2c9d4bbSAart Bik   genReductionEnd(merger, codegen, rewriter, op); // cannot chain
1093a2c9d4bbSAart Bik   return genWhile(merger, codegen, rewriter, op, idx, needsUniv, indices);
1094a2c9d4bbSAart Bik }
1095a2c9d4bbSAart Bik 
1096a2c9d4bbSAart Bik /// Generates the local variables for this loop, consisting of the sparse
1097a2c9d4bbSAart Bik /// indices, restored universal dense index, and dense positions.
1098a2c9d4bbSAart Bik static void genLocals(Merger &merger, CodeGen &codegen,
1099a2c9d4bbSAart Bik                       PatternRewriter &rewriter, linalg::GenericOp op,
1100a2c9d4bbSAart Bik                       std::vector<unsigned> &topSort, unsigned at,
1101a2c9d4bbSAart Bik                       bool needsUniv, llvm::BitVector &locals) {
1102a2c9d4bbSAart Bik   Location loc = op.getLoc();
1103a2c9d4bbSAart Bik   unsigned idx = topSort[at];
1104a2c9d4bbSAart Bik 
1105a2c9d4bbSAart Bik   // Initialize sparse indices.
1106a2c9d4bbSAart Bik   Value min;
1107a2c9d4bbSAart Bik   for (unsigned b = 0, be = locals.size(); b < be; b++) {
1108a2c9d4bbSAart Bik     if (locals[b] && merger.isDim(b, Dim::kSparse)) {
1109a2c9d4bbSAart Bik       unsigned tensor = merger.tensor(b);
1110a2c9d4bbSAart Bik       assert(idx == merger.index(b));
1111a2c9d4bbSAart Bik       Value ptr = codegen.indices[tensor][idx];
1112a2c9d4bbSAart Bik       Value s = codegen.pidxs[tensor][idx];
1113a2c9d4bbSAart Bik       Value load = genLoad(codegen, rewriter, loc, ptr, s);
1114a2c9d4bbSAart Bik       codegen.idxs[tensor][idx] = load;
1115a2c9d4bbSAart Bik       if (!needsUniv) {
1116a2c9d4bbSAart Bik         if (min) {
1117*a54f4eaeSMogball           Value cmp = rewriter.create<arith::CmpIOp>(
1118*a54f4eaeSMogball               loc, arith::CmpIPredicate::ult, load, min);
1119a2c9d4bbSAart Bik           min = rewriter.create<SelectOp>(loc, cmp, load, min);
1120a2c9d4bbSAart Bik         } else {
1121a2c9d4bbSAart Bik           min = load;
1122a2c9d4bbSAart Bik         }
1123a2c9d4bbSAart Bik       }
1124a2c9d4bbSAart Bik     }
1125a2c9d4bbSAart Bik   }
1126a2c9d4bbSAart Bik 
1127a2c9d4bbSAart Bik   // Merge dense universal index over minimum.
1128a2c9d4bbSAart Bik   if (min) {
1129a2c9d4bbSAart Bik     assert(!needsUniv);
1130a2c9d4bbSAart Bik     codegen.loops[idx] = min;
1131a2c9d4bbSAart Bik   }
1132a2c9d4bbSAart Bik 
1133727a63e0SAart Bik   // Initialize dense positions. Note that we generate dense indices of the
1134727a63e0SAart Bik   // output tensor unconditionally, since they may not appear in the lattice,
1135727a63e0SAart Bik   // but may be needed for linearized codegen.
1136a2c9d4bbSAart Bik   for (unsigned b = 0, be = locals.size(); b < be; b++) {
1137727a63e0SAart Bik     if ((locals[b] || merger.isOutTensor(b, idx)) &&
1138727a63e0SAart Bik         merger.isDim(b, Dim::kDense)) {
1139a2c9d4bbSAart Bik       unsigned tensor = merger.tensor(b);
1140a2c9d4bbSAart Bik       assert(idx == merger.index(b));
1141a2c9d4bbSAart Bik       unsigned pat = at;
1142a2c9d4bbSAart Bik       for (; pat != 0; pat--)
1143a2c9d4bbSAart Bik         if (codegen.pidxs[tensor][topSort[pat - 1]])
1144a2c9d4bbSAart Bik           break;
1145*a54f4eaeSMogball       Value p = (pat == 0) ? rewriter.create<arith::ConstantIndexOp>(loc, 0)
1146a2c9d4bbSAart Bik                            : codegen.pidxs[tensor][topSort[pat - 1]];
1147a2c9d4bbSAart Bik       codegen.pidxs[tensor][idx] = genAddress(
1148a2c9d4bbSAart Bik           codegen, rewriter, loc, codegen.sizes[idx], p, codegen.loops[idx]);
1149a2c9d4bbSAart Bik     }
1150a2c9d4bbSAart Bik   }
1151a2c9d4bbSAart Bik }
1152a2c9d4bbSAart Bik 
1153a2c9d4bbSAart Bik /// Generates the induction structure for a while-loop.
1154a2c9d4bbSAart Bik static void genWhileInduction(Merger &merger, CodeGen &codegen,
1155a2c9d4bbSAart Bik                               PatternRewriter &rewriter, linalg::GenericOp op,
1156a2c9d4bbSAart Bik                               unsigned idx, bool needsUniv,
1157a2c9d4bbSAart Bik                               llvm::BitVector &induction, ResultRange results) {
1158a2c9d4bbSAart Bik   Location loc = op.getLoc();
1159a2c9d4bbSAart Bik   unsigned o = 0;
1160a2c9d4bbSAart Bik   SmallVector<Value, 4> operands;
1161*a54f4eaeSMogball   Value one = rewriter.create<arith::ConstantIndexOp>(loc, 1);
1162a2c9d4bbSAart Bik   for (unsigned b = 0, be = induction.size(); b < be; b++) {
1163a2c9d4bbSAart Bik     if (induction[b] && merger.isDim(b, Dim::kSparse)) {
1164a2c9d4bbSAart Bik       unsigned tensor = merger.tensor(b);
1165a2c9d4bbSAart Bik       assert(idx == merger.index(b));
1166a2c9d4bbSAart Bik       Value op1 = codegen.idxs[tensor][idx];
1167a2c9d4bbSAart Bik       Value op2 = codegen.loops[idx];
1168a2c9d4bbSAart Bik       Value op3 = codegen.pidxs[tensor][idx];
1169*a54f4eaeSMogball       Value cmp = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
1170*a54f4eaeSMogball                                                  op1, op2);
1171*a54f4eaeSMogball       Value add = rewriter.create<arith::AddIOp>(loc, op3, one);
1172a2c9d4bbSAart Bik       operands.push_back(rewriter.create<SelectOp>(loc, cmp, add, op3));
1173a2c9d4bbSAart Bik       codegen.pidxs[tensor][idx] = results[o++];
1174a2c9d4bbSAart Bik     }
1175a2c9d4bbSAart Bik   }
1176a2c9d4bbSAart Bik   if (needsUniv) {
1177*a54f4eaeSMogball     operands.push_back(
1178*a54f4eaeSMogball         rewriter.create<arith::AddIOp>(loc, codegen.loops[idx], one));
1179a2c9d4bbSAart Bik     codegen.loops[idx] = results[o++];
1180a2c9d4bbSAart Bik   }
1181a2c9d4bbSAart Bik   assert(o == operands.size());
1182a2c9d4bbSAart Bik   rewriter.create<scf::YieldOp>(loc, operands);
1183a2c9d4bbSAart Bik }
1184a2c9d4bbSAart Bik 
1185a2c9d4bbSAart Bik /// Generates a single if-statement within a while-loop.
1186a2c9d4bbSAart Bik static scf::IfOp genIf(Merger &merger, CodeGen &codegen,
1187a2c9d4bbSAart Bik                        PatternRewriter &rewriter, linalg::GenericOp op,
1188a2c9d4bbSAart Bik                        unsigned idx, llvm::BitVector &conditions) {
1189a2c9d4bbSAart Bik   Location loc = op.getLoc();
1190a2c9d4bbSAart Bik   Value cond;
1191a2c9d4bbSAart Bik   for (unsigned b = 0, be = conditions.size(); b < be; b++) {
1192a2c9d4bbSAart Bik     if (conditions[b]) {
1193a2c9d4bbSAart Bik       unsigned tensor = merger.tensor(b);
1194a2c9d4bbSAart Bik       assert(idx == merger.index(b));
1195a2c9d4bbSAart Bik       Value clause;
1196a2c9d4bbSAart Bik       if (merger.isDim(b, Dim::kSparse)) {
1197a2c9d4bbSAart Bik         Value op1 = codegen.idxs[tensor][idx];
1198a2c9d4bbSAart Bik         Value op2 = codegen.loops[idx];
1199*a54f4eaeSMogball         clause = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
1200*a54f4eaeSMogball                                                 op1, op2);
1201a2c9d4bbSAart Bik       } else {
1202*a54f4eaeSMogball         clause = rewriter.create<arith::ConstantIntOp>(loc, 1, 1); // true
1203a2c9d4bbSAart Bik       }
1204*a54f4eaeSMogball       cond = cond ? rewriter.create<arith::AndIOp>(loc, cond, clause) : clause;
1205a2c9d4bbSAart Bik     }
1206a2c9d4bbSAart Bik   }
1207a2c9d4bbSAart Bik   scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, cond, /*else*/ true);
1208a2c9d4bbSAart Bik   rewriter.setInsertionPointToStart(&ifOp.thenRegion().front());
1209a2c9d4bbSAart Bik   return ifOp;
1210a2c9d4bbSAart Bik }
1211a2c9d4bbSAart Bik 
1212a2c9d4bbSAart Bik /// Recursively generates code while computing iteration lattices in order
1213a2c9d4bbSAart Bik /// to manage the complexity of implementing co-iteration over unions
1214a2c9d4bbSAart Bik /// and intersections of sparse iterations spaces.
1215a2c9d4bbSAart Bik static void genStmt(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
1216a2c9d4bbSAart Bik                     linalg::GenericOp op, std::vector<unsigned> &topSort,
1217a2c9d4bbSAart Bik                     unsigned exp, unsigned at) {
1218a2c9d4bbSAart Bik   // At each leaf, assign remaining tensor (sub)expression to output tensor.
1219a2c9d4bbSAart Bik   if (at == topSort.size()) {
1220a2c9d4bbSAart Bik     Value rhs = genExp(merger, codegen, rewriter, op, exp);
1221b1d44e59SAart Bik     genTensorStore(merger, codegen, rewriter, op, rhs);
1222a2c9d4bbSAart Bik     return;
1223a2c9d4bbSAart Bik   }
1224a2c9d4bbSAart Bik   assert(codegen.curVecLength == 1);
1225a2c9d4bbSAart Bik 
1226a2c9d4bbSAart Bik   // Construct iteration lattices for current loop index, with L0 at top.
1227a2c9d4bbSAart Bik   // Then emit initialization code for the loop sequence at this level.
1228a2c9d4bbSAart Bik   // We maintain the universal dense index if dense indices are still
1229a2c9d4bbSAart Bik   // in play for a non-singleton loop sequence.
1230a2c9d4bbSAart Bik   Location loc = op.getLoc();
1231a2c9d4bbSAart Bik   unsigned idx = topSort[at];
1232043ce4e6SGus Smith   unsigned lts = merger.optimizeSet(merger.buildLattices(exp, idx));
1233a2c9d4bbSAart Bik   unsigned lsize = merger.set(lts).size();
1234a2c9d4bbSAart Bik   assert(lsize != 0);
1235a2c9d4bbSAart Bik   unsigned l0 = merger.set(lts)[0];
1236a2c9d4bbSAart Bik   unsigned ldx = at == 0 ? -1u : topSort[at - 1];
1237a2c9d4bbSAart Bik   genInvariants(merger, codegen, rewriter, op, exp, ldx, /*hoist=*/true);
1238a2c9d4bbSAart Bik   bool needsUniv = false;
1239a2c9d4bbSAart Bik   if (genInit(merger, codegen, rewriter, op, topSort, at,
1240a2c9d4bbSAart Bik               merger.lat(l0).bits)) {
1241a2c9d4bbSAart Bik     // Maintain the universal index only if it is actually
1242a2c9d4bbSAart Bik     // consumed by a subsequent lattice point.
1243a2c9d4bbSAart Bik     for (unsigned i = 1; i < lsize; i++) {
1244a2c9d4bbSAart Bik       unsigned li = merger.set(lts)[i];
1245a2c9d4bbSAart Bik       if (!merger.hasAnyDimOf(merger.lat(li).simple, Dim::kSparse)) {
1246a2c9d4bbSAart Bik         needsUniv = true;
1247a2c9d4bbSAart Bik         break;
1248a2c9d4bbSAart Bik       }
1249a2c9d4bbSAart Bik     }
1250a2c9d4bbSAart Bik   }
1251a2c9d4bbSAart Bik 
1252a2c9d4bbSAart Bik   // Emit a loop for every lattice point L0 >= Li.
1253a2c9d4bbSAart Bik   for (unsigned i = 0; i < lsize; i++) {
1254a2c9d4bbSAart Bik     unsigned li = merger.set(lts)[i];
1255a2c9d4bbSAart Bik 
1256a2c9d4bbSAart Bik     // Emit loop.
1257a2c9d4bbSAart Bik     codegen.curVecLength = 1;
1258a2c9d4bbSAart Bik     llvm::BitVector indices = merger.lat(li).simple;
1259a2c9d4bbSAart Bik     Operation *loop =
1260a2c9d4bbSAart Bik         genLoop(merger, codegen, rewriter, op, topSort, at, needsUniv, indices);
1261a2c9d4bbSAart Bik     genLocals(merger, codegen, rewriter, op, topSort, at, needsUniv,
1262a2c9d4bbSAart Bik               merger.lat(li).bits);
1263a2c9d4bbSAart Bik 
1264a2c9d4bbSAart Bik     // Visit all lattices points with Li >= Lj to generate the
1265a2c9d4bbSAart Bik     // loop-body, possibly with if statements for coiteration.
1266a2c9d4bbSAart Bik     bool isWhile = dyn_cast<scf::WhileOp>(loop) != nullptr;
1267a2c9d4bbSAart Bik     for (unsigned j = 0; j < lsize; j++) {
1268a2c9d4bbSAart Bik       unsigned lj = merger.set(lts)[j];
1269a2c9d4bbSAart Bik       unsigned ej = merger.lat(lj).exp;
1270a2c9d4bbSAart Bik       if (li == lj || merger.latGT(li, lj)) {
1271a2c9d4bbSAart Bik         // Recurse into body of each branch.
1272a2c9d4bbSAart Bik         if (isWhile) {
1273a2c9d4bbSAart Bik           scf::IfOp ifOp =
1274a2c9d4bbSAart Bik               genIf(merger, codegen, rewriter, op, idx, merger.lat(lj).simple);
1275a2c9d4bbSAart Bik           genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1);
1276a2c9d4bbSAart Bik           rewriter.setInsertionPointToStart(&ifOp.elseRegion().front());
1277a2c9d4bbSAart Bik         } else {
1278a2c9d4bbSAart Bik           genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1);
1279a2c9d4bbSAart Bik         }
1280a2c9d4bbSAart Bik       }
1281a2c9d4bbSAart Bik     }
1282a2c9d4bbSAart Bik 
1283a2c9d4bbSAart Bik     // Wrap-up induction and restore insertion point.
1284a2c9d4bbSAart Bik     if (isWhile) {
1285a2c9d4bbSAart Bik       scf::WhileOp whileOp = cast<scf::WhileOp>(loop);
1286a2c9d4bbSAart Bik       rewriter.setInsertionPointToEnd(&whileOp.after().front());
1287a2c9d4bbSAart Bik       genWhileInduction(merger, codegen, rewriter, op, idx, needsUniv,
1288a2c9d4bbSAart Bik                         merger.lat(li).bits, whileOp.results());
1289a2c9d4bbSAart Bik     } else {
1290a2c9d4bbSAart Bik       needsUniv = false;
1291a2c9d4bbSAart Bik       if (codegen.redVal) {
1292a2c9d4bbSAart Bik         rewriter.create<scf::YieldOp>(loc, codegen.redVal);
1293a2c9d4bbSAart Bik         codegen.redVal = loop->getResult(0);
1294a2c9d4bbSAart Bik       }
1295a2c9d4bbSAart Bik     }
1296a2c9d4bbSAart Bik     rewriter.setInsertionPointAfter(loop);
1297a2c9d4bbSAart Bik   }
1298a2c9d4bbSAart Bik 
1299a2c9d4bbSAart Bik   // Wrap-up loop sequence.
1300a2c9d4bbSAart Bik   codegen.curVecLength = 1;
1301a2c9d4bbSAart Bik   genReductionEnd(merger, codegen, rewriter, op);
1302a2c9d4bbSAart Bik   genInvariants(merger, codegen, rewriter, op, exp, ldx, /*hoist=*/false);
1303a2c9d4bbSAart Bik   codegen.loops[idx] = Value();
1304a2c9d4bbSAart Bik }
1305a2c9d4bbSAart Bik 
1306727a63e0SAart Bik /// Converts the result computed by the sparse kernel into the required form.
130736b66ab9SAart Bik static void genResult(Merger &merger, CodeGen &codegen,
130836b66ab9SAart Bik                       PatternRewriter &rewriter, linalg::GenericOp op) {
130936b66ab9SAart Bik   Location loc = op.getLoc();
131036b66ab9SAart Bik   OpOperand *lhs = op.getOutputOperand(0);
131136b66ab9SAart Bik   Type resType = lhs->get().getType();
131236b66ab9SAart Bik   unsigned tensor = lhs->getOperandNumber();
131336b66ab9SAart Bik   auto map = op.getTiedIndexingMap(lhs);
131436b66ab9SAart Bik   auto enc = getSparseTensorEncoding(resType);
131536b66ab9SAart Bik   Value result = codegen.buffers.back(); // value array
131636b66ab9SAart Bik   if (enc) {
131736b66ab9SAart Bik     // The sparse annotation unambigiously defines the arrays needed
131836b66ab9SAart Bik     // to "reconstruct" the sparse tensor from the storage scheme
131936b66ab9SAart Bik     // (even though lowering should never need this eventually).
132036b66ab9SAart Bik     SmallVector<Value, 4> args;
132136b66ab9SAart Bik     for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
1322b1d44e59SAart Bik       AffineExpr a = map.getResult(perm(enc, d));
1323b1d44e59SAart Bik       if (a.getKind() != AffineExprKind::DimId)
1324b1d44e59SAart Bik         continue; // compound
1325b1d44e59SAart Bik       unsigned idx = a.cast<AffineDimExpr>().getPosition();
132636b66ab9SAart Bik       if (merger.isDim(tensor, idx, Dim::kSparse)) {
132736b66ab9SAart Bik         args.push_back(codegen.pointers[tensor][idx]);
132836b66ab9SAart Bik         args.push_back(codegen.indices[tensor][idx]);
132936b66ab9SAart Bik       }
133036b66ab9SAart Bik     }
133136b66ab9SAart Bik     args.push_back(result);
133236b66ab9SAart Bik     result = rewriter.create<ToTensorOp>(loc, resType, args);
133336b66ab9SAart Bik   } else {
133436b66ab9SAart Bik     // To "reconstruct" an non-annotated tensor, sipmly load it
133536b66ab9SAart Bik     // from the bufferized value.
133636b66ab9SAart Bik     result = rewriter.create<memref::TensorLoadOp>(loc, resType, result);
133736b66ab9SAart Bik   }
1338727a63e0SAart Bik   rewriter.replaceOp(op, result);
1339727a63e0SAart Bik }
1340727a63e0SAart Bik 
13415da21338SAart Bik //===----------------------------------------------------------------------===//
13425da21338SAart Bik // Sparse compiler rewriting methods.
13435da21338SAart Bik //===----------------------------------------------------------------------===//
13445da21338SAart Bik 
1345a2c9d4bbSAart Bik namespace {
1346a2c9d4bbSAart Bik 
1347a2c9d4bbSAart Bik /// Sparse rewriting rule for generic Lingalg operation.
1348a2c9d4bbSAart Bik struct GenericOpSparsifier : public OpRewritePattern<linalg::GenericOp> {
1349a2c9d4bbSAart Bik public:
1350a2c9d4bbSAart Bik   GenericOpSparsifier(MLIRContext *context, SparsificationOptions o)
1351a2c9d4bbSAart Bik       : OpRewritePattern<linalg::GenericOp>(context), options(o) {}
1352a2c9d4bbSAart Bik 
1353a2c9d4bbSAart Bik   LogicalResult matchAndRewrite(linalg::GenericOp op,
1354a2c9d4bbSAart Bik                                 PatternRewriter &rewriter) const override {
1355a2c9d4bbSAart Bik     // Detects sparse annotations and translate the per-dimension sparsity
1356a2c9d4bbSAart Bik     // information for all tensors to loop indices in the kernel.
1357a2c9d4bbSAart Bik     assert(op.getNumOutputs() == 1);
13582f2b5b7dSTobias Gysi     unsigned numTensors = op.getNumInputsAndOutputs();
1359a2c9d4bbSAart Bik     unsigned numLoops = op.iterator_types().getValue().size();
1360a2c9d4bbSAart Bik     Merger merger(numTensors, numLoops);
1361bf9ef3efSAart Bik     if (!findSparseAnnotations(merger, op))
1362bf9ef3efSAart Bik       return failure();
1363a2c9d4bbSAart Bik 
1364a2c9d4bbSAart Bik     // Computes a topologically sorted iteration graph to ensure
1365a2c9d4bbSAart Bik     // tensors are visited in natural index order. Fails on cycles.
1366a2c9d4bbSAart Bik     // This assumes that higher-level passes have already put the
1367a2c9d4bbSAart Bik     // tensors in each tensor expression in a feasible order.
1368a2c9d4bbSAart Bik     std::vector<unsigned> topSort;
1369b6d1a31cSAart Bik     if (!computeIterationGraph(merger, op, topSort,
1370b6d1a31cSAart Bik                                SortMask::kIncludeUndef |
1371b6d1a31cSAart Bik                                    SortMask::kIncludeDense) &&
1372b6d1a31cSAart Bik         !computeIterationGraph(merger, op, topSort, SortMask::kIncludeUndef) &&
1373b6d1a31cSAart Bik         !computeIterationGraph(merger, op, topSort, SortMask::kIncludeDense) &&
1374b6d1a31cSAart Bik         !computeIterationGraph(merger, op, topSort, SortMask::kSparseOnly))
1375a2c9d4bbSAart Bik       return failure();
1376a2c9d4bbSAart Bik 
1377266a7414SAart Bik     // Builds the tensor expression for the Linalg operation in SSA form.
1378266a7414SAart Bik     Optional<unsigned> exp = merger.buildTensorExpFromLinalg(op);
1379a2c9d4bbSAart Bik     if (!exp.hasValue())
1380266a7414SAart Bik       return failure();
1381a2c9d4bbSAart Bik 
1382266a7414SAart Bik     // Rejects an inadmissable tensor expression.
138336b66ab9SAart Bik     if (!isAdmissableTensorExp(merger, op, exp.getValue()))
138436b66ab9SAart Bik       return failure();
138536b66ab9SAart Bik 
1386a2c9d4bbSAart Bik     // Recursively generates code.
1387a2c9d4bbSAart Bik     CodeGen codegen(options, numTensors, numLoops);
1388727a63e0SAart Bik     if (!genBuffers(merger, codegen, rewriter, op))
1389727a63e0SAart Bik       return failure(); // could not bufferize
1390a2c9d4bbSAart Bik     genStmt(merger, codegen, rewriter, op, topSort, exp.getValue(), 0);
139136b66ab9SAart Bik     genResult(merger, codegen, rewriter, op);
1392a2c9d4bbSAart Bik     return success();
1393a2c9d4bbSAart Bik   }
1394a2c9d4bbSAart Bik 
1395a2c9d4bbSAart Bik private:
1396a2c9d4bbSAart Bik   /// Options to control sparse code generation.
1397a2c9d4bbSAart Bik   SparsificationOptions options;
1398a2c9d4bbSAart Bik };
1399a2c9d4bbSAart Bik 
1400a2c9d4bbSAart Bik } // namespace
1401a2c9d4bbSAart Bik 
1402a2c9d4bbSAart Bik /// Populates the given patterns list with rewriting rules required for
1403a2c9d4bbSAart Bik /// the sparsification of linear algebra operations.
1404a2c9d4bbSAart Bik void mlir::populateSparsificationPatterns(
1405a2c9d4bbSAart Bik     RewritePatternSet &patterns, const SparsificationOptions &options) {
1406a2c9d4bbSAart Bik   patterns.add<GenericOpSparsifier>(patterns.getContext(), options);
1407a2c9d4bbSAart Bik }
1408