196a23911SAart Bik //===- Sparsification.cpp - Implementation of sparsification --------------===//
2a2c9d4bbSAart Bik //
3a2c9d4bbSAart Bik // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4a2c9d4bbSAart Bik // See https://llvm.org/LICENSE.txt for license information.
5a2c9d4bbSAart Bik // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6a2c9d4bbSAart Bik //
7a2c9d4bbSAart Bik //===----------------------------------------------------------------------===//
8a2c9d4bbSAart Bik //
9160399c7SAart Bik // This file implements converting sparse tensor types to actual sparse code.
10a2c9d4bbSAart Bik //
11a2c9d4bbSAart Bik //===----------------------------------------------------------------------===//
12a2c9d4bbSAart Bik 
1376a18618SMatthias Springer #include "mlir/Dialect/Affine/IR/AffineOps.h"
14a54f4eaeSMogball #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
1557470abcSAlexander Belyaev #include "mlir/Dialect/Bufferization/IR/Bufferization.h"
164397a1baSMatthias Springer #include "mlir/Dialect/Linalg/ComprehensiveBufferize/BufferizableOpInterface.h"
17a2c9d4bbSAart Bik #include "mlir/Dialect/Linalg/IR/LinalgOps.h"
18a2c9d4bbSAart Bik #include "mlir/Dialect/Linalg/Utils/Utils.h"
1966f878ceSMatthias Springer #include "mlir/Dialect/MemRef/IR/MemRef.h"
20a2c9d4bbSAart Bik #include "mlir/Dialect/SCF/SCF.h"
2176a18618SMatthias Springer #include "mlir/Dialect/SCF/Transforms.h"
22a2c9d4bbSAart Bik #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
23a2c9d4bbSAart Bik #include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
24744146f6SGus Smith #include "mlir/Dialect/SparseTensor/Utils/Merger.h"
25a2c9d4bbSAart Bik #include "mlir/Dialect/StandardOps/IR/Ops.h"
26a2c9d4bbSAart Bik #include "mlir/Dialect/Vector/VectorOps.h"
27a2c9d4bbSAart Bik #include "mlir/IR/Matchers.h"
2896a23911SAart Bik #include "mlir/IR/TensorEncoding.h"
29a2c9d4bbSAart Bik #include "llvm/ADT/SmallBitVector.h"
30a2c9d4bbSAart Bik 
31a2c9d4bbSAart Bik using namespace mlir;
3296a23911SAart Bik using namespace mlir::sparse_tensor;
33a2c9d4bbSAart Bik 
345da21338SAart Bik //===----------------------------------------------------------------------===//
355da21338SAart Bik // Declarations of data structures.
365da21338SAart Bik //===----------------------------------------------------------------------===//
375da21338SAart Bik 
38a2c9d4bbSAart Bik namespace {
39a2c9d4bbSAart Bik 
40b6d1a31cSAart Bik // Iteration graph sorting.
41b6d1a31cSAart Bik enum SortMask { kSparseOnly = 0x0, kIncludeDense = 0x1, kIncludeUndef = 0x2 };
42b6d1a31cSAart Bik 
435da21338SAart Bik // Reduction kinds.
447373cabcSAart Bik enum Reduction { kNoReduc, kSum, kProduct, kAnd, kOr, kXor };
455da21338SAart Bik 
46a2c9d4bbSAart Bik // Code generation.
47a2c9d4bbSAart Bik struct CodeGen {
48f66e5769SAart Bik   CodeGen(SparsificationOptions o, unsigned numTensors, unsigned numLoops,
49*7d4da4e1SAart Bik           OpOperand *op, unsigned nest)
50a2c9d4bbSAart Bik       : options(o), loops(numLoops), sizes(numLoops), buffers(numTensors),
51a2c9d4bbSAart Bik         pointers(numTensors, std::vector<Value>(numLoops)),
52a2c9d4bbSAart Bik         indices(numTensors, std::vector<Value>(numLoops)),
53a2c9d4bbSAart Bik         highs(numTensors, std::vector<Value>(numLoops)),
54a2c9d4bbSAart Bik         pidxs(numTensors, std::vector<Value>(numLoops)),
55a2c9d4bbSAart Bik         idxs(numTensors, std::vector<Value>(numLoops)), redExp(-1u), redVal(),
56*7d4da4e1SAart Bik         redKind(kNoReduc), sparseOut(op), outerParNest(nest), lexIdx(),
57*7d4da4e1SAart Bik         curVecLength(1), curVecMask() {}
58a2c9d4bbSAart Bik   /// Sparsification options.
5996a23911SAart Bik   SparsificationOptions options;
60a2c9d4bbSAart Bik   /// Universal dense indices and upper bounds (by index). The loops array
61a2c9d4bbSAart Bik   /// is updated with the value of the universal dense index in the current
62a2c9d4bbSAart Bik   /// loop. The sizes array is set once with the inferred dimension sizes.
63a2c9d4bbSAart Bik   std::vector<Value> loops;
64a2c9d4bbSAart Bik   std::vector<Value> sizes;
65a2c9d4bbSAart Bik   /// Buffers for storing dense and sparse numerical values (by tensor).
66a2c9d4bbSAart Bik   /// This array is set once during bufferization of all tensors.
67a2c9d4bbSAart Bik   std::vector<Value> buffers;
68a2c9d4bbSAart Bik   /// Sparse storage schemes (1-D): pointers and indices (by tensor and index).
69a2c9d4bbSAart Bik   /// This array is set once during bufferization of all sparse tensors.
70a2c9d4bbSAart Bik   std::vector<std::vector<Value>> pointers;
71a2c9d4bbSAart Bik   std::vector<std::vector<Value>> indices;
72a2c9d4bbSAart Bik   /// Sparse iteration information (by tensor and index). These arrays
73a2c9d4bbSAart Bik   /// are updated to remain current within the current loop.
74a2c9d4bbSAart Bik   std::vector<std::vector<Value>> highs;
75a2c9d4bbSAart Bik   std::vector<std::vector<Value>> pidxs;
76a2c9d4bbSAart Bik   std::vector<std::vector<Value>> idxs;
77a2c9d4bbSAart Bik   /// Current reduction, updated during code generation. When indices of a
787373cabcSAart Bik   /// reduction are exhausted, all inner loops can use a scalarized reduction.
79a2c9d4bbSAart Bik   unsigned redExp;
80a2c9d4bbSAart Bik   Value redVal;
815da21338SAart Bik   Reduction redKind;
82*7d4da4e1SAart Bik   // Sparse tensor as output. Implemented either through direct injective
83*7d4da4e1SAart Bik   // insertion in lexicographic index order (where indices are updated
84*7d4da4e1SAart Bik   // in the temporary array `lexIdx`) or TODO: access pattern expansion
85f66e5769SAart Bik   OpOperand *sparseOut;
86*7d4da4e1SAart Bik   unsigned outerParNest;
87f66e5769SAart Bik   Value lexIdx;
88a2c9d4bbSAart Bik   // Current vector length and mask.
89a2c9d4bbSAart Bik   unsigned curVecLength;
90a2c9d4bbSAart Bik   Value curVecMask;
91a2c9d4bbSAart Bik };
92a2c9d4bbSAart Bik 
93a2c9d4bbSAart Bik } // namespace
94a2c9d4bbSAart Bik 
955da21338SAart Bik //===----------------------------------------------------------------------===//
965da21338SAart Bik // Sparse compiler analysis methods.
975da21338SAart Bik //===----------------------------------------------------------------------===//
985da21338SAart Bik 
995da21338SAart Bik /// Helper method to apply dimension ordering permutation.
1005da21338SAart Bik static unsigned perm(const SparseTensorEncodingAttr &enc, unsigned d) {
101c194b49cSAart Bik   if (enc) {
102c194b49cSAart Bik     auto order = enc.getDimOrdering();
103c194b49cSAart Bik     if (order) {
104c194b49cSAart Bik       assert(order.isPermutation());
105c194b49cSAart Bik       return order.getDimPosition(d);
106c194b49cSAart Bik     }
107c194b49cSAart Bik   }
108c194b49cSAart Bik   return d;
109c194b49cSAart Bik }
110c194b49cSAart Bik 
1115da21338SAart Bik /// Helper method to translate dim level type to internal representation.
1125da21338SAart Bik static Dim toDim(const SparseTensorEncodingAttr &enc, unsigned d) {
11396a23911SAart Bik   if (enc) {
11496a23911SAart Bik     SparseTensorEncodingAttr::DimLevelType tp = enc.getDimLevelType()[d];
11596a23911SAart Bik     if (tp == SparseTensorEncodingAttr::DimLevelType::Compressed)
11696a23911SAart Bik       return Dim::kSparse;
11796a23911SAart Bik     if (tp == SparseTensorEncodingAttr::DimLevelType::Singleton)
11896a23911SAart Bik       return Dim::kSingle;
11996a23911SAart Bik   }
12096a23911SAart Bik   return Dim::kDense;
12196a23911SAart Bik }
12296a23911SAart Bik 
123b1d44e59SAart Bik /// Helper method to inspect affine expressions. Rejects cases where the
124c8d5dcb0SAart Bik /// same index is used more than once. Also rejects affine expressions
125c8d5dcb0SAart Bik /// that are not a direct index for annotated tensors.
126c8d5dcb0SAart Bik // TODO: accept more affine cases for sparse tensors
127b1d44e59SAart Bik static bool findAffine(Merger &merger, unsigned tensor, AffineExpr a, Dim dim,
128b1d44e59SAart Bik                        bool isDense) {
129b1d44e59SAart Bik   switch (a.getKind()) {
130b1d44e59SAart Bik   case AffineExprKind::DimId: {
131b1d44e59SAart Bik     unsigned idx = a.cast<AffineDimExpr>().getPosition();
132b1d44e59SAart Bik     if (!merger.isDim(tensor, idx, Dim::kUndef))
133b1d44e59SAart Bik       return false; // used more than once
134b1d44e59SAart Bik     merger.setDim(tensor, idx, dim);
135b1d44e59SAart Bik     return true;
136b1d44e59SAart Bik   }
137b1d44e59SAart Bik   case AffineExprKind::Add:
138b1d44e59SAart Bik   case AffineExprKind::Mul: {
139b1d44e59SAart Bik     if (!isDense)
140b1d44e59SAart Bik       return false;
141b1d44e59SAart Bik     auto binOp = a.cast<AffineBinaryOpExpr>();
142b1d44e59SAart Bik     return findAffine(merger, tensor, binOp.getLHS(), dim, isDense) &&
143b1d44e59SAart Bik            findAffine(merger, tensor, binOp.getRHS(), dim, isDense);
144b1d44e59SAart Bik   }
145b1d44e59SAart Bik   case AffineExprKind::Constant:
146b1d44e59SAart Bik     return isDense;
147b1d44e59SAart Bik   default:
148b1d44e59SAart Bik     return false;
149b1d44e59SAart Bik   }
150b1d44e59SAart Bik }
151b1d44e59SAart Bik 
15296a23911SAart Bik /// Helper method to inspect sparse encodings in the tensor types.
153a2c9d4bbSAart Bik /// Fills the per-dimension sparsity information for all tensors.
154b1d44e59SAart Bik /// Returns true if the sparse annotations and affine subscript
155b1d44e59SAart Bik /// expressions of all tensors are admissable. Returns false if
156b1d44e59SAart Bik /// no annotations are found or inadmissable constructs occur.
157bf9ef3efSAart Bik static bool findSparseAnnotations(Merger &merger, linalg::GenericOp op) {
158bf9ef3efSAart Bik   bool annotated = false;
1592f2b5b7dSTobias Gysi   for (OpOperand *t : op.getInputAndOutputOperands()) {
1602f2b5b7dSTobias Gysi     auto map = op.getTiedIndexingMap(t);
1612f2b5b7dSTobias Gysi     auto enc = getSparseTensorEncoding(t->get().getType());
162727a63e0SAart Bik     if (enc)
163bf9ef3efSAart Bik       annotated = true;
1642f2b5b7dSTobias Gysi     assert(map.getNumResults() == op.getRank(t));
165c194b49cSAart Bik     for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
166b1d44e59SAart Bik       unsigned tensor = t->getOperandNumber();
167b1d44e59SAart Bik       AffineExpr a = map.getResult(perm(enc, d));
168b1d44e59SAart Bik       if (!findAffine(merger, tensor, a, toDim(enc, d), !enc))
169b1d44e59SAart Bik         return false; // inadmissable affine expression
170a2c9d4bbSAart Bik     }
171a2c9d4bbSAart Bik   }
172bf9ef3efSAart Bik   return annotated;
173a2c9d4bbSAart Bik }
174a2c9d4bbSAart Bik 
175a2c9d4bbSAart Bik /// A DFS helper to compute a topological sort. Note that recursion is
176a2c9d4bbSAart Bik /// bounded by the number of implicit loops, which is always small.
177a2c9d4bbSAart Bik /// Returns false when a cycle is detected.
178a2c9d4bbSAart Bik static bool topSortDFS(unsigned i, std::vector<unsigned> &visit,
179a2c9d4bbSAart Bik                        std::vector<unsigned> &topSort,
180a2c9d4bbSAart Bik                        std::vector<std::vector<bool>> &adjM) {
181a2c9d4bbSAart Bik   if (visit[i] != 0)
182a2c9d4bbSAart Bik     return visit[i] != 1; // 1 denotes cycle!
183a2c9d4bbSAart Bik   visit[i] = 1;
184a2c9d4bbSAart Bik   for (unsigned j = 0, e = visit.size(); j < e; j++)
185a2c9d4bbSAart Bik     if (adjM[i][j])
186a2c9d4bbSAart Bik       if (!topSortDFS(j, visit, topSort, adjM))
187a2c9d4bbSAart Bik         return false;
188a2c9d4bbSAart Bik   visit[i] = 2;
189a2c9d4bbSAart Bik   topSort.push_back(i);
190a2c9d4bbSAart Bik   return true;
191a2c9d4bbSAart Bik }
192a2c9d4bbSAart Bik 
193b1d44e59SAart Bik /// Helper method to add all constraints from the indices in one affine
194b1d44e59SAart Bik /// expression before all indices in the other affine expression. For
195b1d44e59SAart Bik /// example i0+i1 < i2+i3+1 yields i0<i2, i0<i3, i1<i2, and i1<i3.
196b1d44e59SAart Bik static void addAffineOrderings(std::vector<std::vector<bool>> &adjM,
197b1d44e59SAart Bik                                AffineExpr a, AffineExpr b, unsigned fidx) {
198b1d44e59SAart Bik   switch (a.getKind()) {
199b1d44e59SAart Bik   case AffineExprKind::DimId: {
200b1d44e59SAart Bik     unsigned idx = a.cast<AffineDimExpr>().getPosition();
201b1d44e59SAart Bik     if (b)
202b1d44e59SAart Bik       addAffineOrderings(adjM, b, AffineExpr(), idx);
203b1d44e59SAart Bik     else
204b1d44e59SAart Bik       adjM[fidx][idx] = true;
205b1d44e59SAart Bik     break;
206b1d44e59SAart Bik   }
207b1d44e59SAart Bik   case AffineExprKind::Add:
208b1d44e59SAart Bik   case AffineExprKind::Mul: {
209b1d44e59SAart Bik     auto binOp = a.cast<AffineBinaryOpExpr>();
210b1d44e59SAart Bik     addAffineOrderings(adjM, binOp.getLHS(), b, fidx);
211b1d44e59SAart Bik     addAffineOrderings(adjM, binOp.getRHS(), b, fidx);
212b1d44e59SAart Bik     break;
213b1d44e59SAart Bik   }
214b1d44e59SAart Bik   default:
215b1d44e59SAart Bik     break;
216b1d44e59SAart Bik   }
217b1d44e59SAart Bik }
218b1d44e59SAart Bik 
219a2c9d4bbSAart Bik /// Computes a topologically sorted iteration graph for the linalg operation.
220a2c9d4bbSAart Bik /// Ensures all tensors are visited in natural index order. This is essential
221a2c9d4bbSAart Bik /// for sparse storage formats since these only support access along fixed
222a2c9d4bbSAart Bik /// dimensions. Even for dense storage formats, however, the natural index
223a2c9d4bbSAart Bik /// order yields innermost unit-stride access with better spatial locality.
224a2c9d4bbSAart Bik static bool computeIterationGraph(Merger &merger, linalg::GenericOp op,
225a2c9d4bbSAart Bik                                   std::vector<unsigned> &topSort,
226b6d1a31cSAart Bik                                   unsigned mask) {
227a2c9d4bbSAart Bik   // Set up an n x n from/to adjacency matrix of the iteration graph
228a2c9d4bbSAart Bik   // for the implicit loop indices i_0 .. i_n-1.
229a2c9d4bbSAart Bik   unsigned n = op.getNumLoops();
230a2c9d4bbSAart Bik   std::vector<std::vector<bool>> adjM(n, std::vector<bool>(n, false));
231a2c9d4bbSAart Bik 
232a2c9d4bbSAart Bik   // Iterate over the indexing maps of every tensor in the tensor expression.
2332f2b5b7dSTobias Gysi   for (OpOperand *t : op.getInputAndOutputOperands()) {
2342f2b5b7dSTobias Gysi     auto map = op.getTiedIndexingMap(t);
2352f2b5b7dSTobias Gysi     auto enc = getSparseTensorEncoding(t->get().getType());
236a2c9d4bbSAart Bik     assert(map.getNumDims() == n);
237b6d1a31cSAart Bik     // Skip dense tensor constraints when not requested.
238b6d1a31cSAart Bik     if (!(mask & SortMask::kIncludeDense) && !enc)
239a2c9d4bbSAart Bik       continue;
240c194b49cSAart Bik     // Each tensor expression and optional dimension ordering (row-major
241c194b49cSAart Bik     // by default) puts an ordering constraint on the loop indices. For
242c194b49cSAart Bik     // example, the tensor expresion A_ijk forces the ordering i < j < k
243c194b49cSAart Bik     // on the loop indices if no explicit dimension ordering is given.
244c194b49cSAart Bik     for (unsigned d = 1, rank = map.getNumResults(); d < rank; d++) {
245b1d44e59SAart Bik       AffineExpr f = map.getResult(perm(enc, d - 1));
246b1d44e59SAart Bik       AffineExpr t = map.getResult(perm(enc, d));
247b1d44e59SAart Bik       addAffineOrderings(adjM, f, t, 0);
248a2c9d4bbSAart Bik     }
249b6d1a31cSAart Bik     // Push unrelated loops into sparse iteration space, so these
250b6d1a31cSAart Bik     // will be skipped more often.
251b6d1a31cSAart Bik     if (mask & SortMask::kIncludeUndef) {
252b6d1a31cSAart Bik       unsigned tensor = t->getOperandNumber();
253b6d1a31cSAart Bik       for (unsigned i = 0; i < n; i++)
254b6d1a31cSAart Bik         if (merger.isDim(tensor, i, Dim::kSparse))
255b6d1a31cSAart Bik           for (unsigned j = 0; j < n; j++)
256b6d1a31cSAart Bik             if (merger.isDim(tensor, j, Dim::kUndef))
257b6d1a31cSAart Bik               adjM[i][j] = true;
258b6d1a31cSAart Bik     }
259a2c9d4bbSAart Bik   }
260a2c9d4bbSAart Bik 
261a2c9d4bbSAart Bik   // Topologically sort the iteration graph to determine loop order.
262a2c9d4bbSAart Bik   // Report failure for a cyclic iteration graph.
263a2c9d4bbSAart Bik   topSort.clear();
264a2c9d4bbSAart Bik   topSort.reserve(n);
265a2c9d4bbSAart Bik   std::vector<unsigned> visit(n, 0);
266a2c9d4bbSAart Bik   for (unsigned i = 0; i < n; i++)
267a2c9d4bbSAart Bik     if (visit[i] == 0)
268a2c9d4bbSAart Bik       if (!topSortDFS(i, visit, topSort, adjM))
269a2c9d4bbSAart Bik         return false; // cycle!
270a2c9d4bbSAart Bik   std::reverse(std::begin(topSort), std::end(topSort));
271a2c9d4bbSAart Bik   return true;
272a2c9d4bbSAart Bik }
273a2c9d4bbSAart Bik 
274c8d5dcb0SAart Bik /// Returns true if tensor has an in-place annotation.
275c8d5dcb0SAart Bik static bool isInPlace(Value val) {
276c8d5dcb0SAart Bik   if (auto arg = val.dyn_cast<BlockArgument>())
277c8d5dcb0SAart Bik     if (auto funcOp = dyn_cast<FuncOp>(arg.getOwner()->getParentOp()))
278c8d5dcb0SAart Bik       if (auto attr = funcOp.getArgAttrOfType<BoolAttr>(
2794397a1baSMatthias Springer               arg.getArgNumber(),
2804397a1baSMatthias Springer               linalg::comprehensive_bufferize::BufferizableOpInterface::
2814397a1baSMatthias Springer                   kInplaceableAttrName))
282c8d5dcb0SAart Bik         return attr.getValue();
283c8d5dcb0SAart Bik   return false;
284c8d5dcb0SAart Bik }
285c8d5dcb0SAart Bik 
286f66e5769SAart Bik /// Returns true if tensor materializes uninitialized into the computation.
287c8d5dcb0SAart Bik static bool isMaterializing(Value val) {
288c8d5dcb0SAart Bik   return val.getDefiningOp<linalg::InitTensorOp>() ||
289c8d5dcb0SAart Bik          val.getDefiningOp<InitOp>();
290c8d5dcb0SAart Bik }
291c8d5dcb0SAart Bik 
29236b66ab9SAart Bik /// Returns true when the tensor expression is admissable for codegen.
29336b66ab9SAart Bik /// Since all sparse input tensors are admissable, we just need to check
294*7d4da4e1SAart Bik /// whether the out tensor in the tensor expression codegen is admissable.
295*7d4da4e1SAart Bik /// Sets `sparseOut` to the tensor and `outerParNest` to the outer injective
296*7d4da4e1SAart Bik /// nesting depth when a "truly dynamic" sparse tensor output occurs.
29736b66ab9SAart Bik static bool isAdmissableTensorExp(Merger &merger, linalg::GenericOp op,
298*7d4da4e1SAart Bik                                   std::vector<unsigned> &topSort, unsigned exp,
299*7d4da4e1SAart Bik                                   OpOperand **sparseOut,
300*7d4da4e1SAart Bik                                   unsigned &outerParNest) {
30136b66ab9SAart Bik   OpOperand *lhs = op.getOutputOperand(0);
30236b66ab9SAart Bik   unsigned tensor = lhs->getOperandNumber();
30336b66ab9SAart Bik   auto enc = getSparseTensorEncoding(lhs->get().getType());
30436b66ab9SAart Bik   // An non-annotated output tensor is assumed dense, and becomes a random
305b1d44e59SAart Bik   // access n-dim memref. Admissable since insertions cannot occur.
30636b66ab9SAart Bik   if (!enc)
30736b66ab9SAart Bik     return true;
30836b66ab9SAart Bik   // An all-dense annotated "sparse" output tensor becomes a linearized random
30936b66ab9SAart Bik   // access 1-dim memref. Also admissable since insertions cannot occur.
31036b66ab9SAart Bik   bool allDense = true;
311*7d4da4e1SAart Bik   auto iteratorTypes = op.iterator_types().getValue();
312*7d4da4e1SAart Bik   unsigned numLoops = iteratorTypes.size();
31336b66ab9SAart Bik   for (unsigned i = 0; i < numLoops; i++)
31436b66ab9SAart Bik     if (merger.isDim(tensor, i, Dim::kSparse)) {
31536b66ab9SAart Bik       allDense = false;
31636b66ab9SAart Bik       break;
31736b66ab9SAart Bik     }
31836b66ab9SAart Bik   if (allDense)
31936b66ab9SAart Bik     return true;
32036b66ab9SAart Bik   // A tensor expression with a sparse output tensor that changes its values
32136b66ab9SAart Bik   // but not its nonzero structure, an operation called "simply dynamic" in
322c8d5dcb0SAart Bik   // [Bik96,Ch9], is also admissable without special codegen, provided
323c8d5dcb0SAart Bik   // the tensor's underlying sparse storage scheme can be modified in place.
324f66e5769SAart Bik   if (merger.isConjunction(tensor, exp) && isInPlace(lhs->get()))
325f66e5769SAart Bik     return true;
326f66e5769SAart Bik   // Accept "truly dynamic" if the output tensor materializes uninitialized
327f66e5769SAart Bik   // into the computation and insertions occur in lexicographic index order.
328f66e5769SAart Bik   if (isMaterializing(lhs->get())) {
329*7d4da4e1SAart Bik     unsigned nest = 0;
330*7d4da4e1SAart Bik     for (unsigned i = 0; i < numLoops; i++) {
331*7d4da4e1SAart Bik       if (isReductionIterator(iteratorTypes[topSort[i]]))
332*7d4da4e1SAart Bik         break; // terminate at first reduction
333*7d4da4e1SAart Bik       nest++;
334*7d4da4e1SAart Bik     }
335*7d4da4e1SAart Bik     // Determine admissable dynamic insertion situations:
336*7d4da4e1SAart Bik     // (1) fully injective, since there are no reductions,
337*7d4da4e1SAart Bik     // (2) admissable 1-d expansion in innermost dimension. TODO: accept
338*7d4da4e1SAart Bik     if (nest == op.getRank(lhs)) {
339f66e5769SAart Bik       *sparseOut = lhs;
340*7d4da4e1SAart Bik       outerParNest = nest;
341f66e5769SAart Bik       return true;
342f66e5769SAart Bik     }
343*7d4da4e1SAart Bik   }
34436b66ab9SAart Bik   return false;
34536b66ab9SAart Bik }
34636b66ab9SAart Bik 
3475da21338SAart Bik //===----------------------------------------------------------------------===//
3487373cabcSAart Bik // Sparse compiler synthesis methods (reductions).
3495da21338SAart Bik //===----------------------------------------------------------------------===//
3505da21338SAart Bik 
3515da21338SAart Bik /// Maps reduction kind to name encoding.
3525da21338SAart Bik static StringRef getReductionName(Reduction kind) {
3535da21338SAart Bik   switch (kind) {
3547373cabcSAart Bik   case kNoReduc:
3557373cabcSAart Bik     break;
3565da21338SAart Bik   case kSum:
3575da21338SAart Bik     return "add";
3585da21338SAart Bik   case kProduct:
3595da21338SAart Bik     return "mul";
3605da21338SAart Bik   case kAnd:
3615da21338SAart Bik     return "and";
3625da21338SAart Bik   case kOr:
3635da21338SAart Bik     return "or";
3645da21338SAart Bik   case kXor:
3655da21338SAart Bik     return "xor";
3665da21338SAart Bik   }
3675da21338SAart Bik   llvm_unreachable("unknown reduction kind");
3685da21338SAart Bik }
3695da21338SAart Bik 
3705da21338SAart Bik /// Maps operation to reduction.
3715da21338SAart Bik static Reduction getReduction(Kind kind) {
3725da21338SAart Bik   switch (kind) {
3735da21338SAart Bik   case Kind::kAddF:
3745da21338SAart Bik   case Kind::kAddI:
3755da21338SAart Bik   case Kind::kSubF:
3765da21338SAart Bik   case Kind::kSubI:
3775da21338SAart Bik     return kSum;
3785da21338SAart Bik   case Kind::kMulF:
3795da21338SAart Bik   case Kind::kMulI:
3805da21338SAart Bik     return kProduct;
3815da21338SAart Bik   case Kind::kAndI:
3825da21338SAart Bik     return kAnd;
3835da21338SAart Bik   case Kind::kOrI:
3845da21338SAart Bik     return kOr;
3855da21338SAart Bik   case Kind::kXorI:
3865da21338SAart Bik     return kXor;
3875da21338SAart Bik   default:
3885da21338SAart Bik     llvm_unreachable("unexpected reduction operator");
3895da21338SAart Bik   }
3905da21338SAart Bik }
3915da21338SAart Bik 
3927373cabcSAart Bik /// Generates an initial value for a vector reduction, following the scheme
3935da21338SAart Bik /// given in Chapter 5 of "The Software Vectorization Handbook", where the
3945da21338SAart Bik /// initial scalar value is correctly embedded in the vector reduction value,
3955da21338SAart Bik /// and a straightforward horizontal reduction will complete the operation.
3967373cabcSAart Bik static Value genVectorReducInit(CodeGen &codegen, PatternRewriter &rewriter,
3977373cabcSAart Bik                                 Location loc, VectorType vtp) {
3987373cabcSAart Bik   Value r = codegen.redVal;
3997373cabcSAart Bik   switch (codegen.redKind) {
4007373cabcSAart Bik   case kNoReduc:
4017373cabcSAart Bik     break;
4025da21338SAart Bik   case kSum:
4035da21338SAart Bik   case kXor: {
4045da21338SAart Bik     // Initialize reduction vector to: | 0 | .. | 0 | r |
4055da21338SAart Bik     Attribute zero = rewriter.getZeroAttr(vtp);
406c8d5dcb0SAart Bik     Value vec = rewriter.create<arith::ConstantOp>(loc, vtp, zero);
4077c5ecc8bSMogball     return rewriter.create<vector::InsertElementOp>(
4087c5ecc8bSMogball         loc, r, vec, rewriter.create<arith::ConstantIndexOp>(loc, 0));
4095da21338SAart Bik   }
4105da21338SAart Bik   case kProduct: {
4115da21338SAart Bik     // Initialize reduction vector to: | 1 | .. | 1 | r |
4125da21338SAart Bik     Type etp = vtp.getElementType();
4135da21338SAart Bik     Attribute one;
4145da21338SAart Bik     if (etp.isa<FloatType>())
4155da21338SAart Bik       one = rewriter.getFloatAttr(etp, 1.0);
4165da21338SAart Bik     else
4175da21338SAart Bik       one = rewriter.getIntegerAttr(etp, 1);
418c8d5dcb0SAart Bik     Value vec = rewriter.create<arith::ConstantOp>(
419c8d5dcb0SAart Bik         loc, vtp, DenseElementsAttr::get(vtp, one));
4207c5ecc8bSMogball     return rewriter.create<vector::InsertElementOp>(
4217c5ecc8bSMogball         loc, r, vec, rewriter.create<arith::ConstantIndexOp>(loc, 0));
4225da21338SAart Bik   }
4235da21338SAart Bik   case kAnd:
4245da21338SAart Bik   case kOr:
4255da21338SAart Bik     // Initialize reduction vector to: | r | .. | r | r |
4265da21338SAart Bik     return rewriter.create<vector::BroadcastOp>(loc, vtp, r);
4275da21338SAart Bik   }
4285da21338SAart Bik   llvm_unreachable("unknown reduction kind");
4295da21338SAart Bik }
4305da21338SAart Bik 
4317373cabcSAart Bik /// Generates final value for a vector reduction.
4327373cabcSAart Bik static Value genVectorReducEnd(CodeGen &codegen, PatternRewriter &rewriter,
4337373cabcSAart Bik                                Location loc, VectorType vtp) {
4347373cabcSAart Bik   StringRef name = getReductionName(codegen.redKind);
4357373cabcSAart Bik   StringAttr kind = rewriter.getStringAttr(name);
4367373cabcSAart Bik   return rewriter.create<vector::ReductionOp>(loc, vtp.getElementType(), kind,
4377373cabcSAart Bik                                               codegen.redVal, ValueRange{});
4387373cabcSAart Bik }
4397373cabcSAart Bik 
4407373cabcSAart Bik /// Updates scalarized reduction value.
4417373cabcSAart Bik static void updateReduc(Merger &merger, CodeGen &codegen, Value reduc) {
4427373cabcSAart Bik   assert(codegen.redKind != kNoReduc);
4437373cabcSAart Bik   codegen.redVal = merger.exp(codegen.redExp).val = reduc;
4447373cabcSAart Bik }
4457373cabcSAart Bik 
4467373cabcSAart Bik //===----------------------------------------------------------------------===//
4477373cabcSAart Bik // Sparse compiler synthesis methods (statements and expressions).
4487373cabcSAart Bik //===----------------------------------------------------------------------===//
4497373cabcSAart Bik 
450a2c9d4bbSAart Bik /// Maps sparse integer option to actual integral storage type.
45196a23911SAart Bik static Type genIntType(PatternRewriter &rewriter, unsigned width) {
45296a23911SAart Bik   if (width == 0)
453a2c9d4bbSAart Bik     return rewriter.getIndexType();
45496a23911SAart Bik   return rewriter.getIntegerType(width);
455a2c9d4bbSAart Bik }
456a2c9d4bbSAart Bik 
457ec97a205SAart Bik /// Generates buffer for the output tensor. Note that all sparse kernels
458ec97a205SAart Bik /// assume that when all elements are written to (viz. x(i) = y(i) * z(i)),
459ec97a205SAart Bik /// the output buffer is already initialized to all zeroes and only nonzeroes
460ec97a205SAart Bik /// values are computed and written out. For updates (viz. x(i) += y(i) * z(i)),
461ec97a205SAart Bik /// only nonzeroes values are used for the updates and no assumption on the
462ec97a205SAart Bik /// original contents of the output buffer is necessary..
463a2c9d4bbSAart Bik static Value genOutputBuffer(CodeGen &codegen, PatternRewriter &rewriter,
464a2c9d4bbSAart Bik                              linalg::GenericOp op, MemRefType denseTp,
465a2c9d4bbSAart Bik                              ArrayRef<Value> args) {
466a2c9d4bbSAart Bik   Location loc = op.getLoc();
4672f2b5b7dSTobias Gysi   Value tensor = op.getOutputOperand(0)->get();
468a2c9d4bbSAart Bik   // The output tensor simply could materialize from the buffer that will
469a2c9d4bbSAart Bik   // be generated for the tensor present in the outs() clause. This has
470a2c9d4bbSAart Bik   // the major advantage that the sparse kernel only updates the nonzero
4715879da49SAart Bik   // positions for the output tensor.
472c8d5dcb0SAart Bik   if (isInPlace(tensor))
47357470abcSAlexander Belyaev     return rewriter.create<bufferization::ToMemrefOp>(loc, denseTp, tensor);
474a2c9d4bbSAart Bik   // By default, a new buffer is allocated which is initialized to the
475a2c9d4bbSAart Bik   // tensor defined in the outs() clause. This is always correct but
476a2c9d4bbSAart Bik   // introduces a dense initialization component that may negatively
477ec97a205SAart Bik   // impact the running complexity of the sparse kernel. If the tensor
478c8d5dcb0SAart Bik   // materializes into the computation, we need to preserve the zero
479ec97a205SAart Bik   // initialization assumption of all sparse output buffers.
480c8d5dcb0SAart Bik   if (isMaterializing(tensor)) {
481ec97a205SAart Bik     Type tp = denseTp.getElementType();
482ec97a205SAart Bik     Value alloc = rewriter.create<memref::AllocOp>(loc, denseTp, args);
483c8d5dcb0SAart Bik     Value zero =
484c8d5dcb0SAart Bik         rewriter.create<arith::ConstantOp>(loc, tp, rewriter.getZeroAttr(tp));
485ec97a205SAart Bik     rewriter.create<linalg::FillOp>(loc, zero, alloc);
486ec97a205SAart Bik     return alloc;
487ec97a205SAart Bik   }
48857470abcSAlexander Belyaev   Value init = rewriter.create<bufferization::ToMemrefOp>(loc, denseTp, tensor);
489a2c9d4bbSAart Bik   Value alloc = rewriter.create<memref::AllocOp>(loc, denseTp, args);
49068ac2e53SAart Bik   rewriter.create<memref::CopyOp>(loc, init, alloc);
491a2c9d4bbSAart Bik   return alloc;
492a2c9d4bbSAart Bik }
493a2c9d4bbSAart Bik 
494a2c9d4bbSAart Bik /// Local bufferization of all dense and sparse data structures.
495a2c9d4bbSAart Bik /// This code enables testing the first prototype sparse compiler.
496a2c9d4bbSAart Bik // TODO: replace this with a proliferated bufferization strategy
497c8d5dcb0SAart Bik static void genBuffers(Merger &merger, CodeGen &codegen,
498a2c9d4bbSAart Bik                        PatternRewriter &rewriter, linalg::GenericOp op) {
499a2c9d4bbSAart Bik   Location loc = op.getLoc();
5002f2b5b7dSTobias Gysi   assert(op.getNumInputsAndOutputs() == op.getNumInputs() + 1);
501a2c9d4bbSAart Bik   // For every tensor, find lower and upper bound on dimensions, set the
502a2c9d4bbSAart Bik   // same bounds on loop indices, and obtain dense or sparse buffer(s).
503a2c9d4bbSAart Bik   SmallVector<Value, 4> args;
5042f2b5b7dSTobias Gysi   for (OpOperand *t : op.getInputAndOutputOperands()) {
505727a63e0SAart Bik     unsigned tensor = t->getOperandNumber();
5062f2b5b7dSTobias Gysi     auto shape = op.getShape(t);
5072f2b5b7dSTobias Gysi     auto map = op.getTiedIndexingMap(t);
5082f2b5b7dSTobias Gysi     auto enc = getSparseTensorEncoding(t->get().getType());
509a2c9d4bbSAart Bik     // Scan all dimensions of current tensor.
510a2c9d4bbSAart Bik     args.clear();
511c194b49cSAart Bik     for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
512b1d44e59SAart Bik       AffineExpr a = map.getResult(perm(enc, d));
513b1d44e59SAart Bik       if (a.getKind() != AffineExprKind::DimId)
514b1d44e59SAart Bik         continue; // compound
515b1d44e59SAart Bik       unsigned idx = a.cast<AffineDimExpr>().getPosition();
516a2c9d4bbSAart Bik       // Handle sparse storage schemes.
517727a63e0SAart Bik       if (merger.isDim(tensor, idx, Dim::kSparse)) {
518a2c9d4bbSAart Bik         auto dynShape = {ShapedType::kDynamicSize};
519a2c9d4bbSAart Bik         auto ptrTp = MemRefType::get(
52096a23911SAart Bik             dynShape, genIntType(rewriter, enc.getPointerBitWidth()));
521a2c9d4bbSAart Bik         auto indTp = MemRefType::get(
52296a23911SAart Bik             dynShape, genIntType(rewriter, enc.getIndexBitWidth()));
523a54f4eaeSMogball         Value dim = rewriter.create<arith::ConstantIndexOp>(loc, d);
524a2c9d4bbSAart Bik         // Generate sparse primitives to obtains pointer and indices.
525727a63e0SAart Bik         codegen.pointers[tensor][idx] =
5262f2b5b7dSTobias Gysi             rewriter.create<ToPointersOp>(loc, ptrTp, t->get(), dim);
527727a63e0SAart Bik         codegen.indices[tensor][idx] =
5282f2b5b7dSTobias Gysi             rewriter.create<ToIndicesOp>(loc, indTp, t->get(), dim);
529a2c9d4bbSAart Bik       }
530d37d72eaSAart Bik       // Find upper bound in current dimension.
531817303efSAart Bik       unsigned p = perm(enc, d);
532d37d72eaSAart Bik       Value up = linalg::createOrFoldDimOp(rewriter, loc, t->get(), p);
533d37d72eaSAart Bik       if (shape[p] == MemRefType::kDynamicSize)
534a2c9d4bbSAart Bik         args.push_back(up);
535817303efSAart Bik       assert(codegen.highs[tensor][idx] == nullptr);
536727a63e0SAart Bik       codegen.sizes[idx] = codegen.highs[tensor][idx] = up;
537a2c9d4bbSAart Bik     }
538727a63e0SAart Bik     // Perform the required bufferization. Dense inputs materialize
539727a63e0SAart Bik     // from the input tensors. Dense outputs need special handling.
540727a63e0SAart Bik     // Sparse inputs use sparse primitives to obtain the values.
541727a63e0SAart Bik     // We also accept in-place all-dense annotated "sparse" outputs.
5422f2b5b7dSTobias Gysi     Type elementType = getElementTypeOrSelf(t->get().getType());
54396a23911SAart Bik     if (!enc) {
544727a63e0SAart Bik       // Non-annotated dense tensors.
5452f2b5b7dSTobias Gysi       auto denseTp = MemRefType::get(shape, elementType);
546727a63e0SAart Bik       if (tensor < op.getNumInputs())
547727a63e0SAart Bik         codegen.buffers[tensor] =
54857470abcSAlexander Belyaev             rewriter.create<bufferization::ToMemrefOp>(loc, denseTp, t->get());
549a2c9d4bbSAart Bik       else
550727a63e0SAart Bik         codegen.buffers[tensor] =
551a2c9d4bbSAart Bik             genOutputBuffer(codegen, rewriter, op, denseTp, args);
552f66e5769SAart Bik     } else if (t == codegen.sparseOut) {
553f66e5769SAart Bik       // True sparse output needs a lexIdx array.
554f66e5769SAart Bik       Value rank = rewriter.create<arith::ConstantIndexOp>(loc, op.getRank(t));
555f66e5769SAart Bik       auto dynShape = {ShapedType::kDynamicSize};
556f66e5769SAart Bik       auto memTp = MemRefType::get(dynShape, rewriter.getIndexType());
557f66e5769SAart Bik       codegen.lexIdx = rewriter.create<memref::AllocaOp>(loc, memTp, rank);
558a2c9d4bbSAart Bik     } else {
559727a63e0SAart Bik       // Annotated sparse tensors.
560a2c9d4bbSAart Bik       auto dynShape = {ShapedType::kDynamicSize};
5612f2b5b7dSTobias Gysi       auto sparseTp = MemRefType::get(dynShape, elementType);
562727a63e0SAart Bik       codegen.buffers[tensor] =
5632f2b5b7dSTobias Gysi           rewriter.create<ToValuesOp>(loc, sparseTp, t->get());
564a2c9d4bbSAart Bik     }
565a2c9d4bbSAart Bik   }
566a2c9d4bbSAart Bik }
567a2c9d4bbSAart Bik 
568a2c9d4bbSAart Bik /// Constructs vector type.
569a2c9d4bbSAart Bik static VectorType vectorType(CodeGen &codegen, Type etp) {
570a2c9d4bbSAart Bik   return VectorType::get(codegen.curVecLength, etp);
571a2c9d4bbSAart Bik }
572a2c9d4bbSAart Bik 
573a2c9d4bbSAart Bik /// Constructs vector type from pointer.
574a2c9d4bbSAart Bik static VectorType vectorType(CodeGen &codegen, Value ptr) {
575a2c9d4bbSAart Bik   return vectorType(codegen, ptr.getType().cast<MemRefType>().getElementType());
576a2c9d4bbSAart Bik }
577a2c9d4bbSAart Bik 
578a2c9d4bbSAart Bik /// Constructs vector iteration mask.
579a2c9d4bbSAart Bik static Value genVectorMask(CodeGen &codegen, PatternRewriter &rewriter,
580a2c9d4bbSAart Bik                            Value iv, Value lo, Value hi, Value step) {
581a2c9d4bbSAart Bik   Location loc = iv.getLoc();
5827373cabcSAart Bik   VectorType mtp = vectorType(codegen, genIntType(rewriter, 1));
583a2c9d4bbSAart Bik   // Special case if the vector length evenly divides the trip count (for
584a2c9d4bbSAart Bik   // example, "for i = 0, 128, 16"). A constant all-true mask is generated
585a2c9d4bbSAart Bik   // so that all subsequent masked memory operations are immediately folded
586a2c9d4bbSAart Bik   // into unconditional memory operations.
587a2c9d4bbSAart Bik   IntegerAttr loInt, hiInt, stepInt;
588a2c9d4bbSAart Bik   if (matchPattern(lo, m_Constant(&loInt)) &&
589a2c9d4bbSAart Bik       matchPattern(hi, m_Constant(&hiInt)) &&
590a2c9d4bbSAart Bik       matchPattern(step, m_Constant(&stepInt))) {
591a2c9d4bbSAart Bik     if (((hiInt.getInt() - loInt.getInt()) % stepInt.getInt()) == 0)
592a2c9d4bbSAart Bik       return rewriter.create<vector::BroadcastOp>(
593a54f4eaeSMogball           loc, mtp, rewriter.create<arith::ConstantIntOp>(loc, 1, 1));
594a2c9d4bbSAart Bik   }
595a2c9d4bbSAart Bik   // Otherwise, generate a vector mask that avoids overrunning the upperbound
596a2c9d4bbSAart Bik   // during vector execution. Here we rely on subsequent loop optimizations to
597a2c9d4bbSAart Bik   // avoid executing the mask in all iterations, for example, by splitting the
598a2c9d4bbSAart Bik   // loop into an unconditional vector loop and a scalar cleanup loop.
59976a18618SMatthias Springer   auto minMap = AffineMap::get(
60076a18618SMatthias Springer       /*dimCount=*/2, /*symbolCount=*/1,
60176a18618SMatthias Springer       {rewriter.getAffineSymbolExpr(0),
60276a18618SMatthias Springer        rewriter.getAffineDimExpr(0) - rewriter.getAffineDimExpr(1)},
60376a18618SMatthias Springer       rewriter.getContext());
60476a18618SMatthias Springer   Value end =
60576a18618SMatthias Springer       rewriter.createOrFold<AffineMinOp>(loc, minMap, ValueRange{hi, iv, step});
606a2c9d4bbSAart Bik   return rewriter.create<vector::CreateMaskOp>(loc, mtp, end);
607a2c9d4bbSAart Bik }
608a2c9d4bbSAart Bik 
609a2c9d4bbSAart Bik /// Generates a vectorized load lhs = a[ind[lo:hi]] or lhs = a[lo:hi].
610a2c9d4bbSAart Bik static Value genVectorLoad(CodeGen &codegen, PatternRewriter &rewriter,
611a2c9d4bbSAart Bik                            Value ptr, ArrayRef<Value> args) {
612a2c9d4bbSAart Bik   Location loc = ptr.getLoc();
613a2c9d4bbSAart Bik   VectorType vtp = vectorType(codegen, ptr);
614a54f4eaeSMogball   Value pass =
615a54f4eaeSMogball       rewriter.create<arith::ConstantOp>(loc, vtp, rewriter.getZeroAttr(vtp));
616a2c9d4bbSAart Bik   if (args.back().getType().isa<VectorType>()) {
617a2c9d4bbSAart Bik     SmallVector<Value, 4> scalarArgs(args.begin(), args.end());
618a2c9d4bbSAart Bik     Value indexVec = args.back();
619a54f4eaeSMogball     scalarArgs.back() = rewriter.create<arith::ConstantIndexOp>(loc, 0);
620a2c9d4bbSAart Bik     return rewriter.create<vector::GatherOp>(
621a2c9d4bbSAart Bik         loc, vtp, ptr, scalarArgs, indexVec, codegen.curVecMask, pass);
622a2c9d4bbSAart Bik   }
623a2c9d4bbSAart Bik   return rewriter.create<vector::MaskedLoadOp>(loc, vtp, ptr, args,
624a2c9d4bbSAart Bik                                                codegen.curVecMask, pass);
625a2c9d4bbSAart Bik }
626a2c9d4bbSAart Bik 
627a2c9d4bbSAart Bik /// Generates a vectorized store a[ind[lo:hi]] = rhs or a[lo:hi] = rhs.
628a2c9d4bbSAart Bik static void genVectorStore(CodeGen &codegen, PatternRewriter &rewriter,
629a2c9d4bbSAart Bik                            Value rhs, Value ptr, ArrayRef<Value> args) {
630a2c9d4bbSAart Bik   Location loc = ptr.getLoc();
631a2c9d4bbSAart Bik   if (args.back().getType().isa<VectorType>()) {
632a2c9d4bbSAart Bik     SmallVector<Value, 4> scalarArgs(args.begin(), args.end());
633a2c9d4bbSAart Bik     Value indexVec = args.back();
634a54f4eaeSMogball     scalarArgs.back() = rewriter.create<arith::ConstantIndexOp>(loc, 0);
635a2c9d4bbSAart Bik     rewriter.create<vector::ScatterOp>(loc, ptr, scalarArgs, indexVec,
636a2c9d4bbSAart Bik                                        codegen.curVecMask, rhs);
637a2c9d4bbSAart Bik     return;
638a2c9d4bbSAart Bik   }
639a2c9d4bbSAart Bik   rewriter.create<vector::MaskedStoreOp>(loc, ptr, args, codegen.curVecMask,
640a2c9d4bbSAart Bik                                          rhs);
641a2c9d4bbSAart Bik }
642a2c9d4bbSAart Bik 
643a2c9d4bbSAart Bik /// Generates a vectorized invariant. Here we rely on subsequent loop
644a2c9d4bbSAart Bik /// optimizations to hoist the invariant broadcast out of the vector loop.
645a2c9d4bbSAart Bik static Value genVectorInvariantValue(CodeGen &codegen,
646a2c9d4bbSAart Bik                                      PatternRewriter &rewriter, Value val) {
647a2c9d4bbSAart Bik   VectorType vtp = vectorType(codegen, val.getType());
648a2c9d4bbSAart Bik   return rewriter.create<vector::BroadcastOp>(val.getLoc(), vtp, val);
649a2c9d4bbSAart Bik }
650a2c9d4bbSAart Bik 
651b1d44e59SAart Bik /// Generates an affine expression.
652b1d44e59SAart Bik //
653b1d44e59SAart Bik // TODO: generalize for sparse tensor subscripts
654b1d44e59SAart Bik //
655b1d44e59SAart Bik static Value genAffine(CodeGen &codegen, PatternRewriter &rewriter,
656b1d44e59SAart Bik                        AffineExpr a, Location loc) {
657b1d44e59SAart Bik   switch (a.getKind()) {
658b1d44e59SAart Bik   case AffineExprKind::DimId: {
659b1d44e59SAart Bik     unsigned idx = a.cast<AffineDimExpr>().getPosition();
660b1d44e59SAart Bik     return codegen.loops[idx]; // universal dense index
661b1d44e59SAart Bik   }
662b1d44e59SAart Bik   case AffineExprKind::Add: {
663b1d44e59SAart Bik     auto binOp = a.cast<AffineBinaryOpExpr>();
664a54f4eaeSMogball     return rewriter.create<arith::AddIOp>(
665b1d44e59SAart Bik         loc, genAffine(codegen, rewriter, binOp.getLHS(), loc),
666b1d44e59SAart Bik         genAffine(codegen, rewriter, binOp.getRHS(), loc));
667b1d44e59SAart Bik   }
668b1d44e59SAart Bik   case AffineExprKind::Mul: {
669b1d44e59SAart Bik     auto binOp = a.cast<AffineBinaryOpExpr>();
670a54f4eaeSMogball     return rewriter.create<arith::MulIOp>(
671b1d44e59SAart Bik         loc, genAffine(codegen, rewriter, binOp.getLHS(), loc),
672b1d44e59SAart Bik         genAffine(codegen, rewriter, binOp.getRHS(), loc));
673b1d44e59SAart Bik   }
674b1d44e59SAart Bik   case AffineExprKind::Constant: {
675b1d44e59SAart Bik     int64_t c = a.cast<AffineConstantExpr>().getValue();
676a54f4eaeSMogball     return rewriter.create<arith::ConstantIndexOp>(loc, c);
677b1d44e59SAart Bik   }
678b1d44e59SAart Bik   default:
679b1d44e59SAart Bik     llvm_unreachable("unexpected affine subscript");
680b1d44e59SAart Bik   }
681b1d44e59SAart Bik }
682b1d44e59SAart Bik 
683b1d44e59SAart Bik /// Generates subscript for load/store on a dense or sparse tensor.
684b1d44e59SAart Bik static Value genSubscript(CodeGen &codegen, PatternRewriter &rewriter,
685b1d44e59SAart Bik                           linalg::GenericOp op, OpOperand *t,
686b1d44e59SAart Bik                           SmallVector<Value, 4> &args) {
687b1d44e59SAart Bik   unsigned tensor = t->getOperandNumber();
688b1d44e59SAart Bik   auto map = op.getTiedIndexingMap(t);
689b1d44e59SAart Bik   auto enc = getSparseTensorEncoding(t->get().getType());
690b1d44e59SAart Bik   unsigned rank = map.getNumResults();
691b1d44e59SAart Bik   if (enc) {
692b1d44e59SAart Bik     // Note that currently, all sparse subscripts are simple.
693b1d44e59SAart Bik     // TODO: accept affine too?
694c8d5dcb0SAart Bik     AffineExpr a = map.getResult(perm(enc, rank - 1));
695c8d5dcb0SAart Bik     assert(a.getKind() == AffineExprKind::DimId);
696c8d5dcb0SAart Bik     unsigned idx = a.cast<AffineDimExpr>().getPosition();
697b1d44e59SAart Bik     assert(codegen.pidxs[tensor][idx] != nullptr);
698b1d44e59SAart Bik     args.push_back(codegen.pidxs[tensor][idx]); // position index
699b1d44e59SAart Bik   } else {
700b1d44e59SAart Bik     for (unsigned d = 0; d < rank; d++) {
701b1d44e59SAart Bik       AffineExpr a = map.getResult(perm(enc, d));
702b1d44e59SAart Bik       args.push_back(genAffine(codegen, rewriter, a, op.getLoc()));
703b1d44e59SAart Bik     }
704b1d44e59SAart Bik   }
705b1d44e59SAart Bik   return codegen.buffers[tensor];
706b1d44e59SAart Bik }
707b1d44e59SAart Bik 
708a2c9d4bbSAart Bik /// Generates a load on a dense or sparse tensor.
709a2c9d4bbSAart Bik static Value genTensorLoad(Merger &merger, CodeGen &codegen,
710a2c9d4bbSAart Bik                            PatternRewriter &rewriter, linalg::GenericOp op,
711a2c9d4bbSAart Bik                            unsigned exp) {
712a2c9d4bbSAart Bik   // Test if the load was hoisted to a higher loop nest.
713a2c9d4bbSAart Bik   Value val = merger.exp(exp).val;
714a2c9d4bbSAart Bik   if (val) {
715a2c9d4bbSAart Bik     if (codegen.curVecLength > 1 && !val.getType().isa<VectorType>())
716a2c9d4bbSAart Bik       return genVectorInvariantValue(codegen, rewriter, val);
717a2c9d4bbSAart Bik     return val;
718a2c9d4bbSAart Bik   }
719*7d4da4e1SAart Bik   // Insertion (a sparse tensor output "loads" as zero).
720*7d4da4e1SAart Bik   OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).tensor];
721*7d4da4e1SAart Bik   if (t == codegen.sparseOut) {
722*7d4da4e1SAart Bik     Type tp = getElementTypeOrSelf(t->get().getType());
723*7d4da4e1SAart Bik     return rewriter.create<arith::ConstantOp>(op.getLoc(), tp,
724*7d4da4e1SAart Bik                                               rewriter.getZeroAttr(tp));
725*7d4da4e1SAart Bik   }
726a2c9d4bbSAart Bik   // Actual load.
727a2c9d4bbSAart Bik   SmallVector<Value, 4> args;
728b1d44e59SAart Bik   Value ptr = genSubscript(codegen, rewriter, op, t, args);
729a2c9d4bbSAart Bik   if (codegen.curVecLength > 1)
730a2c9d4bbSAart Bik     return genVectorLoad(codegen, rewriter, ptr, args);
731b1d44e59SAart Bik   return rewriter.create<memref::LoadOp>(op.getLoc(), ptr, args);
732a2c9d4bbSAart Bik }
733a2c9d4bbSAart Bik 
734727a63e0SAart Bik /// Generates a store on a dense or sparse tensor.
735a2c9d4bbSAart Bik static void genTensorStore(Merger &merger, CodeGen &codegen,
736a2c9d4bbSAart Bik                            PatternRewriter &rewriter, linalg::GenericOp op,
737b1d44e59SAart Bik                            Value rhs) {
738f66e5769SAart Bik   Location loc = op.getLoc();
739a2c9d4bbSAart Bik   // Test if this is a scalarized reduction.
740b1d44e59SAart Bik   if (codegen.redVal) {
741a2c9d4bbSAart Bik     if (codegen.curVecLength > 1)
742f66e5769SAart Bik       rhs = rewriter.create<SelectOp>(loc, codegen.curVecMask, rhs,
743a2c9d4bbSAart Bik                                       codegen.redVal);
7447373cabcSAart Bik     updateReduc(merger, codegen, rhs);
745a2c9d4bbSAart Bik     return;
746a2c9d4bbSAart Bik   }
747f66e5769SAart Bik   // Insertion.
748f66e5769SAart Bik   OpOperand *t = op.getOutputOperand(0);
749f66e5769SAart Bik   if (t == codegen.sparseOut) {
750f66e5769SAart Bik     rewriter.create<LexInsertOp>(loc, t->get(), codegen.lexIdx, rhs);
751f66e5769SAart Bik     return;
752f66e5769SAart Bik   }
753a2c9d4bbSAart Bik   // Actual store.
754a2c9d4bbSAart Bik   SmallVector<Value, 4> args;
755b1d44e59SAart Bik   Value ptr = genSubscript(codegen, rewriter, op, t, args);
756a2c9d4bbSAart Bik   if (codegen.curVecLength > 1)
757a2c9d4bbSAart Bik     genVectorStore(codegen, rewriter, rhs, ptr, args);
758a2c9d4bbSAart Bik   else
759f66e5769SAart Bik     rewriter.create<memref::StoreOp>(loc, rhs, ptr, args);
760a2c9d4bbSAart Bik }
761a2c9d4bbSAart Bik 
762a2c9d4bbSAart Bik /// Generates a pointer/index load from the sparse storage scheme. Narrower
763a2c9d4bbSAart Bik /// data types need to be zero extended before casting the value into the
764a2c9d4bbSAart Bik /// index type used for looping and indexing.
765a2c9d4bbSAart Bik static Value genLoad(CodeGen &codegen, PatternRewriter &rewriter, Location loc,
766a2c9d4bbSAart Bik                      Value ptr, Value s) {
767a2c9d4bbSAart Bik   // See https://llvm.org/docs/GetElementPtr.html for some background on
768a2c9d4bbSAart Bik   // the complications described below.
769a2c9d4bbSAart Bik   if (codegen.curVecLength > 1) {
770a2c9d4bbSAart Bik     // Since the index vector is used in a subsequent gather/scatter operations,
771a2c9d4bbSAart Bik     // which effectively defines an unsigned pointer + signed index, we must
772a2c9d4bbSAart Bik     // zero extend the vector to an index width. For 8-bit and 16-bit values,
773a2c9d4bbSAart Bik     // an 32-bit index width suffices. For 32-bit values, zero extending the
774a2c9d4bbSAart Bik     // elements into 64-bit loses some performance since the 32-bit indexed
77586e9bc1aSAart Bik     // gather/scatter is more efficient than the 64-bit index variant (if the
77686e9bc1aSAart Bik     // negative 32-bit index space is unused, the enableSIMDIndex32 flag can
777727a63e0SAart Bik     // preserve this performance). For 64-bit values, there is no good way
778a2c9d4bbSAart Bik     // to state that the indices are unsigned, with creates the potential of
779a2c9d4bbSAart Bik     // incorrect address calculations in the unlikely case we need such
780a2c9d4bbSAart Bik     // extremely large offsets.
781a2c9d4bbSAart Bik     Type etp = ptr.getType().cast<MemRefType>().getElementType();
782a2c9d4bbSAart Bik     Value vload = genVectorLoad(codegen, rewriter, ptr, {s});
783a2c9d4bbSAart Bik     if (!etp.isa<IndexType>()) {
784a2c9d4bbSAart Bik       if (etp.getIntOrFloatBitWidth() < 32)
785a54f4eaeSMogball         vload = rewriter.create<arith::ExtUIOp>(
7867373cabcSAart Bik             loc, vload, vectorType(codegen, genIntType(rewriter, 32)));
78786e9bc1aSAart Bik       else if (etp.getIntOrFloatBitWidth() < 64 &&
78886e9bc1aSAart Bik                !codegen.options.enableSIMDIndex32)
789a54f4eaeSMogball         vload = rewriter.create<arith::ExtUIOp>(
7907373cabcSAart Bik             loc, vload, vectorType(codegen, genIntType(rewriter, 64)));
791a2c9d4bbSAart Bik     }
792a2c9d4bbSAart Bik     return vload;
793a2c9d4bbSAart Bik   }
794a2c9d4bbSAart Bik   // For the scalar case, we simply zero extend narrower indices into 64-bit
795a2c9d4bbSAart Bik   // values before casting to index without a performance penalty. Here too,
796a2c9d4bbSAart Bik   // however, indices that already are 64-bit, in theory, cannot express the
797a2c9d4bbSAart Bik   // full range as explained above.
798a2c9d4bbSAart Bik   Value load = rewriter.create<memref::LoadOp>(loc, ptr, s);
799a2c9d4bbSAart Bik   if (!load.getType().isa<IndexType>()) {
800a2c9d4bbSAart Bik     if (load.getType().getIntOrFloatBitWidth() < 64)
8017373cabcSAart Bik       load =
8027373cabcSAart Bik           rewriter.create<arith::ExtUIOp>(loc, load, genIntType(rewriter, 64));
803a54f4eaeSMogball     load =
804a54f4eaeSMogball         rewriter.create<arith::IndexCastOp>(loc, load, rewriter.getIndexType());
805a2c9d4bbSAart Bik   }
806a2c9d4bbSAart Bik   return load;
807a2c9d4bbSAart Bik }
808a2c9d4bbSAart Bik 
809a2c9d4bbSAart Bik /// Generates an invariant value.
810a2c9d4bbSAart Bik static Value genInvariantValue(Merger &merger, CodeGen &codegen,
811a2c9d4bbSAart Bik                                PatternRewriter &rewriter, unsigned exp) {
812a2c9d4bbSAart Bik   Value val = merger.exp(exp).val;
813a2c9d4bbSAart Bik   if (codegen.curVecLength > 1)
814a2c9d4bbSAart Bik     return genVectorInvariantValue(codegen, rewriter, val);
815a2c9d4bbSAart Bik   return val;
816a2c9d4bbSAart Bik }
817a2c9d4bbSAart Bik 
818a2c9d4bbSAart Bik /// Generates an address computation "sz * p + i".
819a2c9d4bbSAart Bik static Value genAddress(CodeGen &codegen, PatternRewriter &rewriter,
820a2c9d4bbSAart Bik                         Location loc, Value size, Value p, Value i) {
821a54f4eaeSMogball   Value mul = rewriter.create<arith::MulIOp>(loc, size, p);
822a2c9d4bbSAart Bik   if (auto vtp = i.getType().dyn_cast<VectorType>()) {
823a54f4eaeSMogball     Value inv =
824a54f4eaeSMogball         rewriter.create<arith::IndexCastOp>(loc, mul, vtp.getElementType());
825a2c9d4bbSAart Bik     mul = genVectorInvariantValue(codegen, rewriter, inv);
826a2c9d4bbSAart Bik   }
827a54f4eaeSMogball   return rewriter.create<arith::AddIOp>(loc, mul, i);
828a2c9d4bbSAart Bik }
829a2c9d4bbSAart Bik 
830a2c9d4bbSAart Bik /// Recursively generates tensor expression.
831a2c9d4bbSAart Bik static Value genExp(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
832a2c9d4bbSAart Bik                     linalg::GenericOp op, unsigned exp) {
833b8a021dbSAart Bik   Location loc = op.getLoc();
834123e8dfcSAart Bik   if (exp == -1u)
835123e8dfcSAart Bik     return Value();
836a2c9d4bbSAart Bik   if (merger.exp(exp).kind == Kind::kTensor)
837a2c9d4bbSAart Bik     return genTensorLoad(merger, codegen, rewriter, op, exp);
838b8a021dbSAart Bik   if (merger.exp(exp).kind == Kind::kInvariant)
839a2c9d4bbSAart Bik     return genInvariantValue(merger, codegen, rewriter, exp);
8404569c14aSGus Smith   Value v0 = genExp(merger, codegen, rewriter, op, merger.exp(exp).children.e0);
8414569c14aSGus Smith   Value v1 = genExp(merger, codegen, rewriter, op, merger.exp(exp).children.e1);
84245b3cfe8SAart Bik   return merger.buildExp(rewriter, loc, exp, v0, v1);
843a2c9d4bbSAart Bik }
844a2c9d4bbSAart Bik 
845b1d44e59SAart Bik /// Determines if affine expression is invariant.
846b1d44e59SAart Bik static bool isInvariantAffine(const CodeGen &codegen, AffineExpr a,
847b1d44e59SAart Bik                               unsigned ldx, bool &atLevel) {
848b1d44e59SAart Bik   switch (a.getKind()) {
849b1d44e59SAart Bik   case AffineExprKind::DimId: {
850b1d44e59SAart Bik     unsigned idx = a.cast<AffineDimExpr>().getPosition();
851b1d44e59SAart Bik     if (idx == ldx)
852b1d44e59SAart Bik       atLevel = true;
853b1d44e59SAart Bik     return codegen.loops[idx] != nullptr; // no longer in play?
854b1d44e59SAart Bik   }
855b1d44e59SAart Bik   case AffineExprKind::Add:
856b1d44e59SAart Bik   case AffineExprKind::Mul: {
857b1d44e59SAart Bik     auto binOp = a.cast<AffineBinaryOpExpr>();
858b1d44e59SAart Bik     return isInvariantAffine(codegen, binOp.getLHS(), ldx, atLevel) &&
859b1d44e59SAart Bik            isInvariantAffine(codegen, binOp.getRHS(), ldx, atLevel);
860b1d44e59SAart Bik   }
861b1d44e59SAart Bik   default:
862b1d44e59SAart Bik     return true;
863b1d44e59SAart Bik   }
864b1d44e59SAart Bik }
865b1d44e59SAart Bik 
866a2c9d4bbSAart Bik /// Hoists loop invariant tensor loads for which indices have been exhausted.
867a2c9d4bbSAart Bik static void genInvariants(Merger &merger, CodeGen &codegen,
868a2c9d4bbSAart Bik                           PatternRewriter &rewriter, linalg::GenericOp op,
8697373cabcSAart Bik                           unsigned exp, unsigned ldx, bool atStart,
8705da21338SAart Bik                           Kind last = Kind::kTensor) {
871123e8dfcSAart Bik   if (exp == -1u)
872123e8dfcSAart Bik     return;
873a2c9d4bbSAart Bik   if (merger.exp(exp).kind == Kind::kTensor) {
874a2c9d4bbSAart Bik     // Inspect tensor indices.
875a2c9d4bbSAart Bik     bool atLevel = ldx == -1u;
8764569c14aSGus Smith     OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).tensor];
877619bfe8bSAart Bik     auto map = op.getTiedIndexingMap(t);
878619bfe8bSAart Bik     auto enc = getSparseTensorEncoding(t->get().getType());
879c194b49cSAart Bik     for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
880b1d44e59SAart Bik       AffineExpr a = map.getResult(perm(enc, d));
881b1d44e59SAart Bik       if (!isInvariantAffine(codegen, a, ldx, atLevel))
882a2c9d4bbSAart Bik         return; // still in play
883a2c9d4bbSAart Bik     }
884a2c9d4bbSAart Bik     // All exhausted at this level (atLevel denotes exactly at this level).
8857373cabcSAart Bik     if (!atLevel)
8867373cabcSAart Bik       return;
8872f2b5b7dSTobias Gysi     OpOperand *lhs = op.getOutputOperand(0);
888619bfe8bSAart Bik     if (lhs == t) {
8897373cabcSAart Bik       // Start or end a scalarized reduction
8907373cabcSAart Bik       if (atStart) {
8917373cabcSAart Bik         Value load = genTensorLoad(merger, codegen, rewriter, op, exp);
8925da21338SAart Bik         codegen.redKind = getReduction(last);
8937373cabcSAart Bik         codegen.redExp = exp;
8947373cabcSAart Bik         updateReduc(merger, codegen, load);
8957373cabcSAart Bik       } else {
8967373cabcSAart Bik         Value redVal = codegen.redVal;
8977373cabcSAart Bik         updateReduc(merger, codegen, Value());
8987373cabcSAart Bik         codegen.redExp = -1u;
8997373cabcSAart Bik         codegen.redKind = kNoReduc;
9007373cabcSAart Bik         genTensorStore(merger, codegen, rewriter, op, redVal);
9017373cabcSAart Bik       }
9027373cabcSAart Bik     } else {
9037373cabcSAart Bik       // Start or end loop invariant hoisting of a tensor load.
904a2c9d4bbSAart Bik       merger.exp(exp).val =
9057373cabcSAart Bik           atStart ? genTensorLoad(merger, codegen, rewriter, op, exp) : Value();
906a2c9d4bbSAart Bik     }
907123e8dfcSAart Bik   } else if (merger.exp(exp).kind != Kind::kInvariant) {
908a2c9d4bbSAart Bik     // Traverse into the binary operations. Note that we only hoist
909a2c9d4bbSAart Bik     // tensor loads, since subsequent MLIR/LLVM passes know how to
910a2c9d4bbSAart Bik     // deal with all other kinds of derived loop invariants.
9115da21338SAart Bik     Kind last = merger.exp(exp).kind;
9124569c14aSGus Smith     unsigned e0 = merger.exp(exp).children.e0;
9134569c14aSGus Smith     unsigned e1 = merger.exp(exp).children.e1;
9147373cabcSAart Bik     genInvariants(merger, codegen, rewriter, op, e0, ldx, atStart, last);
9157373cabcSAart Bik     genInvariants(merger, codegen, rewriter, op, e1, ldx, atStart, last);
916a2c9d4bbSAart Bik   }
917a2c9d4bbSAart Bik }
918a2c9d4bbSAart Bik 
919a2c9d4bbSAart Bik /// Generates initialization code for the subsequent loop sequence at
920a2c9d4bbSAart Bik /// current index level. Returns true if the loop sequence needs to
921a2c9d4bbSAart Bik /// maintain the universal index.
922a2c9d4bbSAart Bik static bool genInit(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
923a2c9d4bbSAart Bik                     linalg::GenericOp op, std::vector<unsigned> &topSort,
924a2c9d4bbSAart Bik                     unsigned at, llvm::BitVector &inits) {
925a2c9d4bbSAart Bik   bool needsUniv = false;
926a2c9d4bbSAart Bik   Location loc = op.getLoc();
927a2c9d4bbSAart Bik   unsigned idx = topSort[at];
928a2c9d4bbSAart Bik 
929a2c9d4bbSAart Bik   // Initialize sparse positions.
930a2c9d4bbSAart Bik   for (unsigned b = 0, be = inits.size(); b < be; b++) {
931a2c9d4bbSAart Bik     if (inits[b]) {
932a2c9d4bbSAart Bik       unsigned tensor = merger.tensor(b);
933a2c9d4bbSAart Bik       assert(idx == merger.index(b));
934a2c9d4bbSAart Bik       if (merger.isDim(b, Dim::kSparse)) {
935a2c9d4bbSAart Bik         // Initialize sparse index.
936a2c9d4bbSAart Bik         unsigned pat = at;
937a2c9d4bbSAart Bik         for (; pat != 0; pat--) {
938a2c9d4bbSAart Bik           if (codegen.pidxs[tensor][topSort[pat - 1]])
939a2c9d4bbSAart Bik             break;
940a2c9d4bbSAart Bik         }
941a2c9d4bbSAart Bik         Value ptr = codegen.pointers[tensor][idx];
942a54f4eaeSMogball         Value one = rewriter.create<arith::ConstantIndexOp>(loc, 1);
943a54f4eaeSMogball         Value p0 = (pat == 0) ? rewriter.create<arith::ConstantIndexOp>(loc, 0)
944a2c9d4bbSAart Bik                               : codegen.pidxs[tensor][topSort[pat - 1]];
945a2c9d4bbSAart Bik         codegen.pidxs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p0);
946a54f4eaeSMogball         Value p1 = rewriter.create<arith::AddIOp>(loc, p0, one);
947a2c9d4bbSAart Bik         codegen.highs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p1);
948a2c9d4bbSAart Bik       } else {
949a2c9d4bbSAart Bik         // Dense index still in play.
950a2c9d4bbSAart Bik         needsUniv = true;
951a2c9d4bbSAart Bik       }
952a2c9d4bbSAart Bik     }
953a2c9d4bbSAart Bik   }
954a2c9d4bbSAart Bik 
955a2c9d4bbSAart Bik   // Initialize the universal dense index.
956a54f4eaeSMogball   codegen.loops[idx] = rewriter.create<arith::ConstantIndexOp>(loc, 0);
957a2c9d4bbSAart Bik   return needsUniv;
958a2c9d4bbSAart Bik }
959a2c9d4bbSAart Bik 
960a2c9d4bbSAart Bik /// Returns vectorization strategy. Any implicit inner loop in the Linalg
961a2c9d4bbSAart Bik /// operation is a candidate. Whether it is actually converted to SIMD code
962a2c9d4bbSAart Bik /// depends on the requested strategy.
963a2c9d4bbSAart Bik static bool isVectorFor(CodeGen &codegen, bool isInner, bool isSparse) {
964a2c9d4bbSAart Bik   switch (codegen.options.vectorizationStrategy) {
965a2c9d4bbSAart Bik   case SparseVectorizationStrategy::kNone:
966a2c9d4bbSAart Bik     return false;
967a2c9d4bbSAart Bik   case SparseVectorizationStrategy::kDenseInnerLoop:
968a2c9d4bbSAart Bik     return isInner && !isSparse;
969a2c9d4bbSAart Bik   case SparseVectorizationStrategy::kAnyStorageInnerLoop:
970a2c9d4bbSAart Bik     return isInner;
971a2c9d4bbSAart Bik   }
972a2c9d4bbSAart Bik   llvm_unreachable("unexpected vectorization strategy");
973a2c9d4bbSAart Bik }
974a2c9d4bbSAart Bik 
975a2c9d4bbSAart Bik /// Returns parallelization strategy. Any implicit loop in the Linalg operation
976a2c9d4bbSAart Bik /// that is marked "parallel" is a candidate. Whether it is actually converted
977a2c9d4bbSAart Bik /// to a parallel operation depends on the requested strategy.
978a2c9d4bbSAart Bik static bool isParallelFor(CodeGen &codegen, bool isOuter, bool isReduction,
979a2c9d4bbSAart Bik                           bool isSparse, bool isVector) {
980a2c9d4bbSAart Bik   switch (codegen.options.parallelizationStrategy) {
981a2c9d4bbSAart Bik   case SparseParallelizationStrategy::kNone:
982a2c9d4bbSAart Bik     return false;
983a2c9d4bbSAart Bik   case SparseParallelizationStrategy::kDenseOuterLoop:
984a2c9d4bbSAart Bik     return isOuter && !isSparse && !isReduction && !isVector;
985a2c9d4bbSAart Bik   case SparseParallelizationStrategy::kAnyStorageOuterLoop:
986a2c9d4bbSAart Bik     return isOuter && !isReduction && !isVector;
987a2c9d4bbSAart Bik   case SparseParallelizationStrategy::kDenseAnyLoop:
988a2c9d4bbSAart Bik     return !isSparse && !isReduction && !isVector;
989a2c9d4bbSAart Bik   case SparseParallelizationStrategy::kAnyStorageAnyLoop:
990a2c9d4bbSAart Bik     return !isReduction && !isVector;
991a2c9d4bbSAart Bik   }
992a2c9d4bbSAart Bik   llvm_unreachable("unexpected parallelization strategy");
993a2c9d4bbSAart Bik }
994a2c9d4bbSAart Bik 
995849f016cSAart Bik /// Checks unit stride for dense tensors. The iteration graph may have ignored
996a2c9d4bbSAart Bik /// dense access patterns in order to avoid cycles (sparse access patterns are
997a2c9d4bbSAart Bik /// always placed innermost), but that means dense access has become strided.
998849f016cSAart Bik /// This prevents effective vectorization.
999a2c9d4bbSAart Bik static bool denseUnitStrides(Merger &merger, linalg::GenericOp op,
1000849f016cSAart Bik                              unsigned idx) {
10012f2b5b7dSTobias Gysi   for (OpOperand *t : op.getInputAndOutputOperands()) {
10022f2b5b7dSTobias Gysi     if (!getSparseTensorEncoding(t->get().getType())) {
10032f2b5b7dSTobias Gysi       auto map = op.getTiedIndexingMap(t);
1004c194b49cSAart Bik       for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
1005b1d44e59SAart Bik         AffineExpr a = map.getResult(d);
1006849f016cSAart Bik         // Report non-unit stride if innermost index appears at an outer
1007849f016cSAart Bik         // dimension (true non-unit stride) or if the innermost index appears
1008849f016cSAart Bik         // in a compound subscript in the innermost dimension. Even if the
1009849f016cSAart Bik         // latter is unit stride, it does not play well with scatter/gather.
1010c8d5dcb0SAart Bik         // TODO: accept unit stride affine innermost like a[i,j+k+1]?
1011849f016cSAart Bik         if (a.isFunctionOfDim(idx) &&
1012849f016cSAart Bik             ((d != rank - 1) || (a.getKind() != AffineExprKind::DimId)))
1013a2c9d4bbSAart Bik           return false;
1014a2c9d4bbSAart Bik       }
1015a2c9d4bbSAart Bik     }
1016a2c9d4bbSAart Bik   }
1017a2c9d4bbSAart Bik   return true;
1018a2c9d4bbSAart Bik }
1019a2c9d4bbSAart Bik 
1020a2c9d4bbSAart Bik /// Generates a for-loop on a single index.
1021a2c9d4bbSAart Bik static Operation *genFor(Merger &merger, CodeGen &codegen,
1022a2c9d4bbSAart Bik                          PatternRewriter &rewriter, linalg::GenericOp op,
1023a2c9d4bbSAart Bik                          bool isOuter, bool isInner, unsigned idx,
1024a2c9d4bbSAart Bik                          llvm::BitVector &indices) {
1025a2c9d4bbSAart Bik   unsigned fb = indices.find_first();
1026a2c9d4bbSAart Bik   unsigned tensor = merger.tensor(fb);
1027a2c9d4bbSAart Bik   assert(idx == merger.index(fb));
1028a2c9d4bbSAart Bik   auto iteratorTypes = op.iterator_types().getValue();
1029583a7542STobias Gysi   bool isReduction = isReductionIterator(iteratorTypes[idx]);
1030a2c9d4bbSAart Bik   bool isSparse = merger.isDim(fb, Dim::kSparse);
1031f66e5769SAart Bik   bool isVector = !codegen.sparseOut &&
1032f66e5769SAart Bik                   isVectorFor(codegen, isInner, isSparse) &&
1033a2c9d4bbSAart Bik                   denseUnitStrides(merger, op, idx);
1034a2c9d4bbSAart Bik   bool isParallel =
1035f66e5769SAart Bik       !codegen.sparseOut &&
1036a2c9d4bbSAart Bik       isParallelFor(codegen, isOuter, isReduction, isSparse, isVector);
1037a2c9d4bbSAart Bik 
1038a2c9d4bbSAart Bik   // Prepare vector length.
1039a2c9d4bbSAart Bik   if (isVector)
1040a2c9d4bbSAart Bik     codegen.curVecLength = codegen.options.vectorLength;
1041a2c9d4bbSAart Bik 
1042a2c9d4bbSAart Bik   // Loop bounds and increment.
1043a2c9d4bbSAart Bik   Location loc = op.getLoc();
1044a2c9d4bbSAart Bik   Value lo = isSparse ? codegen.pidxs[tensor][idx] : codegen.loops[idx];
1045a2c9d4bbSAart Bik   Value hi = isSparse ? codegen.highs[tensor][idx] : codegen.sizes[idx];
1046a54f4eaeSMogball   Value step =
1047a54f4eaeSMogball       rewriter.create<arith::ConstantIndexOp>(loc, codegen.curVecLength);
1048a2c9d4bbSAart Bik 
1049a2c9d4bbSAart Bik   // Emit a parallel loop.
1050a2c9d4bbSAart Bik   if (isParallel) {
1051a2c9d4bbSAart Bik     assert(!isVector);
1052a2c9d4bbSAart Bik     scf::ParallelOp parOp = rewriter.create<scf::ParallelOp>(loc, lo, hi, step);
1053a2c9d4bbSAart Bik     if (isSparse)
1054a2c9d4bbSAart Bik       codegen.pidxs[tensor][idx] = parOp.getInductionVars()[0];
1055a2c9d4bbSAart Bik     else
1056a2c9d4bbSAart Bik       codegen.loops[idx] = parOp.getInductionVars()[0];
1057a2c9d4bbSAart Bik     rewriter.setInsertionPointToStart(parOp.getBody());
1058a2c9d4bbSAart Bik     return parOp;
1059a2c9d4bbSAart Bik   }
1060a2c9d4bbSAart Bik 
10617373cabcSAart Bik   // Emit a sequential or vector loop.
1062a2c9d4bbSAart Bik   SmallVector<Value, 4> operands;
10637373cabcSAart Bik   if (codegen.redVal) {
10647373cabcSAart Bik     // In a vector loop, bring reduction into SIMD form, if not already.
10657373cabcSAart Bik     if (isVector && !codegen.redVal.getType().isa<VectorType>()) {
10667373cabcSAart Bik       VectorType vtp = vectorType(codegen, codegen.redVal.getType());
10677373cabcSAart Bik       Value vred = genVectorReducInit(codegen, rewriter, loc, vtp);
10687373cabcSAart Bik       updateReduc(merger, codegen, vred);
10697373cabcSAart Bik     }
10707373cabcSAart Bik     operands.push_back(codegen.redVal);
1071a2c9d4bbSAart Bik   }
1072a2c9d4bbSAart Bik   scf::ForOp forOp = rewriter.create<scf::ForOp>(loc, lo, hi, step, operands);
10737373cabcSAart Bik   if (codegen.redVal)
10747373cabcSAart Bik     updateReduc(merger, codegen, forOp.getRegionIterArgs().front());
1075a2c9d4bbSAart Bik   // Assign induction variable to sparse or dense index.
1076a2c9d4bbSAart Bik   Value iv = forOp.getInductionVar();
1077a2c9d4bbSAart Bik   if (isSparse)
1078a2c9d4bbSAart Bik     codegen.pidxs[tensor][idx] = iv;
1079a2c9d4bbSAart Bik   else
1080a2c9d4bbSAart Bik     codegen.loops[idx] = iv;
1081a2c9d4bbSAart Bik   rewriter.setInsertionPointToStart(forOp.getBody());
1082a2c9d4bbSAart Bik   // Share vector iteration mask between all subsequent loads/stores.
1083a2c9d4bbSAart Bik   if (isVector)
1084a2c9d4bbSAart Bik     codegen.curVecMask = genVectorMask(codegen, rewriter, iv, lo, hi, step);
1085a2c9d4bbSAart Bik   return forOp;
1086a2c9d4bbSAart Bik }
1087a2c9d4bbSAart Bik 
1088a2c9d4bbSAart Bik /// Emit a while-loop for co-iteration over multiple indices.
1089a2c9d4bbSAart Bik static Operation *genWhile(Merger &merger, CodeGen &codegen,
1090a2c9d4bbSAart Bik                            PatternRewriter &rewriter, linalg::GenericOp op,
1091a2c9d4bbSAart Bik                            unsigned idx, bool needsUniv,
1092a2c9d4bbSAart Bik                            llvm::BitVector &indices) {
1093a2c9d4bbSAart Bik   SmallVector<Type, 4> types;
1094a2c9d4bbSAart Bik   SmallVector<Value, 4> operands;
1095a2c9d4bbSAart Bik   // Construct the while-loop with a parameter for each index.
1096a2c9d4bbSAart Bik   Type indexType = rewriter.getIndexType();
1097a2c9d4bbSAart Bik   for (unsigned b = 0, be = indices.size(); b < be; b++) {
1098a2c9d4bbSAart Bik     if (indices[b] && merger.isDim(b, Dim::kSparse)) {
1099a2c9d4bbSAart Bik       unsigned tensor = merger.tensor(b);
1100a2c9d4bbSAart Bik       assert(idx == merger.index(b));
1101a2c9d4bbSAart Bik       types.push_back(indexType);
1102a2c9d4bbSAart Bik       operands.push_back(codegen.pidxs[tensor][idx]);
1103a2c9d4bbSAart Bik     }
1104a2c9d4bbSAart Bik   }
11057373cabcSAart Bik   if (codegen.redVal) {
11067373cabcSAart Bik     types.push_back(codegen.redVal.getType());
11077373cabcSAart Bik     operands.push_back(codegen.redVal);
11087373cabcSAart Bik   }
1109a2c9d4bbSAart Bik   if (needsUniv) {
1110a2c9d4bbSAart Bik     types.push_back(indexType);
1111a2c9d4bbSAart Bik     operands.push_back(codegen.loops[idx]);
1112a2c9d4bbSAart Bik   }
11137373cabcSAart Bik   assert(types.size() == operands.size());
1114a2c9d4bbSAart Bik   Location loc = op.getLoc();
1115a2c9d4bbSAart Bik   scf::WhileOp whileOp = rewriter.create<scf::WhileOp>(loc, types, operands);
1116a2c9d4bbSAart Bik   Block *before = rewriter.createBlock(&whileOp.before(), {}, types);
1117a2c9d4bbSAart Bik   Block *after = rewriter.createBlock(&whileOp.after(), {}, types);
1118a2c9d4bbSAart Bik 
1119a2c9d4bbSAart Bik   // Build the "before" region, which effectively consists
1120a2c9d4bbSAart Bik   // of a conjunction of "i < upper" tests on all induction.
1121a2c9d4bbSAart Bik   rewriter.setInsertionPointToStart(&whileOp.before().front());
1122a2c9d4bbSAart Bik   Value cond;
1123a2c9d4bbSAart Bik   unsigned o = 0;
1124a2c9d4bbSAart Bik   for (unsigned b = 0, be = indices.size(); b < be; b++) {
1125a2c9d4bbSAart Bik     if (indices[b] && merger.isDim(b, Dim::kSparse)) {
1126a2c9d4bbSAart Bik       unsigned tensor = merger.tensor(b);
1127a2c9d4bbSAart Bik       assert(idx == merger.index(b));
1128a2c9d4bbSAart Bik       Value op1 = before->getArgument(o);
1129a2c9d4bbSAart Bik       Value op2 = codegen.highs[tensor][idx];
1130a54f4eaeSMogball       Value opc = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult,
1131a54f4eaeSMogball                                                  op1, op2);
1132a54f4eaeSMogball       cond = cond ? rewriter.create<arith::AndIOp>(loc, cond, opc) : opc;
1133a2c9d4bbSAart Bik       codegen.pidxs[tensor][idx] = after->getArgument(o++);
1134a2c9d4bbSAart Bik     }
1135a2c9d4bbSAart Bik   }
11367373cabcSAart Bik   if (codegen.redVal)
11377373cabcSAart Bik     updateReduc(merger, codegen, after->getArgument(o++));
1138a2c9d4bbSAart Bik   if (needsUniv)
1139a2c9d4bbSAart Bik     codegen.loops[idx] = after->getArgument(o++);
1140a2c9d4bbSAart Bik   assert(o == operands.size());
1141a2c9d4bbSAart Bik   rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments());
1142a2c9d4bbSAart Bik   rewriter.setInsertionPointToStart(&whileOp.after().front());
1143a2c9d4bbSAart Bik   return whileOp;
1144a2c9d4bbSAart Bik }
1145a2c9d4bbSAart Bik 
1146a2c9d4bbSAart Bik /// Generates a for-loop or a while-loop, depending on whether it implements
1147a2c9d4bbSAart Bik /// singleton iteration or co-iteration over the given conjunction.
1148a2c9d4bbSAart Bik static Operation *genLoop(Merger &merger, CodeGen &codegen,
1149a2c9d4bbSAart Bik                           PatternRewriter &rewriter, linalg::GenericOp op,
1150a2c9d4bbSAart Bik                           std::vector<unsigned> &topSort, unsigned at,
1151a2c9d4bbSAart Bik                           bool needsUniv, llvm::BitVector &indices) {
1152a2c9d4bbSAart Bik   unsigned idx = topSort[at];
1153a2c9d4bbSAart Bik   if (indices.count() == 1) {
1154a2c9d4bbSAart Bik     bool isOuter = at == 0;
1155a2c9d4bbSAart Bik     bool isInner = at == topSort.size() - 1;
1156a2c9d4bbSAart Bik     return genFor(merger, codegen, rewriter, op, isOuter, isInner, idx,
1157a2c9d4bbSAart Bik                   indices);
1158a2c9d4bbSAart Bik   }
1159a2c9d4bbSAart Bik   return genWhile(merger, codegen, rewriter, op, idx, needsUniv, indices);
1160a2c9d4bbSAart Bik }
1161a2c9d4bbSAart Bik 
1162a2c9d4bbSAart Bik /// Generates the local variables for this loop, consisting of the sparse
1163a2c9d4bbSAart Bik /// indices, restored universal dense index, and dense positions.
1164a2c9d4bbSAart Bik static void genLocals(Merger &merger, CodeGen &codegen,
1165a2c9d4bbSAart Bik                       PatternRewriter &rewriter, linalg::GenericOp op,
1166a2c9d4bbSAart Bik                       std::vector<unsigned> &topSort, unsigned at,
1167a2c9d4bbSAart Bik                       bool needsUniv, llvm::BitVector &locals) {
1168a2c9d4bbSAart Bik   Location loc = op.getLoc();
1169a2c9d4bbSAart Bik   unsigned idx = topSort[at];
1170a2c9d4bbSAart Bik 
1171a2c9d4bbSAart Bik   // Initialize sparse indices.
1172a2c9d4bbSAart Bik   Value min;
1173a2c9d4bbSAart Bik   for (unsigned b = 0, be = locals.size(); b < be; b++) {
1174a2c9d4bbSAart Bik     if (locals[b] && merger.isDim(b, Dim::kSparse)) {
1175a2c9d4bbSAart Bik       unsigned tensor = merger.tensor(b);
1176a2c9d4bbSAart Bik       assert(idx == merger.index(b));
1177a2c9d4bbSAart Bik       Value ptr = codegen.indices[tensor][idx];
1178a2c9d4bbSAart Bik       Value s = codegen.pidxs[tensor][idx];
1179a2c9d4bbSAart Bik       Value load = genLoad(codegen, rewriter, loc, ptr, s);
1180a2c9d4bbSAart Bik       codegen.idxs[tensor][idx] = load;
1181a2c9d4bbSAart Bik       if (!needsUniv) {
1182a2c9d4bbSAart Bik         if (min) {
1183a54f4eaeSMogball           Value cmp = rewriter.create<arith::CmpIOp>(
1184a54f4eaeSMogball               loc, arith::CmpIPredicate::ult, load, min);
1185a2c9d4bbSAart Bik           min = rewriter.create<SelectOp>(loc, cmp, load, min);
1186a2c9d4bbSAart Bik         } else {
1187a2c9d4bbSAart Bik           min = load;
1188a2c9d4bbSAart Bik         }
1189a2c9d4bbSAart Bik       }
1190a2c9d4bbSAart Bik     }
1191a2c9d4bbSAart Bik   }
1192a2c9d4bbSAart Bik 
1193a2c9d4bbSAart Bik   // Merge dense universal index over minimum.
1194a2c9d4bbSAart Bik   if (min) {
1195a2c9d4bbSAart Bik     assert(!needsUniv);
1196a2c9d4bbSAart Bik     codegen.loops[idx] = min;
1197a2c9d4bbSAart Bik   }
1198a2c9d4bbSAart Bik 
1199727a63e0SAart Bik   // Initialize dense positions. Note that we generate dense indices of the
1200727a63e0SAart Bik   // output tensor unconditionally, since they may not appear in the lattice,
1201727a63e0SAart Bik   // but may be needed for linearized codegen.
1202a2c9d4bbSAart Bik   for (unsigned b = 0, be = locals.size(); b < be; b++) {
1203727a63e0SAart Bik     if ((locals[b] || merger.isOutTensor(b, idx)) &&
1204727a63e0SAart Bik         merger.isDim(b, Dim::kDense)) {
1205a2c9d4bbSAart Bik       unsigned tensor = merger.tensor(b);
1206a2c9d4bbSAart Bik       assert(idx == merger.index(b));
1207a2c9d4bbSAart Bik       unsigned pat = at;
1208a2c9d4bbSAart Bik       for (; pat != 0; pat--)
1209a2c9d4bbSAart Bik         if (codegen.pidxs[tensor][topSort[pat - 1]])
1210a2c9d4bbSAart Bik           break;
1211a54f4eaeSMogball       Value p = (pat == 0) ? rewriter.create<arith::ConstantIndexOp>(loc, 0)
1212a2c9d4bbSAart Bik                            : codegen.pidxs[tensor][topSort[pat - 1]];
1213a2c9d4bbSAart Bik       codegen.pidxs[tensor][idx] = genAddress(
1214a2c9d4bbSAart Bik           codegen, rewriter, loc, codegen.sizes[idx], p, codegen.loops[idx]);
1215a2c9d4bbSAart Bik     }
1216a2c9d4bbSAart Bik   }
1217f66e5769SAart Bik 
1218f66e5769SAart Bik   // Move the insertion indices in lexicographic index order.
1219f66e5769SAart Bik   if (codegen.sparseOut) {
1220f66e5769SAart Bik     Value pos = rewriter.create<arith::ConstantIndexOp>(loc, at);
1221f66e5769SAart Bik     rewriter.create<memref::StoreOp>(loc, codegen.loops[idx], codegen.lexIdx,
1222f66e5769SAart Bik                                      pos);
1223f66e5769SAart Bik   }
1224a2c9d4bbSAart Bik }
1225a2c9d4bbSAart Bik 
1226a2c9d4bbSAart Bik /// Generates the induction structure for a while-loop.
1227a2c9d4bbSAart Bik static void genWhileInduction(Merger &merger, CodeGen &codegen,
1228a2c9d4bbSAart Bik                               PatternRewriter &rewriter, linalg::GenericOp op,
1229a2c9d4bbSAart Bik                               unsigned idx, bool needsUniv,
12307373cabcSAart Bik                               llvm::BitVector &induction,
12317373cabcSAart Bik                               scf::WhileOp whileOp) {
1232a2c9d4bbSAart Bik   Location loc = op.getLoc();
12337373cabcSAart Bik   // Finalize each else branch of all if statements.
12347373cabcSAart Bik   if (codegen.redVal) {
12357373cabcSAart Bik     while (auto ifOp = dyn_cast_or_null<scf::IfOp>(
12367373cabcSAart Bik                rewriter.getInsertionBlock()->getParentOp())) {
12377373cabcSAart Bik       rewriter.create<scf::YieldOp>(loc, codegen.redVal);
12387373cabcSAart Bik       updateReduc(merger, codegen, ifOp.getResult(0));
12397373cabcSAart Bik       rewriter.setInsertionPointAfter(ifOp);
12407373cabcSAart Bik     }
12417373cabcSAart Bik   }
12427373cabcSAart Bik   rewriter.setInsertionPointToEnd(&whileOp.after().front());
12437373cabcSAart Bik   // Finalize the induction. Note that the induction could be performed
12447373cabcSAart Bik   // in the individual if-branches to avoid re-evaluating the conditions.
12457373cabcSAart Bik   // However, that would result in a rather elaborate forest of yield
12467373cabcSAart Bik   // instructions during code generation. Moreover, performing the induction
12477373cabcSAart Bik   // after the if-statements more closely resembles code generated by TACO.
1248a2c9d4bbSAart Bik   unsigned o = 0;
1249a2c9d4bbSAart Bik   SmallVector<Value, 4> operands;
1250a54f4eaeSMogball   Value one = rewriter.create<arith::ConstantIndexOp>(loc, 1);
1251a2c9d4bbSAart Bik   for (unsigned b = 0, be = induction.size(); b < be; b++) {
1252a2c9d4bbSAart Bik     if (induction[b] && merger.isDim(b, Dim::kSparse)) {
1253a2c9d4bbSAart Bik       unsigned tensor = merger.tensor(b);
1254a2c9d4bbSAart Bik       assert(idx == merger.index(b));
1255a2c9d4bbSAart Bik       Value op1 = codegen.idxs[tensor][idx];
1256a2c9d4bbSAart Bik       Value op2 = codegen.loops[idx];
1257a2c9d4bbSAart Bik       Value op3 = codegen.pidxs[tensor][idx];
1258a54f4eaeSMogball       Value cmp = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
1259a54f4eaeSMogball                                                  op1, op2);
1260a54f4eaeSMogball       Value add = rewriter.create<arith::AddIOp>(loc, op3, one);
1261a2c9d4bbSAart Bik       operands.push_back(rewriter.create<SelectOp>(loc, cmp, add, op3));
12627373cabcSAart Bik       codegen.pidxs[tensor][idx] = whileOp->getResult(o++);
1263a2c9d4bbSAart Bik     }
1264a2c9d4bbSAart Bik   }
12657373cabcSAart Bik   if (codegen.redVal) {
12667373cabcSAart Bik     operands.push_back(codegen.redVal);
12677373cabcSAart Bik     updateReduc(merger, codegen, whileOp->getResult(o++));
12687373cabcSAart Bik   }
1269a2c9d4bbSAart Bik   if (needsUniv) {
1270a54f4eaeSMogball     operands.push_back(
1271a54f4eaeSMogball         rewriter.create<arith::AddIOp>(loc, codegen.loops[idx], one));
12727373cabcSAart Bik     codegen.loops[idx] = whileOp->getResult(o++);
1273a2c9d4bbSAart Bik   }
1274a2c9d4bbSAart Bik   assert(o == operands.size());
1275a2c9d4bbSAart Bik   rewriter.create<scf::YieldOp>(loc, operands);
12767373cabcSAart Bik   rewriter.setInsertionPointAfter(whileOp);
12777373cabcSAart Bik }
12787373cabcSAart Bik 
12797373cabcSAart Bik /// Generates the induction structure for a for-loop.
12807373cabcSAart Bik static void genForInduction(Merger &merger, CodeGen &codegen,
12817373cabcSAart Bik                             PatternRewriter &rewriter, linalg::GenericOp op,
12827373cabcSAart Bik                             Operation *loop) {
12837373cabcSAart Bik   Location loc = op.getLoc();
12847373cabcSAart Bik   unsigned o = 0;
12857373cabcSAart Bik   SmallVector<Value, 4> operands;
12867373cabcSAart Bik   if (codegen.redVal) {
12877373cabcSAart Bik     operands.push_back(codegen.redVal);
12887373cabcSAart Bik     updateReduc(merger, codegen, loop->getResult(o++));
12897373cabcSAart Bik   }
12907373cabcSAart Bik   assert(o == operands.size());
12917373cabcSAart Bik   if (o > 0)
12927373cabcSAart Bik     rewriter.create<scf::YieldOp>(loc, operands);
12937373cabcSAart Bik   rewriter.setInsertionPointAfter(loop);
1294a2c9d4bbSAart Bik }
1295a2c9d4bbSAart Bik 
1296a2c9d4bbSAart Bik /// Generates a single if-statement within a while-loop.
1297a2c9d4bbSAart Bik static scf::IfOp genIf(Merger &merger, CodeGen &codegen,
1298a2c9d4bbSAart Bik                        PatternRewriter &rewriter, linalg::GenericOp op,
1299a2c9d4bbSAart Bik                        unsigned idx, llvm::BitVector &conditions) {
1300a2c9d4bbSAart Bik   Location loc = op.getLoc();
13017373cabcSAart Bik   SmallVector<Type, 4> types;
1302a2c9d4bbSAart Bik   Value cond;
1303a2c9d4bbSAart Bik   for (unsigned b = 0, be = conditions.size(); b < be; b++) {
1304a2c9d4bbSAart Bik     if (conditions[b]) {
1305a2c9d4bbSAart Bik       unsigned tensor = merger.tensor(b);
1306a2c9d4bbSAart Bik       assert(idx == merger.index(b));
1307a2c9d4bbSAart Bik       Value clause;
1308a2c9d4bbSAart Bik       if (merger.isDim(b, Dim::kSparse)) {
1309a2c9d4bbSAart Bik         Value op1 = codegen.idxs[tensor][idx];
1310a2c9d4bbSAart Bik         Value op2 = codegen.loops[idx];
1311a54f4eaeSMogball         clause = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
1312a54f4eaeSMogball                                                 op1, op2);
1313a2c9d4bbSAart Bik       } else {
1314a54f4eaeSMogball         clause = rewriter.create<arith::ConstantIntOp>(loc, 1, 1); // true
1315a2c9d4bbSAart Bik       }
1316a54f4eaeSMogball       cond = cond ? rewriter.create<arith::AndIOp>(loc, cond, clause) : clause;
1317a2c9d4bbSAart Bik     }
1318a2c9d4bbSAart Bik   }
13197373cabcSAart Bik   if (codegen.redVal)
13207373cabcSAart Bik     types.push_back(codegen.redVal.getType());
13217373cabcSAart Bik   scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, types, cond, /*else=*/true);
1322a2c9d4bbSAart Bik   rewriter.setInsertionPointToStart(&ifOp.thenRegion().front());
1323a2c9d4bbSAart Bik   return ifOp;
1324a2c9d4bbSAart Bik }
1325a2c9d4bbSAart Bik 
13267373cabcSAart Bik /// Generates end of true branch of if-statement within a while-loop.
13277373cabcSAart Bik static void endIf(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
13287373cabcSAart Bik                   linalg::GenericOp op, scf::IfOp ifOp, Value ifInput) {
13297373cabcSAart Bik   if (codegen.redVal) {
13307373cabcSAart Bik     rewriter.create<scf::YieldOp>(op.getLoc(), codegen.redVal);
13317373cabcSAart Bik     updateReduc(merger, codegen, ifInput);
13327373cabcSAart Bik   }
13337373cabcSAart Bik   rewriter.setInsertionPointToStart(&ifOp.elseRegion().front());
13347373cabcSAart Bik }
13357373cabcSAart Bik 
1336c8d5dcb0SAart Bik //===----------------------------------------------------------------------===//
1337c8d5dcb0SAart Bik // Sparse compiler synthesis methods (loop sequence).
1338c8d5dcb0SAart Bik //===----------------------------------------------------------------------===//
1339c8d5dcb0SAart Bik 
1340c8d5dcb0SAart Bik /// Starts a loop sequence at given level. Returns true if
1341c8d5dcb0SAart Bik /// the universal loop index must be maintained at this level.
1342c8d5dcb0SAart Bik static bool startLoopSeq(Merger &merger, CodeGen &codegen,
1343c8d5dcb0SAart Bik                          PatternRewriter &rewriter, linalg::GenericOp op,
1344c8d5dcb0SAart Bik                          std::vector<unsigned> &topSort, unsigned exp,
1345c8d5dcb0SAart Bik                          unsigned at, unsigned idx, unsigned ldx,
1346c8d5dcb0SAart Bik                          unsigned lts) {
1347c8d5dcb0SAart Bik   assert(codegen.curVecLength == 1);
13487373cabcSAart Bik   assert(!codegen.loops[idx]);
1349c8d5dcb0SAart Bik   // Emit invariants at this loop sequence level.
13507373cabcSAart Bik   genInvariants(merger, codegen, rewriter, op, exp, ldx, /*atStart=*/true);
1351c8d5dcb0SAart Bik   // Emit further intitialization at this loop sequence level.
1352c8d5dcb0SAart Bik   unsigned l0 = merger.set(lts)[0];
13537373cabcSAart Bik   bool needsUniv =
13547373cabcSAart Bik       genInit(merger, codegen, rewriter, op, topSort, at, merger.lat(l0).bits);
1355c8d5dcb0SAart Bik   // Maintain the universal index only if it is actually
1356c8d5dcb0SAart Bik   // consumed by a subsequent lattice point.
13577373cabcSAart Bik   if (needsUniv) {
1358c8d5dcb0SAart Bik     unsigned lsize = merger.set(lts).size();
1359c8d5dcb0SAart Bik     for (unsigned i = 1; i < lsize; i++) {
1360c8d5dcb0SAart Bik       unsigned li = merger.set(lts)[i];
1361c8d5dcb0SAart Bik       if (!merger.hasAnyDimOf(merger.lat(li).simple, Dim::kSparse))
1362c8d5dcb0SAart Bik         return true;
1363c8d5dcb0SAart Bik     }
1364c8d5dcb0SAart Bik   }
1365c8d5dcb0SAart Bik   return false;
1366c8d5dcb0SAart Bik }
1367c8d5dcb0SAart Bik 
1368c8d5dcb0SAart Bik /// Starts a single loop in current sequence.
1369c8d5dcb0SAart Bik static Operation *startLoop(Merger &merger, CodeGen &codegen,
1370c8d5dcb0SAart Bik                             PatternRewriter &rewriter, linalg::GenericOp op,
1371c8d5dcb0SAart Bik                             std::vector<unsigned> &topSort, unsigned at,
1372c8d5dcb0SAart Bik                             unsigned li, bool needsUniv) {
1373c8d5dcb0SAart Bik   assert(codegen.curVecLength == 1);
1374c8d5dcb0SAart Bik   // Emit the for/while-loop control.
1375c8d5dcb0SAart Bik   Operation *loop = genLoop(merger, codegen, rewriter, op, topSort, at,
1376c8d5dcb0SAart Bik                             needsUniv, merger.lat(li).simple);
1377c8d5dcb0SAart Bik   // Emit the locals for this loop.
1378c8d5dcb0SAart Bik   genLocals(merger, codegen, rewriter, op, topSort, at, needsUniv,
1379c8d5dcb0SAart Bik             merger.lat(li).bits);
1380c8d5dcb0SAart Bik   return loop;
1381c8d5dcb0SAart Bik }
1382c8d5dcb0SAart Bik 
1383c8d5dcb0SAart Bik /// Ends a single loop in current sequence. Returns new values for needsUniv.
1384c8d5dcb0SAart Bik static bool endLoop(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
1385c8d5dcb0SAart Bik                     linalg::GenericOp op, Operation *loop, unsigned idx,
1386c8d5dcb0SAart Bik                     unsigned li, bool needsUniv) {
1387c8d5dcb0SAart Bik   codegen.curVecLength = 1;
1388c8d5dcb0SAart Bik   // End a while-loop.
1389c8d5dcb0SAart Bik   if (auto whileOp = dyn_cast<scf::WhileOp>(loop)) {
1390c8d5dcb0SAart Bik     genWhileInduction(merger, codegen, rewriter, op, idx, needsUniv,
13917373cabcSAart Bik                       merger.lat(li).bits, whileOp);
1392c8d5dcb0SAart Bik     return needsUniv;
1393c8d5dcb0SAart Bik   }
1394c8d5dcb0SAart Bik   // End a for-loop.
13957373cabcSAart Bik   genForInduction(merger, codegen, rewriter, op, loop);
1396c8d5dcb0SAart Bik   return false;
1397c8d5dcb0SAart Bik }
1398c8d5dcb0SAart Bik 
1399c8d5dcb0SAart Bik /// Ends a loop sequence at given level.
1400c8d5dcb0SAart Bik static void endLoopSeq(Merger &merger, CodeGen &codegen,
1401c8d5dcb0SAart Bik                        PatternRewriter &rewriter, linalg::GenericOp op,
1402c8d5dcb0SAart Bik                        unsigned exp, unsigned idx, unsigned ldx) {
1403c8d5dcb0SAart Bik   assert(codegen.curVecLength == 1);
1404c8d5dcb0SAart Bik   codegen.loops[idx] = Value();
14057373cabcSAart Bik   // Bring a pending reduction back from SIMD form when sequence ends.
14067373cabcSAart Bik   if (codegen.redVal)
14077373cabcSAart Bik     if (auto vtp = codegen.redVal.getType().dyn_cast<VectorType>())
14087373cabcSAart Bik       updateReduc(merger, codegen,
14097373cabcSAart Bik                   genVectorReducEnd(codegen, rewriter, op.getLoc(), vtp));
14107373cabcSAart Bik   // Unmark bookkeeping of invariants and loop index.
14117373cabcSAart Bik   genInvariants(merger, codegen, rewriter, op, exp, ldx, /*atStart=*/false);
1412c8d5dcb0SAart Bik }
1413c8d5dcb0SAart Bik 
1414a2c9d4bbSAart Bik /// Recursively generates code while computing iteration lattices in order
1415a2c9d4bbSAart Bik /// to manage the complexity of implementing co-iteration over unions
1416a2c9d4bbSAart Bik /// and intersections of sparse iterations spaces.
1417a2c9d4bbSAart Bik static void genStmt(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
1418a2c9d4bbSAart Bik                     linalg::GenericOp op, std::vector<unsigned> &topSort,
1419a2c9d4bbSAart Bik                     unsigned exp, unsigned at) {
1420a2c9d4bbSAart Bik   // At each leaf, assign remaining tensor (sub)expression to output tensor.
1421a2c9d4bbSAart Bik   if (at == topSort.size()) {
1422a2c9d4bbSAart Bik     Value rhs = genExp(merger, codegen, rewriter, op, exp);
1423b1d44e59SAart Bik     genTensorStore(merger, codegen, rewriter, op, rhs);
1424a2c9d4bbSAart Bik     return;
1425a2c9d4bbSAart Bik   }
1426a2c9d4bbSAart Bik 
1427a2c9d4bbSAart Bik   // Construct iteration lattices for current loop index, with L0 at top.
1428a2c9d4bbSAart Bik   unsigned idx = topSort[at];
1429a2c9d4bbSAart Bik   unsigned ldx = at == 0 ? -1u : topSort[at - 1];
1430c8d5dcb0SAart Bik   unsigned lts = merger.optimizeSet(merger.buildLattices(exp, idx));
1431a2c9d4bbSAart Bik 
1432c8d5dcb0SAart Bik   // Start a loop sequence.
1433c8d5dcb0SAart Bik   bool needsUniv = startLoopSeq(merger, codegen, rewriter, op, topSort, exp, at,
1434c8d5dcb0SAart Bik                                 idx, ldx, lts);
1435c8d5dcb0SAart Bik 
1436c8d5dcb0SAart Bik   // Emit a loop for every lattice point L0 >= Li in this loop sequence.
1437c8d5dcb0SAart Bik   unsigned lsize = merger.set(lts).size();
1438a2c9d4bbSAart Bik   for (unsigned i = 0; i < lsize; i++) {
1439c8d5dcb0SAart Bik     // Start a loop.
1440a2c9d4bbSAart Bik     unsigned li = merger.set(lts)[i];
1441a2c9d4bbSAart Bik     Operation *loop =
1442c8d5dcb0SAart Bik         startLoop(merger, codegen, rewriter, op, topSort, at, li, needsUniv);
1443a2c9d4bbSAart Bik 
1444a2c9d4bbSAart Bik     // Visit all lattices points with Li >= Lj to generate the
1445a2c9d4bbSAart Bik     // loop-body, possibly with if statements for coiteration.
14467373cabcSAart Bik     Value ifInput = codegen.redVal;
1447a2c9d4bbSAart Bik     bool isWhile = dyn_cast<scf::WhileOp>(loop) != nullptr;
1448a2c9d4bbSAart Bik     for (unsigned j = 0; j < lsize; j++) {
1449a2c9d4bbSAart Bik       unsigned lj = merger.set(lts)[j];
1450a2c9d4bbSAart Bik       unsigned ej = merger.lat(lj).exp;
1451a2c9d4bbSAart Bik       if (li == lj || merger.latGT(li, lj)) {
1452a2c9d4bbSAart Bik         // Recurse into body of each branch.
1453a2c9d4bbSAart Bik         if (isWhile) {
1454a2c9d4bbSAart Bik           scf::IfOp ifOp =
1455a2c9d4bbSAart Bik               genIf(merger, codegen, rewriter, op, idx, merger.lat(lj).simple);
1456a2c9d4bbSAart Bik           genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1);
14577373cabcSAart Bik           endIf(merger, codegen, rewriter, op, ifOp, ifInput);
1458a2c9d4bbSAart Bik         } else {
1459a2c9d4bbSAart Bik           genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1);
1460a2c9d4bbSAart Bik         }
1461a2c9d4bbSAart Bik       }
1462a2c9d4bbSAart Bik     }
1463a2c9d4bbSAart Bik 
1464c8d5dcb0SAart Bik     // End a loop.
1465c8d5dcb0SAart Bik     needsUniv =
1466c8d5dcb0SAart Bik         endLoop(merger, codegen, rewriter, op, loop, idx, li, needsUniv);
1467a2c9d4bbSAart Bik   }
1468a2c9d4bbSAart Bik 
1469c8d5dcb0SAart Bik   // End a loop sequence.
1470c8d5dcb0SAart Bik   endLoopSeq(merger, codegen, rewriter, op, exp, idx, ldx);
1471a2c9d4bbSAart Bik }
1472a2c9d4bbSAart Bik 
1473727a63e0SAart Bik /// Converts the result computed by the sparse kernel into the required form.
147436b66ab9SAart Bik static void genResult(Merger &merger, CodeGen &codegen,
147536b66ab9SAart Bik                       PatternRewriter &rewriter, linalg::GenericOp op) {
147636b66ab9SAart Bik   OpOperand *lhs = op.getOutputOperand(0);
147736b66ab9SAart Bik   Type resType = lhs->get().getType();
1478f66e5769SAart Bik   Value result;
1479f66e5769SAart Bik   if (getSparseTensorEncoding(resType)) {
1480f66e5769SAart Bik     // The sparse tensor rematerializes from the original sparse tensor's
1481f66e5769SAart Bik     // underlying sparse storage format.
1482f66e5769SAart Bik     rewriter.replaceOpWithNewOp<LoadOp>(op, resType, lhs->get(),
1483f66e5769SAart Bik                                         codegen.sparseOut == lhs);
148436b66ab9SAart Bik   } else {
1485f66e5769SAart Bik     // To rematerialize an non-annotated tensor, simply load it
148636b66ab9SAart Bik     // from the bufferized value.
1487f66e5769SAart Bik     Value val = codegen.buffers.back(); // value array
148857470abcSAlexander Belyaev     rewriter.replaceOpWithNewOp<bufferization::ToTensorOp>(op, resType, val);
148936b66ab9SAart Bik   }
1490727a63e0SAart Bik }
1491727a63e0SAart Bik 
14925da21338SAart Bik //===----------------------------------------------------------------------===//
14935da21338SAart Bik // Sparse compiler rewriting methods.
14945da21338SAart Bik //===----------------------------------------------------------------------===//
14955da21338SAart Bik 
1496a2c9d4bbSAart Bik namespace {
1497a2c9d4bbSAart Bik 
1498a2c9d4bbSAart Bik /// Sparse rewriting rule for generic Lingalg operation.
1499a2c9d4bbSAart Bik struct GenericOpSparsifier : public OpRewritePattern<linalg::GenericOp> {
1500a2c9d4bbSAart Bik public:
1501a2c9d4bbSAart Bik   GenericOpSparsifier(MLIRContext *context, SparsificationOptions o)
1502a2c9d4bbSAart Bik       : OpRewritePattern<linalg::GenericOp>(context), options(o) {}
1503a2c9d4bbSAart Bik 
1504a2c9d4bbSAart Bik   LogicalResult matchAndRewrite(linalg::GenericOp op,
1505a2c9d4bbSAart Bik                                 PatternRewriter &rewriter) const override {
1506a2c9d4bbSAart Bik     // Detects sparse annotations and translate the per-dimension sparsity
1507a2c9d4bbSAart Bik     // information for all tensors to loop indices in the kernel.
1508a2c9d4bbSAart Bik     assert(op.getNumOutputs() == 1);
15092f2b5b7dSTobias Gysi     unsigned numTensors = op.getNumInputsAndOutputs();
1510a2c9d4bbSAart Bik     unsigned numLoops = op.iterator_types().getValue().size();
1511a2c9d4bbSAart Bik     Merger merger(numTensors, numLoops);
1512bf9ef3efSAart Bik     if (!findSparseAnnotations(merger, op))
1513bf9ef3efSAart Bik       return failure();
1514a2c9d4bbSAart Bik 
1515a2c9d4bbSAart Bik     // Computes a topologically sorted iteration graph to ensure
1516a2c9d4bbSAart Bik     // tensors are visited in natural index order. Fails on cycles.
1517a2c9d4bbSAart Bik     // This assumes that higher-level passes have already put the
1518a2c9d4bbSAart Bik     // tensors in each tensor expression in a feasible order.
1519a2c9d4bbSAart Bik     std::vector<unsigned> topSort;
1520b6d1a31cSAart Bik     if (!computeIterationGraph(merger, op, topSort,
1521b6d1a31cSAart Bik                                SortMask::kIncludeUndef |
1522b6d1a31cSAart Bik                                    SortMask::kIncludeDense) &&
1523b6d1a31cSAart Bik         !computeIterationGraph(merger, op, topSort, SortMask::kIncludeUndef) &&
1524b6d1a31cSAart Bik         !computeIterationGraph(merger, op, topSort, SortMask::kIncludeDense) &&
1525b6d1a31cSAart Bik         !computeIterationGraph(merger, op, topSort, SortMask::kSparseOnly))
1526a2c9d4bbSAart Bik       return failure();
1527a2c9d4bbSAart Bik 
1528266a7414SAart Bik     // Builds the tensor expression for the Linalg operation in SSA form.
15297373cabcSAart Bik     Optional<unsigned> optExp = merger.buildTensorExpFromLinalg(op);
15307373cabcSAart Bik     if (!optExp.hasValue())
1531266a7414SAart Bik       return failure();
15327373cabcSAart Bik     unsigned exp = optExp.getValue();
1533a2c9d4bbSAart Bik 
1534266a7414SAart Bik     // Rejects an inadmissable tensor expression.
1535f66e5769SAart Bik     OpOperand *sparseOut = nullptr;
1536*7d4da4e1SAart Bik     unsigned outerParNest = 0;
1537*7d4da4e1SAart Bik     if (!isAdmissableTensorExp(merger, op, topSort, exp, &sparseOut,
1538*7d4da4e1SAart Bik                                outerParNest))
153936b66ab9SAart Bik       return failure();
154036b66ab9SAart Bik 
1541a2c9d4bbSAart Bik     // Recursively generates code.
1542*7d4da4e1SAart Bik     merger.setHasSparseOut(sparseOut != nullptr);
1543*7d4da4e1SAart Bik     CodeGen codegen(options, numTensors, numLoops, sparseOut, outerParNest);
1544c8d5dcb0SAart Bik     genBuffers(merger, codegen, rewriter, op);
15457373cabcSAart Bik     genStmt(merger, codegen, rewriter, op, topSort, exp, 0);
154636b66ab9SAart Bik     genResult(merger, codegen, rewriter, op);
1547a2c9d4bbSAart Bik     return success();
1548a2c9d4bbSAart Bik   }
1549a2c9d4bbSAart Bik 
1550a2c9d4bbSAart Bik private:
1551a2c9d4bbSAart Bik   /// Options to control sparse code generation.
1552a2c9d4bbSAart Bik   SparsificationOptions options;
1553a2c9d4bbSAart Bik };
1554a2c9d4bbSAart Bik 
1555a2c9d4bbSAart Bik } // namespace
1556a2c9d4bbSAart Bik 
1557a2c9d4bbSAart Bik /// Populates the given patterns list with rewriting rules required for
1558a2c9d4bbSAart Bik /// the sparsification of linear algebra operations.
1559a2c9d4bbSAart Bik void mlir::populateSparsificationPatterns(
1560a2c9d4bbSAart Bik     RewritePatternSet &patterns, const SparsificationOptions &options) {
1561a2c9d4bbSAart Bik   patterns.add<GenericOpSparsifier>(patterns.getContext(), options);
1562a2c9d4bbSAart Bik }
1563