196a23911SAart Bik //===- Sparsification.cpp - Implementation of sparsification --------------===//
2a2c9d4bbSAart Bik //
3a2c9d4bbSAart Bik // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4a2c9d4bbSAart Bik // See https://llvm.org/LICENSE.txt for license information.
5a2c9d4bbSAart Bik // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6a2c9d4bbSAart Bik //
7a2c9d4bbSAart Bik //===----------------------------------------------------------------------===//
8a2c9d4bbSAart Bik //
996a23911SAart Bik // This file implements lowering sparse tensor types to actual sparse code.
10a2c9d4bbSAart Bik //
11a2c9d4bbSAart Bik // The concept of letting a compiler generate sparse code automatically was
12a2c9d4bbSAart Bik // pioneered for dense linear algebra code in Fortran by [Bik96] in MT1 and
13a2c9d4bbSAart Bik // formalized to tensor algebra by [Kjolstad17,20] for the Sparse Tensor
14a2c9d4bbSAart Bik // Algebra Compiler (TACO). The implementation in this file closely follows
15a2c9d4bbSAart Bik // the "sparse iteration theory" that forms the foundation of TACO. A rewriting
16a2c9d4bbSAart Bik // rule is applied to each tensor expression in linalg (MLIR's tensor index
17a2c9d4bbSAart Bik // notation) where the sparsity of tensors is indicated with annotation using
18a2c9d4bbSAart Bik // a per-dimension specification of sparse/dense storage together with a
19a2c9d4bbSAart Bik // specification of the order on the dimensions. Subsequently, a topologically
20a2c9d4bbSAart Bik // sorted iteration graph, reflecting the required order on indices with respect
21a2c9d4bbSAart Bik // to the dimensions of each tensor, is constructed to ensure that all tensors
22a2c9d4bbSAart Bik // are visited in natural index order. Next, iteration lattices are constructed
23a2c9d4bbSAart Bik // for the tensor expression for every index in topological order. Each
24a2c9d4bbSAart Bik // iteration lattice point consists of a conjunction of tensor indices together
25a2c9d4bbSAart Bik // with a tensor (sub)expression that needs to be evaluated for that
26a2c9d4bbSAart Bik // conjunction. Within the lattice, iteration points are ordered according to
27a2c9d4bbSAart Bik // the way indices are exhausted. As such these iteration lattices drive actual
28a2c9d4bbSAart Bik // sparse code generation, which consists of a tedious but relatively
29a2c9d4bbSAart Bik // straightforward one-to-one mapping from iteration lattices to combinations
30a2c9d4bbSAart Bik // of for-loops, while-loops, and if-statements.
31a2c9d4bbSAart Bik //
32a2c9d4bbSAart Bik // [Bik96] Aart J.C. Bik. Compiler Support for Sparse Matrix Computations.
33a2c9d4bbSAart Bik // PhD thesis, Leiden University, May 1996 (aartbik.com/sparse.php).
34a2c9d4bbSAart Bik // [Kjolstad17] Fredrik Berg Kjolstad, Shoaib Ashraf Kamil, Stephen Chou,
35a2c9d4bbSAart Bik // David Lugato, and Saman Amarasinghe. The Tensor Algebra Compiler.
36a2c9d4bbSAart Bik // Proceedings of the ACM on Programming Languages, October 2017.
37a2c9d4bbSAart Bik // [Kjolstad20] Fredrik Berg Kjolstad. Sparse Tensor Algebra Compilation.
38a2c9d4bbSAart Bik // PhD thesis, MIT, February, 2020 (tensor-compiler.org).
39a2c9d4bbSAart Bik //
40a2c9d4bbSAart Bik // Implementation detail: We use llvm::SmallVector for vectors with
41a2c9d4bbSAart Bik // variable lengths and std::vector for vectors with fixed lengths.
42a2c9d4bbSAart Bik //===----------------------------------------------------------------------===//
43a2c9d4bbSAart Bik 
44a2c9d4bbSAart Bik #include "mlir/Dialect/Linalg/IR/LinalgOps.h"
45a2c9d4bbSAart Bik #include "mlir/Dialect/Linalg/Utils/Utils.h"
4666f878ceSMatthias Springer #include "mlir/Dialect/MemRef/IR/MemRef.h"
47a2c9d4bbSAart Bik #include "mlir/Dialect/SCF/SCF.h"
48a2c9d4bbSAart Bik #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
49a2c9d4bbSAart Bik #include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
50744146f6SGus Smith #include "mlir/Dialect/SparseTensor/Utils/Merger.h"
51a2c9d4bbSAart Bik #include "mlir/Dialect/StandardOps/IR/Ops.h"
52a2c9d4bbSAart Bik #include "mlir/Dialect/Vector/VectorOps.h"
53a2c9d4bbSAart Bik #include "mlir/IR/Matchers.h"
5496a23911SAart Bik #include "mlir/IR/TensorEncoding.h"
55a2c9d4bbSAart Bik #include "llvm/ADT/SmallBitVector.h"
56a2c9d4bbSAart Bik 
57a2c9d4bbSAart Bik using namespace mlir;
5896a23911SAart Bik using namespace mlir::sparse_tensor;
59a2c9d4bbSAart Bik 
60a2c9d4bbSAart Bik namespace {
61a2c9d4bbSAart Bik 
62a2c9d4bbSAart Bik // Code generation.
63a2c9d4bbSAart Bik struct CodeGen {
6496a23911SAart Bik   CodeGen(SparsificationOptions o, unsigned numTensors, unsigned numLoops)
65a2c9d4bbSAart Bik       : options(o), loops(numLoops), sizes(numLoops), buffers(numTensors),
66a2c9d4bbSAart Bik         pointers(numTensors, std::vector<Value>(numLoops)),
67a2c9d4bbSAart Bik         indices(numTensors, std::vector<Value>(numLoops)),
68a2c9d4bbSAart Bik         highs(numTensors, std::vector<Value>(numLoops)),
69a2c9d4bbSAart Bik         pidxs(numTensors, std::vector<Value>(numLoops)),
70a2c9d4bbSAart Bik         idxs(numTensors, std::vector<Value>(numLoops)), redExp(-1u), redVal(),
71a2c9d4bbSAart Bik         curVecLength(1), curVecMask() {}
72a2c9d4bbSAart Bik   /// Sparsification options.
7396a23911SAart Bik   SparsificationOptions options;
74a2c9d4bbSAart Bik   /// Universal dense indices and upper bounds (by index). The loops array
75a2c9d4bbSAart Bik   /// is updated with the value of the universal dense index in the current
76a2c9d4bbSAart Bik   /// loop. The sizes array is set once with the inferred dimension sizes.
77a2c9d4bbSAart Bik   std::vector<Value> loops;
78a2c9d4bbSAart Bik   std::vector<Value> sizes;
79a2c9d4bbSAart Bik   /// Buffers for storing dense and sparse numerical values (by tensor).
80a2c9d4bbSAart Bik   /// This array is set once during bufferization of all tensors.
81a2c9d4bbSAart Bik   std::vector<Value> buffers;
82a2c9d4bbSAart Bik   /// Sparse storage schemes (1-D): pointers and indices (by tensor and index).
83a2c9d4bbSAart Bik   /// This array is set once during bufferization of all sparse tensors.
84a2c9d4bbSAart Bik   std::vector<std::vector<Value>> pointers;
85a2c9d4bbSAart Bik   std::vector<std::vector<Value>> indices;
86a2c9d4bbSAart Bik   /// Sparse iteration information (by tensor and index). These arrays
87a2c9d4bbSAart Bik   /// are updated to remain current within the current loop.
88a2c9d4bbSAart Bik   std::vector<std::vector<Value>> highs;
89a2c9d4bbSAart Bik   std::vector<std::vector<Value>> pidxs;
90a2c9d4bbSAart Bik   std::vector<std::vector<Value>> idxs;
91a2c9d4bbSAart Bik   /// Current reduction, updated during code generation. When indices of a
92a2c9d4bbSAart Bik   /// reduction are exhausted,  all inner loops can "scalarize" the reduction.
93a2c9d4bbSAart Bik   // TODO: currently only done for (a chain of) innermost for-loops, where it
94a2c9d4bbSAart Bik   // is most effective; we could generalize to more outer and while-loops.
95a2c9d4bbSAart Bik   unsigned redExp;
96a2c9d4bbSAart Bik   Value redVal;
97a2c9d4bbSAart Bik   // Current vector length and mask.
98a2c9d4bbSAart Bik   unsigned curVecLength;
99a2c9d4bbSAart Bik   Value curVecMask;
100a2c9d4bbSAart Bik };
101a2c9d4bbSAart Bik 
102a2c9d4bbSAart Bik } // namespace
103a2c9d4bbSAart Bik 
104c194b49cSAart Bik // Helper method to apply dimension ordering permutation.
105c194b49cSAart Bik static unsigned perm(SparseTensorEncodingAttr &enc, unsigned d) {
106c194b49cSAart Bik   if (enc) {
107c194b49cSAart Bik     auto order = enc.getDimOrdering();
108c194b49cSAart Bik     if (order) {
109c194b49cSAart Bik       assert(order.isPermutation());
110c194b49cSAart Bik       return order.getDimPosition(d);
111c194b49cSAart Bik     }
112c194b49cSAart Bik   }
113c194b49cSAart Bik   return d;
114c194b49cSAart Bik }
115c194b49cSAart Bik 
11696a23911SAart Bik // Helper method to translate dim level type to internal representation.
11796a23911SAart Bik static Dim toDim(SparseTensorEncodingAttr &enc, unsigned d) {
11896a23911SAart Bik   if (enc) {
11996a23911SAart Bik     SparseTensorEncodingAttr::DimLevelType tp = enc.getDimLevelType()[d];
12096a23911SAart Bik     if (tp == SparseTensorEncodingAttr::DimLevelType::Compressed)
12196a23911SAart Bik       return Dim::kSparse;
12296a23911SAart Bik     if (tp == SparseTensorEncodingAttr::DimLevelType::Singleton)
12396a23911SAart Bik       return Dim::kSingle;
12496a23911SAart Bik   }
12596a23911SAart Bik   return Dim::kDense;
12696a23911SAart Bik }
12796a23911SAart Bik 
12896a23911SAart Bik /// Helper method to inspect sparse encodings in the tensor types.
129a2c9d4bbSAart Bik /// Fills the per-dimension sparsity information for all tensors.
130bf9ef3efSAart Bik static bool findSparseAnnotations(Merger &merger, linalg::GenericOp op) {
131bf9ef3efSAart Bik   bool annotated = false;
1322f2b5b7dSTobias Gysi   for (OpOperand *t : op.getInputAndOutputOperands()) {
1332f2b5b7dSTobias Gysi     auto map = op.getTiedIndexingMap(t);
134c194b49cSAart Bik     if (!map.isProjectedPermutation())
135c194b49cSAart Bik       return false;
1362f2b5b7dSTobias Gysi     auto enc = getSparseTensorEncoding(t->get().getType());
137727a63e0SAart Bik     if (enc)
138bf9ef3efSAart Bik       annotated = true;
1392f2b5b7dSTobias Gysi     assert(map.getNumResults() == op.getRank(t));
140c194b49cSAart Bik     for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
141c194b49cSAart Bik       unsigned idx = map.getDimPosition(perm(enc, d));
1422f2b5b7dSTobias Gysi       merger.setDim(t->getOperandNumber(), idx, toDim(enc, d));
143a2c9d4bbSAart Bik     }
144a2c9d4bbSAart Bik   }
145bf9ef3efSAart Bik   return annotated;
146a2c9d4bbSAart Bik }
147a2c9d4bbSAart Bik 
148a2c9d4bbSAart Bik /// A DFS helper to compute a topological sort. Note that recursion is
149a2c9d4bbSAart Bik /// bounded by the number of implicit loops, which is always small.
150a2c9d4bbSAart Bik /// Returns false when a cycle is detected.
151a2c9d4bbSAart Bik static bool topSortDFS(unsigned i, std::vector<unsigned> &visit,
152a2c9d4bbSAart Bik                        std::vector<unsigned> &topSort,
153a2c9d4bbSAart Bik                        std::vector<std::vector<bool>> &adjM) {
154a2c9d4bbSAart Bik   if (visit[i] != 0)
155a2c9d4bbSAart Bik     return visit[i] != 1; // 1 denotes cycle!
156a2c9d4bbSAart Bik   visit[i] = 1;
157a2c9d4bbSAart Bik   for (unsigned j = 0, e = visit.size(); j < e; j++)
158a2c9d4bbSAart Bik     if (adjM[i][j])
159a2c9d4bbSAart Bik       if (!topSortDFS(j, visit, topSort, adjM))
160a2c9d4bbSAart Bik         return false;
161a2c9d4bbSAart Bik   visit[i] = 2;
162a2c9d4bbSAart Bik   topSort.push_back(i);
163a2c9d4bbSAart Bik   return true;
164a2c9d4bbSAart Bik }
165a2c9d4bbSAart Bik 
166a2c9d4bbSAart Bik /// Computes a topologically sorted iteration graph for the linalg operation.
167a2c9d4bbSAart Bik /// Ensures all tensors are visited in natural index order. This is essential
168a2c9d4bbSAart Bik /// for sparse storage formats since these only support access along fixed
169a2c9d4bbSAart Bik /// dimensions. Even for dense storage formats, however, the natural index
170a2c9d4bbSAart Bik /// order yields innermost unit-stride access with better spatial locality.
171a2c9d4bbSAart Bik static bool computeIterationGraph(Merger &merger, linalg::GenericOp op,
172a2c9d4bbSAart Bik                                   std::vector<unsigned> &topSort,
173a2c9d4bbSAart Bik                                   bool sparseOnly) {
174a2c9d4bbSAart Bik   // Set up an n x n from/to adjacency matrix of the iteration graph
175a2c9d4bbSAart Bik   // for the implicit loop indices i_0 .. i_n-1.
176a2c9d4bbSAart Bik   unsigned n = op.getNumLoops();
177a2c9d4bbSAart Bik   std::vector<std::vector<bool>> adjM(n, std::vector<bool>(n, false));
178a2c9d4bbSAart Bik 
179a2c9d4bbSAart Bik   // Iterate over the indexing maps of every tensor in the tensor expression.
1802f2b5b7dSTobias Gysi   for (OpOperand *t : op.getInputAndOutputOperands()) {
1812f2b5b7dSTobias Gysi     auto map = op.getTiedIndexingMap(t);
1822f2b5b7dSTobias Gysi     auto enc = getSparseTensorEncoding(t->get().getType());
183a2c9d4bbSAart Bik     assert(map.getNumDims() == n);
184a2c9d4bbSAart Bik     // Skip dense tensor constraints when sparse only is requested.
185c194b49cSAart Bik     if (sparseOnly && !enc)
186a2c9d4bbSAart Bik       continue;
187c194b49cSAart Bik     // Each tensor expression and optional dimension ordering (row-major
188c194b49cSAart Bik     // by default) puts an ordering constraint on the loop indices. For
189c194b49cSAart Bik     // example, the tensor expresion A_ijk forces the ordering i < j < k
190c194b49cSAart Bik     // on the loop indices if no explicit dimension ordering is given.
191c194b49cSAart Bik     for (unsigned d = 1, rank = map.getNumResults(); d < rank; d++) {
192c194b49cSAart Bik       unsigned f = map.getDimPosition(perm(enc, d - 1));
193c194b49cSAart Bik       unsigned t = map.getDimPosition(perm(enc, d));
194a2c9d4bbSAart Bik       adjM[f][t] = true;
195a2c9d4bbSAart Bik     }
196a2c9d4bbSAart Bik   }
197a2c9d4bbSAart Bik 
198a2c9d4bbSAart Bik   // Topologically sort the iteration graph to determine loop order.
199a2c9d4bbSAart Bik   // Report failure for a cyclic iteration graph.
200a2c9d4bbSAart Bik   topSort.clear();
201a2c9d4bbSAart Bik   topSort.reserve(n);
202a2c9d4bbSAart Bik   std::vector<unsigned> visit(n, 0);
203a2c9d4bbSAart Bik   for (unsigned i = 0; i < n; i++)
204a2c9d4bbSAart Bik     if (visit[i] == 0)
205a2c9d4bbSAart Bik       if (!topSortDFS(i, visit, topSort, adjM))
206a2c9d4bbSAart Bik         return false; // cycle!
207a2c9d4bbSAart Bik   std::reverse(std::begin(topSort), std::end(topSort));
208a2c9d4bbSAart Bik   return true;
209a2c9d4bbSAart Bik }
210a2c9d4bbSAart Bik 
21136b66ab9SAart Bik /// Returns true when the tensor expression is admissable for codegen.
21236b66ab9SAart Bik /// Since all sparse input tensors are admissable, we just need to check
21336b66ab9SAart Bik /// whether the output tensor in the tensor expression codegen is admissable.
21436b66ab9SAart Bik static bool isAdmissableTensorExp(Merger &merger, linalg::GenericOp op,
21536b66ab9SAart Bik                                   unsigned exp) {
21636b66ab9SAart Bik   OpOperand *lhs = op.getOutputOperand(0);
21736b66ab9SAart Bik   unsigned tensor = lhs->getOperandNumber();
21836b66ab9SAart Bik   auto enc = getSparseTensorEncoding(lhs->get().getType());
21936b66ab9SAart Bik   // An non-annotated output tensor is assumed dense, and becomes a random
22036b66ab9SAart Bik   // access n-dim memref. Admissable since inserstions cannot occur.
22136b66ab9SAart Bik   if (!enc)
22236b66ab9SAart Bik     return true;
22336b66ab9SAart Bik   // An all-dense annotated "sparse" output tensor becomes a linearized random
22436b66ab9SAart Bik   // access 1-dim memref. Also admissable since insertions cannot occur.
22536b66ab9SAart Bik   bool allDense = true;
22636b66ab9SAart Bik   unsigned numLoops = op.iterator_types().getValue().size();
22736b66ab9SAart Bik   for (unsigned i = 0; i < numLoops; i++)
22836b66ab9SAart Bik     if (merger.isDim(tensor, i, Dim::kSparse)) {
22936b66ab9SAart Bik       allDense = false;
23036b66ab9SAart Bik       break;
23136b66ab9SAart Bik     }
23236b66ab9SAart Bik   if (allDense)
23336b66ab9SAart Bik     return true;
23436b66ab9SAart Bik   // A tensor expression with a sparse output tensor that changes its values
23536b66ab9SAart Bik   // but not its nonzero structure, an operation called "simply dynamic" in
23636b66ab9SAart Bik   // [Bik96,Ch9], is also admissable without special codegen.
23745b3cfe8SAart Bik   if (merger.isConjunction(tensor, exp))
23836b66ab9SAart Bik     return true;
23936b66ab9SAart Bik   // Reject for now since this requires changes to the nonzero structure.
24036b66ab9SAart Bik   // TODO: implement "workspaces" [Kjolstad2019]
24136b66ab9SAart Bik   return false;
24236b66ab9SAart Bik }
24336b66ab9SAart Bik 
244a2c9d4bbSAart Bik /// Maps sparse integer option to actual integral storage type.
24596a23911SAart Bik static Type genIntType(PatternRewriter &rewriter, unsigned width) {
24696a23911SAart Bik   if (width == 0)
247a2c9d4bbSAart Bik     return rewriter.getIndexType();
24896a23911SAart Bik   return rewriter.getIntegerType(width);
249a2c9d4bbSAart Bik }
250a2c9d4bbSAart Bik 
2515879da49SAart Bik /// Detects in-place annotation on tensor argument.
2525879da49SAart Bik static bool getInPlace(Value val) {
2535879da49SAart Bik   if (auto arg = val.dyn_cast<BlockArgument>())
2545879da49SAart Bik     if (auto funcOp = dyn_cast<FuncOp>(arg.getOwner()->getParentOp()))
2555879da49SAart Bik       if (auto attr = funcOp.getArgAttrOfType<BoolAttr>(
2565879da49SAart Bik               arg.getArgNumber(), linalg::LinalgDialect::kInplaceableAttrName))
2575879da49SAart Bik         return attr.getValue();
2585879da49SAart Bik   return false;
2595879da49SAart Bik }
2605879da49SAart Bik 
261a2c9d4bbSAart Bik /// Generates buffer for the output tensor.
262a2c9d4bbSAart Bik static Value genOutputBuffer(CodeGen &codegen, PatternRewriter &rewriter,
263a2c9d4bbSAart Bik                              linalg::GenericOp op, MemRefType denseTp,
264a2c9d4bbSAart Bik                              ArrayRef<Value> args) {
265a2c9d4bbSAart Bik   Location loc = op.getLoc();
2662f2b5b7dSTobias Gysi   Value tensor = op.getOutputOperand(0)->get();
267a2c9d4bbSAart Bik   // The output tensor simply could materialize from the buffer that will
268a2c9d4bbSAart Bik   // be generated for the tensor present in the outs() clause. This has
269a2c9d4bbSAart Bik   // the major advantage that the sparse kernel only updates the nonzero
2705879da49SAart Bik   // positions for the output tensor.
2715879da49SAart Bik   if (getInPlace(tensor))
272a2c9d4bbSAart Bik     return rewriter.create<memref::BufferCastOp>(loc, denseTp, tensor);
273a2c9d4bbSAart Bik   // By default, a new buffer is allocated which is initialized to the
274a2c9d4bbSAart Bik   // tensor defined in the outs() clause. This is always correct but
275a2c9d4bbSAart Bik   // introduces a dense initialization component that may negatively
276a2c9d4bbSAart Bik   // impact the running complexity of the sparse kernel.
277a2c9d4bbSAart Bik   Value init = rewriter.create<memref::BufferCastOp>(loc, denseTp, tensor);
278a2c9d4bbSAart Bik   Value alloc = rewriter.create<memref::AllocOp>(loc, denseTp, args);
279*68ac2e53SAart Bik   rewriter.create<memref::CopyOp>(loc, init, alloc);
280a2c9d4bbSAart Bik   return alloc;
281a2c9d4bbSAart Bik }
282a2c9d4bbSAart Bik 
283a2c9d4bbSAart Bik /// Local bufferization of all dense and sparse data structures.
284a2c9d4bbSAart Bik /// This code enables testing the first prototype sparse compiler.
285a2c9d4bbSAart Bik // TODO: replace this with a proliferated bufferization strategy
286727a63e0SAart Bik static bool genBuffers(Merger &merger, CodeGen &codegen,
287a2c9d4bbSAart Bik                        PatternRewriter &rewriter, linalg::GenericOp op) {
288a2c9d4bbSAart Bik   Location loc = op.getLoc();
2892f2b5b7dSTobias Gysi   assert(op.getNumInputsAndOutputs() == op.getNumInputs() + 1);
290a2c9d4bbSAart Bik   // For every tensor, find lower and upper bound on dimensions, set the
291a2c9d4bbSAart Bik   // same bounds on loop indices, and obtain dense or sparse buffer(s).
292a2c9d4bbSAart Bik   SmallVector<Value, 4> args;
2932f2b5b7dSTobias Gysi   for (OpOperand *t : op.getInputAndOutputOperands()) {
294727a63e0SAart Bik     unsigned tensor = t->getOperandNumber();
2952f2b5b7dSTobias Gysi     auto shape = op.getShape(t);
2962f2b5b7dSTobias Gysi     auto map = op.getTiedIndexingMap(t);
2972f2b5b7dSTobias Gysi     auto enc = getSparseTensorEncoding(t->get().getType());
298a2c9d4bbSAart Bik     // Scan all dimensions of current tensor.
299a2c9d4bbSAart Bik     args.clear();
300c194b49cSAart Bik     for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
301c194b49cSAart Bik       unsigned idx = map.getDimPosition(perm(enc, d));
302a2c9d4bbSAart Bik       // Handle sparse storage schemes.
303727a63e0SAart Bik       if (merger.isDim(tensor, idx, Dim::kSparse)) {
304a2c9d4bbSAart Bik         auto dynShape = {ShapedType::kDynamicSize};
305a2c9d4bbSAart Bik         auto ptrTp = MemRefType::get(
30696a23911SAart Bik             dynShape, genIntType(rewriter, enc.getPointerBitWidth()));
307a2c9d4bbSAart Bik         auto indTp = MemRefType::get(
30896a23911SAart Bik             dynShape, genIntType(rewriter, enc.getIndexBitWidth()));
309a2c9d4bbSAart Bik         Value dim = rewriter.create<ConstantIndexOp>(loc, d);
310a2c9d4bbSAart Bik         // Generate sparse primitives to obtains pointer and indices.
311727a63e0SAart Bik         codegen.pointers[tensor][idx] =
3122f2b5b7dSTobias Gysi             rewriter.create<ToPointersOp>(loc, ptrTp, t->get(), dim);
313727a63e0SAart Bik         codegen.indices[tensor][idx] =
3142f2b5b7dSTobias Gysi             rewriter.create<ToIndicesOp>(loc, indTp, t->get(), dim);
315a2c9d4bbSAart Bik       }
316a2c9d4bbSAart Bik       // Find lower and upper bound in current dimension.
317a2c9d4bbSAart Bik       Value up;
318a2c9d4bbSAart Bik       if (shape[d] == MemRefType::kDynamicSize) {
3192c115eccSMatthias Springer         up = rewriter.create<tensor::DimOp>(loc, t->get(), d);
320a2c9d4bbSAart Bik         args.push_back(up);
321a2c9d4bbSAart Bik       } else {
322a2c9d4bbSAart Bik         up = rewriter.create<ConstantIndexOp>(loc, shape[d]);
323a2c9d4bbSAart Bik       }
324727a63e0SAart Bik       codegen.sizes[idx] = codegen.highs[tensor][idx] = up;
325a2c9d4bbSAart Bik     }
326727a63e0SAart Bik     // Perform the required bufferization. Dense inputs materialize
327727a63e0SAart Bik     // from the input tensors. Dense outputs need special handling.
328727a63e0SAart Bik     // Sparse inputs use sparse primitives to obtain the values.
329727a63e0SAart Bik     // We also accept in-place all-dense annotated "sparse" outputs.
3302f2b5b7dSTobias Gysi     Type elementType = getElementTypeOrSelf(t->get().getType());
33196a23911SAart Bik     if (!enc) {
332727a63e0SAart Bik       // Non-annotated dense tensors.
3332f2b5b7dSTobias Gysi       auto denseTp = MemRefType::get(shape, elementType);
334727a63e0SAart Bik       if (tensor < op.getNumInputs())
335727a63e0SAart Bik         codegen.buffers[tensor] =
3362f2b5b7dSTobias Gysi             rewriter.create<memref::BufferCastOp>(loc, denseTp, t->get());
337a2c9d4bbSAart Bik       else
338727a63e0SAart Bik         codegen.buffers[tensor] =
339a2c9d4bbSAart Bik             genOutputBuffer(codegen, rewriter, op, denseTp, args);
340a2c9d4bbSAart Bik     } else {
341727a63e0SAart Bik       // Annotated sparse tensors.
342727a63e0SAart Bik       if (tensor == op.getNumInputs() && !getInPlace(t->get()))
343727a63e0SAart Bik         return false; // reject output if not in-place
344a2c9d4bbSAart Bik       auto dynShape = {ShapedType::kDynamicSize};
3452f2b5b7dSTobias Gysi       auto sparseTp = MemRefType::get(dynShape, elementType);
346727a63e0SAart Bik       codegen.buffers[tensor] =
3472f2b5b7dSTobias Gysi           rewriter.create<ToValuesOp>(loc, sparseTp, t->get());
348a2c9d4bbSAart Bik     }
349a2c9d4bbSAart Bik   }
350727a63e0SAart Bik   return true;
351a2c9d4bbSAart Bik }
352a2c9d4bbSAart Bik 
353a2c9d4bbSAart Bik /// Constructs vector type.
354a2c9d4bbSAart Bik static VectorType vectorType(CodeGen &codegen, Type etp) {
355a2c9d4bbSAart Bik   return VectorType::get(codegen.curVecLength, etp);
356a2c9d4bbSAart Bik }
357a2c9d4bbSAart Bik 
358a2c9d4bbSAart Bik /// Constructs vector type from pointer.
359a2c9d4bbSAart Bik static VectorType vectorType(CodeGen &codegen, Value ptr) {
360a2c9d4bbSAart Bik   return vectorType(codegen, ptr.getType().cast<MemRefType>().getElementType());
361a2c9d4bbSAart Bik }
362a2c9d4bbSAart Bik 
363a2c9d4bbSAart Bik /// Constructs vector iteration mask.
364a2c9d4bbSAart Bik static Value genVectorMask(CodeGen &codegen, PatternRewriter &rewriter,
365a2c9d4bbSAart Bik                            Value iv, Value lo, Value hi, Value step) {
366a2c9d4bbSAart Bik   Location loc = iv.getLoc();
367a2c9d4bbSAart Bik   VectorType mtp = vectorType(codegen, rewriter.getIntegerType(1));
368a2c9d4bbSAart Bik   // Special case if the vector length evenly divides the trip count (for
369a2c9d4bbSAart Bik   // example, "for i = 0, 128, 16"). A constant all-true mask is generated
370a2c9d4bbSAart Bik   // so that all subsequent masked memory operations are immediately folded
371a2c9d4bbSAart Bik   // into unconditional memory operations.
372a2c9d4bbSAart Bik   IntegerAttr loInt, hiInt, stepInt;
373a2c9d4bbSAart Bik   if (matchPattern(lo, m_Constant(&loInt)) &&
374a2c9d4bbSAart Bik       matchPattern(hi, m_Constant(&hiInt)) &&
375a2c9d4bbSAart Bik       matchPattern(step, m_Constant(&stepInt))) {
376a2c9d4bbSAart Bik     if (((hiInt.getInt() - loInt.getInt()) % stepInt.getInt()) == 0)
377a2c9d4bbSAart Bik       return rewriter.create<vector::BroadcastOp>(
378a2c9d4bbSAart Bik           loc, mtp, rewriter.create<ConstantIntOp>(loc, 1, 1));
379a2c9d4bbSAart Bik   }
380a2c9d4bbSAart Bik   // Otherwise, generate a vector mask that avoids overrunning the upperbound
381a2c9d4bbSAart Bik   // during vector execution. Here we rely on subsequent loop optimizations to
382a2c9d4bbSAart Bik   // avoid executing the mask in all iterations, for example, by splitting the
383a2c9d4bbSAart Bik   // loop into an unconditional vector loop and a scalar cleanup loop.
384a2c9d4bbSAart Bik   Value end = rewriter.create<SubIOp>(loc, hi, iv);
385a2c9d4bbSAart Bik   return rewriter.create<vector::CreateMaskOp>(loc, mtp, end);
386a2c9d4bbSAart Bik }
387a2c9d4bbSAart Bik 
388a2c9d4bbSAart Bik /// Generates a vectorized load lhs = a[ind[lo:hi]] or lhs = a[lo:hi].
389a2c9d4bbSAart Bik static Value genVectorLoad(CodeGen &codegen, PatternRewriter &rewriter,
390a2c9d4bbSAart Bik                            Value ptr, ArrayRef<Value> args) {
391a2c9d4bbSAart Bik   Location loc = ptr.getLoc();
392a2c9d4bbSAart Bik   VectorType vtp = vectorType(codegen, ptr);
393a2c9d4bbSAart Bik   Value pass = rewriter.create<ConstantOp>(loc, vtp, rewriter.getZeroAttr(vtp));
394a2c9d4bbSAart Bik   if (args.back().getType().isa<VectorType>()) {
395a2c9d4bbSAart Bik     SmallVector<Value, 4> scalarArgs(args.begin(), args.end());
396a2c9d4bbSAart Bik     Value indexVec = args.back();
397a2c9d4bbSAart Bik     scalarArgs.back() = rewriter.create<ConstantIndexOp>(loc, 0);
398a2c9d4bbSAart Bik     return rewriter.create<vector::GatherOp>(
399a2c9d4bbSAart Bik         loc, vtp, ptr, scalarArgs, indexVec, codegen.curVecMask, pass);
400a2c9d4bbSAart Bik   }
401a2c9d4bbSAart Bik   return rewriter.create<vector::MaskedLoadOp>(loc, vtp, ptr, args,
402a2c9d4bbSAart Bik                                                codegen.curVecMask, pass);
403a2c9d4bbSAart Bik }
404a2c9d4bbSAart Bik 
405a2c9d4bbSAart Bik /// Generates a vectorized store a[ind[lo:hi]] = rhs or a[lo:hi] = rhs.
406a2c9d4bbSAart Bik static void genVectorStore(CodeGen &codegen, PatternRewriter &rewriter,
407a2c9d4bbSAart Bik                            Value rhs, Value ptr, ArrayRef<Value> args) {
408a2c9d4bbSAart Bik   Location loc = ptr.getLoc();
409a2c9d4bbSAart Bik   if (args.back().getType().isa<VectorType>()) {
410a2c9d4bbSAart Bik     SmallVector<Value, 4> scalarArgs(args.begin(), args.end());
411a2c9d4bbSAart Bik     Value indexVec = args.back();
412a2c9d4bbSAart Bik     scalarArgs.back() = rewriter.create<ConstantIndexOp>(loc, 0);
413a2c9d4bbSAart Bik     rewriter.create<vector::ScatterOp>(loc, ptr, scalarArgs, indexVec,
414a2c9d4bbSAart Bik                                        codegen.curVecMask, rhs);
415a2c9d4bbSAart Bik     return;
416a2c9d4bbSAart Bik   }
417a2c9d4bbSAart Bik   rewriter.create<vector::MaskedStoreOp>(loc, ptr, args, codegen.curVecMask,
418a2c9d4bbSAart Bik                                          rhs);
419a2c9d4bbSAart Bik }
420a2c9d4bbSAart Bik 
421a2c9d4bbSAart Bik /// Generates a vectorized invariant. Here we rely on subsequent loop
422a2c9d4bbSAart Bik /// optimizations to hoist the invariant broadcast out of the vector loop.
423a2c9d4bbSAart Bik static Value genVectorInvariantValue(CodeGen &codegen,
424a2c9d4bbSAart Bik                                      PatternRewriter &rewriter, Value val) {
425a2c9d4bbSAart Bik   VectorType vtp = vectorType(codegen, val.getType());
426a2c9d4bbSAart Bik   return rewriter.create<vector::BroadcastOp>(val.getLoc(), vtp, val);
427a2c9d4bbSAart Bik }
428a2c9d4bbSAart Bik 
429a2c9d4bbSAart Bik /// Generates a load on a dense or sparse tensor.
430a2c9d4bbSAart Bik static Value genTensorLoad(Merger &merger, CodeGen &codegen,
431a2c9d4bbSAart Bik                            PatternRewriter &rewriter, linalg::GenericOp op,
432a2c9d4bbSAart Bik                            unsigned exp) {
433a2c9d4bbSAart Bik   // Test if the load was hoisted to a higher loop nest.
434a2c9d4bbSAart Bik   Value val = merger.exp(exp).val;
435a2c9d4bbSAart Bik   if (val) {
436a2c9d4bbSAart Bik     if (codegen.curVecLength > 1 && !val.getType().isa<VectorType>())
437a2c9d4bbSAart Bik       return genVectorInvariantValue(codegen, rewriter, val);
438a2c9d4bbSAart Bik     return val;
439a2c9d4bbSAart Bik   }
440a2c9d4bbSAart Bik   // Actual load.
441a2c9d4bbSAart Bik   SmallVector<Value, 4> args;
4424569c14aSGus Smith   OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).tensor];
443727a63e0SAart Bik   unsigned tensor = t->getOperandNumber();
444727a63e0SAart Bik   auto map = op.getTiedIndexingMap(t);
445727a63e0SAart Bik   auto enc = getSparseTensorEncoding(t->get().getType());
446727a63e0SAart Bik   unsigned rank = map.getNumResults();
44796a23911SAart Bik   if (enc) {
448727a63e0SAart Bik     unsigned idx = map.getDimPosition(perm(enc, rank - 1));
449727a63e0SAart Bik     assert(codegen.pidxs[tensor][idx] != nullptr);
450727a63e0SAart Bik     args.push_back(codegen.pidxs[tensor][idx]); // position index
451727a63e0SAart Bik   } else {
452727a63e0SAart Bik     for (unsigned d = 0; d < rank; d++) {
453727a63e0SAart Bik       unsigned idx = map.getDimPosition(d);
454727a63e0SAart Bik       args.push_back(codegen.loops[idx]); // universal dense index
455a2c9d4bbSAart Bik     }
456a2c9d4bbSAart Bik   }
457a2c9d4bbSAart Bik   Location loc = op.getLoc();
458727a63e0SAart Bik   Value ptr = codegen.buffers[tensor];
459a2c9d4bbSAart Bik   if (codegen.curVecLength > 1)
460a2c9d4bbSAart Bik     return genVectorLoad(codegen, rewriter, ptr, args);
461a2c9d4bbSAart Bik   return rewriter.create<memref::LoadOp>(loc, ptr, args);
462a2c9d4bbSAart Bik }
463a2c9d4bbSAart Bik 
464727a63e0SAart Bik /// Generates a store on a dense or sparse tensor.
465a2c9d4bbSAart Bik static void genTensorStore(Merger &merger, CodeGen &codegen,
466a2c9d4bbSAart Bik                            PatternRewriter &rewriter, linalg::GenericOp op,
467727a63e0SAart Bik                            OpOperand *t, Value rhs) {
468a2c9d4bbSAart Bik   Location loc = op.getLoc();
469a2c9d4bbSAart Bik   // Test if this is a scalarized reduction.
4702f2b5b7dSTobias Gysi   OpOperand *lhs = op.getOutputOperand(0);
471727a63e0SAart Bik   if (lhs == t && codegen.redVal) {
472a2c9d4bbSAart Bik     if (codegen.curVecLength > 1)
473a2c9d4bbSAart Bik       rhs = rewriter.create<SelectOp>(loc, codegen.curVecMask, rhs,
474a2c9d4bbSAart Bik                                       codegen.redVal);
475a2c9d4bbSAart Bik     codegen.redVal = rhs;
476a2c9d4bbSAart Bik     return;
477a2c9d4bbSAart Bik   }
478a2c9d4bbSAart Bik   // Actual store.
479a2c9d4bbSAart Bik   SmallVector<Value, 4> args;
480727a63e0SAart Bik   unsigned tensor = t->getOperandNumber();
481727a63e0SAart Bik   auto map = op.getTiedIndexingMap(t);
482727a63e0SAart Bik   auto enc = getSparseTensorEncoding(t->get().getType());
483727a63e0SAart Bik   unsigned rank = map.getNumResults();
484727a63e0SAart Bik   if (enc) {
485727a63e0SAart Bik     unsigned idx = map.getDimPosition(perm(enc, rank - 1));
486727a63e0SAart Bik     assert(codegen.pidxs[tensor][idx] != nullptr);
487727a63e0SAart Bik     args.push_back(codegen.pidxs[tensor][idx]); // position index
488727a63e0SAart Bik   } else {
489727a63e0SAart Bik     for (unsigned d = 0; d < rank; d++) {
490c194b49cSAart Bik       unsigned idx = map.getDimPosition(d);
491a2c9d4bbSAart Bik       args.push_back(codegen.loops[idx]); // universal dense index
492a2c9d4bbSAart Bik     }
493727a63e0SAart Bik   }
494727a63e0SAart Bik   Value ptr = codegen.buffers[tensor];
495a2c9d4bbSAart Bik   if (codegen.curVecLength > 1)
496a2c9d4bbSAart Bik     genVectorStore(codegen, rewriter, rhs, ptr, args);
497a2c9d4bbSAart Bik   else
498a2c9d4bbSAart Bik     rewriter.create<memref::StoreOp>(loc, rhs, ptr, args);
499a2c9d4bbSAart Bik }
500a2c9d4bbSAart Bik 
501a2c9d4bbSAart Bik /// Generates a pointer/index load from the sparse storage scheme. Narrower
502a2c9d4bbSAart Bik /// data types need to be zero extended before casting the value into the
503a2c9d4bbSAart Bik /// index type used for looping and indexing.
504a2c9d4bbSAart Bik static Value genLoad(CodeGen &codegen, PatternRewriter &rewriter, Location loc,
505a2c9d4bbSAart Bik                      Value ptr, Value s) {
506a2c9d4bbSAart Bik   // See https://llvm.org/docs/GetElementPtr.html for some background on
507a2c9d4bbSAart Bik   // the complications described below.
508a2c9d4bbSAart Bik   if (codegen.curVecLength > 1) {
509a2c9d4bbSAart Bik     // Since the index vector is used in a subsequent gather/scatter operations,
510a2c9d4bbSAart Bik     // which effectively defines an unsigned pointer + signed index, we must
511a2c9d4bbSAart Bik     // zero extend the vector to an index width. For 8-bit and 16-bit values,
512a2c9d4bbSAart Bik     // an 32-bit index width suffices. For 32-bit values, zero extending the
513a2c9d4bbSAart Bik     // elements into 64-bit loses some performance since the 32-bit indexed
51486e9bc1aSAart Bik     // gather/scatter is more efficient than the 64-bit index variant (if the
51586e9bc1aSAart Bik     // negative 32-bit index space is unused, the enableSIMDIndex32 flag can
516727a63e0SAart Bik     // preserve this performance). For 64-bit values, there is no good way
517a2c9d4bbSAart Bik     // to state that the indices are unsigned, with creates the potential of
518a2c9d4bbSAart Bik     // incorrect address calculations in the unlikely case we need such
519a2c9d4bbSAart Bik     // extremely large offsets.
520a2c9d4bbSAart Bik     Type etp = ptr.getType().cast<MemRefType>().getElementType();
521a2c9d4bbSAart Bik     Value vload = genVectorLoad(codegen, rewriter, ptr, {s});
522a2c9d4bbSAart Bik     if (!etp.isa<IndexType>()) {
523a2c9d4bbSAart Bik       if (etp.getIntOrFloatBitWidth() < 32)
524a2c9d4bbSAart Bik         vload = rewriter.create<ZeroExtendIOp>(
525a2c9d4bbSAart Bik             loc, vload, vectorType(codegen, rewriter.getIntegerType(32)));
52686e9bc1aSAart Bik       else if (etp.getIntOrFloatBitWidth() < 64 &&
52786e9bc1aSAart Bik                !codegen.options.enableSIMDIndex32)
528a2c9d4bbSAart Bik         vload = rewriter.create<ZeroExtendIOp>(
529a2c9d4bbSAart Bik             loc, vload, vectorType(codegen, rewriter.getIntegerType(64)));
530a2c9d4bbSAart Bik     }
531a2c9d4bbSAart Bik     return vload;
532a2c9d4bbSAart Bik   }
533a2c9d4bbSAart Bik   // For the scalar case, we simply zero extend narrower indices into 64-bit
534a2c9d4bbSAart Bik   // values before casting to index without a performance penalty. Here too,
535a2c9d4bbSAart Bik   // however, indices that already are 64-bit, in theory, cannot express the
536a2c9d4bbSAart Bik   // full range as explained above.
537a2c9d4bbSAart Bik   Value load = rewriter.create<memref::LoadOp>(loc, ptr, s);
538a2c9d4bbSAart Bik   if (!load.getType().isa<IndexType>()) {
539a2c9d4bbSAart Bik     if (load.getType().getIntOrFloatBitWidth() < 64)
540a2c9d4bbSAart Bik       load = rewriter.create<ZeroExtendIOp>(loc, load,
541a2c9d4bbSAart Bik                                             rewriter.getIntegerType(64));
542a2c9d4bbSAart Bik     load = rewriter.create<IndexCastOp>(loc, load, rewriter.getIndexType());
543a2c9d4bbSAart Bik   }
544a2c9d4bbSAart Bik   return load;
545a2c9d4bbSAart Bik }
546a2c9d4bbSAart Bik 
547a2c9d4bbSAart Bik /// Generates an invariant value.
548a2c9d4bbSAart Bik static Value genInvariantValue(Merger &merger, CodeGen &codegen,
549a2c9d4bbSAart Bik                                PatternRewriter &rewriter, unsigned exp) {
550a2c9d4bbSAart Bik   Value val = merger.exp(exp).val;
551a2c9d4bbSAart Bik   if (codegen.curVecLength > 1)
552a2c9d4bbSAart Bik     return genVectorInvariantValue(codegen, rewriter, val);
553a2c9d4bbSAart Bik   return val;
554a2c9d4bbSAart Bik }
555a2c9d4bbSAart Bik 
556a2c9d4bbSAart Bik /// Generates an address computation "sz * p + i".
557a2c9d4bbSAart Bik static Value genAddress(CodeGen &codegen, PatternRewriter &rewriter,
558a2c9d4bbSAart Bik                         Location loc, Value size, Value p, Value i) {
559a2c9d4bbSAart Bik   Value mul = rewriter.create<MulIOp>(loc, size, p);
560a2c9d4bbSAart Bik   if (auto vtp = i.getType().dyn_cast<VectorType>()) {
561a2c9d4bbSAart Bik     Value inv = rewriter.create<IndexCastOp>(loc, mul, vtp.getElementType());
562a2c9d4bbSAart Bik     mul = genVectorInvariantValue(codegen, rewriter, inv);
563a2c9d4bbSAart Bik   }
564a2c9d4bbSAart Bik   return rewriter.create<AddIOp>(loc, mul, i);
565a2c9d4bbSAart Bik }
566a2c9d4bbSAart Bik 
567a2c9d4bbSAart Bik /// Generates start of a reduction.
568a2c9d4bbSAart Bik static Value genReductionStart(Merger &merger, CodeGen &codegen,
569a2c9d4bbSAart Bik                                PatternRewriter &rewriter,
570a2c9d4bbSAart Bik                                linalg::GenericOp op) {
571a2c9d4bbSAart Bik   if (codegen.redVal)
572a2c9d4bbSAart Bik     return codegen.redVal; // chained with previous for-loop
573a2c9d4bbSAart Bik   if (codegen.curVecLength > 1) {
574a2c9d4bbSAart Bik     // TODO: assumes + reductions for now
575a2c9d4bbSAart Bik     VectorType vtp = vectorType(codegen, codegen.buffers[codegen.redExp]);
576a2c9d4bbSAart Bik     return rewriter.create<ConstantOp>(op.getLoc(), vtp,
577a2c9d4bbSAart Bik                                        rewriter.getZeroAttr(vtp));
578a2c9d4bbSAart Bik   }
579a2c9d4bbSAart Bik   return genTensorLoad(merger, codegen, rewriter, op, codegen.redExp);
580a2c9d4bbSAart Bik }
581a2c9d4bbSAart Bik 
582a2c9d4bbSAart Bik /// Generates end of a reduction.
583a2c9d4bbSAart Bik static void genReductionEnd(Merger &merger, CodeGen &codegen,
584a2c9d4bbSAart Bik                             PatternRewriter &rewriter, linalg::GenericOp op) {
585a2c9d4bbSAart Bik   Value red = codegen.redVal;
586a2c9d4bbSAart Bik   if (!red)
587a2c9d4bbSAart Bik     return;
588a2c9d4bbSAart Bik   assert(codegen.curVecLength == 1);
589a2c9d4bbSAart Bik   codegen.redVal = merger.exp(codegen.redExp).val = Value(); // end chain
5902f2b5b7dSTobias Gysi   OpOperand *lhs = op.getOutputOperand(0);
591a2c9d4bbSAart Bik   if (auto vtp = red.getType().dyn_cast<VectorType>()) {
592a2c9d4bbSAart Bik     // TODO: assumes + reductions for now
593a2c9d4bbSAart Bik     StringAttr kind = rewriter.getStringAttr("add");
594a2c9d4bbSAart Bik     Value ld = genTensorLoad(merger, codegen, rewriter, op, codegen.redExp);
595a2c9d4bbSAart Bik     // Integer reductions don't accept an accumulator.
596a2c9d4bbSAart Bik     if (vtp.getElementType().isa<IntegerType>()) {
597a2c9d4bbSAart Bik       red = rewriter.create<vector::ReductionOp>(op.getLoc(), ld.getType(),
598a2c9d4bbSAart Bik                                                  kind, red, ValueRange{});
599a2c9d4bbSAart Bik       red = rewriter.create<AddIOp>(op.getLoc(), red, ld);
600a2c9d4bbSAart Bik     } else {
601a2c9d4bbSAart Bik       red = rewriter.create<vector::ReductionOp>(op.getLoc(), ld.getType(),
602a2c9d4bbSAart Bik                                                  kind, red, ld);
603a2c9d4bbSAart Bik     }
604a2c9d4bbSAart Bik   }
605a2c9d4bbSAart Bik   genTensorStore(merger, codegen, rewriter, op, lhs, red);
606a2c9d4bbSAart Bik }
607a2c9d4bbSAart Bik 
608a2c9d4bbSAart Bik /// Recursively generates tensor expression.
609a2c9d4bbSAart Bik static Value genExp(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
610a2c9d4bbSAart Bik                     linalg::GenericOp op, unsigned exp) {
611b8a021dbSAart Bik   Location loc = op.getLoc();
612123e8dfcSAart Bik   if (exp == -1u)
613123e8dfcSAart Bik     return Value();
614a2c9d4bbSAart Bik   if (merger.exp(exp).kind == Kind::kTensor)
615a2c9d4bbSAart Bik     return genTensorLoad(merger, codegen, rewriter, op, exp);
616b8a021dbSAart Bik   if (merger.exp(exp).kind == Kind::kInvariant)
617a2c9d4bbSAart Bik     return genInvariantValue(merger, codegen, rewriter, exp);
6184569c14aSGus Smith   Value v0 = genExp(merger, codegen, rewriter, op, merger.exp(exp).children.e0);
6194569c14aSGus Smith   Value v1 = genExp(merger, codegen, rewriter, op, merger.exp(exp).children.e1);
620123e8dfcSAart Bik   if (merger.exp(exp).kind == Kind::kNegI) {
621123e8dfcSAart Bik     // TODO: no negi in std, need to make zero explicit.
622123e8dfcSAart Bik     Type tp = op.getOutputTensorTypes()[0].getElementType();
623123e8dfcSAart Bik     v1 = v0;
624123e8dfcSAart Bik     v0 = rewriter.create<ConstantOp>(loc, tp, rewriter.getZeroAttr(tp));
625123e8dfcSAart Bik     if (codegen.curVecLength > 1)
626123e8dfcSAart Bik       v0 = genVectorInvariantValue(codegen, rewriter, v0);
627123e8dfcSAart Bik   }
62845b3cfe8SAart Bik   return merger.buildExp(rewriter, loc, exp, v0, v1);
629a2c9d4bbSAart Bik }
630a2c9d4bbSAart Bik 
631a2c9d4bbSAart Bik /// Hoists loop invariant tensor loads for which indices have been exhausted.
632a2c9d4bbSAart Bik static void genInvariants(Merger &merger, CodeGen &codegen,
633a2c9d4bbSAart Bik                           PatternRewriter &rewriter, linalg::GenericOp op,
634a2c9d4bbSAart Bik                           unsigned exp, unsigned ldx, bool hoist) {
635123e8dfcSAart Bik   if (exp == -1u)
636123e8dfcSAart Bik     return;
637a2c9d4bbSAart Bik   if (merger.exp(exp).kind == Kind::kTensor) {
638a2c9d4bbSAart Bik     // Inspect tensor indices.
639a2c9d4bbSAart Bik     bool atLevel = ldx == -1u;
6404569c14aSGus Smith     OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).tensor];
641619bfe8bSAart Bik     auto map = op.getTiedIndexingMap(t);
642619bfe8bSAart Bik     auto enc = getSparseTensorEncoding(t->get().getType());
643c194b49cSAart Bik     for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
644c194b49cSAart Bik       unsigned idx = map.getDimPosition(perm(enc, d));
645a2c9d4bbSAart Bik       if (!codegen.loops[idx])
646a2c9d4bbSAart Bik         return; // still in play
647a2c9d4bbSAart Bik       else if (idx == ldx)
648a2c9d4bbSAart Bik         atLevel = true;
649a2c9d4bbSAart Bik     }
650a2c9d4bbSAart Bik     // All exhausted at this level (atLevel denotes exactly at this level).
6512f2b5b7dSTobias Gysi     OpOperand *lhs = op.getOutputOperand(0);
652619bfe8bSAart Bik     if (lhs == t) {
653a2c9d4bbSAart Bik       codegen.redExp = hoist ? exp : -1u;
654a2c9d4bbSAart Bik     } else if (atLevel) {
655a2c9d4bbSAart Bik       merger.exp(exp).val =
656a2c9d4bbSAart Bik           hoist ? genTensorLoad(merger, codegen, rewriter, op, exp) : Value();
657a2c9d4bbSAart Bik     }
658123e8dfcSAart Bik   } else if (merger.exp(exp).kind != Kind::kInvariant) {
659a2c9d4bbSAart Bik     // Traverse into the binary operations. Note that we only hoist
660a2c9d4bbSAart Bik     // tensor loads, since subsequent MLIR/LLVM passes know how to
661a2c9d4bbSAart Bik     // deal with all other kinds of derived loop invariants.
6624569c14aSGus Smith     unsigned e0 = merger.exp(exp).children.e0;
6634569c14aSGus Smith     unsigned e1 = merger.exp(exp).children.e1;
664a2c9d4bbSAart Bik     genInvariants(merger, codegen, rewriter, op, e0, ldx, hoist);
665a2c9d4bbSAart Bik     genInvariants(merger, codegen, rewriter, op, e1, ldx, hoist);
666a2c9d4bbSAart Bik   }
667a2c9d4bbSAart Bik }
668a2c9d4bbSAart Bik 
669a2c9d4bbSAart Bik /// Generates initialization code for the subsequent loop sequence at
670a2c9d4bbSAart Bik /// current index level. Returns true if the loop sequence needs to
671a2c9d4bbSAart Bik /// maintain the universal index.
672a2c9d4bbSAart Bik static bool genInit(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
673a2c9d4bbSAart Bik                     linalg::GenericOp op, std::vector<unsigned> &topSort,
674a2c9d4bbSAart Bik                     unsigned at, llvm::BitVector &inits) {
675a2c9d4bbSAart Bik   bool needsUniv = false;
676a2c9d4bbSAart Bik   Location loc = op.getLoc();
677a2c9d4bbSAart Bik   unsigned idx = topSort[at];
678a2c9d4bbSAart Bik 
679a2c9d4bbSAart Bik   // Initialize sparse positions.
680a2c9d4bbSAart Bik   for (unsigned b = 0, be = inits.size(); b < be; b++) {
681a2c9d4bbSAart Bik     if (inits[b]) {
682a2c9d4bbSAart Bik       unsigned tensor = merger.tensor(b);
683a2c9d4bbSAart Bik       assert(idx == merger.index(b));
684a2c9d4bbSAart Bik       if (merger.isDim(b, Dim::kSparse)) {
685a2c9d4bbSAart Bik         // Initialize sparse index.
686a2c9d4bbSAart Bik         unsigned pat = at;
687a2c9d4bbSAart Bik         for (; pat != 0; pat--) {
688a2c9d4bbSAart Bik           if (codegen.pidxs[tensor][topSort[pat - 1]])
689a2c9d4bbSAart Bik             break;
690a2c9d4bbSAart Bik         }
691a2c9d4bbSAart Bik         Value ptr = codegen.pointers[tensor][idx];
692a2c9d4bbSAart Bik         Value one = rewriter.create<ConstantIndexOp>(loc, 1);
693a2c9d4bbSAart Bik         Value p0 = (pat == 0) ? rewriter.create<ConstantIndexOp>(loc, 0)
694a2c9d4bbSAart Bik                               : codegen.pidxs[tensor][topSort[pat - 1]];
695a2c9d4bbSAart Bik         codegen.pidxs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p0);
696a2c9d4bbSAart Bik         Value p1 = rewriter.create<AddIOp>(loc, p0, one);
697a2c9d4bbSAart Bik         codegen.highs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p1);
698a2c9d4bbSAart Bik       } else {
699a2c9d4bbSAart Bik         // Dense index still in play.
700a2c9d4bbSAart Bik         needsUniv = true;
701a2c9d4bbSAart Bik       }
702a2c9d4bbSAart Bik     }
703a2c9d4bbSAart Bik   }
704a2c9d4bbSAart Bik 
705a2c9d4bbSAart Bik   // Initialize the universal dense index.
706a2c9d4bbSAart Bik   codegen.loops[idx] = rewriter.create<ConstantIndexOp>(loc, 0);
707a2c9d4bbSAart Bik   return needsUniv;
708a2c9d4bbSAart Bik }
709a2c9d4bbSAart Bik 
710a2c9d4bbSAart Bik /// Returns vectorization strategy. Any implicit inner loop in the Linalg
711a2c9d4bbSAart Bik /// operation is a candidate. Whether it is actually converted to SIMD code
712a2c9d4bbSAart Bik /// depends on the requested strategy.
713a2c9d4bbSAart Bik static bool isVectorFor(CodeGen &codegen, bool isInner, bool isSparse) {
714a2c9d4bbSAart Bik   switch (codegen.options.vectorizationStrategy) {
715a2c9d4bbSAart Bik   case SparseVectorizationStrategy::kNone:
716a2c9d4bbSAart Bik     return false;
717a2c9d4bbSAart Bik   case SparseVectorizationStrategy::kDenseInnerLoop:
718a2c9d4bbSAart Bik     return isInner && !isSparse;
719a2c9d4bbSAart Bik   case SparseVectorizationStrategy::kAnyStorageInnerLoop:
720a2c9d4bbSAart Bik     return isInner;
721a2c9d4bbSAart Bik   }
722a2c9d4bbSAart Bik   llvm_unreachable("unexpected vectorization strategy");
723a2c9d4bbSAart Bik }
724a2c9d4bbSAart Bik 
725a2c9d4bbSAart Bik /// Returns parallelization strategy. Any implicit loop in the Linalg operation
726a2c9d4bbSAart Bik /// that is marked "parallel" is a candidate. Whether it is actually converted
727a2c9d4bbSAart Bik /// to a parallel operation depends on the requested strategy.
728a2c9d4bbSAart Bik static bool isParallelFor(CodeGen &codegen, bool isOuter, bool isReduction,
729a2c9d4bbSAart Bik                           bool isSparse, bool isVector) {
730a2c9d4bbSAart Bik   switch (codegen.options.parallelizationStrategy) {
731a2c9d4bbSAart Bik   case SparseParallelizationStrategy::kNone:
732a2c9d4bbSAart Bik     return false;
733a2c9d4bbSAart Bik   case SparseParallelizationStrategy::kDenseOuterLoop:
734a2c9d4bbSAart Bik     return isOuter && !isSparse && !isReduction && !isVector;
735a2c9d4bbSAart Bik   case SparseParallelizationStrategy::kAnyStorageOuterLoop:
736a2c9d4bbSAart Bik     return isOuter && !isReduction && !isVector;
737a2c9d4bbSAart Bik   case SparseParallelizationStrategy::kDenseAnyLoop:
738a2c9d4bbSAart Bik     return !isSparse && !isReduction && !isVector;
739a2c9d4bbSAart Bik   case SparseParallelizationStrategy::kAnyStorageAnyLoop:
740a2c9d4bbSAart Bik     return !isReduction && !isVector;
741a2c9d4bbSAart Bik   }
742a2c9d4bbSAart Bik   llvm_unreachable("unexpected parallelization strategy");
743a2c9d4bbSAart Bik }
744a2c9d4bbSAart Bik 
745a2c9d4bbSAart Bik /// Checks unit strides for dense tensors. The iteration graph may have ignored
746a2c9d4bbSAart Bik /// dense access patterns in order to avoid cycles (sparse access patterns are
747a2c9d4bbSAart Bik /// always placed innermost), but that means dense access has become strided.
748a2c9d4bbSAart Bik /// For now, we reject vectorization of such cases.
749a2c9d4bbSAart Bik /// TODO: implement strided load/stores on dense arrays
750a2c9d4bbSAart Bik static bool denseUnitStrides(Merger &merger, linalg::GenericOp op,
751a2c9d4bbSAart Bik                              unsigned idx) {
7522f2b5b7dSTobias Gysi   for (OpOperand *t : op.getInputAndOutputOperands()) {
7532f2b5b7dSTobias Gysi     if (!getSparseTensorEncoding(t->get().getType())) {
7542f2b5b7dSTobias Gysi       auto map = op.getTiedIndexingMap(t);
755c194b49cSAart Bik       for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
756c194b49cSAart Bik         if (map.getDimPosition(d) == idx && d != rank - 1)
757a2c9d4bbSAart Bik           return false;
758a2c9d4bbSAart Bik       }
759a2c9d4bbSAart Bik     }
760a2c9d4bbSAart Bik   }
761a2c9d4bbSAart Bik   return true;
762a2c9d4bbSAart Bik }
763a2c9d4bbSAart Bik 
764a2c9d4bbSAart Bik /// Generates a for-loop on a single index.
765a2c9d4bbSAart Bik static Operation *genFor(Merger &merger, CodeGen &codegen,
766a2c9d4bbSAart Bik                          PatternRewriter &rewriter, linalg::GenericOp op,
767a2c9d4bbSAart Bik                          bool isOuter, bool isInner, unsigned idx,
768a2c9d4bbSAart Bik                          llvm::BitVector &indices) {
769a2c9d4bbSAart Bik   unsigned fb = indices.find_first();
770a2c9d4bbSAart Bik   unsigned tensor = merger.tensor(fb);
771a2c9d4bbSAart Bik   assert(idx == merger.index(fb));
772a2c9d4bbSAart Bik   auto iteratorTypes = op.iterator_types().getValue();
773a2c9d4bbSAart Bik   bool isReduction = linalg::isReductionIteratorType(iteratorTypes[idx]);
774a2c9d4bbSAart Bik   bool isSparse = merger.isDim(fb, Dim::kSparse);
775a2c9d4bbSAart Bik   bool isVector = isVectorFor(codegen, isInner, isSparse) &&
776a2c9d4bbSAart Bik                   denseUnitStrides(merger, op, idx);
777a2c9d4bbSAart Bik   bool isParallel =
778a2c9d4bbSAart Bik       isParallelFor(codegen, isOuter, isReduction, isSparse, isVector);
779a2c9d4bbSAart Bik 
780a2c9d4bbSAart Bik   // Prepare vector length.
781a2c9d4bbSAart Bik   if (isVector)
782a2c9d4bbSAart Bik     codegen.curVecLength = codegen.options.vectorLength;
783a2c9d4bbSAart Bik 
784a2c9d4bbSAart Bik   // Loop bounds and increment.
785a2c9d4bbSAart Bik   Location loc = op.getLoc();
786a2c9d4bbSAart Bik   Value lo = isSparse ? codegen.pidxs[tensor][idx] : codegen.loops[idx];
787a2c9d4bbSAart Bik   Value hi = isSparse ? codegen.highs[tensor][idx] : codegen.sizes[idx];
788a2c9d4bbSAart Bik   Value step = rewriter.create<ConstantIndexOp>(loc, codegen.curVecLength);
789a2c9d4bbSAart Bik 
790a2c9d4bbSAart Bik   // Emit a parallel loop.
791a2c9d4bbSAart Bik   if (isParallel) {
792a2c9d4bbSAart Bik     assert(!isVector);
793a2c9d4bbSAart Bik     scf::ParallelOp parOp = rewriter.create<scf::ParallelOp>(loc, lo, hi, step);
794a2c9d4bbSAart Bik     if (isSparse)
795a2c9d4bbSAart Bik       codegen.pidxs[tensor][idx] = parOp.getInductionVars()[0];
796a2c9d4bbSAart Bik     else
797a2c9d4bbSAart Bik       codegen.loops[idx] = parOp.getInductionVars()[0];
798a2c9d4bbSAart Bik     rewriter.setInsertionPointToStart(parOp.getBody());
799a2c9d4bbSAart Bik     return parOp;
800a2c9d4bbSAart Bik   }
801a2c9d4bbSAart Bik 
802a2c9d4bbSAart Bik   // Emit a sequential loop, potentially with a scalarized reduction.
803a2c9d4bbSAart Bik   bool scalarRed = isInner && codegen.redExp != -1u;
804a2c9d4bbSAart Bik   SmallVector<Value, 4> operands;
805a2c9d4bbSAart Bik   if (scalarRed) {
806a2c9d4bbSAart Bik     Value load = genReductionStart(merger, codegen, rewriter, op);
807a2c9d4bbSAart Bik     operands.push_back(load);
808a2c9d4bbSAart Bik   }
809a2c9d4bbSAart Bik   scf::ForOp forOp = rewriter.create<scf::ForOp>(loc, lo, hi, step, operands);
810a2c9d4bbSAart Bik   if (scalarRed) {
811a2c9d4bbSAart Bik     codegen.redVal = merger.exp(codegen.redExp).val =
812a2c9d4bbSAart Bik         forOp.getRegionIterArgs().front();
813a2c9d4bbSAart Bik   }
814a2c9d4bbSAart Bik   // Assign induction variable to sparse or dense index.
815a2c9d4bbSAart Bik   Value iv = forOp.getInductionVar();
816a2c9d4bbSAart Bik   if (isSparse)
817a2c9d4bbSAart Bik     codegen.pidxs[tensor][idx] = iv;
818a2c9d4bbSAart Bik   else
819a2c9d4bbSAart Bik     codegen.loops[idx] = iv;
820a2c9d4bbSAart Bik   rewriter.setInsertionPointToStart(forOp.getBody());
821a2c9d4bbSAart Bik   // Share vector iteration mask between all subsequent loads/stores.
822a2c9d4bbSAart Bik   if (isVector)
823a2c9d4bbSAart Bik     codegen.curVecMask = genVectorMask(codegen, rewriter, iv, lo, hi, step);
824a2c9d4bbSAart Bik   return forOp;
825a2c9d4bbSAart Bik }
826a2c9d4bbSAart Bik 
827a2c9d4bbSAart Bik /// Emit a while-loop for co-iteration over multiple indices.
828a2c9d4bbSAart Bik static Operation *genWhile(Merger &merger, CodeGen &codegen,
829a2c9d4bbSAart Bik                            PatternRewriter &rewriter, linalg::GenericOp op,
830a2c9d4bbSAart Bik                            unsigned idx, bool needsUniv,
831a2c9d4bbSAart Bik                            llvm::BitVector &indices) {
832a2c9d4bbSAart Bik   SmallVector<Type, 4> types;
833a2c9d4bbSAart Bik   SmallVector<Value, 4> operands;
834a2c9d4bbSAart Bik   // Construct the while-loop with a parameter for each index.
835a2c9d4bbSAart Bik   Type indexType = rewriter.getIndexType();
836a2c9d4bbSAart Bik   for (unsigned b = 0, be = indices.size(); b < be; b++) {
837a2c9d4bbSAart Bik     if (indices[b] && merger.isDim(b, Dim::kSparse)) {
838a2c9d4bbSAart Bik       unsigned tensor = merger.tensor(b);
839a2c9d4bbSAart Bik       assert(idx == merger.index(b));
840a2c9d4bbSAart Bik       types.push_back(indexType);
841a2c9d4bbSAart Bik       assert(codegen.pidxs[tensor][idx].getType().isa<IndexType>() &&
842a2c9d4bbSAart Bik              "type mismatch for sparse index");
843a2c9d4bbSAart Bik       operands.push_back(codegen.pidxs[tensor][idx]);
844a2c9d4bbSAart Bik     }
845a2c9d4bbSAart Bik   }
846a2c9d4bbSAart Bik   if (needsUniv) {
847a2c9d4bbSAart Bik     types.push_back(indexType);
848a2c9d4bbSAart Bik     assert(codegen.loops[idx].getType().isa<IndexType>() &&
849a2c9d4bbSAart Bik            "type mismatch for universal index");
850a2c9d4bbSAart Bik     operands.push_back(codegen.loops[idx]);
851a2c9d4bbSAart Bik   }
852a2c9d4bbSAart Bik   Location loc = op.getLoc();
853a2c9d4bbSAart Bik   scf::WhileOp whileOp = rewriter.create<scf::WhileOp>(loc, types, operands);
854a2c9d4bbSAart Bik   Block *before = rewriter.createBlock(&whileOp.before(), {}, types);
855a2c9d4bbSAart Bik   Block *after = rewriter.createBlock(&whileOp.after(), {}, types);
856a2c9d4bbSAart Bik 
857a2c9d4bbSAart Bik   // Build the "before" region, which effectively consists
858a2c9d4bbSAart Bik   // of a conjunction of "i < upper" tests on all induction.
859a2c9d4bbSAart Bik   rewriter.setInsertionPointToStart(&whileOp.before().front());
860a2c9d4bbSAart Bik   Value cond;
861a2c9d4bbSAart Bik   unsigned o = 0;
862a2c9d4bbSAart Bik   for (unsigned b = 0, be = indices.size(); b < be; b++) {
863a2c9d4bbSAart Bik     if (indices[b] && merger.isDim(b, Dim::kSparse)) {
864a2c9d4bbSAart Bik       unsigned tensor = merger.tensor(b);
865a2c9d4bbSAart Bik       assert(idx == merger.index(b));
866a2c9d4bbSAart Bik       Value op1 = before->getArgument(o);
867a2c9d4bbSAart Bik       Value op2 = codegen.highs[tensor][idx];
868a2c9d4bbSAart Bik       Value opc = rewriter.create<CmpIOp>(loc, CmpIPredicate::ult, op1, op2);
869a2c9d4bbSAart Bik       cond = cond ? rewriter.create<AndOp>(loc, cond, opc) : opc;
870a2c9d4bbSAart Bik       codegen.pidxs[tensor][idx] = after->getArgument(o++);
871a2c9d4bbSAart Bik     }
872a2c9d4bbSAart Bik   }
873a2c9d4bbSAart Bik   if (needsUniv)
874a2c9d4bbSAart Bik     codegen.loops[idx] = after->getArgument(o++);
875a2c9d4bbSAart Bik   assert(o == operands.size());
876a2c9d4bbSAart Bik   rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments());
877a2c9d4bbSAart Bik   rewriter.setInsertionPointToStart(&whileOp.after().front());
878a2c9d4bbSAart Bik   return whileOp;
879a2c9d4bbSAart Bik }
880a2c9d4bbSAart Bik 
881a2c9d4bbSAart Bik /// Generates a for-loop or a while-loop, depending on whether it implements
882a2c9d4bbSAart Bik /// singleton iteration or co-iteration over the given conjunction.
883a2c9d4bbSAart Bik static Operation *genLoop(Merger &merger, CodeGen &codegen,
884a2c9d4bbSAart Bik                           PatternRewriter &rewriter, linalg::GenericOp op,
885a2c9d4bbSAart Bik                           std::vector<unsigned> &topSort, unsigned at,
886a2c9d4bbSAart Bik                           bool needsUniv, llvm::BitVector &indices) {
887a2c9d4bbSAart Bik   unsigned idx = topSort[at];
888a2c9d4bbSAart Bik   if (indices.count() == 1) {
889a2c9d4bbSAart Bik     bool isOuter = at == 0;
890a2c9d4bbSAart Bik     bool isInner = at == topSort.size() - 1;
891a2c9d4bbSAart Bik     return genFor(merger, codegen, rewriter, op, isOuter, isInner, idx,
892a2c9d4bbSAart Bik                   indices);
893a2c9d4bbSAart Bik   }
894a2c9d4bbSAart Bik   genReductionEnd(merger, codegen, rewriter, op); // cannot chain
895a2c9d4bbSAart Bik   return genWhile(merger, codegen, rewriter, op, idx, needsUniv, indices);
896a2c9d4bbSAart Bik }
897a2c9d4bbSAart Bik 
898a2c9d4bbSAart Bik /// Generates the local variables for this loop, consisting of the sparse
899a2c9d4bbSAart Bik /// indices, restored universal dense index, and dense positions.
900a2c9d4bbSAart Bik static void genLocals(Merger &merger, CodeGen &codegen,
901a2c9d4bbSAart Bik                       PatternRewriter &rewriter, linalg::GenericOp op,
902a2c9d4bbSAart Bik                       std::vector<unsigned> &topSort, unsigned at,
903a2c9d4bbSAart Bik                       bool needsUniv, llvm::BitVector &locals) {
904a2c9d4bbSAart Bik   Location loc = op.getLoc();
905a2c9d4bbSAart Bik   unsigned idx = topSort[at];
906a2c9d4bbSAart Bik 
907a2c9d4bbSAart Bik   // Initialize sparse indices.
908a2c9d4bbSAart Bik   Value min;
909a2c9d4bbSAart Bik   for (unsigned b = 0, be = locals.size(); b < be; b++) {
910a2c9d4bbSAart Bik     if (locals[b] && merger.isDim(b, Dim::kSparse)) {
911a2c9d4bbSAart Bik       unsigned tensor = merger.tensor(b);
912a2c9d4bbSAart Bik       assert(idx == merger.index(b));
913a2c9d4bbSAart Bik       Value ptr = codegen.indices[tensor][idx];
914a2c9d4bbSAart Bik       Value s = codegen.pidxs[tensor][idx];
915a2c9d4bbSAart Bik       Value load = genLoad(codegen, rewriter, loc, ptr, s);
916a2c9d4bbSAart Bik       codegen.idxs[tensor][idx] = load;
917a2c9d4bbSAart Bik       if (!needsUniv) {
918a2c9d4bbSAart Bik         if (min) {
919a2c9d4bbSAart Bik           Value cmp =
920a2c9d4bbSAart Bik               rewriter.create<CmpIOp>(loc, CmpIPredicate::ult, load, min);
921a2c9d4bbSAart Bik           min = rewriter.create<SelectOp>(loc, cmp, load, min);
922a2c9d4bbSAart Bik         } else {
923a2c9d4bbSAart Bik           min = load;
924a2c9d4bbSAart Bik         }
925a2c9d4bbSAart Bik       }
926a2c9d4bbSAart Bik     }
927a2c9d4bbSAart Bik   }
928a2c9d4bbSAart Bik 
929a2c9d4bbSAart Bik   // Merge dense universal index over minimum.
930a2c9d4bbSAart Bik   if (min) {
931a2c9d4bbSAart Bik     assert(!needsUniv);
932a2c9d4bbSAart Bik     codegen.loops[idx] = min;
933a2c9d4bbSAart Bik   }
934a2c9d4bbSAart Bik 
935727a63e0SAart Bik   // Initialize dense positions. Note that we generate dense indices of the
936727a63e0SAart Bik   // output tensor unconditionally, since they may not appear in the lattice,
937727a63e0SAart Bik   // but may be needed for linearized codegen.
938a2c9d4bbSAart Bik   for (unsigned b = 0, be = locals.size(); b < be; b++) {
939727a63e0SAart Bik     if ((locals[b] || merger.isOutTensor(b, idx)) &&
940727a63e0SAart Bik         merger.isDim(b, Dim::kDense)) {
941a2c9d4bbSAart Bik       unsigned tensor = merger.tensor(b);
942a2c9d4bbSAart Bik       assert(idx == merger.index(b));
943a2c9d4bbSAart Bik       unsigned pat = at;
944a2c9d4bbSAart Bik       for (; pat != 0; pat--)
945a2c9d4bbSAart Bik         if (codegen.pidxs[tensor][topSort[pat - 1]])
946a2c9d4bbSAart Bik           break;
947a2c9d4bbSAart Bik       Value p = (pat == 0) ? rewriter.create<ConstantIndexOp>(loc, 0)
948a2c9d4bbSAart Bik                            : codegen.pidxs[tensor][topSort[pat - 1]];
949a2c9d4bbSAart Bik       codegen.pidxs[tensor][idx] = genAddress(
950a2c9d4bbSAart Bik           codegen, rewriter, loc, codegen.sizes[idx], p, codegen.loops[idx]);
951a2c9d4bbSAart Bik     }
952a2c9d4bbSAart Bik   }
953a2c9d4bbSAart Bik }
954a2c9d4bbSAart Bik 
955a2c9d4bbSAart Bik /// Generates the induction structure for a while-loop.
956a2c9d4bbSAart Bik static void genWhileInduction(Merger &merger, CodeGen &codegen,
957a2c9d4bbSAart Bik                               PatternRewriter &rewriter, linalg::GenericOp op,
958a2c9d4bbSAart Bik                               unsigned idx, bool needsUniv,
959a2c9d4bbSAart Bik                               llvm::BitVector &induction, ResultRange results) {
960a2c9d4bbSAart Bik   Location loc = op.getLoc();
961a2c9d4bbSAart Bik   unsigned o = 0;
962a2c9d4bbSAart Bik   SmallVector<Value, 4> operands;
963a2c9d4bbSAart Bik   Value one = rewriter.create<ConstantIndexOp>(loc, 1);
964a2c9d4bbSAart Bik   for (unsigned b = 0, be = induction.size(); b < be; b++) {
965a2c9d4bbSAart Bik     if (induction[b] && merger.isDim(b, Dim::kSparse)) {
966a2c9d4bbSAart Bik       unsigned tensor = merger.tensor(b);
967a2c9d4bbSAart Bik       assert(idx == merger.index(b));
968a2c9d4bbSAart Bik       Value op1 = codegen.idxs[tensor][idx];
969a2c9d4bbSAart Bik       Value op2 = codegen.loops[idx];
970a2c9d4bbSAart Bik       Value op3 = codegen.pidxs[tensor][idx];
971a2c9d4bbSAart Bik       Value cmp = rewriter.create<CmpIOp>(loc, CmpIPredicate::eq, op1, op2);
972a2c9d4bbSAart Bik       Value add = rewriter.create<AddIOp>(loc, op3, one);
973a2c9d4bbSAart Bik       operands.push_back(rewriter.create<SelectOp>(loc, cmp, add, op3));
974a2c9d4bbSAart Bik       codegen.pidxs[tensor][idx] = results[o++];
975a2c9d4bbSAart Bik     }
976a2c9d4bbSAart Bik   }
977a2c9d4bbSAart Bik   if (needsUniv) {
978a2c9d4bbSAart Bik     operands.push_back(rewriter.create<AddIOp>(loc, codegen.loops[idx], one));
979a2c9d4bbSAart Bik     codegen.loops[idx] = results[o++];
980a2c9d4bbSAart Bik   }
981a2c9d4bbSAart Bik   assert(o == operands.size());
982a2c9d4bbSAart Bik   rewriter.create<scf::YieldOp>(loc, operands);
983a2c9d4bbSAart Bik }
984a2c9d4bbSAart Bik 
985a2c9d4bbSAart Bik /// Generates a single if-statement within a while-loop.
986a2c9d4bbSAart Bik static scf::IfOp genIf(Merger &merger, CodeGen &codegen,
987a2c9d4bbSAart Bik                        PatternRewriter &rewriter, linalg::GenericOp op,
988a2c9d4bbSAart Bik                        unsigned idx, llvm::BitVector &conditions) {
989a2c9d4bbSAart Bik   Location loc = op.getLoc();
990a2c9d4bbSAart Bik   Value cond;
991a2c9d4bbSAart Bik   for (unsigned b = 0, be = conditions.size(); b < be; b++) {
992a2c9d4bbSAart Bik     if (conditions[b]) {
993a2c9d4bbSAart Bik       unsigned tensor = merger.tensor(b);
994a2c9d4bbSAart Bik       assert(idx == merger.index(b));
995a2c9d4bbSAart Bik       Value clause;
996a2c9d4bbSAart Bik       if (merger.isDim(b, Dim::kSparse)) {
997a2c9d4bbSAart Bik         Value op1 = codegen.idxs[tensor][idx];
998a2c9d4bbSAart Bik         Value op2 = codegen.loops[idx];
999a2c9d4bbSAart Bik         clause = rewriter.create<CmpIOp>(loc, CmpIPredicate::eq, op1, op2);
1000a2c9d4bbSAart Bik       } else {
1001a2c9d4bbSAart Bik         clause = rewriter.create<ConstantIntOp>(loc, 1, 1); // true
1002a2c9d4bbSAart Bik       }
1003a2c9d4bbSAart Bik       cond = cond ? rewriter.create<AndOp>(loc, cond, clause) : clause;
1004a2c9d4bbSAart Bik     }
1005a2c9d4bbSAart Bik   }
1006a2c9d4bbSAart Bik   scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, cond, /*else*/ true);
1007a2c9d4bbSAart Bik   rewriter.setInsertionPointToStart(&ifOp.thenRegion().front());
1008a2c9d4bbSAart Bik   return ifOp;
1009a2c9d4bbSAart Bik }
1010a2c9d4bbSAart Bik 
1011a2c9d4bbSAart Bik /// Recursively generates code while computing iteration lattices in order
1012a2c9d4bbSAart Bik /// to manage the complexity of implementing co-iteration over unions
1013a2c9d4bbSAart Bik /// and intersections of sparse iterations spaces.
1014a2c9d4bbSAart Bik static void genStmt(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
1015a2c9d4bbSAart Bik                     linalg::GenericOp op, std::vector<unsigned> &topSort,
1016a2c9d4bbSAart Bik                     unsigned exp, unsigned at) {
1017a2c9d4bbSAart Bik   // At each leaf, assign remaining tensor (sub)expression to output tensor.
1018a2c9d4bbSAart Bik   if (at == topSort.size()) {
10192f2b5b7dSTobias Gysi     OpOperand *lhs = op.getOutputOperand(0);
1020a2c9d4bbSAart Bik     Value rhs = genExp(merger, codegen, rewriter, op, exp);
1021a2c9d4bbSAart Bik     genTensorStore(merger, codegen, rewriter, op, lhs, rhs);
1022a2c9d4bbSAart Bik     return;
1023a2c9d4bbSAart Bik   }
1024a2c9d4bbSAart Bik   assert(codegen.curVecLength == 1);
1025a2c9d4bbSAart Bik 
1026a2c9d4bbSAart Bik   // Construct iteration lattices for current loop index, with L0 at top.
1027a2c9d4bbSAart Bik   // Then emit initialization code for the loop sequence at this level.
1028a2c9d4bbSAart Bik   // We maintain the universal dense index if dense indices are still
1029a2c9d4bbSAart Bik   // in play for a non-singleton loop sequence.
1030a2c9d4bbSAart Bik   Location loc = op.getLoc();
1031a2c9d4bbSAart Bik   unsigned idx = topSort[at];
1032043ce4e6SGus Smith   unsigned lts = merger.optimizeSet(merger.buildLattices(exp, idx));
1033a2c9d4bbSAart Bik   unsigned lsize = merger.set(lts).size();
1034a2c9d4bbSAart Bik   assert(lsize != 0);
1035a2c9d4bbSAart Bik   unsigned l0 = merger.set(lts)[0];
1036a2c9d4bbSAart Bik   unsigned ldx = at == 0 ? -1u : topSort[at - 1];
1037a2c9d4bbSAart Bik   genInvariants(merger, codegen, rewriter, op, exp, ldx, /*hoist=*/true);
1038a2c9d4bbSAart Bik   bool needsUniv = false;
1039a2c9d4bbSAart Bik   if (genInit(merger, codegen, rewriter, op, topSort, at,
1040a2c9d4bbSAart Bik               merger.lat(l0).bits)) {
1041a2c9d4bbSAart Bik     // Maintain the universal index only if it is actually
1042a2c9d4bbSAart Bik     // consumed by a subsequent lattice point.
1043a2c9d4bbSAart Bik     for (unsigned i = 1; i < lsize; i++) {
1044a2c9d4bbSAart Bik       unsigned li = merger.set(lts)[i];
1045a2c9d4bbSAart Bik       if (!merger.hasAnyDimOf(merger.lat(li).simple, Dim::kSparse)) {
1046a2c9d4bbSAart Bik         needsUniv = true;
1047a2c9d4bbSAart Bik         break;
1048a2c9d4bbSAart Bik       }
1049a2c9d4bbSAart Bik     }
1050a2c9d4bbSAart Bik   }
1051a2c9d4bbSAart Bik 
1052a2c9d4bbSAart Bik   // Emit a loop for every lattice point L0 >= Li.
1053a2c9d4bbSAart Bik   for (unsigned i = 0; i < lsize; i++) {
1054a2c9d4bbSAart Bik     unsigned li = merger.set(lts)[i];
1055a2c9d4bbSAart Bik 
1056a2c9d4bbSAart Bik     // Emit loop.
1057a2c9d4bbSAart Bik     codegen.curVecLength = 1;
1058a2c9d4bbSAart Bik     llvm::BitVector indices = merger.lat(li).simple;
1059a2c9d4bbSAart Bik     Operation *loop =
1060a2c9d4bbSAart Bik         genLoop(merger, codegen, rewriter, op, topSort, at, needsUniv, indices);
1061a2c9d4bbSAart Bik     genLocals(merger, codegen, rewriter, op, topSort, at, needsUniv,
1062a2c9d4bbSAart Bik               merger.lat(li).bits);
1063a2c9d4bbSAart Bik 
1064a2c9d4bbSAart Bik     // Visit all lattices points with Li >= Lj to generate the
1065a2c9d4bbSAart Bik     // loop-body, possibly with if statements for coiteration.
1066a2c9d4bbSAart Bik     bool isWhile = dyn_cast<scf::WhileOp>(loop) != nullptr;
1067a2c9d4bbSAart Bik     for (unsigned j = 0; j < lsize; j++) {
1068a2c9d4bbSAart Bik       unsigned lj = merger.set(lts)[j];
1069a2c9d4bbSAart Bik       unsigned ej = merger.lat(lj).exp;
1070a2c9d4bbSAart Bik       if (li == lj || merger.latGT(li, lj)) {
1071a2c9d4bbSAart Bik         // Recurse into body of each branch.
1072a2c9d4bbSAart Bik         if (isWhile) {
1073a2c9d4bbSAart Bik           scf::IfOp ifOp =
1074a2c9d4bbSAart Bik               genIf(merger, codegen, rewriter, op, idx, merger.lat(lj).simple);
1075a2c9d4bbSAart Bik           genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1);
1076a2c9d4bbSAart Bik           rewriter.setInsertionPointToStart(&ifOp.elseRegion().front());
1077a2c9d4bbSAart Bik         } else {
1078a2c9d4bbSAart Bik           genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1);
1079a2c9d4bbSAart Bik         }
1080a2c9d4bbSAart Bik       }
1081a2c9d4bbSAart Bik     }
1082a2c9d4bbSAart Bik 
1083a2c9d4bbSAart Bik     // Wrap-up induction and restore insertion point.
1084a2c9d4bbSAart Bik     if (isWhile) {
1085a2c9d4bbSAart Bik       scf::WhileOp whileOp = cast<scf::WhileOp>(loop);
1086a2c9d4bbSAart Bik       rewriter.setInsertionPointToEnd(&whileOp.after().front());
1087a2c9d4bbSAart Bik       genWhileInduction(merger, codegen, rewriter, op, idx, needsUniv,
1088a2c9d4bbSAart Bik                         merger.lat(li).bits, whileOp.results());
1089a2c9d4bbSAart Bik     } else {
1090a2c9d4bbSAart Bik       needsUniv = false;
1091a2c9d4bbSAart Bik       if (codegen.redVal) {
1092a2c9d4bbSAart Bik         rewriter.create<scf::YieldOp>(loc, codegen.redVal);
1093a2c9d4bbSAart Bik         codegen.redVal = loop->getResult(0);
1094a2c9d4bbSAart Bik       }
1095a2c9d4bbSAart Bik     }
1096a2c9d4bbSAart Bik     rewriter.setInsertionPointAfter(loop);
1097a2c9d4bbSAart Bik   }
1098a2c9d4bbSAart Bik 
1099a2c9d4bbSAart Bik   // Wrap-up loop sequence.
1100a2c9d4bbSAart Bik   codegen.curVecLength = 1;
1101a2c9d4bbSAart Bik   genReductionEnd(merger, codegen, rewriter, op);
1102a2c9d4bbSAart Bik   genInvariants(merger, codegen, rewriter, op, exp, ldx, /*hoist=*/false);
1103a2c9d4bbSAart Bik   codegen.loops[idx] = Value();
1104a2c9d4bbSAart Bik }
1105a2c9d4bbSAart Bik 
1106727a63e0SAart Bik /// Converts the result computed by the sparse kernel into the required form.
110736b66ab9SAart Bik static void genResult(Merger &merger, CodeGen &codegen,
110836b66ab9SAart Bik                       PatternRewriter &rewriter, linalg::GenericOp op) {
110936b66ab9SAart Bik   Location loc = op.getLoc();
111036b66ab9SAart Bik   OpOperand *lhs = op.getOutputOperand(0);
111136b66ab9SAart Bik   Type resType = lhs->get().getType();
111236b66ab9SAart Bik   unsigned tensor = lhs->getOperandNumber();
111336b66ab9SAart Bik   auto map = op.getTiedIndexingMap(lhs);
111436b66ab9SAart Bik   auto enc = getSparseTensorEncoding(resType);
111536b66ab9SAart Bik   Value result = codegen.buffers.back(); // value array
111636b66ab9SAart Bik   if (enc) {
111736b66ab9SAart Bik     // The sparse annotation unambigiously defines the arrays needed
111836b66ab9SAart Bik     // to "reconstruct" the sparse tensor from the storage scheme
111936b66ab9SAart Bik     // (even though lowering should never need this eventually).
112036b66ab9SAart Bik     SmallVector<Value, 4> args;
112136b66ab9SAart Bik     for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
112236b66ab9SAart Bik       unsigned idx = map.getDimPosition(perm(enc, d));
112336b66ab9SAart Bik       if (merger.isDim(tensor, idx, Dim::kSparse)) {
112436b66ab9SAart Bik         args.push_back(codegen.pointers[tensor][idx]);
112536b66ab9SAart Bik         args.push_back(codegen.indices[tensor][idx]);
112636b66ab9SAart Bik       }
112736b66ab9SAart Bik     }
112836b66ab9SAart Bik     args.push_back(result);
112936b66ab9SAart Bik     result = rewriter.create<ToTensorOp>(loc, resType, args);
113036b66ab9SAart Bik   } else {
113136b66ab9SAart Bik     // To "reconstruct" an non-annotated tensor, sipmly load it
113236b66ab9SAart Bik     // from the bufferized value.
113336b66ab9SAart Bik     result = rewriter.create<memref::TensorLoadOp>(loc, resType, result);
113436b66ab9SAart Bik   }
1135727a63e0SAart Bik   rewriter.replaceOp(op, result);
1136727a63e0SAart Bik }
1137727a63e0SAart Bik 
1138a2c9d4bbSAart Bik namespace {
1139a2c9d4bbSAart Bik 
1140a2c9d4bbSAart Bik /// Sparse rewriting rule for generic Lingalg operation.
1141a2c9d4bbSAart Bik struct GenericOpSparsifier : public OpRewritePattern<linalg::GenericOp> {
1142a2c9d4bbSAart Bik public:
1143a2c9d4bbSAart Bik   GenericOpSparsifier(MLIRContext *context, SparsificationOptions o)
1144a2c9d4bbSAart Bik       : OpRewritePattern<linalg::GenericOp>(context), options(o) {}
1145a2c9d4bbSAart Bik 
1146a2c9d4bbSAart Bik   LogicalResult matchAndRewrite(linalg::GenericOp op,
1147a2c9d4bbSAart Bik                                 PatternRewriter &rewriter) const override {
1148a2c9d4bbSAart Bik     // Detects sparse annotations and translate the per-dimension sparsity
1149a2c9d4bbSAart Bik     // information for all tensors to loop indices in the kernel.
1150a2c9d4bbSAart Bik     assert(op.getNumOutputs() == 1);
11512f2b5b7dSTobias Gysi     unsigned numTensors = op.getNumInputsAndOutputs();
1152a2c9d4bbSAart Bik     unsigned numLoops = op.iterator_types().getValue().size();
1153a2c9d4bbSAart Bik     Merger merger(numTensors, numLoops);
1154bf9ef3efSAart Bik     if (!findSparseAnnotations(merger, op))
1155bf9ef3efSAart Bik       return failure();
1156a2c9d4bbSAart Bik 
1157a2c9d4bbSAart Bik     // Computes a topologically sorted iteration graph to ensure
1158a2c9d4bbSAart Bik     // tensors are visited in natural index order. Fails on cycles.
1159a2c9d4bbSAart Bik     // This assumes that higher-level passes have already put the
1160a2c9d4bbSAart Bik     // tensors in each tensor expression in a feasible order.
1161a2c9d4bbSAart Bik     std::vector<unsigned> topSort;
1162a2c9d4bbSAart Bik     if (!computeIterationGraph(merger, op, topSort, /*sparseOnly=*/false) &&
1163a2c9d4bbSAart Bik         !computeIterationGraph(merger, op, topSort, /*sparseOnly=*/true))
1164a2c9d4bbSAart Bik       return failure();
1165a2c9d4bbSAart Bik 
1166266a7414SAart Bik     // Builds the tensor expression for the Linalg operation in SSA form.
1167266a7414SAart Bik     Optional<unsigned> exp = merger.buildTensorExpFromLinalg(op);
1168a2c9d4bbSAart Bik     if (!exp.hasValue())
1169266a7414SAart Bik       return failure();
1170a2c9d4bbSAart Bik 
1171266a7414SAart Bik     // Rejects an inadmissable tensor expression.
117236b66ab9SAart Bik     if (!isAdmissableTensorExp(merger, op, exp.getValue()))
117336b66ab9SAart Bik       return failure();
117436b66ab9SAart Bik 
1175a2c9d4bbSAart Bik     // Recursively generates code.
1176a2c9d4bbSAart Bik     CodeGen codegen(options, numTensors, numLoops);
1177727a63e0SAart Bik     if (!genBuffers(merger, codegen, rewriter, op))
1178727a63e0SAart Bik       return failure(); // could not bufferize
1179a2c9d4bbSAart Bik     genStmt(merger, codegen, rewriter, op, topSort, exp.getValue(), 0);
118036b66ab9SAart Bik     genResult(merger, codegen, rewriter, op);
1181a2c9d4bbSAart Bik     return success();
1182a2c9d4bbSAart Bik   }
1183a2c9d4bbSAart Bik 
1184a2c9d4bbSAart Bik private:
1185a2c9d4bbSAart Bik   /// Options to control sparse code generation.
1186a2c9d4bbSAart Bik   SparsificationOptions options;
1187a2c9d4bbSAart Bik };
1188a2c9d4bbSAart Bik 
1189a2c9d4bbSAart Bik } // namespace
1190a2c9d4bbSAart Bik 
1191a2c9d4bbSAart Bik /// Populates the given patterns list with rewriting rules required for
1192a2c9d4bbSAart Bik /// the sparsification of linear algebra operations.
1193a2c9d4bbSAart Bik void mlir::populateSparsificationPatterns(
1194a2c9d4bbSAart Bik     RewritePatternSet &patterns, const SparsificationOptions &options) {
1195a2c9d4bbSAart Bik   patterns.add<GenericOpSparsifier>(patterns.getContext(), options);
1196a2c9d4bbSAart Bik }
1197