196a23911SAart Bik //===- Sparsification.cpp - Implementation of sparsification --------------===// 2a2c9d4bbSAart Bik // 3a2c9d4bbSAart Bik // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4a2c9d4bbSAart Bik // See https://llvm.org/LICENSE.txt for license information. 5a2c9d4bbSAart Bik // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6a2c9d4bbSAart Bik // 7a2c9d4bbSAart Bik //===----------------------------------------------------------------------===// 8a2c9d4bbSAart Bik // 996a23911SAart Bik // This file implements lowering sparse tensor types to actual sparse code. 10a2c9d4bbSAart Bik // 11a2c9d4bbSAart Bik // The concept of letting a compiler generate sparse code automatically was 12a2c9d4bbSAart Bik // pioneered for dense linear algebra code in Fortran by [Bik96] in MT1 and 13a2c9d4bbSAart Bik // formalized to tensor algebra by [Kjolstad17,20] for the Sparse Tensor 14a2c9d4bbSAart Bik // Algebra Compiler (TACO). The implementation in this file closely follows 15a2c9d4bbSAart Bik // the "sparse iteration theory" that forms the foundation of TACO. A rewriting 16a2c9d4bbSAart Bik // rule is applied to each tensor expression in linalg (MLIR's tensor index 17a2c9d4bbSAart Bik // notation) where the sparsity of tensors is indicated with annotation using 18a2c9d4bbSAart Bik // a per-dimension specification of sparse/dense storage together with a 19a2c9d4bbSAart Bik // specification of the order on the dimensions. Subsequently, a topologically 20a2c9d4bbSAart Bik // sorted iteration graph, reflecting the required order on indices with respect 21a2c9d4bbSAart Bik // to the dimensions of each tensor, is constructed to ensure that all tensors 22a2c9d4bbSAart Bik // are visited in natural index order. Next, iteration lattices are constructed 23a2c9d4bbSAart Bik // for the tensor expression for every index in topological order. Each 24a2c9d4bbSAart Bik // iteration lattice point consists of a conjunction of tensor indices together 25a2c9d4bbSAart Bik // with a tensor (sub)expression that needs to be evaluated for that 26a2c9d4bbSAart Bik // conjunction. Within the lattice, iteration points are ordered according to 27a2c9d4bbSAart Bik // the way indices are exhausted. As such these iteration lattices drive actual 28a2c9d4bbSAart Bik // sparse code generation, which consists of a tedious but relatively 29a2c9d4bbSAart Bik // straightforward one-to-one mapping from iteration lattices to combinations 30a2c9d4bbSAart Bik // of for-loops, while-loops, and if-statements. 31a2c9d4bbSAart Bik // 32a2c9d4bbSAart Bik // [Bik96] Aart J.C. Bik. Compiler Support for Sparse Matrix Computations. 33a2c9d4bbSAart Bik // PhD thesis, Leiden University, May 1996 (aartbik.com/sparse.php). 34a2c9d4bbSAart Bik // [Kjolstad17] Fredrik Berg Kjolstad, Shoaib Ashraf Kamil, Stephen Chou, 35a2c9d4bbSAart Bik // David Lugato, and Saman Amarasinghe. The Tensor Algebra Compiler. 36a2c9d4bbSAart Bik // Proceedings of the ACM on Programming Languages, October 2017. 37a2c9d4bbSAart Bik // [Kjolstad20] Fredrik Berg Kjolstad. Sparse Tensor Algebra Compilation. 38a2c9d4bbSAart Bik // PhD thesis, MIT, February, 2020 (tensor-compiler.org). 39a2c9d4bbSAart Bik // 40a2c9d4bbSAart Bik // Implementation detail: We use llvm::SmallVector for vectors with 41a2c9d4bbSAart Bik // variable lengths and std::vector for vectors with fixed lengths. 42a2c9d4bbSAart Bik //===----------------------------------------------------------------------===// 43a2c9d4bbSAart Bik 44a2c9d4bbSAart Bik #include "mlir/Dialect/Linalg/IR/LinalgOps.h" 45a2c9d4bbSAart Bik #include "mlir/Dialect/Linalg/Utils/Utils.h" 4666f878ceSMatthias Springer #include "mlir/Dialect/MemRef/IR/MemRef.h" 47a2c9d4bbSAart Bik #include "mlir/Dialect/SCF/SCF.h" 48a2c9d4bbSAart Bik #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h" 49a2c9d4bbSAart Bik #include "mlir/Dialect/SparseTensor/Transforms/Passes.h" 50744146f6SGus Smith #include "mlir/Dialect/SparseTensor/Utils/Merger.h" 51a2c9d4bbSAart Bik #include "mlir/Dialect/StandardOps/IR/Ops.h" 52a2c9d4bbSAart Bik #include "mlir/Dialect/Vector/VectorOps.h" 53a2c9d4bbSAart Bik #include "mlir/IR/Matchers.h" 5496a23911SAart Bik #include "mlir/IR/TensorEncoding.h" 55a2c9d4bbSAart Bik #include "llvm/ADT/SmallBitVector.h" 56a2c9d4bbSAart Bik 57a2c9d4bbSAart Bik using namespace mlir; 5896a23911SAart Bik using namespace mlir::sparse_tensor; 59a2c9d4bbSAart Bik 60a2c9d4bbSAart Bik namespace { 61a2c9d4bbSAart Bik 62a2c9d4bbSAart Bik // Code generation. 63a2c9d4bbSAart Bik struct CodeGen { 6496a23911SAart Bik CodeGen(SparsificationOptions o, unsigned numTensors, unsigned numLoops) 65a2c9d4bbSAart Bik : options(o), loops(numLoops), sizes(numLoops), buffers(numTensors), 66a2c9d4bbSAart Bik pointers(numTensors, std::vector<Value>(numLoops)), 67a2c9d4bbSAart Bik indices(numTensors, std::vector<Value>(numLoops)), 68a2c9d4bbSAart Bik highs(numTensors, std::vector<Value>(numLoops)), 69a2c9d4bbSAart Bik pidxs(numTensors, std::vector<Value>(numLoops)), 70a2c9d4bbSAart Bik idxs(numTensors, std::vector<Value>(numLoops)), redExp(-1u), redVal(), 71a2c9d4bbSAart Bik curVecLength(1), curVecMask() {} 72a2c9d4bbSAart Bik /// Sparsification options. 7396a23911SAart Bik SparsificationOptions options; 74a2c9d4bbSAart Bik /// Universal dense indices and upper bounds (by index). The loops array 75a2c9d4bbSAart Bik /// is updated with the value of the universal dense index in the current 76a2c9d4bbSAart Bik /// loop. The sizes array is set once with the inferred dimension sizes. 77a2c9d4bbSAart Bik std::vector<Value> loops; 78a2c9d4bbSAart Bik std::vector<Value> sizes; 79a2c9d4bbSAart Bik /// Buffers for storing dense and sparse numerical values (by tensor). 80a2c9d4bbSAart Bik /// This array is set once during bufferization of all tensors. 81a2c9d4bbSAart Bik std::vector<Value> buffers; 82a2c9d4bbSAart Bik /// Sparse storage schemes (1-D): pointers and indices (by tensor and index). 83a2c9d4bbSAart Bik /// This array is set once during bufferization of all sparse tensors. 84a2c9d4bbSAart Bik std::vector<std::vector<Value>> pointers; 85a2c9d4bbSAart Bik std::vector<std::vector<Value>> indices; 86a2c9d4bbSAart Bik /// Sparse iteration information (by tensor and index). These arrays 87a2c9d4bbSAart Bik /// are updated to remain current within the current loop. 88a2c9d4bbSAart Bik std::vector<std::vector<Value>> highs; 89a2c9d4bbSAart Bik std::vector<std::vector<Value>> pidxs; 90a2c9d4bbSAart Bik std::vector<std::vector<Value>> idxs; 91a2c9d4bbSAart Bik /// Current reduction, updated during code generation. When indices of a 92a2c9d4bbSAart Bik /// reduction are exhausted, all inner loops can "scalarize" the reduction. 93a2c9d4bbSAart Bik // TODO: currently only done for (a chain of) innermost for-loops, where it 94a2c9d4bbSAart Bik // is most effective; we could generalize to more outer and while-loops. 95a2c9d4bbSAart Bik unsigned redExp; 96a2c9d4bbSAart Bik Value redVal; 97a2c9d4bbSAart Bik // Current vector length and mask. 98a2c9d4bbSAart Bik unsigned curVecLength; 99a2c9d4bbSAart Bik Value curVecMask; 100a2c9d4bbSAart Bik }; 101a2c9d4bbSAart Bik 102a2c9d4bbSAart Bik } // namespace 103a2c9d4bbSAart Bik 104c194b49cSAart Bik // Helper method to apply dimension ordering permutation. 105c194b49cSAart Bik static unsigned perm(SparseTensorEncodingAttr &enc, unsigned d) { 106c194b49cSAart Bik if (enc) { 107c194b49cSAart Bik auto order = enc.getDimOrdering(); 108c194b49cSAart Bik if (order) { 109c194b49cSAart Bik assert(order.isPermutation()); 110c194b49cSAart Bik return order.getDimPosition(d); 111c194b49cSAart Bik } 112c194b49cSAart Bik } 113c194b49cSAart Bik return d; 114c194b49cSAart Bik } 115c194b49cSAart Bik 11696a23911SAart Bik // Helper method to translate dim level type to internal representation. 11796a23911SAart Bik static Dim toDim(SparseTensorEncodingAttr &enc, unsigned d) { 11896a23911SAart Bik if (enc) { 11996a23911SAart Bik SparseTensorEncodingAttr::DimLevelType tp = enc.getDimLevelType()[d]; 12096a23911SAart Bik if (tp == SparseTensorEncodingAttr::DimLevelType::Compressed) 12196a23911SAart Bik return Dim::kSparse; 12296a23911SAart Bik if (tp == SparseTensorEncodingAttr::DimLevelType::Singleton) 12396a23911SAart Bik return Dim::kSingle; 12496a23911SAart Bik } 12596a23911SAart Bik return Dim::kDense; 12696a23911SAart Bik } 12796a23911SAart Bik 12896a23911SAart Bik /// Helper method to inspect sparse encodings in the tensor types. 129a2c9d4bbSAart Bik /// Fills the per-dimension sparsity information for all tensors. 130bf9ef3efSAart Bik static bool findSparseAnnotations(Merger &merger, linalg::GenericOp op) { 131bf9ef3efSAart Bik bool annotated = false; 1322f2b5b7dSTobias Gysi for (OpOperand *t : op.getInputAndOutputOperands()) { 1332f2b5b7dSTobias Gysi auto map = op.getTiedIndexingMap(t); 134c194b49cSAart Bik if (!map.isProjectedPermutation()) 135c194b49cSAart Bik return false; 1362f2b5b7dSTobias Gysi auto enc = getSparseTensorEncoding(t->get().getType()); 137727a63e0SAart Bik if (enc) 138bf9ef3efSAart Bik annotated = true; 1392f2b5b7dSTobias Gysi assert(map.getNumResults() == op.getRank(t)); 140c194b49cSAart Bik for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { 141c194b49cSAart Bik unsigned idx = map.getDimPosition(perm(enc, d)); 1422f2b5b7dSTobias Gysi merger.setDim(t->getOperandNumber(), idx, toDim(enc, d)); 143a2c9d4bbSAart Bik } 144a2c9d4bbSAart Bik } 145bf9ef3efSAart Bik return annotated; 146a2c9d4bbSAart Bik } 147a2c9d4bbSAart Bik 148a2c9d4bbSAart Bik /// A DFS helper to compute a topological sort. Note that recursion is 149a2c9d4bbSAart Bik /// bounded by the number of implicit loops, which is always small. 150a2c9d4bbSAart Bik /// Returns false when a cycle is detected. 151a2c9d4bbSAart Bik static bool topSortDFS(unsigned i, std::vector<unsigned> &visit, 152a2c9d4bbSAart Bik std::vector<unsigned> &topSort, 153a2c9d4bbSAart Bik std::vector<std::vector<bool>> &adjM) { 154a2c9d4bbSAart Bik if (visit[i] != 0) 155a2c9d4bbSAart Bik return visit[i] != 1; // 1 denotes cycle! 156a2c9d4bbSAart Bik visit[i] = 1; 157a2c9d4bbSAart Bik for (unsigned j = 0, e = visit.size(); j < e; j++) 158a2c9d4bbSAart Bik if (adjM[i][j]) 159a2c9d4bbSAart Bik if (!topSortDFS(j, visit, topSort, adjM)) 160a2c9d4bbSAart Bik return false; 161a2c9d4bbSAart Bik visit[i] = 2; 162a2c9d4bbSAart Bik topSort.push_back(i); 163a2c9d4bbSAart Bik return true; 164a2c9d4bbSAart Bik } 165a2c9d4bbSAart Bik 166a2c9d4bbSAart Bik /// Computes a topologically sorted iteration graph for the linalg operation. 167a2c9d4bbSAart Bik /// Ensures all tensors are visited in natural index order. This is essential 168a2c9d4bbSAart Bik /// for sparse storage formats since these only support access along fixed 169a2c9d4bbSAart Bik /// dimensions. Even for dense storage formats, however, the natural index 170a2c9d4bbSAart Bik /// order yields innermost unit-stride access with better spatial locality. 171a2c9d4bbSAart Bik static bool computeIterationGraph(Merger &merger, linalg::GenericOp op, 172a2c9d4bbSAart Bik std::vector<unsigned> &topSort, 173a2c9d4bbSAart Bik bool sparseOnly) { 174a2c9d4bbSAart Bik // Set up an n x n from/to adjacency matrix of the iteration graph 175a2c9d4bbSAart Bik // for the implicit loop indices i_0 .. i_n-1. 176a2c9d4bbSAart Bik unsigned n = op.getNumLoops(); 177a2c9d4bbSAart Bik std::vector<std::vector<bool>> adjM(n, std::vector<bool>(n, false)); 178a2c9d4bbSAart Bik 179a2c9d4bbSAart Bik // Iterate over the indexing maps of every tensor in the tensor expression. 1802f2b5b7dSTobias Gysi for (OpOperand *t : op.getInputAndOutputOperands()) { 1812f2b5b7dSTobias Gysi auto map = op.getTiedIndexingMap(t); 1822f2b5b7dSTobias Gysi auto enc = getSparseTensorEncoding(t->get().getType()); 183a2c9d4bbSAart Bik assert(map.getNumDims() == n); 184a2c9d4bbSAart Bik // Skip dense tensor constraints when sparse only is requested. 185c194b49cSAart Bik if (sparseOnly && !enc) 186a2c9d4bbSAart Bik continue; 187c194b49cSAart Bik // Each tensor expression and optional dimension ordering (row-major 188c194b49cSAart Bik // by default) puts an ordering constraint on the loop indices. For 189c194b49cSAart Bik // example, the tensor expresion A_ijk forces the ordering i < j < k 190c194b49cSAart Bik // on the loop indices if no explicit dimension ordering is given. 191c194b49cSAart Bik for (unsigned d = 1, rank = map.getNumResults(); d < rank; d++) { 192c194b49cSAart Bik unsigned f = map.getDimPosition(perm(enc, d - 1)); 193c194b49cSAart Bik unsigned t = map.getDimPosition(perm(enc, d)); 194a2c9d4bbSAart Bik adjM[f][t] = true; 195a2c9d4bbSAart Bik } 196a2c9d4bbSAart Bik } 197a2c9d4bbSAart Bik 198a2c9d4bbSAart Bik // Topologically sort the iteration graph to determine loop order. 199a2c9d4bbSAart Bik // Report failure for a cyclic iteration graph. 200a2c9d4bbSAart Bik topSort.clear(); 201a2c9d4bbSAart Bik topSort.reserve(n); 202a2c9d4bbSAart Bik std::vector<unsigned> visit(n, 0); 203a2c9d4bbSAart Bik for (unsigned i = 0; i < n; i++) 204a2c9d4bbSAart Bik if (visit[i] == 0) 205a2c9d4bbSAart Bik if (!topSortDFS(i, visit, topSort, adjM)) 206a2c9d4bbSAart Bik return false; // cycle! 207a2c9d4bbSAart Bik std::reverse(std::begin(topSort), std::end(topSort)); 208a2c9d4bbSAart Bik return true; 209a2c9d4bbSAart Bik } 210a2c9d4bbSAart Bik 21136b66ab9SAart Bik /// Returns true when the tensor expression is admissable for codegen. 21236b66ab9SAart Bik /// Since all sparse input tensors are admissable, we just need to check 21336b66ab9SAart Bik /// whether the output tensor in the tensor expression codegen is admissable. 21436b66ab9SAart Bik static bool isAdmissableTensorExp(Merger &merger, linalg::GenericOp op, 21536b66ab9SAart Bik unsigned exp) { 21636b66ab9SAart Bik OpOperand *lhs = op.getOutputOperand(0); 21736b66ab9SAart Bik unsigned tensor = lhs->getOperandNumber(); 21836b66ab9SAart Bik auto enc = getSparseTensorEncoding(lhs->get().getType()); 21936b66ab9SAart Bik // An non-annotated output tensor is assumed dense, and becomes a random 22036b66ab9SAart Bik // access n-dim memref. Admissable since inserstions cannot occur. 22136b66ab9SAart Bik if (!enc) 22236b66ab9SAart Bik return true; 22336b66ab9SAart Bik // An all-dense annotated "sparse" output tensor becomes a linearized random 22436b66ab9SAart Bik // access 1-dim memref. Also admissable since insertions cannot occur. 22536b66ab9SAart Bik bool allDense = true; 22636b66ab9SAart Bik unsigned numLoops = op.iterator_types().getValue().size(); 22736b66ab9SAart Bik for (unsigned i = 0; i < numLoops; i++) 22836b66ab9SAart Bik if (merger.isDim(tensor, i, Dim::kSparse)) { 22936b66ab9SAart Bik allDense = false; 23036b66ab9SAart Bik break; 23136b66ab9SAart Bik } 23236b66ab9SAart Bik if (allDense) 23336b66ab9SAart Bik return true; 23436b66ab9SAart Bik // A tensor expression with a sparse output tensor that changes its values 23536b66ab9SAart Bik // but not its nonzero structure, an operation called "simply dynamic" in 23636b66ab9SAart Bik // [Bik96,Ch9], is also admissable without special codegen. 23745b3cfe8SAart Bik if (merger.isConjunction(tensor, exp)) 23836b66ab9SAart Bik return true; 23936b66ab9SAart Bik // Reject for now since this requires changes to the nonzero structure. 24036b66ab9SAart Bik // TODO: implement "workspaces" [Kjolstad2019] 24136b66ab9SAart Bik return false; 24236b66ab9SAart Bik } 24336b66ab9SAart Bik 244a2c9d4bbSAart Bik /// Maps sparse integer option to actual integral storage type. 24596a23911SAart Bik static Type genIntType(PatternRewriter &rewriter, unsigned width) { 24696a23911SAart Bik if (width == 0) 247a2c9d4bbSAart Bik return rewriter.getIndexType(); 24896a23911SAart Bik return rewriter.getIntegerType(width); 249a2c9d4bbSAart Bik } 250a2c9d4bbSAart Bik 2515879da49SAart Bik /// Detects in-place annotation on tensor argument. 2525879da49SAart Bik static bool getInPlace(Value val) { 2535879da49SAart Bik if (auto arg = val.dyn_cast<BlockArgument>()) 2545879da49SAart Bik if (auto funcOp = dyn_cast<FuncOp>(arg.getOwner()->getParentOp())) 2555879da49SAart Bik if (auto attr = funcOp.getArgAttrOfType<BoolAttr>( 2565879da49SAart Bik arg.getArgNumber(), linalg::LinalgDialect::kInplaceableAttrName)) 2575879da49SAart Bik return attr.getValue(); 2585879da49SAart Bik return false; 2595879da49SAart Bik } 2605879da49SAart Bik 261a2c9d4bbSAart Bik /// Generates buffer for the output tensor. 262a2c9d4bbSAart Bik static Value genOutputBuffer(CodeGen &codegen, PatternRewriter &rewriter, 263a2c9d4bbSAart Bik linalg::GenericOp op, MemRefType denseTp, 264a2c9d4bbSAart Bik ArrayRef<Value> args) { 265a2c9d4bbSAart Bik Location loc = op.getLoc(); 2662f2b5b7dSTobias Gysi Value tensor = op.getOutputOperand(0)->get(); 267a2c9d4bbSAart Bik // The output tensor simply could materialize from the buffer that will 268a2c9d4bbSAart Bik // be generated for the tensor present in the outs() clause. This has 269a2c9d4bbSAart Bik // the major advantage that the sparse kernel only updates the nonzero 2705879da49SAart Bik // positions for the output tensor. 2715879da49SAart Bik if (getInPlace(tensor)) 272a2c9d4bbSAart Bik return rewriter.create<memref::BufferCastOp>(loc, denseTp, tensor); 273a2c9d4bbSAart Bik // By default, a new buffer is allocated which is initialized to the 274a2c9d4bbSAart Bik // tensor defined in the outs() clause. This is always correct but 275a2c9d4bbSAart Bik // introduces a dense initialization component that may negatively 276a2c9d4bbSAart Bik // impact the running complexity of the sparse kernel. 277a2c9d4bbSAart Bik Value init = rewriter.create<memref::BufferCastOp>(loc, denseTp, tensor); 278a2c9d4bbSAart Bik Value alloc = rewriter.create<memref::AllocOp>(loc, denseTp, args); 279*68ac2e53SAart Bik rewriter.create<memref::CopyOp>(loc, init, alloc); 280a2c9d4bbSAart Bik return alloc; 281a2c9d4bbSAart Bik } 282a2c9d4bbSAart Bik 283a2c9d4bbSAart Bik /// Local bufferization of all dense and sparse data structures. 284a2c9d4bbSAart Bik /// This code enables testing the first prototype sparse compiler. 285a2c9d4bbSAart Bik // TODO: replace this with a proliferated bufferization strategy 286727a63e0SAart Bik static bool genBuffers(Merger &merger, CodeGen &codegen, 287a2c9d4bbSAart Bik PatternRewriter &rewriter, linalg::GenericOp op) { 288a2c9d4bbSAart Bik Location loc = op.getLoc(); 2892f2b5b7dSTobias Gysi assert(op.getNumInputsAndOutputs() == op.getNumInputs() + 1); 290a2c9d4bbSAart Bik // For every tensor, find lower and upper bound on dimensions, set the 291a2c9d4bbSAart Bik // same bounds on loop indices, and obtain dense or sparse buffer(s). 292a2c9d4bbSAart Bik SmallVector<Value, 4> args; 2932f2b5b7dSTobias Gysi for (OpOperand *t : op.getInputAndOutputOperands()) { 294727a63e0SAart Bik unsigned tensor = t->getOperandNumber(); 2952f2b5b7dSTobias Gysi auto shape = op.getShape(t); 2962f2b5b7dSTobias Gysi auto map = op.getTiedIndexingMap(t); 2972f2b5b7dSTobias Gysi auto enc = getSparseTensorEncoding(t->get().getType()); 298a2c9d4bbSAart Bik // Scan all dimensions of current tensor. 299a2c9d4bbSAart Bik args.clear(); 300c194b49cSAart Bik for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { 301c194b49cSAart Bik unsigned idx = map.getDimPosition(perm(enc, d)); 302a2c9d4bbSAart Bik // Handle sparse storage schemes. 303727a63e0SAart Bik if (merger.isDim(tensor, idx, Dim::kSparse)) { 304a2c9d4bbSAart Bik auto dynShape = {ShapedType::kDynamicSize}; 305a2c9d4bbSAart Bik auto ptrTp = MemRefType::get( 30696a23911SAart Bik dynShape, genIntType(rewriter, enc.getPointerBitWidth())); 307a2c9d4bbSAart Bik auto indTp = MemRefType::get( 30896a23911SAart Bik dynShape, genIntType(rewriter, enc.getIndexBitWidth())); 309a2c9d4bbSAart Bik Value dim = rewriter.create<ConstantIndexOp>(loc, d); 310a2c9d4bbSAart Bik // Generate sparse primitives to obtains pointer and indices. 311727a63e0SAart Bik codegen.pointers[tensor][idx] = 3122f2b5b7dSTobias Gysi rewriter.create<ToPointersOp>(loc, ptrTp, t->get(), dim); 313727a63e0SAart Bik codegen.indices[tensor][idx] = 3142f2b5b7dSTobias Gysi rewriter.create<ToIndicesOp>(loc, indTp, t->get(), dim); 315a2c9d4bbSAart Bik } 316a2c9d4bbSAart Bik // Find lower and upper bound in current dimension. 317a2c9d4bbSAart Bik Value up; 318a2c9d4bbSAart Bik if (shape[d] == MemRefType::kDynamicSize) { 3192c115eccSMatthias Springer up = rewriter.create<tensor::DimOp>(loc, t->get(), d); 320a2c9d4bbSAart Bik args.push_back(up); 321a2c9d4bbSAart Bik } else { 322a2c9d4bbSAart Bik up = rewriter.create<ConstantIndexOp>(loc, shape[d]); 323a2c9d4bbSAart Bik } 324727a63e0SAart Bik codegen.sizes[idx] = codegen.highs[tensor][idx] = up; 325a2c9d4bbSAart Bik } 326727a63e0SAart Bik // Perform the required bufferization. Dense inputs materialize 327727a63e0SAart Bik // from the input tensors. Dense outputs need special handling. 328727a63e0SAart Bik // Sparse inputs use sparse primitives to obtain the values. 329727a63e0SAart Bik // We also accept in-place all-dense annotated "sparse" outputs. 3302f2b5b7dSTobias Gysi Type elementType = getElementTypeOrSelf(t->get().getType()); 33196a23911SAart Bik if (!enc) { 332727a63e0SAart Bik // Non-annotated dense tensors. 3332f2b5b7dSTobias Gysi auto denseTp = MemRefType::get(shape, elementType); 334727a63e0SAart Bik if (tensor < op.getNumInputs()) 335727a63e0SAart Bik codegen.buffers[tensor] = 3362f2b5b7dSTobias Gysi rewriter.create<memref::BufferCastOp>(loc, denseTp, t->get()); 337a2c9d4bbSAart Bik else 338727a63e0SAart Bik codegen.buffers[tensor] = 339a2c9d4bbSAart Bik genOutputBuffer(codegen, rewriter, op, denseTp, args); 340a2c9d4bbSAart Bik } else { 341727a63e0SAart Bik // Annotated sparse tensors. 342727a63e0SAart Bik if (tensor == op.getNumInputs() && !getInPlace(t->get())) 343727a63e0SAart Bik return false; // reject output if not in-place 344a2c9d4bbSAart Bik auto dynShape = {ShapedType::kDynamicSize}; 3452f2b5b7dSTobias Gysi auto sparseTp = MemRefType::get(dynShape, elementType); 346727a63e0SAart Bik codegen.buffers[tensor] = 3472f2b5b7dSTobias Gysi rewriter.create<ToValuesOp>(loc, sparseTp, t->get()); 348a2c9d4bbSAart Bik } 349a2c9d4bbSAart Bik } 350727a63e0SAart Bik return true; 351a2c9d4bbSAart Bik } 352a2c9d4bbSAart Bik 353a2c9d4bbSAart Bik /// Constructs vector type. 354a2c9d4bbSAart Bik static VectorType vectorType(CodeGen &codegen, Type etp) { 355a2c9d4bbSAart Bik return VectorType::get(codegen.curVecLength, etp); 356a2c9d4bbSAart Bik } 357a2c9d4bbSAart Bik 358a2c9d4bbSAart Bik /// Constructs vector type from pointer. 359a2c9d4bbSAart Bik static VectorType vectorType(CodeGen &codegen, Value ptr) { 360a2c9d4bbSAart Bik return vectorType(codegen, ptr.getType().cast<MemRefType>().getElementType()); 361a2c9d4bbSAart Bik } 362a2c9d4bbSAart Bik 363a2c9d4bbSAart Bik /// Constructs vector iteration mask. 364a2c9d4bbSAart Bik static Value genVectorMask(CodeGen &codegen, PatternRewriter &rewriter, 365a2c9d4bbSAart Bik Value iv, Value lo, Value hi, Value step) { 366a2c9d4bbSAart Bik Location loc = iv.getLoc(); 367a2c9d4bbSAart Bik VectorType mtp = vectorType(codegen, rewriter.getIntegerType(1)); 368a2c9d4bbSAart Bik // Special case if the vector length evenly divides the trip count (for 369a2c9d4bbSAart Bik // example, "for i = 0, 128, 16"). A constant all-true mask is generated 370a2c9d4bbSAart Bik // so that all subsequent masked memory operations are immediately folded 371a2c9d4bbSAart Bik // into unconditional memory operations. 372a2c9d4bbSAart Bik IntegerAttr loInt, hiInt, stepInt; 373a2c9d4bbSAart Bik if (matchPattern(lo, m_Constant(&loInt)) && 374a2c9d4bbSAart Bik matchPattern(hi, m_Constant(&hiInt)) && 375a2c9d4bbSAart Bik matchPattern(step, m_Constant(&stepInt))) { 376a2c9d4bbSAart Bik if (((hiInt.getInt() - loInt.getInt()) % stepInt.getInt()) == 0) 377a2c9d4bbSAart Bik return rewriter.create<vector::BroadcastOp>( 378a2c9d4bbSAart Bik loc, mtp, rewriter.create<ConstantIntOp>(loc, 1, 1)); 379a2c9d4bbSAart Bik } 380a2c9d4bbSAart Bik // Otherwise, generate a vector mask that avoids overrunning the upperbound 381a2c9d4bbSAart Bik // during vector execution. Here we rely on subsequent loop optimizations to 382a2c9d4bbSAart Bik // avoid executing the mask in all iterations, for example, by splitting the 383a2c9d4bbSAart Bik // loop into an unconditional vector loop and a scalar cleanup loop. 384a2c9d4bbSAart Bik Value end = rewriter.create<SubIOp>(loc, hi, iv); 385a2c9d4bbSAart Bik return rewriter.create<vector::CreateMaskOp>(loc, mtp, end); 386a2c9d4bbSAart Bik } 387a2c9d4bbSAart Bik 388a2c9d4bbSAart Bik /// Generates a vectorized load lhs = a[ind[lo:hi]] or lhs = a[lo:hi]. 389a2c9d4bbSAart Bik static Value genVectorLoad(CodeGen &codegen, PatternRewriter &rewriter, 390a2c9d4bbSAart Bik Value ptr, ArrayRef<Value> args) { 391a2c9d4bbSAart Bik Location loc = ptr.getLoc(); 392a2c9d4bbSAart Bik VectorType vtp = vectorType(codegen, ptr); 393a2c9d4bbSAart Bik Value pass = rewriter.create<ConstantOp>(loc, vtp, rewriter.getZeroAttr(vtp)); 394a2c9d4bbSAart Bik if (args.back().getType().isa<VectorType>()) { 395a2c9d4bbSAart Bik SmallVector<Value, 4> scalarArgs(args.begin(), args.end()); 396a2c9d4bbSAart Bik Value indexVec = args.back(); 397a2c9d4bbSAart Bik scalarArgs.back() = rewriter.create<ConstantIndexOp>(loc, 0); 398a2c9d4bbSAart Bik return rewriter.create<vector::GatherOp>( 399a2c9d4bbSAart Bik loc, vtp, ptr, scalarArgs, indexVec, codegen.curVecMask, pass); 400a2c9d4bbSAart Bik } 401a2c9d4bbSAart Bik return rewriter.create<vector::MaskedLoadOp>(loc, vtp, ptr, args, 402a2c9d4bbSAart Bik codegen.curVecMask, pass); 403a2c9d4bbSAart Bik } 404a2c9d4bbSAart Bik 405a2c9d4bbSAart Bik /// Generates a vectorized store a[ind[lo:hi]] = rhs or a[lo:hi] = rhs. 406a2c9d4bbSAart Bik static void genVectorStore(CodeGen &codegen, PatternRewriter &rewriter, 407a2c9d4bbSAart Bik Value rhs, Value ptr, ArrayRef<Value> args) { 408a2c9d4bbSAart Bik Location loc = ptr.getLoc(); 409a2c9d4bbSAart Bik if (args.back().getType().isa<VectorType>()) { 410a2c9d4bbSAart Bik SmallVector<Value, 4> scalarArgs(args.begin(), args.end()); 411a2c9d4bbSAart Bik Value indexVec = args.back(); 412a2c9d4bbSAart Bik scalarArgs.back() = rewriter.create<ConstantIndexOp>(loc, 0); 413a2c9d4bbSAart Bik rewriter.create<vector::ScatterOp>(loc, ptr, scalarArgs, indexVec, 414a2c9d4bbSAart Bik codegen.curVecMask, rhs); 415a2c9d4bbSAart Bik return; 416a2c9d4bbSAart Bik } 417a2c9d4bbSAart Bik rewriter.create<vector::MaskedStoreOp>(loc, ptr, args, codegen.curVecMask, 418a2c9d4bbSAart Bik rhs); 419a2c9d4bbSAart Bik } 420a2c9d4bbSAart Bik 421a2c9d4bbSAart Bik /// Generates a vectorized invariant. Here we rely on subsequent loop 422a2c9d4bbSAart Bik /// optimizations to hoist the invariant broadcast out of the vector loop. 423a2c9d4bbSAart Bik static Value genVectorInvariantValue(CodeGen &codegen, 424a2c9d4bbSAart Bik PatternRewriter &rewriter, Value val) { 425a2c9d4bbSAart Bik VectorType vtp = vectorType(codegen, val.getType()); 426a2c9d4bbSAart Bik return rewriter.create<vector::BroadcastOp>(val.getLoc(), vtp, val); 427a2c9d4bbSAart Bik } 428a2c9d4bbSAart Bik 429a2c9d4bbSAart Bik /// Generates a load on a dense or sparse tensor. 430a2c9d4bbSAart Bik static Value genTensorLoad(Merger &merger, CodeGen &codegen, 431a2c9d4bbSAart Bik PatternRewriter &rewriter, linalg::GenericOp op, 432a2c9d4bbSAart Bik unsigned exp) { 433a2c9d4bbSAart Bik // Test if the load was hoisted to a higher loop nest. 434a2c9d4bbSAart Bik Value val = merger.exp(exp).val; 435a2c9d4bbSAart Bik if (val) { 436a2c9d4bbSAart Bik if (codegen.curVecLength > 1 && !val.getType().isa<VectorType>()) 437a2c9d4bbSAart Bik return genVectorInvariantValue(codegen, rewriter, val); 438a2c9d4bbSAart Bik return val; 439a2c9d4bbSAart Bik } 440a2c9d4bbSAart Bik // Actual load. 441a2c9d4bbSAart Bik SmallVector<Value, 4> args; 4424569c14aSGus Smith OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).tensor]; 443727a63e0SAart Bik unsigned tensor = t->getOperandNumber(); 444727a63e0SAart Bik auto map = op.getTiedIndexingMap(t); 445727a63e0SAart Bik auto enc = getSparseTensorEncoding(t->get().getType()); 446727a63e0SAart Bik unsigned rank = map.getNumResults(); 44796a23911SAart Bik if (enc) { 448727a63e0SAart Bik unsigned idx = map.getDimPosition(perm(enc, rank - 1)); 449727a63e0SAart Bik assert(codegen.pidxs[tensor][idx] != nullptr); 450727a63e0SAart Bik args.push_back(codegen.pidxs[tensor][idx]); // position index 451727a63e0SAart Bik } else { 452727a63e0SAart Bik for (unsigned d = 0; d < rank; d++) { 453727a63e0SAart Bik unsigned idx = map.getDimPosition(d); 454727a63e0SAart Bik args.push_back(codegen.loops[idx]); // universal dense index 455a2c9d4bbSAart Bik } 456a2c9d4bbSAart Bik } 457a2c9d4bbSAart Bik Location loc = op.getLoc(); 458727a63e0SAart Bik Value ptr = codegen.buffers[tensor]; 459a2c9d4bbSAart Bik if (codegen.curVecLength > 1) 460a2c9d4bbSAart Bik return genVectorLoad(codegen, rewriter, ptr, args); 461a2c9d4bbSAart Bik return rewriter.create<memref::LoadOp>(loc, ptr, args); 462a2c9d4bbSAart Bik } 463a2c9d4bbSAart Bik 464727a63e0SAart Bik /// Generates a store on a dense or sparse tensor. 465a2c9d4bbSAart Bik static void genTensorStore(Merger &merger, CodeGen &codegen, 466a2c9d4bbSAart Bik PatternRewriter &rewriter, linalg::GenericOp op, 467727a63e0SAart Bik OpOperand *t, Value rhs) { 468a2c9d4bbSAart Bik Location loc = op.getLoc(); 469a2c9d4bbSAart Bik // Test if this is a scalarized reduction. 4702f2b5b7dSTobias Gysi OpOperand *lhs = op.getOutputOperand(0); 471727a63e0SAart Bik if (lhs == t && codegen.redVal) { 472a2c9d4bbSAart Bik if (codegen.curVecLength > 1) 473a2c9d4bbSAart Bik rhs = rewriter.create<SelectOp>(loc, codegen.curVecMask, rhs, 474a2c9d4bbSAart Bik codegen.redVal); 475a2c9d4bbSAart Bik codegen.redVal = rhs; 476a2c9d4bbSAart Bik return; 477a2c9d4bbSAart Bik } 478a2c9d4bbSAart Bik // Actual store. 479a2c9d4bbSAart Bik SmallVector<Value, 4> args; 480727a63e0SAart Bik unsigned tensor = t->getOperandNumber(); 481727a63e0SAart Bik auto map = op.getTiedIndexingMap(t); 482727a63e0SAart Bik auto enc = getSparseTensorEncoding(t->get().getType()); 483727a63e0SAart Bik unsigned rank = map.getNumResults(); 484727a63e0SAart Bik if (enc) { 485727a63e0SAart Bik unsigned idx = map.getDimPosition(perm(enc, rank - 1)); 486727a63e0SAart Bik assert(codegen.pidxs[tensor][idx] != nullptr); 487727a63e0SAart Bik args.push_back(codegen.pidxs[tensor][idx]); // position index 488727a63e0SAart Bik } else { 489727a63e0SAart Bik for (unsigned d = 0; d < rank; d++) { 490c194b49cSAart Bik unsigned idx = map.getDimPosition(d); 491a2c9d4bbSAart Bik args.push_back(codegen.loops[idx]); // universal dense index 492a2c9d4bbSAart Bik } 493727a63e0SAart Bik } 494727a63e0SAart Bik Value ptr = codegen.buffers[tensor]; 495a2c9d4bbSAart Bik if (codegen.curVecLength > 1) 496a2c9d4bbSAart Bik genVectorStore(codegen, rewriter, rhs, ptr, args); 497a2c9d4bbSAart Bik else 498a2c9d4bbSAart Bik rewriter.create<memref::StoreOp>(loc, rhs, ptr, args); 499a2c9d4bbSAart Bik } 500a2c9d4bbSAart Bik 501a2c9d4bbSAart Bik /// Generates a pointer/index load from the sparse storage scheme. Narrower 502a2c9d4bbSAart Bik /// data types need to be zero extended before casting the value into the 503a2c9d4bbSAart Bik /// index type used for looping and indexing. 504a2c9d4bbSAart Bik static Value genLoad(CodeGen &codegen, PatternRewriter &rewriter, Location loc, 505a2c9d4bbSAart Bik Value ptr, Value s) { 506a2c9d4bbSAart Bik // See https://llvm.org/docs/GetElementPtr.html for some background on 507a2c9d4bbSAart Bik // the complications described below. 508a2c9d4bbSAart Bik if (codegen.curVecLength > 1) { 509a2c9d4bbSAart Bik // Since the index vector is used in a subsequent gather/scatter operations, 510a2c9d4bbSAart Bik // which effectively defines an unsigned pointer + signed index, we must 511a2c9d4bbSAart Bik // zero extend the vector to an index width. For 8-bit and 16-bit values, 512a2c9d4bbSAart Bik // an 32-bit index width suffices. For 32-bit values, zero extending the 513a2c9d4bbSAart Bik // elements into 64-bit loses some performance since the 32-bit indexed 51486e9bc1aSAart Bik // gather/scatter is more efficient than the 64-bit index variant (if the 51586e9bc1aSAart Bik // negative 32-bit index space is unused, the enableSIMDIndex32 flag can 516727a63e0SAart Bik // preserve this performance). For 64-bit values, there is no good way 517a2c9d4bbSAart Bik // to state that the indices are unsigned, with creates the potential of 518a2c9d4bbSAart Bik // incorrect address calculations in the unlikely case we need such 519a2c9d4bbSAart Bik // extremely large offsets. 520a2c9d4bbSAart Bik Type etp = ptr.getType().cast<MemRefType>().getElementType(); 521a2c9d4bbSAart Bik Value vload = genVectorLoad(codegen, rewriter, ptr, {s}); 522a2c9d4bbSAart Bik if (!etp.isa<IndexType>()) { 523a2c9d4bbSAart Bik if (etp.getIntOrFloatBitWidth() < 32) 524a2c9d4bbSAart Bik vload = rewriter.create<ZeroExtendIOp>( 525a2c9d4bbSAart Bik loc, vload, vectorType(codegen, rewriter.getIntegerType(32))); 52686e9bc1aSAart Bik else if (etp.getIntOrFloatBitWidth() < 64 && 52786e9bc1aSAart Bik !codegen.options.enableSIMDIndex32) 528a2c9d4bbSAart Bik vload = rewriter.create<ZeroExtendIOp>( 529a2c9d4bbSAart Bik loc, vload, vectorType(codegen, rewriter.getIntegerType(64))); 530a2c9d4bbSAart Bik } 531a2c9d4bbSAart Bik return vload; 532a2c9d4bbSAart Bik } 533a2c9d4bbSAart Bik // For the scalar case, we simply zero extend narrower indices into 64-bit 534a2c9d4bbSAart Bik // values before casting to index without a performance penalty. Here too, 535a2c9d4bbSAart Bik // however, indices that already are 64-bit, in theory, cannot express the 536a2c9d4bbSAart Bik // full range as explained above. 537a2c9d4bbSAart Bik Value load = rewriter.create<memref::LoadOp>(loc, ptr, s); 538a2c9d4bbSAart Bik if (!load.getType().isa<IndexType>()) { 539a2c9d4bbSAart Bik if (load.getType().getIntOrFloatBitWidth() < 64) 540a2c9d4bbSAart Bik load = rewriter.create<ZeroExtendIOp>(loc, load, 541a2c9d4bbSAart Bik rewriter.getIntegerType(64)); 542a2c9d4bbSAart Bik load = rewriter.create<IndexCastOp>(loc, load, rewriter.getIndexType()); 543a2c9d4bbSAart Bik } 544a2c9d4bbSAart Bik return load; 545a2c9d4bbSAart Bik } 546a2c9d4bbSAart Bik 547a2c9d4bbSAart Bik /// Generates an invariant value. 548a2c9d4bbSAart Bik static Value genInvariantValue(Merger &merger, CodeGen &codegen, 549a2c9d4bbSAart Bik PatternRewriter &rewriter, unsigned exp) { 550a2c9d4bbSAart Bik Value val = merger.exp(exp).val; 551a2c9d4bbSAart Bik if (codegen.curVecLength > 1) 552a2c9d4bbSAart Bik return genVectorInvariantValue(codegen, rewriter, val); 553a2c9d4bbSAart Bik return val; 554a2c9d4bbSAart Bik } 555a2c9d4bbSAart Bik 556a2c9d4bbSAart Bik /// Generates an address computation "sz * p + i". 557a2c9d4bbSAart Bik static Value genAddress(CodeGen &codegen, PatternRewriter &rewriter, 558a2c9d4bbSAart Bik Location loc, Value size, Value p, Value i) { 559a2c9d4bbSAart Bik Value mul = rewriter.create<MulIOp>(loc, size, p); 560a2c9d4bbSAart Bik if (auto vtp = i.getType().dyn_cast<VectorType>()) { 561a2c9d4bbSAart Bik Value inv = rewriter.create<IndexCastOp>(loc, mul, vtp.getElementType()); 562a2c9d4bbSAart Bik mul = genVectorInvariantValue(codegen, rewriter, inv); 563a2c9d4bbSAart Bik } 564a2c9d4bbSAart Bik return rewriter.create<AddIOp>(loc, mul, i); 565a2c9d4bbSAart Bik } 566a2c9d4bbSAart Bik 567a2c9d4bbSAart Bik /// Generates start of a reduction. 568a2c9d4bbSAart Bik static Value genReductionStart(Merger &merger, CodeGen &codegen, 569a2c9d4bbSAart Bik PatternRewriter &rewriter, 570a2c9d4bbSAart Bik linalg::GenericOp op) { 571a2c9d4bbSAart Bik if (codegen.redVal) 572a2c9d4bbSAart Bik return codegen.redVal; // chained with previous for-loop 573a2c9d4bbSAart Bik if (codegen.curVecLength > 1) { 574a2c9d4bbSAart Bik // TODO: assumes + reductions for now 575a2c9d4bbSAart Bik VectorType vtp = vectorType(codegen, codegen.buffers[codegen.redExp]); 576a2c9d4bbSAart Bik return rewriter.create<ConstantOp>(op.getLoc(), vtp, 577a2c9d4bbSAart Bik rewriter.getZeroAttr(vtp)); 578a2c9d4bbSAart Bik } 579a2c9d4bbSAart Bik return genTensorLoad(merger, codegen, rewriter, op, codegen.redExp); 580a2c9d4bbSAart Bik } 581a2c9d4bbSAart Bik 582a2c9d4bbSAart Bik /// Generates end of a reduction. 583a2c9d4bbSAart Bik static void genReductionEnd(Merger &merger, CodeGen &codegen, 584a2c9d4bbSAart Bik PatternRewriter &rewriter, linalg::GenericOp op) { 585a2c9d4bbSAart Bik Value red = codegen.redVal; 586a2c9d4bbSAart Bik if (!red) 587a2c9d4bbSAart Bik return; 588a2c9d4bbSAart Bik assert(codegen.curVecLength == 1); 589a2c9d4bbSAart Bik codegen.redVal = merger.exp(codegen.redExp).val = Value(); // end chain 5902f2b5b7dSTobias Gysi OpOperand *lhs = op.getOutputOperand(0); 591a2c9d4bbSAart Bik if (auto vtp = red.getType().dyn_cast<VectorType>()) { 592a2c9d4bbSAart Bik // TODO: assumes + reductions for now 593a2c9d4bbSAart Bik StringAttr kind = rewriter.getStringAttr("add"); 594a2c9d4bbSAart Bik Value ld = genTensorLoad(merger, codegen, rewriter, op, codegen.redExp); 595a2c9d4bbSAart Bik // Integer reductions don't accept an accumulator. 596a2c9d4bbSAart Bik if (vtp.getElementType().isa<IntegerType>()) { 597a2c9d4bbSAart Bik red = rewriter.create<vector::ReductionOp>(op.getLoc(), ld.getType(), 598a2c9d4bbSAart Bik kind, red, ValueRange{}); 599a2c9d4bbSAart Bik red = rewriter.create<AddIOp>(op.getLoc(), red, ld); 600a2c9d4bbSAart Bik } else { 601a2c9d4bbSAart Bik red = rewriter.create<vector::ReductionOp>(op.getLoc(), ld.getType(), 602a2c9d4bbSAart Bik kind, red, ld); 603a2c9d4bbSAart Bik } 604a2c9d4bbSAart Bik } 605a2c9d4bbSAart Bik genTensorStore(merger, codegen, rewriter, op, lhs, red); 606a2c9d4bbSAart Bik } 607a2c9d4bbSAart Bik 608a2c9d4bbSAart Bik /// Recursively generates tensor expression. 609a2c9d4bbSAart Bik static Value genExp(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, 610a2c9d4bbSAart Bik linalg::GenericOp op, unsigned exp) { 611b8a021dbSAart Bik Location loc = op.getLoc(); 612123e8dfcSAart Bik if (exp == -1u) 613123e8dfcSAart Bik return Value(); 614a2c9d4bbSAart Bik if (merger.exp(exp).kind == Kind::kTensor) 615a2c9d4bbSAart Bik return genTensorLoad(merger, codegen, rewriter, op, exp); 616b8a021dbSAart Bik if (merger.exp(exp).kind == Kind::kInvariant) 617a2c9d4bbSAart Bik return genInvariantValue(merger, codegen, rewriter, exp); 6184569c14aSGus Smith Value v0 = genExp(merger, codegen, rewriter, op, merger.exp(exp).children.e0); 6194569c14aSGus Smith Value v1 = genExp(merger, codegen, rewriter, op, merger.exp(exp).children.e1); 620123e8dfcSAart Bik if (merger.exp(exp).kind == Kind::kNegI) { 621123e8dfcSAart Bik // TODO: no negi in std, need to make zero explicit. 622123e8dfcSAart Bik Type tp = op.getOutputTensorTypes()[0].getElementType(); 623123e8dfcSAart Bik v1 = v0; 624123e8dfcSAart Bik v0 = rewriter.create<ConstantOp>(loc, tp, rewriter.getZeroAttr(tp)); 625123e8dfcSAart Bik if (codegen.curVecLength > 1) 626123e8dfcSAart Bik v0 = genVectorInvariantValue(codegen, rewriter, v0); 627123e8dfcSAart Bik } 62845b3cfe8SAart Bik return merger.buildExp(rewriter, loc, exp, v0, v1); 629a2c9d4bbSAart Bik } 630a2c9d4bbSAart Bik 631a2c9d4bbSAart Bik /// Hoists loop invariant tensor loads for which indices have been exhausted. 632a2c9d4bbSAart Bik static void genInvariants(Merger &merger, CodeGen &codegen, 633a2c9d4bbSAart Bik PatternRewriter &rewriter, linalg::GenericOp op, 634a2c9d4bbSAart Bik unsigned exp, unsigned ldx, bool hoist) { 635123e8dfcSAart Bik if (exp == -1u) 636123e8dfcSAart Bik return; 637a2c9d4bbSAart Bik if (merger.exp(exp).kind == Kind::kTensor) { 638a2c9d4bbSAart Bik // Inspect tensor indices. 639a2c9d4bbSAart Bik bool atLevel = ldx == -1u; 6404569c14aSGus Smith OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).tensor]; 641619bfe8bSAart Bik auto map = op.getTiedIndexingMap(t); 642619bfe8bSAart Bik auto enc = getSparseTensorEncoding(t->get().getType()); 643c194b49cSAart Bik for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { 644c194b49cSAart Bik unsigned idx = map.getDimPosition(perm(enc, d)); 645a2c9d4bbSAart Bik if (!codegen.loops[idx]) 646a2c9d4bbSAart Bik return; // still in play 647a2c9d4bbSAart Bik else if (idx == ldx) 648a2c9d4bbSAart Bik atLevel = true; 649a2c9d4bbSAart Bik } 650a2c9d4bbSAart Bik // All exhausted at this level (atLevel denotes exactly at this level). 6512f2b5b7dSTobias Gysi OpOperand *lhs = op.getOutputOperand(0); 652619bfe8bSAart Bik if (lhs == t) { 653a2c9d4bbSAart Bik codegen.redExp = hoist ? exp : -1u; 654a2c9d4bbSAart Bik } else if (atLevel) { 655a2c9d4bbSAart Bik merger.exp(exp).val = 656a2c9d4bbSAart Bik hoist ? genTensorLoad(merger, codegen, rewriter, op, exp) : Value(); 657a2c9d4bbSAart Bik } 658123e8dfcSAart Bik } else if (merger.exp(exp).kind != Kind::kInvariant) { 659a2c9d4bbSAart Bik // Traverse into the binary operations. Note that we only hoist 660a2c9d4bbSAart Bik // tensor loads, since subsequent MLIR/LLVM passes know how to 661a2c9d4bbSAart Bik // deal with all other kinds of derived loop invariants. 6624569c14aSGus Smith unsigned e0 = merger.exp(exp).children.e0; 6634569c14aSGus Smith unsigned e1 = merger.exp(exp).children.e1; 664a2c9d4bbSAart Bik genInvariants(merger, codegen, rewriter, op, e0, ldx, hoist); 665a2c9d4bbSAart Bik genInvariants(merger, codegen, rewriter, op, e1, ldx, hoist); 666a2c9d4bbSAart Bik } 667a2c9d4bbSAart Bik } 668a2c9d4bbSAart Bik 669a2c9d4bbSAart Bik /// Generates initialization code for the subsequent loop sequence at 670a2c9d4bbSAart Bik /// current index level. Returns true if the loop sequence needs to 671a2c9d4bbSAart Bik /// maintain the universal index. 672a2c9d4bbSAart Bik static bool genInit(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, 673a2c9d4bbSAart Bik linalg::GenericOp op, std::vector<unsigned> &topSort, 674a2c9d4bbSAart Bik unsigned at, llvm::BitVector &inits) { 675a2c9d4bbSAart Bik bool needsUniv = false; 676a2c9d4bbSAart Bik Location loc = op.getLoc(); 677a2c9d4bbSAart Bik unsigned idx = topSort[at]; 678a2c9d4bbSAart Bik 679a2c9d4bbSAart Bik // Initialize sparse positions. 680a2c9d4bbSAart Bik for (unsigned b = 0, be = inits.size(); b < be; b++) { 681a2c9d4bbSAart Bik if (inits[b]) { 682a2c9d4bbSAart Bik unsigned tensor = merger.tensor(b); 683a2c9d4bbSAart Bik assert(idx == merger.index(b)); 684a2c9d4bbSAart Bik if (merger.isDim(b, Dim::kSparse)) { 685a2c9d4bbSAart Bik // Initialize sparse index. 686a2c9d4bbSAart Bik unsigned pat = at; 687a2c9d4bbSAart Bik for (; pat != 0; pat--) { 688a2c9d4bbSAart Bik if (codegen.pidxs[tensor][topSort[pat - 1]]) 689a2c9d4bbSAart Bik break; 690a2c9d4bbSAart Bik } 691a2c9d4bbSAart Bik Value ptr = codegen.pointers[tensor][idx]; 692a2c9d4bbSAart Bik Value one = rewriter.create<ConstantIndexOp>(loc, 1); 693a2c9d4bbSAart Bik Value p0 = (pat == 0) ? rewriter.create<ConstantIndexOp>(loc, 0) 694a2c9d4bbSAart Bik : codegen.pidxs[tensor][topSort[pat - 1]]; 695a2c9d4bbSAart Bik codegen.pidxs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p0); 696a2c9d4bbSAart Bik Value p1 = rewriter.create<AddIOp>(loc, p0, one); 697a2c9d4bbSAart Bik codegen.highs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p1); 698a2c9d4bbSAart Bik } else { 699a2c9d4bbSAart Bik // Dense index still in play. 700a2c9d4bbSAart Bik needsUniv = true; 701a2c9d4bbSAart Bik } 702a2c9d4bbSAart Bik } 703a2c9d4bbSAart Bik } 704a2c9d4bbSAart Bik 705a2c9d4bbSAart Bik // Initialize the universal dense index. 706a2c9d4bbSAart Bik codegen.loops[idx] = rewriter.create<ConstantIndexOp>(loc, 0); 707a2c9d4bbSAart Bik return needsUniv; 708a2c9d4bbSAart Bik } 709a2c9d4bbSAart Bik 710a2c9d4bbSAart Bik /// Returns vectorization strategy. Any implicit inner loop in the Linalg 711a2c9d4bbSAart Bik /// operation is a candidate. Whether it is actually converted to SIMD code 712a2c9d4bbSAart Bik /// depends on the requested strategy. 713a2c9d4bbSAart Bik static bool isVectorFor(CodeGen &codegen, bool isInner, bool isSparse) { 714a2c9d4bbSAart Bik switch (codegen.options.vectorizationStrategy) { 715a2c9d4bbSAart Bik case SparseVectorizationStrategy::kNone: 716a2c9d4bbSAart Bik return false; 717a2c9d4bbSAart Bik case SparseVectorizationStrategy::kDenseInnerLoop: 718a2c9d4bbSAart Bik return isInner && !isSparse; 719a2c9d4bbSAart Bik case SparseVectorizationStrategy::kAnyStorageInnerLoop: 720a2c9d4bbSAart Bik return isInner; 721a2c9d4bbSAart Bik } 722a2c9d4bbSAart Bik llvm_unreachable("unexpected vectorization strategy"); 723a2c9d4bbSAart Bik } 724a2c9d4bbSAart Bik 725a2c9d4bbSAart Bik /// Returns parallelization strategy. Any implicit loop in the Linalg operation 726a2c9d4bbSAart Bik /// that is marked "parallel" is a candidate. Whether it is actually converted 727a2c9d4bbSAart Bik /// to a parallel operation depends on the requested strategy. 728a2c9d4bbSAart Bik static bool isParallelFor(CodeGen &codegen, bool isOuter, bool isReduction, 729a2c9d4bbSAart Bik bool isSparse, bool isVector) { 730a2c9d4bbSAart Bik switch (codegen.options.parallelizationStrategy) { 731a2c9d4bbSAart Bik case SparseParallelizationStrategy::kNone: 732a2c9d4bbSAart Bik return false; 733a2c9d4bbSAart Bik case SparseParallelizationStrategy::kDenseOuterLoop: 734a2c9d4bbSAart Bik return isOuter && !isSparse && !isReduction && !isVector; 735a2c9d4bbSAart Bik case SparseParallelizationStrategy::kAnyStorageOuterLoop: 736a2c9d4bbSAart Bik return isOuter && !isReduction && !isVector; 737a2c9d4bbSAart Bik case SparseParallelizationStrategy::kDenseAnyLoop: 738a2c9d4bbSAart Bik return !isSparse && !isReduction && !isVector; 739a2c9d4bbSAart Bik case SparseParallelizationStrategy::kAnyStorageAnyLoop: 740a2c9d4bbSAart Bik return !isReduction && !isVector; 741a2c9d4bbSAart Bik } 742a2c9d4bbSAart Bik llvm_unreachable("unexpected parallelization strategy"); 743a2c9d4bbSAart Bik } 744a2c9d4bbSAart Bik 745a2c9d4bbSAart Bik /// Checks unit strides for dense tensors. The iteration graph may have ignored 746a2c9d4bbSAart Bik /// dense access patterns in order to avoid cycles (sparse access patterns are 747a2c9d4bbSAart Bik /// always placed innermost), but that means dense access has become strided. 748a2c9d4bbSAart Bik /// For now, we reject vectorization of such cases. 749a2c9d4bbSAart Bik /// TODO: implement strided load/stores on dense arrays 750a2c9d4bbSAart Bik static bool denseUnitStrides(Merger &merger, linalg::GenericOp op, 751a2c9d4bbSAart Bik unsigned idx) { 7522f2b5b7dSTobias Gysi for (OpOperand *t : op.getInputAndOutputOperands()) { 7532f2b5b7dSTobias Gysi if (!getSparseTensorEncoding(t->get().getType())) { 7542f2b5b7dSTobias Gysi auto map = op.getTiedIndexingMap(t); 755c194b49cSAart Bik for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { 756c194b49cSAart Bik if (map.getDimPosition(d) == idx && d != rank - 1) 757a2c9d4bbSAart Bik return false; 758a2c9d4bbSAart Bik } 759a2c9d4bbSAart Bik } 760a2c9d4bbSAart Bik } 761a2c9d4bbSAart Bik return true; 762a2c9d4bbSAart Bik } 763a2c9d4bbSAart Bik 764a2c9d4bbSAart Bik /// Generates a for-loop on a single index. 765a2c9d4bbSAart Bik static Operation *genFor(Merger &merger, CodeGen &codegen, 766a2c9d4bbSAart Bik PatternRewriter &rewriter, linalg::GenericOp op, 767a2c9d4bbSAart Bik bool isOuter, bool isInner, unsigned idx, 768a2c9d4bbSAart Bik llvm::BitVector &indices) { 769a2c9d4bbSAart Bik unsigned fb = indices.find_first(); 770a2c9d4bbSAart Bik unsigned tensor = merger.tensor(fb); 771a2c9d4bbSAart Bik assert(idx == merger.index(fb)); 772a2c9d4bbSAart Bik auto iteratorTypes = op.iterator_types().getValue(); 773a2c9d4bbSAart Bik bool isReduction = linalg::isReductionIteratorType(iteratorTypes[idx]); 774a2c9d4bbSAart Bik bool isSparse = merger.isDim(fb, Dim::kSparse); 775a2c9d4bbSAart Bik bool isVector = isVectorFor(codegen, isInner, isSparse) && 776a2c9d4bbSAart Bik denseUnitStrides(merger, op, idx); 777a2c9d4bbSAart Bik bool isParallel = 778a2c9d4bbSAart Bik isParallelFor(codegen, isOuter, isReduction, isSparse, isVector); 779a2c9d4bbSAart Bik 780a2c9d4bbSAart Bik // Prepare vector length. 781a2c9d4bbSAart Bik if (isVector) 782a2c9d4bbSAart Bik codegen.curVecLength = codegen.options.vectorLength; 783a2c9d4bbSAart Bik 784a2c9d4bbSAart Bik // Loop bounds and increment. 785a2c9d4bbSAart Bik Location loc = op.getLoc(); 786a2c9d4bbSAart Bik Value lo = isSparse ? codegen.pidxs[tensor][idx] : codegen.loops[idx]; 787a2c9d4bbSAart Bik Value hi = isSparse ? codegen.highs[tensor][idx] : codegen.sizes[idx]; 788a2c9d4bbSAart Bik Value step = rewriter.create<ConstantIndexOp>(loc, codegen.curVecLength); 789a2c9d4bbSAart Bik 790a2c9d4bbSAart Bik // Emit a parallel loop. 791a2c9d4bbSAart Bik if (isParallel) { 792a2c9d4bbSAart Bik assert(!isVector); 793a2c9d4bbSAart Bik scf::ParallelOp parOp = rewriter.create<scf::ParallelOp>(loc, lo, hi, step); 794a2c9d4bbSAart Bik if (isSparse) 795a2c9d4bbSAart Bik codegen.pidxs[tensor][idx] = parOp.getInductionVars()[0]; 796a2c9d4bbSAart Bik else 797a2c9d4bbSAart Bik codegen.loops[idx] = parOp.getInductionVars()[0]; 798a2c9d4bbSAart Bik rewriter.setInsertionPointToStart(parOp.getBody()); 799a2c9d4bbSAart Bik return parOp; 800a2c9d4bbSAart Bik } 801a2c9d4bbSAart Bik 802a2c9d4bbSAart Bik // Emit a sequential loop, potentially with a scalarized reduction. 803a2c9d4bbSAart Bik bool scalarRed = isInner && codegen.redExp != -1u; 804a2c9d4bbSAart Bik SmallVector<Value, 4> operands; 805a2c9d4bbSAart Bik if (scalarRed) { 806a2c9d4bbSAart Bik Value load = genReductionStart(merger, codegen, rewriter, op); 807a2c9d4bbSAart Bik operands.push_back(load); 808a2c9d4bbSAart Bik } 809a2c9d4bbSAart Bik scf::ForOp forOp = rewriter.create<scf::ForOp>(loc, lo, hi, step, operands); 810a2c9d4bbSAart Bik if (scalarRed) { 811a2c9d4bbSAart Bik codegen.redVal = merger.exp(codegen.redExp).val = 812a2c9d4bbSAart Bik forOp.getRegionIterArgs().front(); 813a2c9d4bbSAart Bik } 814a2c9d4bbSAart Bik // Assign induction variable to sparse or dense index. 815a2c9d4bbSAart Bik Value iv = forOp.getInductionVar(); 816a2c9d4bbSAart Bik if (isSparse) 817a2c9d4bbSAart Bik codegen.pidxs[tensor][idx] = iv; 818a2c9d4bbSAart Bik else 819a2c9d4bbSAart Bik codegen.loops[idx] = iv; 820a2c9d4bbSAart Bik rewriter.setInsertionPointToStart(forOp.getBody()); 821a2c9d4bbSAart Bik // Share vector iteration mask between all subsequent loads/stores. 822a2c9d4bbSAart Bik if (isVector) 823a2c9d4bbSAart Bik codegen.curVecMask = genVectorMask(codegen, rewriter, iv, lo, hi, step); 824a2c9d4bbSAart Bik return forOp; 825a2c9d4bbSAart Bik } 826a2c9d4bbSAart Bik 827a2c9d4bbSAart Bik /// Emit a while-loop for co-iteration over multiple indices. 828a2c9d4bbSAart Bik static Operation *genWhile(Merger &merger, CodeGen &codegen, 829a2c9d4bbSAart Bik PatternRewriter &rewriter, linalg::GenericOp op, 830a2c9d4bbSAart Bik unsigned idx, bool needsUniv, 831a2c9d4bbSAart Bik llvm::BitVector &indices) { 832a2c9d4bbSAart Bik SmallVector<Type, 4> types; 833a2c9d4bbSAart Bik SmallVector<Value, 4> operands; 834a2c9d4bbSAart Bik // Construct the while-loop with a parameter for each index. 835a2c9d4bbSAart Bik Type indexType = rewriter.getIndexType(); 836a2c9d4bbSAart Bik for (unsigned b = 0, be = indices.size(); b < be; b++) { 837a2c9d4bbSAart Bik if (indices[b] && merger.isDim(b, Dim::kSparse)) { 838a2c9d4bbSAart Bik unsigned tensor = merger.tensor(b); 839a2c9d4bbSAart Bik assert(idx == merger.index(b)); 840a2c9d4bbSAart Bik types.push_back(indexType); 841a2c9d4bbSAart Bik assert(codegen.pidxs[tensor][idx].getType().isa<IndexType>() && 842a2c9d4bbSAart Bik "type mismatch for sparse index"); 843a2c9d4bbSAart Bik operands.push_back(codegen.pidxs[tensor][idx]); 844a2c9d4bbSAart Bik } 845a2c9d4bbSAart Bik } 846a2c9d4bbSAart Bik if (needsUniv) { 847a2c9d4bbSAart Bik types.push_back(indexType); 848a2c9d4bbSAart Bik assert(codegen.loops[idx].getType().isa<IndexType>() && 849a2c9d4bbSAart Bik "type mismatch for universal index"); 850a2c9d4bbSAart Bik operands.push_back(codegen.loops[idx]); 851a2c9d4bbSAart Bik } 852a2c9d4bbSAart Bik Location loc = op.getLoc(); 853a2c9d4bbSAart Bik scf::WhileOp whileOp = rewriter.create<scf::WhileOp>(loc, types, operands); 854a2c9d4bbSAart Bik Block *before = rewriter.createBlock(&whileOp.before(), {}, types); 855a2c9d4bbSAart Bik Block *after = rewriter.createBlock(&whileOp.after(), {}, types); 856a2c9d4bbSAart Bik 857a2c9d4bbSAart Bik // Build the "before" region, which effectively consists 858a2c9d4bbSAart Bik // of a conjunction of "i < upper" tests on all induction. 859a2c9d4bbSAart Bik rewriter.setInsertionPointToStart(&whileOp.before().front()); 860a2c9d4bbSAart Bik Value cond; 861a2c9d4bbSAart Bik unsigned o = 0; 862a2c9d4bbSAart Bik for (unsigned b = 0, be = indices.size(); b < be; b++) { 863a2c9d4bbSAart Bik if (indices[b] && merger.isDim(b, Dim::kSparse)) { 864a2c9d4bbSAart Bik unsigned tensor = merger.tensor(b); 865a2c9d4bbSAart Bik assert(idx == merger.index(b)); 866a2c9d4bbSAart Bik Value op1 = before->getArgument(o); 867a2c9d4bbSAart Bik Value op2 = codegen.highs[tensor][idx]; 868a2c9d4bbSAart Bik Value opc = rewriter.create<CmpIOp>(loc, CmpIPredicate::ult, op1, op2); 869a2c9d4bbSAart Bik cond = cond ? rewriter.create<AndOp>(loc, cond, opc) : opc; 870a2c9d4bbSAart Bik codegen.pidxs[tensor][idx] = after->getArgument(o++); 871a2c9d4bbSAart Bik } 872a2c9d4bbSAart Bik } 873a2c9d4bbSAart Bik if (needsUniv) 874a2c9d4bbSAart Bik codegen.loops[idx] = after->getArgument(o++); 875a2c9d4bbSAart Bik assert(o == operands.size()); 876a2c9d4bbSAart Bik rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments()); 877a2c9d4bbSAart Bik rewriter.setInsertionPointToStart(&whileOp.after().front()); 878a2c9d4bbSAart Bik return whileOp; 879a2c9d4bbSAart Bik } 880a2c9d4bbSAart Bik 881a2c9d4bbSAart Bik /// Generates a for-loop or a while-loop, depending on whether it implements 882a2c9d4bbSAart Bik /// singleton iteration or co-iteration over the given conjunction. 883a2c9d4bbSAart Bik static Operation *genLoop(Merger &merger, CodeGen &codegen, 884a2c9d4bbSAart Bik PatternRewriter &rewriter, linalg::GenericOp op, 885a2c9d4bbSAart Bik std::vector<unsigned> &topSort, unsigned at, 886a2c9d4bbSAart Bik bool needsUniv, llvm::BitVector &indices) { 887a2c9d4bbSAart Bik unsigned idx = topSort[at]; 888a2c9d4bbSAart Bik if (indices.count() == 1) { 889a2c9d4bbSAart Bik bool isOuter = at == 0; 890a2c9d4bbSAart Bik bool isInner = at == topSort.size() - 1; 891a2c9d4bbSAart Bik return genFor(merger, codegen, rewriter, op, isOuter, isInner, idx, 892a2c9d4bbSAart Bik indices); 893a2c9d4bbSAart Bik } 894a2c9d4bbSAart Bik genReductionEnd(merger, codegen, rewriter, op); // cannot chain 895a2c9d4bbSAart Bik return genWhile(merger, codegen, rewriter, op, idx, needsUniv, indices); 896a2c9d4bbSAart Bik } 897a2c9d4bbSAart Bik 898a2c9d4bbSAart Bik /// Generates the local variables for this loop, consisting of the sparse 899a2c9d4bbSAart Bik /// indices, restored universal dense index, and dense positions. 900a2c9d4bbSAart Bik static void genLocals(Merger &merger, CodeGen &codegen, 901a2c9d4bbSAart Bik PatternRewriter &rewriter, linalg::GenericOp op, 902a2c9d4bbSAart Bik std::vector<unsigned> &topSort, unsigned at, 903a2c9d4bbSAart Bik bool needsUniv, llvm::BitVector &locals) { 904a2c9d4bbSAart Bik Location loc = op.getLoc(); 905a2c9d4bbSAart Bik unsigned idx = topSort[at]; 906a2c9d4bbSAart Bik 907a2c9d4bbSAart Bik // Initialize sparse indices. 908a2c9d4bbSAart Bik Value min; 909a2c9d4bbSAart Bik for (unsigned b = 0, be = locals.size(); b < be; b++) { 910a2c9d4bbSAart Bik if (locals[b] && merger.isDim(b, Dim::kSparse)) { 911a2c9d4bbSAart Bik unsigned tensor = merger.tensor(b); 912a2c9d4bbSAart Bik assert(idx == merger.index(b)); 913a2c9d4bbSAart Bik Value ptr = codegen.indices[tensor][idx]; 914a2c9d4bbSAart Bik Value s = codegen.pidxs[tensor][idx]; 915a2c9d4bbSAart Bik Value load = genLoad(codegen, rewriter, loc, ptr, s); 916a2c9d4bbSAart Bik codegen.idxs[tensor][idx] = load; 917a2c9d4bbSAart Bik if (!needsUniv) { 918a2c9d4bbSAart Bik if (min) { 919a2c9d4bbSAart Bik Value cmp = 920a2c9d4bbSAart Bik rewriter.create<CmpIOp>(loc, CmpIPredicate::ult, load, min); 921a2c9d4bbSAart Bik min = rewriter.create<SelectOp>(loc, cmp, load, min); 922a2c9d4bbSAart Bik } else { 923a2c9d4bbSAart Bik min = load; 924a2c9d4bbSAart Bik } 925a2c9d4bbSAart Bik } 926a2c9d4bbSAart Bik } 927a2c9d4bbSAart Bik } 928a2c9d4bbSAart Bik 929a2c9d4bbSAart Bik // Merge dense universal index over minimum. 930a2c9d4bbSAart Bik if (min) { 931a2c9d4bbSAart Bik assert(!needsUniv); 932a2c9d4bbSAart Bik codegen.loops[idx] = min; 933a2c9d4bbSAart Bik } 934a2c9d4bbSAart Bik 935727a63e0SAart Bik // Initialize dense positions. Note that we generate dense indices of the 936727a63e0SAart Bik // output tensor unconditionally, since they may not appear in the lattice, 937727a63e0SAart Bik // but may be needed for linearized codegen. 938a2c9d4bbSAart Bik for (unsigned b = 0, be = locals.size(); b < be; b++) { 939727a63e0SAart Bik if ((locals[b] || merger.isOutTensor(b, idx)) && 940727a63e0SAart Bik merger.isDim(b, Dim::kDense)) { 941a2c9d4bbSAart Bik unsigned tensor = merger.tensor(b); 942a2c9d4bbSAart Bik assert(idx == merger.index(b)); 943a2c9d4bbSAart Bik unsigned pat = at; 944a2c9d4bbSAart Bik for (; pat != 0; pat--) 945a2c9d4bbSAart Bik if (codegen.pidxs[tensor][topSort[pat - 1]]) 946a2c9d4bbSAart Bik break; 947a2c9d4bbSAart Bik Value p = (pat == 0) ? rewriter.create<ConstantIndexOp>(loc, 0) 948a2c9d4bbSAart Bik : codegen.pidxs[tensor][topSort[pat - 1]]; 949a2c9d4bbSAart Bik codegen.pidxs[tensor][idx] = genAddress( 950a2c9d4bbSAart Bik codegen, rewriter, loc, codegen.sizes[idx], p, codegen.loops[idx]); 951a2c9d4bbSAart Bik } 952a2c9d4bbSAart Bik } 953a2c9d4bbSAart Bik } 954a2c9d4bbSAart Bik 955a2c9d4bbSAart Bik /// Generates the induction structure for a while-loop. 956a2c9d4bbSAart Bik static void genWhileInduction(Merger &merger, CodeGen &codegen, 957a2c9d4bbSAart Bik PatternRewriter &rewriter, linalg::GenericOp op, 958a2c9d4bbSAart Bik unsigned idx, bool needsUniv, 959a2c9d4bbSAart Bik llvm::BitVector &induction, ResultRange results) { 960a2c9d4bbSAart Bik Location loc = op.getLoc(); 961a2c9d4bbSAart Bik unsigned o = 0; 962a2c9d4bbSAart Bik SmallVector<Value, 4> operands; 963a2c9d4bbSAart Bik Value one = rewriter.create<ConstantIndexOp>(loc, 1); 964a2c9d4bbSAart Bik for (unsigned b = 0, be = induction.size(); b < be; b++) { 965a2c9d4bbSAart Bik if (induction[b] && merger.isDim(b, Dim::kSparse)) { 966a2c9d4bbSAart Bik unsigned tensor = merger.tensor(b); 967a2c9d4bbSAart Bik assert(idx == merger.index(b)); 968a2c9d4bbSAart Bik Value op1 = codegen.idxs[tensor][idx]; 969a2c9d4bbSAart Bik Value op2 = codegen.loops[idx]; 970a2c9d4bbSAart Bik Value op3 = codegen.pidxs[tensor][idx]; 971a2c9d4bbSAart Bik Value cmp = rewriter.create<CmpIOp>(loc, CmpIPredicate::eq, op1, op2); 972a2c9d4bbSAart Bik Value add = rewriter.create<AddIOp>(loc, op3, one); 973a2c9d4bbSAart Bik operands.push_back(rewriter.create<SelectOp>(loc, cmp, add, op3)); 974a2c9d4bbSAart Bik codegen.pidxs[tensor][idx] = results[o++]; 975a2c9d4bbSAart Bik } 976a2c9d4bbSAart Bik } 977a2c9d4bbSAart Bik if (needsUniv) { 978a2c9d4bbSAart Bik operands.push_back(rewriter.create<AddIOp>(loc, codegen.loops[idx], one)); 979a2c9d4bbSAart Bik codegen.loops[idx] = results[o++]; 980a2c9d4bbSAart Bik } 981a2c9d4bbSAart Bik assert(o == operands.size()); 982a2c9d4bbSAart Bik rewriter.create<scf::YieldOp>(loc, operands); 983a2c9d4bbSAart Bik } 984a2c9d4bbSAart Bik 985a2c9d4bbSAart Bik /// Generates a single if-statement within a while-loop. 986a2c9d4bbSAart Bik static scf::IfOp genIf(Merger &merger, CodeGen &codegen, 987a2c9d4bbSAart Bik PatternRewriter &rewriter, linalg::GenericOp op, 988a2c9d4bbSAart Bik unsigned idx, llvm::BitVector &conditions) { 989a2c9d4bbSAart Bik Location loc = op.getLoc(); 990a2c9d4bbSAart Bik Value cond; 991a2c9d4bbSAart Bik for (unsigned b = 0, be = conditions.size(); b < be; b++) { 992a2c9d4bbSAart Bik if (conditions[b]) { 993a2c9d4bbSAart Bik unsigned tensor = merger.tensor(b); 994a2c9d4bbSAart Bik assert(idx == merger.index(b)); 995a2c9d4bbSAart Bik Value clause; 996a2c9d4bbSAart Bik if (merger.isDim(b, Dim::kSparse)) { 997a2c9d4bbSAart Bik Value op1 = codegen.idxs[tensor][idx]; 998a2c9d4bbSAart Bik Value op2 = codegen.loops[idx]; 999a2c9d4bbSAart Bik clause = rewriter.create<CmpIOp>(loc, CmpIPredicate::eq, op1, op2); 1000a2c9d4bbSAart Bik } else { 1001a2c9d4bbSAart Bik clause = rewriter.create<ConstantIntOp>(loc, 1, 1); // true 1002a2c9d4bbSAart Bik } 1003a2c9d4bbSAart Bik cond = cond ? rewriter.create<AndOp>(loc, cond, clause) : clause; 1004a2c9d4bbSAart Bik } 1005a2c9d4bbSAart Bik } 1006a2c9d4bbSAart Bik scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, cond, /*else*/ true); 1007a2c9d4bbSAart Bik rewriter.setInsertionPointToStart(&ifOp.thenRegion().front()); 1008a2c9d4bbSAart Bik return ifOp; 1009a2c9d4bbSAart Bik } 1010a2c9d4bbSAart Bik 1011a2c9d4bbSAart Bik /// Recursively generates code while computing iteration lattices in order 1012a2c9d4bbSAart Bik /// to manage the complexity of implementing co-iteration over unions 1013a2c9d4bbSAart Bik /// and intersections of sparse iterations spaces. 1014a2c9d4bbSAart Bik static void genStmt(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, 1015a2c9d4bbSAart Bik linalg::GenericOp op, std::vector<unsigned> &topSort, 1016a2c9d4bbSAart Bik unsigned exp, unsigned at) { 1017a2c9d4bbSAart Bik // At each leaf, assign remaining tensor (sub)expression to output tensor. 1018a2c9d4bbSAart Bik if (at == topSort.size()) { 10192f2b5b7dSTobias Gysi OpOperand *lhs = op.getOutputOperand(0); 1020a2c9d4bbSAart Bik Value rhs = genExp(merger, codegen, rewriter, op, exp); 1021a2c9d4bbSAart Bik genTensorStore(merger, codegen, rewriter, op, lhs, rhs); 1022a2c9d4bbSAart Bik return; 1023a2c9d4bbSAart Bik } 1024a2c9d4bbSAart Bik assert(codegen.curVecLength == 1); 1025a2c9d4bbSAart Bik 1026a2c9d4bbSAart Bik // Construct iteration lattices for current loop index, with L0 at top. 1027a2c9d4bbSAart Bik // Then emit initialization code for the loop sequence at this level. 1028a2c9d4bbSAart Bik // We maintain the universal dense index if dense indices are still 1029a2c9d4bbSAart Bik // in play for a non-singleton loop sequence. 1030a2c9d4bbSAart Bik Location loc = op.getLoc(); 1031a2c9d4bbSAart Bik unsigned idx = topSort[at]; 1032043ce4e6SGus Smith unsigned lts = merger.optimizeSet(merger.buildLattices(exp, idx)); 1033a2c9d4bbSAart Bik unsigned lsize = merger.set(lts).size(); 1034a2c9d4bbSAart Bik assert(lsize != 0); 1035a2c9d4bbSAart Bik unsigned l0 = merger.set(lts)[0]; 1036a2c9d4bbSAart Bik unsigned ldx = at == 0 ? -1u : topSort[at - 1]; 1037a2c9d4bbSAart Bik genInvariants(merger, codegen, rewriter, op, exp, ldx, /*hoist=*/true); 1038a2c9d4bbSAart Bik bool needsUniv = false; 1039a2c9d4bbSAart Bik if (genInit(merger, codegen, rewriter, op, topSort, at, 1040a2c9d4bbSAart Bik merger.lat(l0).bits)) { 1041a2c9d4bbSAart Bik // Maintain the universal index only if it is actually 1042a2c9d4bbSAart Bik // consumed by a subsequent lattice point. 1043a2c9d4bbSAart Bik for (unsigned i = 1; i < lsize; i++) { 1044a2c9d4bbSAart Bik unsigned li = merger.set(lts)[i]; 1045a2c9d4bbSAart Bik if (!merger.hasAnyDimOf(merger.lat(li).simple, Dim::kSparse)) { 1046a2c9d4bbSAart Bik needsUniv = true; 1047a2c9d4bbSAart Bik break; 1048a2c9d4bbSAart Bik } 1049a2c9d4bbSAart Bik } 1050a2c9d4bbSAart Bik } 1051a2c9d4bbSAart Bik 1052a2c9d4bbSAart Bik // Emit a loop for every lattice point L0 >= Li. 1053a2c9d4bbSAart Bik for (unsigned i = 0; i < lsize; i++) { 1054a2c9d4bbSAart Bik unsigned li = merger.set(lts)[i]; 1055a2c9d4bbSAart Bik 1056a2c9d4bbSAart Bik // Emit loop. 1057a2c9d4bbSAart Bik codegen.curVecLength = 1; 1058a2c9d4bbSAart Bik llvm::BitVector indices = merger.lat(li).simple; 1059a2c9d4bbSAart Bik Operation *loop = 1060a2c9d4bbSAart Bik genLoop(merger, codegen, rewriter, op, topSort, at, needsUniv, indices); 1061a2c9d4bbSAart Bik genLocals(merger, codegen, rewriter, op, topSort, at, needsUniv, 1062a2c9d4bbSAart Bik merger.lat(li).bits); 1063a2c9d4bbSAart Bik 1064a2c9d4bbSAart Bik // Visit all lattices points with Li >= Lj to generate the 1065a2c9d4bbSAart Bik // loop-body, possibly with if statements for coiteration. 1066a2c9d4bbSAart Bik bool isWhile = dyn_cast<scf::WhileOp>(loop) != nullptr; 1067a2c9d4bbSAart Bik for (unsigned j = 0; j < lsize; j++) { 1068a2c9d4bbSAart Bik unsigned lj = merger.set(lts)[j]; 1069a2c9d4bbSAart Bik unsigned ej = merger.lat(lj).exp; 1070a2c9d4bbSAart Bik if (li == lj || merger.latGT(li, lj)) { 1071a2c9d4bbSAart Bik // Recurse into body of each branch. 1072a2c9d4bbSAart Bik if (isWhile) { 1073a2c9d4bbSAart Bik scf::IfOp ifOp = 1074a2c9d4bbSAart Bik genIf(merger, codegen, rewriter, op, idx, merger.lat(lj).simple); 1075a2c9d4bbSAart Bik genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1); 1076a2c9d4bbSAart Bik rewriter.setInsertionPointToStart(&ifOp.elseRegion().front()); 1077a2c9d4bbSAart Bik } else { 1078a2c9d4bbSAart Bik genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1); 1079a2c9d4bbSAart Bik } 1080a2c9d4bbSAart Bik } 1081a2c9d4bbSAart Bik } 1082a2c9d4bbSAart Bik 1083a2c9d4bbSAart Bik // Wrap-up induction and restore insertion point. 1084a2c9d4bbSAart Bik if (isWhile) { 1085a2c9d4bbSAart Bik scf::WhileOp whileOp = cast<scf::WhileOp>(loop); 1086a2c9d4bbSAart Bik rewriter.setInsertionPointToEnd(&whileOp.after().front()); 1087a2c9d4bbSAart Bik genWhileInduction(merger, codegen, rewriter, op, idx, needsUniv, 1088a2c9d4bbSAart Bik merger.lat(li).bits, whileOp.results()); 1089a2c9d4bbSAart Bik } else { 1090a2c9d4bbSAart Bik needsUniv = false; 1091a2c9d4bbSAart Bik if (codegen.redVal) { 1092a2c9d4bbSAart Bik rewriter.create<scf::YieldOp>(loc, codegen.redVal); 1093a2c9d4bbSAart Bik codegen.redVal = loop->getResult(0); 1094a2c9d4bbSAart Bik } 1095a2c9d4bbSAart Bik } 1096a2c9d4bbSAart Bik rewriter.setInsertionPointAfter(loop); 1097a2c9d4bbSAart Bik } 1098a2c9d4bbSAart Bik 1099a2c9d4bbSAart Bik // Wrap-up loop sequence. 1100a2c9d4bbSAart Bik codegen.curVecLength = 1; 1101a2c9d4bbSAart Bik genReductionEnd(merger, codegen, rewriter, op); 1102a2c9d4bbSAart Bik genInvariants(merger, codegen, rewriter, op, exp, ldx, /*hoist=*/false); 1103a2c9d4bbSAart Bik codegen.loops[idx] = Value(); 1104a2c9d4bbSAart Bik } 1105a2c9d4bbSAart Bik 1106727a63e0SAart Bik /// Converts the result computed by the sparse kernel into the required form. 110736b66ab9SAart Bik static void genResult(Merger &merger, CodeGen &codegen, 110836b66ab9SAart Bik PatternRewriter &rewriter, linalg::GenericOp op) { 110936b66ab9SAart Bik Location loc = op.getLoc(); 111036b66ab9SAart Bik OpOperand *lhs = op.getOutputOperand(0); 111136b66ab9SAart Bik Type resType = lhs->get().getType(); 111236b66ab9SAart Bik unsigned tensor = lhs->getOperandNumber(); 111336b66ab9SAart Bik auto map = op.getTiedIndexingMap(lhs); 111436b66ab9SAart Bik auto enc = getSparseTensorEncoding(resType); 111536b66ab9SAart Bik Value result = codegen.buffers.back(); // value array 111636b66ab9SAart Bik if (enc) { 111736b66ab9SAart Bik // The sparse annotation unambigiously defines the arrays needed 111836b66ab9SAart Bik // to "reconstruct" the sparse tensor from the storage scheme 111936b66ab9SAart Bik // (even though lowering should never need this eventually). 112036b66ab9SAart Bik SmallVector<Value, 4> args; 112136b66ab9SAart Bik for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { 112236b66ab9SAart Bik unsigned idx = map.getDimPosition(perm(enc, d)); 112336b66ab9SAart Bik if (merger.isDim(tensor, idx, Dim::kSparse)) { 112436b66ab9SAart Bik args.push_back(codegen.pointers[tensor][idx]); 112536b66ab9SAart Bik args.push_back(codegen.indices[tensor][idx]); 112636b66ab9SAart Bik } 112736b66ab9SAart Bik } 112836b66ab9SAart Bik args.push_back(result); 112936b66ab9SAart Bik result = rewriter.create<ToTensorOp>(loc, resType, args); 113036b66ab9SAart Bik } else { 113136b66ab9SAart Bik // To "reconstruct" an non-annotated tensor, sipmly load it 113236b66ab9SAart Bik // from the bufferized value. 113336b66ab9SAart Bik result = rewriter.create<memref::TensorLoadOp>(loc, resType, result); 113436b66ab9SAart Bik } 1135727a63e0SAart Bik rewriter.replaceOp(op, result); 1136727a63e0SAart Bik } 1137727a63e0SAart Bik 1138a2c9d4bbSAart Bik namespace { 1139a2c9d4bbSAart Bik 1140a2c9d4bbSAart Bik /// Sparse rewriting rule for generic Lingalg operation. 1141a2c9d4bbSAart Bik struct GenericOpSparsifier : public OpRewritePattern<linalg::GenericOp> { 1142a2c9d4bbSAart Bik public: 1143a2c9d4bbSAart Bik GenericOpSparsifier(MLIRContext *context, SparsificationOptions o) 1144a2c9d4bbSAart Bik : OpRewritePattern<linalg::GenericOp>(context), options(o) {} 1145a2c9d4bbSAart Bik 1146a2c9d4bbSAart Bik LogicalResult matchAndRewrite(linalg::GenericOp op, 1147a2c9d4bbSAart Bik PatternRewriter &rewriter) const override { 1148a2c9d4bbSAart Bik // Detects sparse annotations and translate the per-dimension sparsity 1149a2c9d4bbSAart Bik // information for all tensors to loop indices in the kernel. 1150a2c9d4bbSAart Bik assert(op.getNumOutputs() == 1); 11512f2b5b7dSTobias Gysi unsigned numTensors = op.getNumInputsAndOutputs(); 1152a2c9d4bbSAart Bik unsigned numLoops = op.iterator_types().getValue().size(); 1153a2c9d4bbSAart Bik Merger merger(numTensors, numLoops); 1154bf9ef3efSAart Bik if (!findSparseAnnotations(merger, op)) 1155bf9ef3efSAart Bik return failure(); 1156a2c9d4bbSAart Bik 1157a2c9d4bbSAart Bik // Computes a topologically sorted iteration graph to ensure 1158a2c9d4bbSAart Bik // tensors are visited in natural index order. Fails on cycles. 1159a2c9d4bbSAart Bik // This assumes that higher-level passes have already put the 1160a2c9d4bbSAart Bik // tensors in each tensor expression in a feasible order. 1161a2c9d4bbSAart Bik std::vector<unsigned> topSort; 1162a2c9d4bbSAart Bik if (!computeIterationGraph(merger, op, topSort, /*sparseOnly=*/false) && 1163a2c9d4bbSAart Bik !computeIterationGraph(merger, op, topSort, /*sparseOnly=*/true)) 1164a2c9d4bbSAart Bik return failure(); 1165a2c9d4bbSAart Bik 1166266a7414SAart Bik // Builds the tensor expression for the Linalg operation in SSA form. 1167266a7414SAart Bik Optional<unsigned> exp = merger.buildTensorExpFromLinalg(op); 1168a2c9d4bbSAart Bik if (!exp.hasValue()) 1169266a7414SAart Bik return failure(); 1170a2c9d4bbSAart Bik 1171266a7414SAart Bik // Rejects an inadmissable tensor expression. 117236b66ab9SAart Bik if (!isAdmissableTensorExp(merger, op, exp.getValue())) 117336b66ab9SAart Bik return failure(); 117436b66ab9SAart Bik 1175a2c9d4bbSAart Bik // Recursively generates code. 1176a2c9d4bbSAart Bik CodeGen codegen(options, numTensors, numLoops); 1177727a63e0SAart Bik if (!genBuffers(merger, codegen, rewriter, op)) 1178727a63e0SAart Bik return failure(); // could not bufferize 1179a2c9d4bbSAart Bik genStmt(merger, codegen, rewriter, op, topSort, exp.getValue(), 0); 118036b66ab9SAart Bik genResult(merger, codegen, rewriter, op); 1181a2c9d4bbSAart Bik return success(); 1182a2c9d4bbSAart Bik } 1183a2c9d4bbSAart Bik 1184a2c9d4bbSAart Bik private: 1185a2c9d4bbSAart Bik /// Options to control sparse code generation. 1186a2c9d4bbSAart Bik SparsificationOptions options; 1187a2c9d4bbSAart Bik }; 1188a2c9d4bbSAart Bik 1189a2c9d4bbSAart Bik } // namespace 1190a2c9d4bbSAart Bik 1191a2c9d4bbSAart Bik /// Populates the given patterns list with rewriting rules required for 1192a2c9d4bbSAart Bik /// the sparsification of linear algebra operations. 1193a2c9d4bbSAart Bik void mlir::populateSparsificationPatterns( 1194a2c9d4bbSAart Bik RewritePatternSet &patterns, const SparsificationOptions &options) { 1195a2c9d4bbSAart Bik patterns.add<GenericOpSparsifier>(patterns.getContext(), options); 1196a2c9d4bbSAart Bik } 1197