196a23911SAart Bik //===- Sparsification.cpp - Implementation of sparsification --------------===// 2a2c9d4bbSAart Bik // 3a2c9d4bbSAart Bik // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4a2c9d4bbSAart Bik // See https://llvm.org/LICENSE.txt for license information. 5a2c9d4bbSAart Bik // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6a2c9d4bbSAart Bik // 7a2c9d4bbSAart Bik //===----------------------------------------------------------------------===// 8a2c9d4bbSAart Bik // 9160399c7SAart Bik // This file implements converting sparse tensor types to actual sparse code. 10a2c9d4bbSAart Bik // 11a2c9d4bbSAart Bik //===----------------------------------------------------------------------===// 12a2c9d4bbSAart Bik 1376a18618SMatthias Springer #include "mlir/Dialect/Affine/IR/AffineOps.h" 14a54f4eaeSMogball #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 15*4397a1baSMatthias Springer #include "mlir/Dialect/Linalg/ComprehensiveBufferize/BufferizableOpInterface.h" 16a2c9d4bbSAart Bik #include "mlir/Dialect/Linalg/IR/LinalgOps.h" 17a2c9d4bbSAart Bik #include "mlir/Dialect/Linalg/Utils/Utils.h" 1866f878ceSMatthias Springer #include "mlir/Dialect/MemRef/IR/MemRef.h" 19a2c9d4bbSAart Bik #include "mlir/Dialect/SCF/SCF.h" 2076a18618SMatthias Springer #include "mlir/Dialect/SCF/Transforms.h" 21a2c9d4bbSAart Bik #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h" 22a2c9d4bbSAart Bik #include "mlir/Dialect/SparseTensor/Transforms/Passes.h" 23744146f6SGus Smith #include "mlir/Dialect/SparseTensor/Utils/Merger.h" 24a2c9d4bbSAart Bik #include "mlir/Dialect/StandardOps/IR/Ops.h" 25a2c9d4bbSAart Bik #include "mlir/Dialect/Vector/VectorOps.h" 26a2c9d4bbSAart Bik #include "mlir/IR/Matchers.h" 2796a23911SAart Bik #include "mlir/IR/TensorEncoding.h" 28a2c9d4bbSAart Bik #include "llvm/ADT/SmallBitVector.h" 29a2c9d4bbSAart Bik 30a2c9d4bbSAart Bik using namespace mlir; 3196a23911SAart Bik using namespace mlir::sparse_tensor; 32a2c9d4bbSAart Bik 335da21338SAart Bik //===----------------------------------------------------------------------===// 345da21338SAart Bik // Declarations of data structures. 355da21338SAart Bik //===----------------------------------------------------------------------===// 365da21338SAart Bik 37a2c9d4bbSAart Bik namespace { 38a2c9d4bbSAart Bik 39b6d1a31cSAart Bik // Iteration graph sorting. 40b6d1a31cSAart Bik enum SortMask { kSparseOnly = 0x0, kIncludeDense = 0x1, kIncludeUndef = 0x2 }; 41b6d1a31cSAart Bik 425da21338SAart Bik // Reduction kinds. 437373cabcSAart Bik enum Reduction { kNoReduc, kSum, kProduct, kAnd, kOr, kXor }; 445da21338SAart Bik 45a2c9d4bbSAart Bik // Code generation. 46a2c9d4bbSAart Bik struct CodeGen { 4796a23911SAart Bik CodeGen(SparsificationOptions o, unsigned numTensors, unsigned numLoops) 48a2c9d4bbSAart Bik : options(o), loops(numLoops), sizes(numLoops), buffers(numTensors), 49a2c9d4bbSAart Bik pointers(numTensors, std::vector<Value>(numLoops)), 50a2c9d4bbSAart Bik indices(numTensors, std::vector<Value>(numLoops)), 51a2c9d4bbSAart Bik highs(numTensors, std::vector<Value>(numLoops)), 52a2c9d4bbSAart Bik pidxs(numTensors, std::vector<Value>(numLoops)), 53a2c9d4bbSAart Bik idxs(numTensors, std::vector<Value>(numLoops)), redExp(-1u), redVal(), 547373cabcSAart Bik redKind(kNoReduc), curVecLength(1), curVecMask() {} 55a2c9d4bbSAart Bik /// Sparsification options. 5696a23911SAart Bik SparsificationOptions options; 57a2c9d4bbSAart Bik /// Universal dense indices and upper bounds (by index). The loops array 58a2c9d4bbSAart Bik /// is updated with the value of the universal dense index in the current 59a2c9d4bbSAart Bik /// loop. The sizes array is set once with the inferred dimension sizes. 60a2c9d4bbSAart Bik std::vector<Value> loops; 61a2c9d4bbSAart Bik std::vector<Value> sizes; 62a2c9d4bbSAart Bik /// Buffers for storing dense and sparse numerical values (by tensor). 63a2c9d4bbSAart Bik /// This array is set once during bufferization of all tensors. 64a2c9d4bbSAart Bik std::vector<Value> buffers; 65a2c9d4bbSAart Bik /// Sparse storage schemes (1-D): pointers and indices (by tensor and index). 66a2c9d4bbSAart Bik /// This array is set once during bufferization of all sparse tensors. 67a2c9d4bbSAart Bik std::vector<std::vector<Value>> pointers; 68a2c9d4bbSAart Bik std::vector<std::vector<Value>> indices; 69a2c9d4bbSAart Bik /// Sparse iteration information (by tensor and index). These arrays 70a2c9d4bbSAart Bik /// are updated to remain current within the current loop. 71a2c9d4bbSAart Bik std::vector<std::vector<Value>> highs; 72a2c9d4bbSAart Bik std::vector<std::vector<Value>> pidxs; 73a2c9d4bbSAart Bik std::vector<std::vector<Value>> idxs; 74a2c9d4bbSAart Bik /// Current reduction, updated during code generation. When indices of a 757373cabcSAart Bik /// reduction are exhausted, all inner loops can use a scalarized reduction. 76a2c9d4bbSAart Bik unsigned redExp; 77a2c9d4bbSAart Bik Value redVal; 785da21338SAart Bik Reduction redKind; 79a2c9d4bbSAart Bik // Current vector length and mask. 80a2c9d4bbSAart Bik unsigned curVecLength; 81a2c9d4bbSAart Bik Value curVecMask; 82a2c9d4bbSAart Bik }; 83a2c9d4bbSAart Bik 84a2c9d4bbSAart Bik } // namespace 85a2c9d4bbSAart Bik 865da21338SAart Bik //===----------------------------------------------------------------------===// 875da21338SAart Bik // Sparse compiler analysis methods. 885da21338SAart Bik //===----------------------------------------------------------------------===// 895da21338SAart Bik 905da21338SAart Bik /// Helper method to apply dimension ordering permutation. 915da21338SAart Bik static unsigned perm(const SparseTensorEncodingAttr &enc, unsigned d) { 92c194b49cSAart Bik if (enc) { 93c194b49cSAart Bik auto order = enc.getDimOrdering(); 94c194b49cSAart Bik if (order) { 95c194b49cSAart Bik assert(order.isPermutation()); 96c194b49cSAart Bik return order.getDimPosition(d); 97c194b49cSAart Bik } 98c194b49cSAart Bik } 99c194b49cSAart Bik return d; 100c194b49cSAart Bik } 101c194b49cSAart Bik 1025da21338SAart Bik /// Helper method to translate dim level type to internal representation. 1035da21338SAart Bik static Dim toDim(const SparseTensorEncodingAttr &enc, unsigned d) { 10496a23911SAart Bik if (enc) { 10596a23911SAart Bik SparseTensorEncodingAttr::DimLevelType tp = enc.getDimLevelType()[d]; 10696a23911SAart Bik if (tp == SparseTensorEncodingAttr::DimLevelType::Compressed) 10796a23911SAart Bik return Dim::kSparse; 10896a23911SAart Bik if (tp == SparseTensorEncodingAttr::DimLevelType::Singleton) 10996a23911SAart Bik return Dim::kSingle; 11096a23911SAart Bik } 11196a23911SAart Bik return Dim::kDense; 11296a23911SAart Bik } 11396a23911SAart Bik 114b1d44e59SAart Bik /// Helper method to inspect affine expressions. Rejects cases where the 115c8d5dcb0SAart Bik /// same index is used more than once. Also rejects affine expressions 116c8d5dcb0SAart Bik /// that are not a direct index for annotated tensors. 117c8d5dcb0SAart Bik // TODO: accept more affine cases for sparse tensors 118b1d44e59SAart Bik static bool findAffine(Merger &merger, unsigned tensor, AffineExpr a, Dim dim, 119b1d44e59SAart Bik bool isDense) { 120b1d44e59SAart Bik switch (a.getKind()) { 121b1d44e59SAart Bik case AffineExprKind::DimId: { 122b1d44e59SAart Bik unsigned idx = a.cast<AffineDimExpr>().getPosition(); 123b1d44e59SAart Bik if (!merger.isDim(tensor, idx, Dim::kUndef)) 124b1d44e59SAart Bik return false; // used more than once 125b1d44e59SAart Bik merger.setDim(tensor, idx, dim); 126b1d44e59SAart Bik return true; 127b1d44e59SAart Bik } 128b1d44e59SAart Bik case AffineExprKind::Add: 129b1d44e59SAart Bik case AffineExprKind::Mul: { 130b1d44e59SAart Bik if (!isDense) 131b1d44e59SAart Bik return false; 132b1d44e59SAart Bik auto binOp = a.cast<AffineBinaryOpExpr>(); 133b1d44e59SAart Bik return findAffine(merger, tensor, binOp.getLHS(), dim, isDense) && 134b1d44e59SAart Bik findAffine(merger, tensor, binOp.getRHS(), dim, isDense); 135b1d44e59SAart Bik } 136b1d44e59SAart Bik case AffineExprKind::Constant: 137b1d44e59SAart Bik return isDense; 138b1d44e59SAart Bik default: 139b1d44e59SAart Bik return false; 140b1d44e59SAart Bik } 141b1d44e59SAart Bik } 142b1d44e59SAart Bik 14396a23911SAart Bik /// Helper method to inspect sparse encodings in the tensor types. 144a2c9d4bbSAart Bik /// Fills the per-dimension sparsity information for all tensors. 145b1d44e59SAart Bik /// Returns true if the sparse annotations and affine subscript 146b1d44e59SAart Bik /// expressions of all tensors are admissable. Returns false if 147b1d44e59SAart Bik /// no annotations are found or inadmissable constructs occur. 148bf9ef3efSAart Bik static bool findSparseAnnotations(Merger &merger, linalg::GenericOp op) { 149bf9ef3efSAart Bik bool annotated = false; 1502f2b5b7dSTobias Gysi for (OpOperand *t : op.getInputAndOutputOperands()) { 1512f2b5b7dSTobias Gysi auto map = op.getTiedIndexingMap(t); 1522f2b5b7dSTobias Gysi auto enc = getSparseTensorEncoding(t->get().getType()); 153727a63e0SAart Bik if (enc) 154bf9ef3efSAart Bik annotated = true; 1552f2b5b7dSTobias Gysi assert(map.getNumResults() == op.getRank(t)); 156c194b49cSAart Bik for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { 157b1d44e59SAart Bik unsigned tensor = t->getOperandNumber(); 158b1d44e59SAart Bik AffineExpr a = map.getResult(perm(enc, d)); 159b1d44e59SAart Bik if (!findAffine(merger, tensor, a, toDim(enc, d), !enc)) 160b1d44e59SAart Bik return false; // inadmissable affine expression 161a2c9d4bbSAart Bik } 162a2c9d4bbSAart Bik } 163bf9ef3efSAart Bik return annotated; 164a2c9d4bbSAart Bik } 165a2c9d4bbSAart Bik 166a2c9d4bbSAart Bik /// A DFS helper to compute a topological sort. Note that recursion is 167a2c9d4bbSAart Bik /// bounded by the number of implicit loops, which is always small. 168a2c9d4bbSAart Bik /// Returns false when a cycle is detected. 169a2c9d4bbSAart Bik static bool topSortDFS(unsigned i, std::vector<unsigned> &visit, 170a2c9d4bbSAart Bik std::vector<unsigned> &topSort, 171a2c9d4bbSAart Bik std::vector<std::vector<bool>> &adjM) { 172a2c9d4bbSAart Bik if (visit[i] != 0) 173a2c9d4bbSAart Bik return visit[i] != 1; // 1 denotes cycle! 174a2c9d4bbSAart Bik visit[i] = 1; 175a2c9d4bbSAart Bik for (unsigned j = 0, e = visit.size(); j < e; j++) 176a2c9d4bbSAart Bik if (adjM[i][j]) 177a2c9d4bbSAart Bik if (!topSortDFS(j, visit, topSort, adjM)) 178a2c9d4bbSAart Bik return false; 179a2c9d4bbSAart Bik visit[i] = 2; 180a2c9d4bbSAart Bik topSort.push_back(i); 181a2c9d4bbSAart Bik return true; 182a2c9d4bbSAart Bik } 183a2c9d4bbSAart Bik 184b1d44e59SAart Bik /// Helper method to add all constraints from the indices in one affine 185b1d44e59SAart Bik /// expression before all indices in the other affine expression. For 186b1d44e59SAart Bik /// example i0+i1 < i2+i3+1 yields i0<i2, i0<i3, i1<i2, and i1<i3. 187b1d44e59SAart Bik static void addAffineOrderings(std::vector<std::vector<bool>> &adjM, 188b1d44e59SAart Bik AffineExpr a, AffineExpr b, unsigned fidx) { 189b1d44e59SAart Bik switch (a.getKind()) { 190b1d44e59SAart Bik case AffineExprKind::DimId: { 191b1d44e59SAart Bik unsigned idx = a.cast<AffineDimExpr>().getPosition(); 192b1d44e59SAart Bik if (b) 193b1d44e59SAart Bik addAffineOrderings(adjM, b, AffineExpr(), idx); 194b1d44e59SAart Bik else 195b1d44e59SAart Bik adjM[fidx][idx] = true; 196b1d44e59SAart Bik break; 197b1d44e59SAart Bik } 198b1d44e59SAart Bik case AffineExprKind::Add: 199b1d44e59SAart Bik case AffineExprKind::Mul: { 200b1d44e59SAart Bik auto binOp = a.cast<AffineBinaryOpExpr>(); 201b1d44e59SAart Bik addAffineOrderings(adjM, binOp.getLHS(), b, fidx); 202b1d44e59SAart Bik addAffineOrderings(adjM, binOp.getRHS(), b, fidx); 203b1d44e59SAart Bik break; 204b1d44e59SAart Bik } 205b1d44e59SAart Bik default: 206b1d44e59SAart Bik break; 207b1d44e59SAart Bik } 208b1d44e59SAart Bik } 209b1d44e59SAart Bik 210a2c9d4bbSAart Bik /// Computes a topologically sorted iteration graph for the linalg operation. 211a2c9d4bbSAart Bik /// Ensures all tensors are visited in natural index order. This is essential 212a2c9d4bbSAart Bik /// for sparse storage formats since these only support access along fixed 213a2c9d4bbSAart Bik /// dimensions. Even for dense storage formats, however, the natural index 214a2c9d4bbSAart Bik /// order yields innermost unit-stride access with better spatial locality. 215a2c9d4bbSAart Bik static bool computeIterationGraph(Merger &merger, linalg::GenericOp op, 216a2c9d4bbSAart Bik std::vector<unsigned> &topSort, 217b6d1a31cSAart Bik unsigned mask) { 218a2c9d4bbSAart Bik // Set up an n x n from/to adjacency matrix of the iteration graph 219a2c9d4bbSAart Bik // for the implicit loop indices i_0 .. i_n-1. 220a2c9d4bbSAart Bik unsigned n = op.getNumLoops(); 221a2c9d4bbSAart Bik std::vector<std::vector<bool>> adjM(n, std::vector<bool>(n, false)); 222a2c9d4bbSAart Bik 223a2c9d4bbSAart Bik // Iterate over the indexing maps of every tensor in the tensor expression. 2242f2b5b7dSTobias Gysi for (OpOperand *t : op.getInputAndOutputOperands()) { 2252f2b5b7dSTobias Gysi auto map = op.getTiedIndexingMap(t); 2262f2b5b7dSTobias Gysi auto enc = getSparseTensorEncoding(t->get().getType()); 227a2c9d4bbSAart Bik assert(map.getNumDims() == n); 228b6d1a31cSAart Bik // Skip dense tensor constraints when not requested. 229b6d1a31cSAart Bik if (!(mask & SortMask::kIncludeDense) && !enc) 230a2c9d4bbSAart Bik continue; 231c194b49cSAart Bik // Each tensor expression and optional dimension ordering (row-major 232c194b49cSAart Bik // by default) puts an ordering constraint on the loop indices. For 233c194b49cSAart Bik // example, the tensor expresion A_ijk forces the ordering i < j < k 234c194b49cSAart Bik // on the loop indices if no explicit dimension ordering is given. 235c194b49cSAart Bik for (unsigned d = 1, rank = map.getNumResults(); d < rank; d++) { 236b1d44e59SAart Bik AffineExpr f = map.getResult(perm(enc, d - 1)); 237b1d44e59SAart Bik AffineExpr t = map.getResult(perm(enc, d)); 238b1d44e59SAart Bik addAffineOrderings(adjM, f, t, 0); 239a2c9d4bbSAart Bik } 240b6d1a31cSAart Bik // Push unrelated loops into sparse iteration space, so these 241b6d1a31cSAart Bik // will be skipped more often. 242b6d1a31cSAart Bik if (mask & SortMask::kIncludeUndef) { 243b6d1a31cSAart Bik unsigned tensor = t->getOperandNumber(); 244b6d1a31cSAart Bik for (unsigned i = 0; i < n; i++) 245b6d1a31cSAart Bik if (merger.isDim(tensor, i, Dim::kSparse)) 246b6d1a31cSAart Bik for (unsigned j = 0; j < n; j++) 247b6d1a31cSAart Bik if (merger.isDim(tensor, j, Dim::kUndef)) 248b6d1a31cSAart Bik adjM[i][j] = true; 249b6d1a31cSAart Bik } 250a2c9d4bbSAart Bik } 251a2c9d4bbSAart Bik 252a2c9d4bbSAart Bik // Topologically sort the iteration graph to determine loop order. 253a2c9d4bbSAart Bik // Report failure for a cyclic iteration graph. 254a2c9d4bbSAart Bik topSort.clear(); 255a2c9d4bbSAart Bik topSort.reserve(n); 256a2c9d4bbSAart Bik std::vector<unsigned> visit(n, 0); 257a2c9d4bbSAart Bik for (unsigned i = 0; i < n; i++) 258a2c9d4bbSAart Bik if (visit[i] == 0) 259a2c9d4bbSAart Bik if (!topSortDFS(i, visit, topSort, adjM)) 260a2c9d4bbSAart Bik return false; // cycle! 261a2c9d4bbSAart Bik std::reverse(std::begin(topSort), std::end(topSort)); 262a2c9d4bbSAart Bik return true; 263a2c9d4bbSAart Bik } 264a2c9d4bbSAart Bik 265c8d5dcb0SAart Bik /// Returns true if tensor has an in-place annotation. 266c8d5dcb0SAart Bik static bool isInPlace(Value val) { 267c8d5dcb0SAart Bik if (auto arg = val.dyn_cast<BlockArgument>()) 268c8d5dcb0SAart Bik if (auto funcOp = dyn_cast<FuncOp>(arg.getOwner()->getParentOp())) 269c8d5dcb0SAart Bik if (auto attr = funcOp.getArgAttrOfType<BoolAttr>( 270*4397a1baSMatthias Springer arg.getArgNumber(), 271*4397a1baSMatthias Springer linalg::comprehensive_bufferize::BufferizableOpInterface:: 272*4397a1baSMatthias Springer kInplaceableAttrName)) 273c8d5dcb0SAart Bik return attr.getValue(); 274c8d5dcb0SAart Bik return false; 275c8d5dcb0SAart Bik } 276c8d5dcb0SAart Bik 277c8d5dcb0SAart Bik /// Returns true if tensor materializes into the computation. 278c8d5dcb0SAart Bik static bool isMaterializing(Value val) { 279c8d5dcb0SAart Bik return val.getDefiningOp<linalg::InitTensorOp>() || 280c8d5dcb0SAart Bik val.getDefiningOp<InitOp>(); 281c8d5dcb0SAart Bik } 282c8d5dcb0SAart Bik 28336b66ab9SAart Bik /// Returns true when the tensor expression is admissable for codegen. 28436b66ab9SAart Bik /// Since all sparse input tensors are admissable, we just need to check 28536b66ab9SAart Bik /// whether the output tensor in the tensor expression codegen is admissable. 28636b66ab9SAart Bik static bool isAdmissableTensorExp(Merger &merger, linalg::GenericOp op, 28736b66ab9SAart Bik unsigned exp) { 28836b66ab9SAart Bik OpOperand *lhs = op.getOutputOperand(0); 28936b66ab9SAart Bik unsigned tensor = lhs->getOperandNumber(); 29036b66ab9SAart Bik auto enc = getSparseTensorEncoding(lhs->get().getType()); 29136b66ab9SAart Bik // An non-annotated output tensor is assumed dense, and becomes a random 292b1d44e59SAart Bik // access n-dim memref. Admissable since insertions cannot occur. 29336b66ab9SAart Bik if (!enc) 29436b66ab9SAart Bik return true; 29536b66ab9SAart Bik // An all-dense annotated "sparse" output tensor becomes a linearized random 29636b66ab9SAart Bik // access 1-dim memref. Also admissable since insertions cannot occur. 29736b66ab9SAart Bik bool allDense = true; 29836b66ab9SAart Bik unsigned numLoops = op.iterator_types().getValue().size(); 29936b66ab9SAart Bik for (unsigned i = 0; i < numLoops; i++) 30036b66ab9SAart Bik if (merger.isDim(tensor, i, Dim::kSparse)) { 30136b66ab9SAart Bik allDense = false; 30236b66ab9SAart Bik break; 30336b66ab9SAart Bik } 30436b66ab9SAart Bik if (allDense) 30536b66ab9SAart Bik return true; 30636b66ab9SAart Bik // A tensor expression with a sparse output tensor that changes its values 30736b66ab9SAart Bik // but not its nonzero structure, an operation called "simply dynamic" in 308c8d5dcb0SAart Bik // [Bik96,Ch9], is also admissable without special codegen, provided 309c8d5dcb0SAart Bik // the tensor's underlying sparse storage scheme can be modified in place. 31045b3cfe8SAart Bik if (merger.isConjunction(tensor, exp)) 311c8d5dcb0SAart Bik return isInPlace(lhs->get()); 31236b66ab9SAart Bik // Reject for now since this requires changes to the nonzero structure. 31336b66ab9SAart Bik // TODO: implement "workspaces" [Kjolstad2019] 31436b66ab9SAart Bik return false; 31536b66ab9SAart Bik } 31636b66ab9SAart Bik 3175da21338SAart Bik //===----------------------------------------------------------------------===// 3187373cabcSAart Bik // Sparse compiler synthesis methods (reductions). 3195da21338SAart Bik //===----------------------------------------------------------------------===// 3205da21338SAart Bik 3215da21338SAart Bik /// Maps reduction kind to name encoding. 3225da21338SAart Bik static StringRef getReductionName(Reduction kind) { 3235da21338SAart Bik switch (kind) { 3247373cabcSAart Bik case kNoReduc: 3257373cabcSAart Bik break; 3265da21338SAart Bik case kSum: 3275da21338SAart Bik return "add"; 3285da21338SAart Bik case kProduct: 3295da21338SAart Bik return "mul"; 3305da21338SAart Bik case kAnd: 3315da21338SAart Bik return "and"; 3325da21338SAart Bik case kOr: 3335da21338SAart Bik return "or"; 3345da21338SAart Bik case kXor: 3355da21338SAart Bik return "xor"; 3365da21338SAart Bik } 3375da21338SAart Bik llvm_unreachable("unknown reduction kind"); 3385da21338SAart Bik } 3395da21338SAart Bik 3405da21338SAart Bik /// Maps operation to reduction. 3415da21338SAart Bik static Reduction getReduction(Kind kind) { 3425da21338SAart Bik switch (kind) { 3435da21338SAart Bik case Kind::kAddF: 3445da21338SAart Bik case Kind::kAddI: 3455da21338SAart Bik case Kind::kSubF: 3465da21338SAart Bik case Kind::kSubI: 3475da21338SAart Bik return kSum; 3485da21338SAart Bik case Kind::kMulF: 3495da21338SAart Bik case Kind::kMulI: 3505da21338SAart Bik return kProduct; 3515da21338SAart Bik case Kind::kAndI: 3525da21338SAart Bik return kAnd; 3535da21338SAart Bik case Kind::kOrI: 3545da21338SAart Bik return kOr; 3555da21338SAart Bik case Kind::kXorI: 3565da21338SAart Bik return kXor; 3575da21338SAart Bik default: 3585da21338SAart Bik llvm_unreachable("unexpected reduction operator"); 3595da21338SAart Bik } 3605da21338SAart Bik } 3615da21338SAart Bik 3627373cabcSAart Bik /// Generates an initial value for a vector reduction, following the scheme 3635da21338SAart Bik /// given in Chapter 5 of "The Software Vectorization Handbook", where the 3645da21338SAart Bik /// initial scalar value is correctly embedded in the vector reduction value, 3655da21338SAart Bik /// and a straightforward horizontal reduction will complete the operation. 3667373cabcSAart Bik static Value genVectorReducInit(CodeGen &codegen, PatternRewriter &rewriter, 3677373cabcSAart Bik Location loc, VectorType vtp) { 3687373cabcSAart Bik Value r = codegen.redVal; 3697373cabcSAart Bik switch (codegen.redKind) { 3707373cabcSAart Bik case kNoReduc: 3717373cabcSAart Bik break; 3725da21338SAart Bik case kSum: 3735da21338SAart Bik case kXor: { 3745da21338SAart Bik // Initialize reduction vector to: | 0 | .. | 0 | r | 3755da21338SAart Bik Attribute zero = rewriter.getZeroAttr(vtp); 376c8d5dcb0SAart Bik Value vec = rewriter.create<arith::ConstantOp>(loc, vtp, zero); 3775da21338SAart Bik return rewriter.create<vector::InsertElementOp>(loc, r, vec, 0); 3785da21338SAart Bik } 3795da21338SAart Bik case kProduct: { 3805da21338SAart Bik // Initialize reduction vector to: | 1 | .. | 1 | r | 3815da21338SAart Bik Type etp = vtp.getElementType(); 3825da21338SAart Bik Attribute one; 3835da21338SAart Bik if (etp.isa<FloatType>()) 3845da21338SAart Bik one = rewriter.getFloatAttr(etp, 1.0); 3855da21338SAart Bik else 3865da21338SAart Bik one = rewriter.getIntegerAttr(etp, 1); 387c8d5dcb0SAart Bik Value vec = rewriter.create<arith::ConstantOp>( 388c8d5dcb0SAart Bik loc, vtp, DenseElementsAttr::get(vtp, one)); 3895da21338SAart Bik return rewriter.create<vector::InsertElementOp>(loc, r, vec, 0); 3905da21338SAart Bik } 3915da21338SAart Bik case kAnd: 3925da21338SAart Bik case kOr: 3935da21338SAart Bik // Initialize reduction vector to: | r | .. | r | r | 3945da21338SAart Bik return rewriter.create<vector::BroadcastOp>(loc, vtp, r); 3955da21338SAart Bik } 3965da21338SAart Bik llvm_unreachable("unknown reduction kind"); 3975da21338SAart Bik } 3985da21338SAart Bik 3997373cabcSAart Bik /// Generates final value for a vector reduction. 4007373cabcSAart Bik static Value genVectorReducEnd(CodeGen &codegen, PatternRewriter &rewriter, 4017373cabcSAart Bik Location loc, VectorType vtp) { 4027373cabcSAart Bik StringRef name = getReductionName(codegen.redKind); 4037373cabcSAart Bik StringAttr kind = rewriter.getStringAttr(name); 4047373cabcSAart Bik return rewriter.create<vector::ReductionOp>(loc, vtp.getElementType(), kind, 4057373cabcSAart Bik codegen.redVal, ValueRange{}); 4067373cabcSAart Bik } 4077373cabcSAart Bik 4087373cabcSAart Bik /// Updates scalarized reduction value. 4097373cabcSAart Bik static void updateReduc(Merger &merger, CodeGen &codegen, Value reduc) { 4107373cabcSAart Bik assert(codegen.redKind != kNoReduc); 4117373cabcSAart Bik codegen.redVal = merger.exp(codegen.redExp).val = reduc; 4127373cabcSAart Bik } 4137373cabcSAart Bik 4147373cabcSAart Bik //===----------------------------------------------------------------------===// 4157373cabcSAart Bik // Sparse compiler synthesis methods (statements and expressions). 4167373cabcSAart Bik //===----------------------------------------------------------------------===// 4177373cabcSAart Bik 418a2c9d4bbSAart Bik /// Maps sparse integer option to actual integral storage type. 41996a23911SAart Bik static Type genIntType(PatternRewriter &rewriter, unsigned width) { 42096a23911SAart Bik if (width == 0) 421a2c9d4bbSAart Bik return rewriter.getIndexType(); 42296a23911SAart Bik return rewriter.getIntegerType(width); 423a2c9d4bbSAart Bik } 424a2c9d4bbSAart Bik 425ec97a205SAart Bik /// Generates buffer for the output tensor. Note that all sparse kernels 426ec97a205SAart Bik /// assume that when all elements are written to (viz. x(i) = y(i) * z(i)), 427ec97a205SAart Bik /// the output buffer is already initialized to all zeroes and only nonzeroes 428ec97a205SAart Bik /// values are computed and written out. For updates (viz. x(i) += y(i) * z(i)), 429ec97a205SAart Bik /// only nonzeroes values are used for the updates and no assumption on the 430ec97a205SAart Bik /// original contents of the output buffer is necessary.. 431a2c9d4bbSAart Bik static Value genOutputBuffer(CodeGen &codegen, PatternRewriter &rewriter, 432a2c9d4bbSAart Bik linalg::GenericOp op, MemRefType denseTp, 433a2c9d4bbSAart Bik ArrayRef<Value> args) { 434a2c9d4bbSAart Bik Location loc = op.getLoc(); 4352f2b5b7dSTobias Gysi Value tensor = op.getOutputOperand(0)->get(); 436a2c9d4bbSAart Bik // The output tensor simply could materialize from the buffer that will 437a2c9d4bbSAart Bik // be generated for the tensor present in the outs() clause. This has 438a2c9d4bbSAart Bik // the major advantage that the sparse kernel only updates the nonzero 4395879da49SAart Bik // positions for the output tensor. 440c8d5dcb0SAart Bik if (isInPlace(tensor)) 441a2c9d4bbSAart Bik return rewriter.create<memref::BufferCastOp>(loc, denseTp, tensor); 442a2c9d4bbSAart Bik // By default, a new buffer is allocated which is initialized to the 443a2c9d4bbSAart Bik // tensor defined in the outs() clause. This is always correct but 444a2c9d4bbSAart Bik // introduces a dense initialization component that may negatively 445ec97a205SAart Bik // impact the running complexity of the sparse kernel. If the tensor 446c8d5dcb0SAart Bik // materializes into the computation, we need to preserve the zero 447ec97a205SAart Bik // initialization assumption of all sparse output buffers. 448c8d5dcb0SAart Bik if (isMaterializing(tensor)) { 449ec97a205SAart Bik Type tp = denseTp.getElementType(); 450ec97a205SAart Bik Value alloc = rewriter.create<memref::AllocOp>(loc, denseTp, args); 451c8d5dcb0SAart Bik Value zero = 452c8d5dcb0SAart Bik rewriter.create<arith::ConstantOp>(loc, tp, rewriter.getZeroAttr(tp)); 453ec97a205SAart Bik rewriter.create<linalg::FillOp>(loc, zero, alloc); 454ec97a205SAart Bik return alloc; 455ec97a205SAart Bik } 456a2c9d4bbSAart Bik Value init = rewriter.create<memref::BufferCastOp>(loc, denseTp, tensor); 457a2c9d4bbSAart Bik Value alloc = rewriter.create<memref::AllocOp>(loc, denseTp, args); 45868ac2e53SAart Bik rewriter.create<memref::CopyOp>(loc, init, alloc); 459a2c9d4bbSAart Bik return alloc; 460a2c9d4bbSAart Bik } 461a2c9d4bbSAart Bik 462a2c9d4bbSAart Bik /// Local bufferization of all dense and sparse data structures. 463a2c9d4bbSAart Bik /// This code enables testing the first prototype sparse compiler. 464a2c9d4bbSAart Bik // TODO: replace this with a proliferated bufferization strategy 465c8d5dcb0SAart Bik static void genBuffers(Merger &merger, CodeGen &codegen, 466a2c9d4bbSAart Bik PatternRewriter &rewriter, linalg::GenericOp op) { 467a2c9d4bbSAart Bik Location loc = op.getLoc(); 4682f2b5b7dSTobias Gysi assert(op.getNumInputsAndOutputs() == op.getNumInputs() + 1); 469a2c9d4bbSAart Bik // For every tensor, find lower and upper bound on dimensions, set the 470a2c9d4bbSAart Bik // same bounds on loop indices, and obtain dense or sparse buffer(s). 471a2c9d4bbSAart Bik SmallVector<Value, 4> args; 4722f2b5b7dSTobias Gysi for (OpOperand *t : op.getInputAndOutputOperands()) { 473727a63e0SAart Bik unsigned tensor = t->getOperandNumber(); 4742f2b5b7dSTobias Gysi auto shape = op.getShape(t); 4752f2b5b7dSTobias Gysi auto map = op.getTiedIndexingMap(t); 4762f2b5b7dSTobias Gysi auto enc = getSparseTensorEncoding(t->get().getType()); 477a2c9d4bbSAart Bik // Scan all dimensions of current tensor. 478a2c9d4bbSAart Bik args.clear(); 479c194b49cSAart Bik for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { 480b1d44e59SAart Bik AffineExpr a = map.getResult(perm(enc, d)); 481b1d44e59SAart Bik if (a.getKind() != AffineExprKind::DimId) 482b1d44e59SAart Bik continue; // compound 483b1d44e59SAart Bik unsigned idx = a.cast<AffineDimExpr>().getPosition(); 484a2c9d4bbSAart Bik // Handle sparse storage schemes. 485727a63e0SAart Bik if (merger.isDim(tensor, idx, Dim::kSparse)) { 486a2c9d4bbSAart Bik auto dynShape = {ShapedType::kDynamicSize}; 487a2c9d4bbSAart Bik auto ptrTp = MemRefType::get( 48896a23911SAart Bik dynShape, genIntType(rewriter, enc.getPointerBitWidth())); 489a2c9d4bbSAart Bik auto indTp = MemRefType::get( 49096a23911SAart Bik dynShape, genIntType(rewriter, enc.getIndexBitWidth())); 491a54f4eaeSMogball Value dim = rewriter.create<arith::ConstantIndexOp>(loc, d); 492a2c9d4bbSAart Bik // Generate sparse primitives to obtains pointer and indices. 493727a63e0SAart Bik codegen.pointers[tensor][idx] = 4942f2b5b7dSTobias Gysi rewriter.create<ToPointersOp>(loc, ptrTp, t->get(), dim); 495727a63e0SAart Bik codegen.indices[tensor][idx] = 4962f2b5b7dSTobias Gysi rewriter.create<ToIndicesOp>(loc, indTp, t->get(), dim); 497a2c9d4bbSAart Bik } 498d37d72eaSAart Bik // Find upper bound in current dimension. 499817303efSAart Bik unsigned p = perm(enc, d); 500d37d72eaSAart Bik Value up = linalg::createOrFoldDimOp(rewriter, loc, t->get(), p); 501d37d72eaSAart Bik if (shape[p] == MemRefType::kDynamicSize) 502a2c9d4bbSAart Bik args.push_back(up); 503817303efSAart Bik assert(codegen.highs[tensor][idx] == nullptr); 504727a63e0SAart Bik codegen.sizes[idx] = codegen.highs[tensor][idx] = up; 505a2c9d4bbSAart Bik } 506727a63e0SAart Bik // Perform the required bufferization. Dense inputs materialize 507727a63e0SAart Bik // from the input tensors. Dense outputs need special handling. 508727a63e0SAart Bik // Sparse inputs use sparse primitives to obtain the values. 509727a63e0SAart Bik // We also accept in-place all-dense annotated "sparse" outputs. 5102f2b5b7dSTobias Gysi Type elementType = getElementTypeOrSelf(t->get().getType()); 51196a23911SAart Bik if (!enc) { 512727a63e0SAart Bik // Non-annotated dense tensors. 5132f2b5b7dSTobias Gysi auto denseTp = MemRefType::get(shape, elementType); 514727a63e0SAart Bik if (tensor < op.getNumInputs()) 515727a63e0SAart Bik codegen.buffers[tensor] = 5162f2b5b7dSTobias Gysi rewriter.create<memref::BufferCastOp>(loc, denseTp, t->get()); 517a2c9d4bbSAart Bik else 518727a63e0SAart Bik codegen.buffers[tensor] = 519a2c9d4bbSAart Bik genOutputBuffer(codegen, rewriter, op, denseTp, args); 520a2c9d4bbSAart Bik } else { 521727a63e0SAart Bik // Annotated sparse tensors. 522a2c9d4bbSAart Bik auto dynShape = {ShapedType::kDynamicSize}; 5232f2b5b7dSTobias Gysi auto sparseTp = MemRefType::get(dynShape, elementType); 524727a63e0SAart Bik codegen.buffers[tensor] = 5252f2b5b7dSTobias Gysi rewriter.create<ToValuesOp>(loc, sparseTp, t->get()); 526a2c9d4bbSAart Bik } 527a2c9d4bbSAart Bik } 528a2c9d4bbSAart Bik } 529a2c9d4bbSAart Bik 530a2c9d4bbSAart Bik /// Constructs vector type. 531a2c9d4bbSAart Bik static VectorType vectorType(CodeGen &codegen, Type etp) { 532a2c9d4bbSAart Bik return VectorType::get(codegen.curVecLength, etp); 533a2c9d4bbSAart Bik } 534a2c9d4bbSAart Bik 535a2c9d4bbSAart Bik /// Constructs vector type from pointer. 536a2c9d4bbSAart Bik static VectorType vectorType(CodeGen &codegen, Value ptr) { 537a2c9d4bbSAart Bik return vectorType(codegen, ptr.getType().cast<MemRefType>().getElementType()); 538a2c9d4bbSAart Bik } 539a2c9d4bbSAart Bik 540a2c9d4bbSAart Bik /// Constructs vector iteration mask. 541a2c9d4bbSAart Bik static Value genVectorMask(CodeGen &codegen, PatternRewriter &rewriter, 542a2c9d4bbSAart Bik Value iv, Value lo, Value hi, Value step) { 543a2c9d4bbSAart Bik Location loc = iv.getLoc(); 5447373cabcSAart Bik VectorType mtp = vectorType(codegen, genIntType(rewriter, 1)); 545a2c9d4bbSAart Bik // Special case if the vector length evenly divides the trip count (for 546a2c9d4bbSAart Bik // example, "for i = 0, 128, 16"). A constant all-true mask is generated 547a2c9d4bbSAart Bik // so that all subsequent masked memory operations are immediately folded 548a2c9d4bbSAart Bik // into unconditional memory operations. 549a2c9d4bbSAart Bik IntegerAttr loInt, hiInt, stepInt; 550a2c9d4bbSAart Bik if (matchPattern(lo, m_Constant(&loInt)) && 551a2c9d4bbSAart Bik matchPattern(hi, m_Constant(&hiInt)) && 552a2c9d4bbSAart Bik matchPattern(step, m_Constant(&stepInt))) { 553a2c9d4bbSAart Bik if (((hiInt.getInt() - loInt.getInt()) % stepInt.getInt()) == 0) 554a2c9d4bbSAart Bik return rewriter.create<vector::BroadcastOp>( 555a54f4eaeSMogball loc, mtp, rewriter.create<arith::ConstantIntOp>(loc, 1, 1)); 556a2c9d4bbSAart Bik } 557a2c9d4bbSAart Bik // Otherwise, generate a vector mask that avoids overrunning the upperbound 558a2c9d4bbSAart Bik // during vector execution. Here we rely on subsequent loop optimizations to 559a2c9d4bbSAart Bik // avoid executing the mask in all iterations, for example, by splitting the 560a2c9d4bbSAart Bik // loop into an unconditional vector loop and a scalar cleanup loop. 56176a18618SMatthias Springer auto minMap = AffineMap::get( 56276a18618SMatthias Springer /*dimCount=*/2, /*symbolCount=*/1, 56376a18618SMatthias Springer {rewriter.getAffineSymbolExpr(0), 56476a18618SMatthias Springer rewriter.getAffineDimExpr(0) - rewriter.getAffineDimExpr(1)}, 56576a18618SMatthias Springer rewriter.getContext()); 56676a18618SMatthias Springer Value end = 56776a18618SMatthias Springer rewriter.createOrFold<AffineMinOp>(loc, minMap, ValueRange{hi, iv, step}); 568a2c9d4bbSAart Bik return rewriter.create<vector::CreateMaskOp>(loc, mtp, end); 569a2c9d4bbSAart Bik } 570a2c9d4bbSAart Bik 571a2c9d4bbSAart Bik /// Generates a vectorized load lhs = a[ind[lo:hi]] or lhs = a[lo:hi]. 572a2c9d4bbSAart Bik static Value genVectorLoad(CodeGen &codegen, PatternRewriter &rewriter, 573a2c9d4bbSAart Bik Value ptr, ArrayRef<Value> args) { 574a2c9d4bbSAart Bik Location loc = ptr.getLoc(); 575a2c9d4bbSAart Bik VectorType vtp = vectorType(codegen, ptr); 576a54f4eaeSMogball Value pass = 577a54f4eaeSMogball rewriter.create<arith::ConstantOp>(loc, vtp, rewriter.getZeroAttr(vtp)); 578a2c9d4bbSAart Bik if (args.back().getType().isa<VectorType>()) { 579a2c9d4bbSAart Bik SmallVector<Value, 4> scalarArgs(args.begin(), args.end()); 580a2c9d4bbSAart Bik Value indexVec = args.back(); 581a54f4eaeSMogball scalarArgs.back() = rewriter.create<arith::ConstantIndexOp>(loc, 0); 582a2c9d4bbSAart Bik return rewriter.create<vector::GatherOp>( 583a2c9d4bbSAart Bik loc, vtp, ptr, scalarArgs, indexVec, codegen.curVecMask, pass); 584a2c9d4bbSAart Bik } 585a2c9d4bbSAart Bik return rewriter.create<vector::MaskedLoadOp>(loc, vtp, ptr, args, 586a2c9d4bbSAart Bik codegen.curVecMask, pass); 587a2c9d4bbSAart Bik } 588a2c9d4bbSAart Bik 589a2c9d4bbSAart Bik /// Generates a vectorized store a[ind[lo:hi]] = rhs or a[lo:hi] = rhs. 590a2c9d4bbSAart Bik static void genVectorStore(CodeGen &codegen, PatternRewriter &rewriter, 591a2c9d4bbSAart Bik Value rhs, Value ptr, ArrayRef<Value> args) { 592a2c9d4bbSAart Bik Location loc = ptr.getLoc(); 593a2c9d4bbSAart Bik if (args.back().getType().isa<VectorType>()) { 594a2c9d4bbSAart Bik SmallVector<Value, 4> scalarArgs(args.begin(), args.end()); 595a2c9d4bbSAart Bik Value indexVec = args.back(); 596a54f4eaeSMogball scalarArgs.back() = rewriter.create<arith::ConstantIndexOp>(loc, 0); 597a2c9d4bbSAart Bik rewriter.create<vector::ScatterOp>(loc, ptr, scalarArgs, indexVec, 598a2c9d4bbSAart Bik codegen.curVecMask, rhs); 599a2c9d4bbSAart Bik return; 600a2c9d4bbSAart Bik } 601a2c9d4bbSAart Bik rewriter.create<vector::MaskedStoreOp>(loc, ptr, args, codegen.curVecMask, 602a2c9d4bbSAart Bik rhs); 603a2c9d4bbSAart Bik } 604a2c9d4bbSAart Bik 605a2c9d4bbSAart Bik /// Generates a vectorized invariant. Here we rely on subsequent loop 606a2c9d4bbSAart Bik /// optimizations to hoist the invariant broadcast out of the vector loop. 607a2c9d4bbSAart Bik static Value genVectorInvariantValue(CodeGen &codegen, 608a2c9d4bbSAart Bik PatternRewriter &rewriter, Value val) { 609a2c9d4bbSAart Bik VectorType vtp = vectorType(codegen, val.getType()); 610a2c9d4bbSAart Bik return rewriter.create<vector::BroadcastOp>(val.getLoc(), vtp, val); 611a2c9d4bbSAart Bik } 612a2c9d4bbSAart Bik 613b1d44e59SAart Bik /// Generates an affine expression. 614b1d44e59SAart Bik // 615b1d44e59SAart Bik // TODO: generalize for sparse tensor subscripts 616b1d44e59SAart Bik // 617b1d44e59SAart Bik static Value genAffine(CodeGen &codegen, PatternRewriter &rewriter, 618b1d44e59SAart Bik AffineExpr a, Location loc) { 619b1d44e59SAart Bik switch (a.getKind()) { 620b1d44e59SAart Bik case AffineExprKind::DimId: { 621b1d44e59SAart Bik unsigned idx = a.cast<AffineDimExpr>().getPosition(); 622b1d44e59SAart Bik return codegen.loops[idx]; // universal dense index 623b1d44e59SAart Bik } 624b1d44e59SAart Bik case AffineExprKind::Add: { 625b1d44e59SAart Bik auto binOp = a.cast<AffineBinaryOpExpr>(); 626a54f4eaeSMogball return rewriter.create<arith::AddIOp>( 627b1d44e59SAart Bik loc, genAffine(codegen, rewriter, binOp.getLHS(), loc), 628b1d44e59SAart Bik genAffine(codegen, rewriter, binOp.getRHS(), loc)); 629b1d44e59SAart Bik } 630b1d44e59SAart Bik case AffineExprKind::Mul: { 631b1d44e59SAart Bik auto binOp = a.cast<AffineBinaryOpExpr>(); 632a54f4eaeSMogball return rewriter.create<arith::MulIOp>( 633b1d44e59SAart Bik loc, genAffine(codegen, rewriter, binOp.getLHS(), loc), 634b1d44e59SAart Bik genAffine(codegen, rewriter, binOp.getRHS(), loc)); 635b1d44e59SAart Bik } 636b1d44e59SAart Bik case AffineExprKind::Constant: { 637b1d44e59SAart Bik int64_t c = a.cast<AffineConstantExpr>().getValue(); 638a54f4eaeSMogball return rewriter.create<arith::ConstantIndexOp>(loc, c); 639b1d44e59SAart Bik } 640b1d44e59SAart Bik default: 641b1d44e59SAart Bik llvm_unreachable("unexpected affine subscript"); 642b1d44e59SAart Bik } 643b1d44e59SAart Bik } 644b1d44e59SAart Bik 645b1d44e59SAart Bik /// Generates subscript for load/store on a dense or sparse tensor. 646b1d44e59SAart Bik static Value genSubscript(CodeGen &codegen, PatternRewriter &rewriter, 647b1d44e59SAart Bik linalg::GenericOp op, OpOperand *t, 648b1d44e59SAart Bik SmallVector<Value, 4> &args) { 649b1d44e59SAart Bik unsigned tensor = t->getOperandNumber(); 650b1d44e59SAart Bik auto map = op.getTiedIndexingMap(t); 651b1d44e59SAart Bik auto enc = getSparseTensorEncoding(t->get().getType()); 652b1d44e59SAart Bik unsigned rank = map.getNumResults(); 653b1d44e59SAart Bik if (enc) { 654b1d44e59SAart Bik // Note that currently, all sparse subscripts are simple. 655b1d44e59SAart Bik // TODO: accept affine too? 656c8d5dcb0SAart Bik AffineExpr a = map.getResult(perm(enc, rank - 1)); 657c8d5dcb0SAart Bik assert(a.getKind() == AffineExprKind::DimId); 658c8d5dcb0SAart Bik unsigned idx = a.cast<AffineDimExpr>().getPosition(); 659b1d44e59SAart Bik assert(codegen.pidxs[tensor][idx] != nullptr); 660b1d44e59SAart Bik args.push_back(codegen.pidxs[tensor][idx]); // position index 661b1d44e59SAart Bik } else { 662b1d44e59SAart Bik for (unsigned d = 0; d < rank; d++) { 663b1d44e59SAart Bik AffineExpr a = map.getResult(perm(enc, d)); 664b1d44e59SAart Bik args.push_back(genAffine(codegen, rewriter, a, op.getLoc())); 665b1d44e59SAart Bik } 666b1d44e59SAart Bik } 667b1d44e59SAart Bik return codegen.buffers[tensor]; 668b1d44e59SAart Bik } 669b1d44e59SAart Bik 670a2c9d4bbSAart Bik /// Generates a load on a dense or sparse tensor. 671a2c9d4bbSAart Bik static Value genTensorLoad(Merger &merger, CodeGen &codegen, 672a2c9d4bbSAart Bik PatternRewriter &rewriter, linalg::GenericOp op, 673a2c9d4bbSAart Bik unsigned exp) { 674a2c9d4bbSAart Bik // Test if the load was hoisted to a higher loop nest. 675a2c9d4bbSAart Bik Value val = merger.exp(exp).val; 676a2c9d4bbSAart Bik if (val) { 677a2c9d4bbSAart Bik if (codegen.curVecLength > 1 && !val.getType().isa<VectorType>()) 678a2c9d4bbSAart Bik return genVectorInvariantValue(codegen, rewriter, val); 679a2c9d4bbSAart Bik return val; 680a2c9d4bbSAart Bik } 681a2c9d4bbSAart Bik // Actual load. 682a2c9d4bbSAart Bik SmallVector<Value, 4> args; 6834569c14aSGus Smith OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).tensor]; 684b1d44e59SAart Bik Value ptr = genSubscript(codegen, rewriter, op, t, args); 685a2c9d4bbSAart Bik if (codegen.curVecLength > 1) 686a2c9d4bbSAart Bik return genVectorLoad(codegen, rewriter, ptr, args); 687b1d44e59SAart Bik return rewriter.create<memref::LoadOp>(op.getLoc(), ptr, args); 688a2c9d4bbSAart Bik } 689a2c9d4bbSAart Bik 690727a63e0SAart Bik /// Generates a store on a dense or sparse tensor. 691a2c9d4bbSAart Bik static void genTensorStore(Merger &merger, CodeGen &codegen, 692a2c9d4bbSAart Bik PatternRewriter &rewriter, linalg::GenericOp op, 693b1d44e59SAart Bik Value rhs) { 694a2c9d4bbSAart Bik // Test if this is a scalarized reduction. 695b1d44e59SAart Bik if (codegen.redVal) { 696a2c9d4bbSAart Bik if (codegen.curVecLength > 1) 697b1d44e59SAart Bik rhs = rewriter.create<SelectOp>(op.getLoc(), codegen.curVecMask, rhs, 698a2c9d4bbSAart Bik codegen.redVal); 6997373cabcSAart Bik updateReduc(merger, codegen, rhs); 700a2c9d4bbSAart Bik return; 701a2c9d4bbSAart Bik } 702a2c9d4bbSAart Bik // Actual store. 703a2c9d4bbSAart Bik SmallVector<Value, 4> args; 704b1d44e59SAart Bik OpOperand *t = op.getOutputOperand(0); 705b1d44e59SAart Bik Value ptr = genSubscript(codegen, rewriter, op, t, args); 706a2c9d4bbSAart Bik if (codegen.curVecLength > 1) 707a2c9d4bbSAart Bik genVectorStore(codegen, rewriter, rhs, ptr, args); 708a2c9d4bbSAart Bik else 709b1d44e59SAart Bik rewriter.create<memref::StoreOp>(op.getLoc(), rhs, ptr, args); 710a2c9d4bbSAart Bik } 711a2c9d4bbSAart Bik 712a2c9d4bbSAart Bik /// Generates a pointer/index load from the sparse storage scheme. Narrower 713a2c9d4bbSAart Bik /// data types need to be zero extended before casting the value into the 714a2c9d4bbSAart Bik /// index type used for looping and indexing. 715a2c9d4bbSAart Bik static Value genLoad(CodeGen &codegen, PatternRewriter &rewriter, Location loc, 716a2c9d4bbSAart Bik Value ptr, Value s) { 717a2c9d4bbSAart Bik // See https://llvm.org/docs/GetElementPtr.html for some background on 718a2c9d4bbSAart Bik // the complications described below. 719a2c9d4bbSAart Bik if (codegen.curVecLength > 1) { 720a2c9d4bbSAart Bik // Since the index vector is used in a subsequent gather/scatter operations, 721a2c9d4bbSAart Bik // which effectively defines an unsigned pointer + signed index, we must 722a2c9d4bbSAart Bik // zero extend the vector to an index width. For 8-bit and 16-bit values, 723a2c9d4bbSAart Bik // an 32-bit index width suffices. For 32-bit values, zero extending the 724a2c9d4bbSAart Bik // elements into 64-bit loses some performance since the 32-bit indexed 72586e9bc1aSAart Bik // gather/scatter is more efficient than the 64-bit index variant (if the 72686e9bc1aSAart Bik // negative 32-bit index space is unused, the enableSIMDIndex32 flag can 727727a63e0SAart Bik // preserve this performance). For 64-bit values, there is no good way 728a2c9d4bbSAart Bik // to state that the indices are unsigned, with creates the potential of 729a2c9d4bbSAart Bik // incorrect address calculations in the unlikely case we need such 730a2c9d4bbSAart Bik // extremely large offsets. 731a2c9d4bbSAart Bik Type etp = ptr.getType().cast<MemRefType>().getElementType(); 732a2c9d4bbSAart Bik Value vload = genVectorLoad(codegen, rewriter, ptr, {s}); 733a2c9d4bbSAart Bik if (!etp.isa<IndexType>()) { 734a2c9d4bbSAart Bik if (etp.getIntOrFloatBitWidth() < 32) 735a54f4eaeSMogball vload = rewriter.create<arith::ExtUIOp>( 7367373cabcSAart Bik loc, vload, vectorType(codegen, genIntType(rewriter, 32))); 73786e9bc1aSAart Bik else if (etp.getIntOrFloatBitWidth() < 64 && 73886e9bc1aSAart Bik !codegen.options.enableSIMDIndex32) 739a54f4eaeSMogball vload = rewriter.create<arith::ExtUIOp>( 7407373cabcSAart Bik loc, vload, vectorType(codegen, genIntType(rewriter, 64))); 741a2c9d4bbSAart Bik } 742a2c9d4bbSAart Bik return vload; 743a2c9d4bbSAart Bik } 744a2c9d4bbSAart Bik // For the scalar case, we simply zero extend narrower indices into 64-bit 745a2c9d4bbSAart Bik // values before casting to index without a performance penalty. Here too, 746a2c9d4bbSAart Bik // however, indices that already are 64-bit, in theory, cannot express the 747a2c9d4bbSAart Bik // full range as explained above. 748a2c9d4bbSAart Bik Value load = rewriter.create<memref::LoadOp>(loc, ptr, s); 749a2c9d4bbSAart Bik if (!load.getType().isa<IndexType>()) { 750a2c9d4bbSAart Bik if (load.getType().getIntOrFloatBitWidth() < 64) 7517373cabcSAart Bik load = 7527373cabcSAart Bik rewriter.create<arith::ExtUIOp>(loc, load, genIntType(rewriter, 64)); 753a54f4eaeSMogball load = 754a54f4eaeSMogball rewriter.create<arith::IndexCastOp>(loc, load, rewriter.getIndexType()); 755a2c9d4bbSAart Bik } 756a2c9d4bbSAart Bik return load; 757a2c9d4bbSAart Bik } 758a2c9d4bbSAart Bik 759a2c9d4bbSAart Bik /// Generates an invariant value. 760a2c9d4bbSAart Bik static Value genInvariantValue(Merger &merger, CodeGen &codegen, 761a2c9d4bbSAart Bik PatternRewriter &rewriter, unsigned exp) { 762a2c9d4bbSAart Bik Value val = merger.exp(exp).val; 763a2c9d4bbSAart Bik if (codegen.curVecLength > 1) 764a2c9d4bbSAart Bik return genVectorInvariantValue(codegen, rewriter, val); 765a2c9d4bbSAart Bik return val; 766a2c9d4bbSAart Bik } 767a2c9d4bbSAart Bik 768a2c9d4bbSAart Bik /// Generates an address computation "sz * p + i". 769a2c9d4bbSAart Bik static Value genAddress(CodeGen &codegen, PatternRewriter &rewriter, 770a2c9d4bbSAart Bik Location loc, Value size, Value p, Value i) { 771a54f4eaeSMogball Value mul = rewriter.create<arith::MulIOp>(loc, size, p); 772a2c9d4bbSAart Bik if (auto vtp = i.getType().dyn_cast<VectorType>()) { 773a54f4eaeSMogball Value inv = 774a54f4eaeSMogball rewriter.create<arith::IndexCastOp>(loc, mul, vtp.getElementType()); 775a2c9d4bbSAart Bik mul = genVectorInvariantValue(codegen, rewriter, inv); 776a2c9d4bbSAart Bik } 777a54f4eaeSMogball return rewriter.create<arith::AddIOp>(loc, mul, i); 778a2c9d4bbSAart Bik } 779a2c9d4bbSAart Bik 780a2c9d4bbSAart Bik /// Recursively generates tensor expression. 781a2c9d4bbSAart Bik static Value genExp(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, 782a2c9d4bbSAart Bik linalg::GenericOp op, unsigned exp) { 783b8a021dbSAart Bik Location loc = op.getLoc(); 784123e8dfcSAart Bik if (exp == -1u) 785123e8dfcSAart Bik return Value(); 786a2c9d4bbSAart Bik if (merger.exp(exp).kind == Kind::kTensor) 787a2c9d4bbSAart Bik return genTensorLoad(merger, codegen, rewriter, op, exp); 788b8a021dbSAart Bik if (merger.exp(exp).kind == Kind::kInvariant) 789a2c9d4bbSAart Bik return genInvariantValue(merger, codegen, rewriter, exp); 7904569c14aSGus Smith Value v0 = genExp(merger, codegen, rewriter, op, merger.exp(exp).children.e0); 7914569c14aSGus Smith Value v1 = genExp(merger, codegen, rewriter, op, merger.exp(exp).children.e1); 79245b3cfe8SAart Bik return merger.buildExp(rewriter, loc, exp, v0, v1); 793a2c9d4bbSAart Bik } 794a2c9d4bbSAart Bik 795b1d44e59SAart Bik /// Determines if affine expression is invariant. 796b1d44e59SAart Bik static bool isInvariantAffine(const CodeGen &codegen, AffineExpr a, 797b1d44e59SAart Bik unsigned ldx, bool &atLevel) { 798b1d44e59SAart Bik switch (a.getKind()) { 799b1d44e59SAart Bik case AffineExprKind::DimId: { 800b1d44e59SAart Bik unsigned idx = a.cast<AffineDimExpr>().getPosition(); 801b1d44e59SAart Bik if (idx == ldx) 802b1d44e59SAart Bik atLevel = true; 803b1d44e59SAart Bik return codegen.loops[idx] != nullptr; // no longer in play? 804b1d44e59SAart Bik } 805b1d44e59SAart Bik case AffineExprKind::Add: 806b1d44e59SAart Bik case AffineExprKind::Mul: { 807b1d44e59SAart Bik auto binOp = a.cast<AffineBinaryOpExpr>(); 808b1d44e59SAart Bik return isInvariantAffine(codegen, binOp.getLHS(), ldx, atLevel) && 809b1d44e59SAart Bik isInvariantAffine(codegen, binOp.getRHS(), ldx, atLevel); 810b1d44e59SAart Bik } 811b1d44e59SAart Bik default: 812b1d44e59SAart Bik return true; 813b1d44e59SAart Bik } 814b1d44e59SAart Bik } 815b1d44e59SAart Bik 816a2c9d4bbSAart Bik /// Hoists loop invariant tensor loads for which indices have been exhausted. 817a2c9d4bbSAart Bik static void genInvariants(Merger &merger, CodeGen &codegen, 818a2c9d4bbSAart Bik PatternRewriter &rewriter, linalg::GenericOp op, 8197373cabcSAart Bik unsigned exp, unsigned ldx, bool atStart, 8205da21338SAart Bik Kind last = Kind::kTensor) { 821123e8dfcSAart Bik if (exp == -1u) 822123e8dfcSAart Bik return; 823a2c9d4bbSAart Bik if (merger.exp(exp).kind == Kind::kTensor) { 824a2c9d4bbSAart Bik // Inspect tensor indices. 825a2c9d4bbSAart Bik bool atLevel = ldx == -1u; 8264569c14aSGus Smith OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).tensor]; 827619bfe8bSAart Bik auto map = op.getTiedIndexingMap(t); 828619bfe8bSAart Bik auto enc = getSparseTensorEncoding(t->get().getType()); 829c194b49cSAart Bik for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { 830b1d44e59SAart Bik AffineExpr a = map.getResult(perm(enc, d)); 831b1d44e59SAart Bik if (!isInvariantAffine(codegen, a, ldx, atLevel)) 832a2c9d4bbSAart Bik return; // still in play 833a2c9d4bbSAart Bik } 834a2c9d4bbSAart Bik // All exhausted at this level (atLevel denotes exactly at this level). 8357373cabcSAart Bik if (!atLevel) 8367373cabcSAart Bik return; 8372f2b5b7dSTobias Gysi OpOperand *lhs = op.getOutputOperand(0); 838619bfe8bSAart Bik if (lhs == t) { 8397373cabcSAart Bik // Start or end a scalarized reduction 8407373cabcSAart Bik if (atStart) { 8417373cabcSAart Bik Value load = genTensorLoad(merger, codegen, rewriter, op, exp); 8425da21338SAart Bik codegen.redKind = getReduction(last); 8437373cabcSAart Bik codegen.redExp = exp; 8447373cabcSAart Bik updateReduc(merger, codegen, load); 8457373cabcSAart Bik } else { 8467373cabcSAart Bik Value redVal = codegen.redVal; 8477373cabcSAart Bik updateReduc(merger, codegen, Value()); 8487373cabcSAart Bik codegen.redExp = -1u; 8497373cabcSAart Bik codegen.redKind = kNoReduc; 8507373cabcSAart Bik genTensorStore(merger, codegen, rewriter, op, redVal); 8517373cabcSAart Bik } 8527373cabcSAart Bik } else { 8537373cabcSAart Bik // Start or end loop invariant hoisting of a tensor load. 854a2c9d4bbSAart Bik merger.exp(exp).val = 8557373cabcSAart Bik atStart ? genTensorLoad(merger, codegen, rewriter, op, exp) : Value(); 856a2c9d4bbSAart Bik } 857123e8dfcSAart Bik } else if (merger.exp(exp).kind != Kind::kInvariant) { 858a2c9d4bbSAart Bik // Traverse into the binary operations. Note that we only hoist 859a2c9d4bbSAart Bik // tensor loads, since subsequent MLIR/LLVM passes know how to 860a2c9d4bbSAart Bik // deal with all other kinds of derived loop invariants. 8615da21338SAart Bik Kind last = merger.exp(exp).kind; 8624569c14aSGus Smith unsigned e0 = merger.exp(exp).children.e0; 8634569c14aSGus Smith unsigned e1 = merger.exp(exp).children.e1; 8647373cabcSAart Bik genInvariants(merger, codegen, rewriter, op, e0, ldx, atStart, last); 8657373cabcSAart Bik genInvariants(merger, codegen, rewriter, op, e1, ldx, atStart, last); 866a2c9d4bbSAart Bik } 867a2c9d4bbSAart Bik } 868a2c9d4bbSAart Bik 869a2c9d4bbSAart Bik /// Generates initialization code for the subsequent loop sequence at 870a2c9d4bbSAart Bik /// current index level. Returns true if the loop sequence needs to 871a2c9d4bbSAart Bik /// maintain the universal index. 872a2c9d4bbSAart Bik static bool genInit(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, 873a2c9d4bbSAart Bik linalg::GenericOp op, std::vector<unsigned> &topSort, 874a2c9d4bbSAart Bik unsigned at, llvm::BitVector &inits) { 875a2c9d4bbSAart Bik bool needsUniv = false; 876a2c9d4bbSAart Bik Location loc = op.getLoc(); 877a2c9d4bbSAart Bik unsigned idx = topSort[at]; 878a2c9d4bbSAart Bik 879a2c9d4bbSAart Bik // Initialize sparse positions. 880a2c9d4bbSAart Bik for (unsigned b = 0, be = inits.size(); b < be; b++) { 881a2c9d4bbSAart Bik if (inits[b]) { 882a2c9d4bbSAart Bik unsigned tensor = merger.tensor(b); 883a2c9d4bbSAart Bik assert(idx == merger.index(b)); 884a2c9d4bbSAart Bik if (merger.isDim(b, Dim::kSparse)) { 885a2c9d4bbSAart Bik // Initialize sparse index. 886a2c9d4bbSAart Bik unsigned pat = at; 887a2c9d4bbSAart Bik for (; pat != 0; pat--) { 888a2c9d4bbSAart Bik if (codegen.pidxs[tensor][topSort[pat - 1]]) 889a2c9d4bbSAart Bik break; 890a2c9d4bbSAart Bik } 891a2c9d4bbSAart Bik Value ptr = codegen.pointers[tensor][idx]; 892a54f4eaeSMogball Value one = rewriter.create<arith::ConstantIndexOp>(loc, 1); 893a54f4eaeSMogball Value p0 = (pat == 0) ? rewriter.create<arith::ConstantIndexOp>(loc, 0) 894a2c9d4bbSAart Bik : codegen.pidxs[tensor][topSort[pat - 1]]; 895a2c9d4bbSAart Bik codegen.pidxs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p0); 896a54f4eaeSMogball Value p1 = rewriter.create<arith::AddIOp>(loc, p0, one); 897a2c9d4bbSAart Bik codegen.highs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p1); 898a2c9d4bbSAart Bik } else { 899a2c9d4bbSAart Bik // Dense index still in play. 900a2c9d4bbSAart Bik needsUniv = true; 901a2c9d4bbSAart Bik } 902a2c9d4bbSAart Bik } 903a2c9d4bbSAart Bik } 904a2c9d4bbSAart Bik 905a2c9d4bbSAart Bik // Initialize the universal dense index. 906a54f4eaeSMogball codegen.loops[idx] = rewriter.create<arith::ConstantIndexOp>(loc, 0); 907a2c9d4bbSAart Bik return needsUniv; 908a2c9d4bbSAart Bik } 909a2c9d4bbSAart Bik 910a2c9d4bbSAart Bik /// Returns vectorization strategy. Any implicit inner loop in the Linalg 911a2c9d4bbSAart Bik /// operation is a candidate. Whether it is actually converted to SIMD code 912a2c9d4bbSAart Bik /// depends on the requested strategy. 913a2c9d4bbSAart Bik static bool isVectorFor(CodeGen &codegen, bool isInner, bool isSparse) { 914a2c9d4bbSAart Bik switch (codegen.options.vectorizationStrategy) { 915a2c9d4bbSAart Bik case SparseVectorizationStrategy::kNone: 916a2c9d4bbSAart Bik return false; 917a2c9d4bbSAart Bik case SparseVectorizationStrategy::kDenseInnerLoop: 918a2c9d4bbSAart Bik return isInner && !isSparse; 919a2c9d4bbSAart Bik case SparseVectorizationStrategy::kAnyStorageInnerLoop: 920a2c9d4bbSAart Bik return isInner; 921a2c9d4bbSAart Bik } 922a2c9d4bbSAart Bik llvm_unreachable("unexpected vectorization strategy"); 923a2c9d4bbSAart Bik } 924a2c9d4bbSAart Bik 925a2c9d4bbSAart Bik /// Returns parallelization strategy. Any implicit loop in the Linalg operation 926a2c9d4bbSAart Bik /// that is marked "parallel" is a candidate. Whether it is actually converted 927a2c9d4bbSAart Bik /// to a parallel operation depends on the requested strategy. 928a2c9d4bbSAart Bik static bool isParallelFor(CodeGen &codegen, bool isOuter, bool isReduction, 929a2c9d4bbSAart Bik bool isSparse, bool isVector) { 930a2c9d4bbSAart Bik switch (codegen.options.parallelizationStrategy) { 931a2c9d4bbSAart Bik case SparseParallelizationStrategy::kNone: 932a2c9d4bbSAart Bik return false; 933a2c9d4bbSAart Bik case SparseParallelizationStrategy::kDenseOuterLoop: 934a2c9d4bbSAart Bik return isOuter && !isSparse && !isReduction && !isVector; 935a2c9d4bbSAart Bik case SparseParallelizationStrategy::kAnyStorageOuterLoop: 936a2c9d4bbSAart Bik return isOuter && !isReduction && !isVector; 937a2c9d4bbSAart Bik case SparseParallelizationStrategy::kDenseAnyLoop: 938a2c9d4bbSAart Bik return !isSparse && !isReduction && !isVector; 939a2c9d4bbSAart Bik case SparseParallelizationStrategy::kAnyStorageAnyLoop: 940a2c9d4bbSAart Bik return !isReduction && !isVector; 941a2c9d4bbSAart Bik } 942a2c9d4bbSAart Bik llvm_unreachable("unexpected parallelization strategy"); 943a2c9d4bbSAart Bik } 944a2c9d4bbSAart Bik 945849f016cSAart Bik /// Checks unit stride for dense tensors. The iteration graph may have ignored 946a2c9d4bbSAart Bik /// dense access patterns in order to avoid cycles (sparse access patterns are 947a2c9d4bbSAart Bik /// always placed innermost), but that means dense access has become strided. 948849f016cSAart Bik /// This prevents effective vectorization. 949a2c9d4bbSAart Bik static bool denseUnitStrides(Merger &merger, linalg::GenericOp op, 950849f016cSAart Bik unsigned idx) { 9512f2b5b7dSTobias Gysi for (OpOperand *t : op.getInputAndOutputOperands()) { 9522f2b5b7dSTobias Gysi if (!getSparseTensorEncoding(t->get().getType())) { 9532f2b5b7dSTobias Gysi auto map = op.getTiedIndexingMap(t); 954c194b49cSAart Bik for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { 955b1d44e59SAart Bik AffineExpr a = map.getResult(d); 956849f016cSAart Bik // Report non-unit stride if innermost index appears at an outer 957849f016cSAart Bik // dimension (true non-unit stride) or if the innermost index appears 958849f016cSAart Bik // in a compound subscript in the innermost dimension. Even if the 959849f016cSAart Bik // latter is unit stride, it does not play well with scatter/gather. 960c8d5dcb0SAart Bik // TODO: accept unit stride affine innermost like a[i,j+k+1]? 961849f016cSAart Bik if (a.isFunctionOfDim(idx) && 962849f016cSAart Bik ((d != rank - 1) || (a.getKind() != AffineExprKind::DimId))) 963a2c9d4bbSAart Bik return false; 964a2c9d4bbSAart Bik } 965a2c9d4bbSAart Bik } 966a2c9d4bbSAart Bik } 967a2c9d4bbSAart Bik return true; 968a2c9d4bbSAart Bik } 969a2c9d4bbSAart Bik 970a2c9d4bbSAart Bik /// Generates a for-loop on a single index. 971a2c9d4bbSAart Bik static Operation *genFor(Merger &merger, CodeGen &codegen, 972a2c9d4bbSAart Bik PatternRewriter &rewriter, linalg::GenericOp op, 973a2c9d4bbSAart Bik bool isOuter, bool isInner, unsigned idx, 974a2c9d4bbSAart Bik llvm::BitVector &indices) { 975a2c9d4bbSAart Bik unsigned fb = indices.find_first(); 976a2c9d4bbSAart Bik unsigned tensor = merger.tensor(fb); 977a2c9d4bbSAart Bik assert(idx == merger.index(fb)); 978a2c9d4bbSAart Bik auto iteratorTypes = op.iterator_types().getValue(); 979583a7542STobias Gysi bool isReduction = isReductionIterator(iteratorTypes[idx]); 980a2c9d4bbSAart Bik bool isSparse = merger.isDim(fb, Dim::kSparse); 981a2c9d4bbSAart Bik bool isVector = isVectorFor(codegen, isInner, isSparse) && 982a2c9d4bbSAart Bik denseUnitStrides(merger, op, idx); 983a2c9d4bbSAart Bik bool isParallel = 984a2c9d4bbSAart Bik isParallelFor(codegen, isOuter, isReduction, isSparse, isVector); 985a2c9d4bbSAart Bik 986a2c9d4bbSAart Bik // Prepare vector length. 987a2c9d4bbSAart Bik if (isVector) 988a2c9d4bbSAart Bik codegen.curVecLength = codegen.options.vectorLength; 989a2c9d4bbSAart Bik 990a2c9d4bbSAart Bik // Loop bounds and increment. 991a2c9d4bbSAart Bik Location loc = op.getLoc(); 992a2c9d4bbSAart Bik Value lo = isSparse ? codegen.pidxs[tensor][idx] : codegen.loops[idx]; 993a2c9d4bbSAart Bik Value hi = isSparse ? codegen.highs[tensor][idx] : codegen.sizes[idx]; 994a54f4eaeSMogball Value step = 995a54f4eaeSMogball rewriter.create<arith::ConstantIndexOp>(loc, codegen.curVecLength); 996a2c9d4bbSAart Bik 997a2c9d4bbSAart Bik // Emit a parallel loop. 998a2c9d4bbSAart Bik if (isParallel) { 999a2c9d4bbSAart Bik assert(!isVector); 1000a2c9d4bbSAart Bik scf::ParallelOp parOp = rewriter.create<scf::ParallelOp>(loc, lo, hi, step); 1001a2c9d4bbSAart Bik if (isSparse) 1002a2c9d4bbSAart Bik codegen.pidxs[tensor][idx] = parOp.getInductionVars()[0]; 1003a2c9d4bbSAart Bik else 1004a2c9d4bbSAart Bik codegen.loops[idx] = parOp.getInductionVars()[0]; 1005a2c9d4bbSAart Bik rewriter.setInsertionPointToStart(parOp.getBody()); 1006a2c9d4bbSAart Bik return parOp; 1007a2c9d4bbSAart Bik } 1008a2c9d4bbSAart Bik 10097373cabcSAart Bik // Emit a sequential or vector loop. 1010a2c9d4bbSAart Bik SmallVector<Value, 4> operands; 10117373cabcSAart Bik if (codegen.redVal) { 10127373cabcSAart Bik // In a vector loop, bring reduction into SIMD form, if not already. 10137373cabcSAart Bik if (isVector && !codegen.redVal.getType().isa<VectorType>()) { 10147373cabcSAart Bik VectorType vtp = vectorType(codegen, codegen.redVal.getType()); 10157373cabcSAart Bik Value vred = genVectorReducInit(codegen, rewriter, loc, vtp); 10167373cabcSAart Bik updateReduc(merger, codegen, vred); 10177373cabcSAart Bik } 10187373cabcSAart Bik operands.push_back(codegen.redVal); 1019a2c9d4bbSAart Bik } 1020a2c9d4bbSAart Bik scf::ForOp forOp = rewriter.create<scf::ForOp>(loc, lo, hi, step, operands); 10217373cabcSAart Bik if (codegen.redVal) 10227373cabcSAart Bik updateReduc(merger, codegen, forOp.getRegionIterArgs().front()); 1023a2c9d4bbSAart Bik // Assign induction variable to sparse or dense index. 1024a2c9d4bbSAart Bik Value iv = forOp.getInductionVar(); 1025a2c9d4bbSAart Bik if (isSparse) 1026a2c9d4bbSAart Bik codegen.pidxs[tensor][idx] = iv; 1027a2c9d4bbSAart Bik else 1028a2c9d4bbSAart Bik codegen.loops[idx] = iv; 1029a2c9d4bbSAart Bik rewriter.setInsertionPointToStart(forOp.getBody()); 1030a2c9d4bbSAart Bik // Share vector iteration mask between all subsequent loads/stores. 1031a2c9d4bbSAart Bik if (isVector) 1032a2c9d4bbSAart Bik codegen.curVecMask = genVectorMask(codegen, rewriter, iv, lo, hi, step); 1033a2c9d4bbSAart Bik return forOp; 1034a2c9d4bbSAart Bik } 1035a2c9d4bbSAart Bik 1036a2c9d4bbSAart Bik /// Emit a while-loop for co-iteration over multiple indices. 1037a2c9d4bbSAart Bik static Operation *genWhile(Merger &merger, CodeGen &codegen, 1038a2c9d4bbSAart Bik PatternRewriter &rewriter, linalg::GenericOp op, 1039a2c9d4bbSAart Bik unsigned idx, bool needsUniv, 1040a2c9d4bbSAart Bik llvm::BitVector &indices) { 1041a2c9d4bbSAart Bik SmallVector<Type, 4> types; 1042a2c9d4bbSAart Bik SmallVector<Value, 4> operands; 1043a2c9d4bbSAart Bik // Construct the while-loop with a parameter for each index. 1044a2c9d4bbSAart Bik Type indexType = rewriter.getIndexType(); 1045a2c9d4bbSAart Bik for (unsigned b = 0, be = indices.size(); b < be; b++) { 1046a2c9d4bbSAart Bik if (indices[b] && merger.isDim(b, Dim::kSparse)) { 1047a2c9d4bbSAart Bik unsigned tensor = merger.tensor(b); 1048a2c9d4bbSAart Bik assert(idx == merger.index(b)); 1049a2c9d4bbSAart Bik types.push_back(indexType); 1050a2c9d4bbSAart Bik operands.push_back(codegen.pidxs[tensor][idx]); 1051a2c9d4bbSAart Bik } 1052a2c9d4bbSAart Bik } 10537373cabcSAart Bik if (codegen.redVal) { 10547373cabcSAart Bik types.push_back(codegen.redVal.getType()); 10557373cabcSAart Bik operands.push_back(codegen.redVal); 10567373cabcSAart Bik } 1057a2c9d4bbSAart Bik if (needsUniv) { 1058a2c9d4bbSAart Bik types.push_back(indexType); 1059a2c9d4bbSAart Bik operands.push_back(codegen.loops[idx]); 1060a2c9d4bbSAart Bik } 10617373cabcSAart Bik assert(types.size() == operands.size()); 1062a2c9d4bbSAart Bik Location loc = op.getLoc(); 1063a2c9d4bbSAart Bik scf::WhileOp whileOp = rewriter.create<scf::WhileOp>(loc, types, operands); 1064a2c9d4bbSAart Bik Block *before = rewriter.createBlock(&whileOp.before(), {}, types); 1065a2c9d4bbSAart Bik Block *after = rewriter.createBlock(&whileOp.after(), {}, types); 1066a2c9d4bbSAart Bik 1067a2c9d4bbSAart Bik // Build the "before" region, which effectively consists 1068a2c9d4bbSAart Bik // of a conjunction of "i < upper" tests on all induction. 1069a2c9d4bbSAart Bik rewriter.setInsertionPointToStart(&whileOp.before().front()); 1070a2c9d4bbSAart Bik Value cond; 1071a2c9d4bbSAart Bik unsigned o = 0; 1072a2c9d4bbSAart Bik for (unsigned b = 0, be = indices.size(); b < be; b++) { 1073a2c9d4bbSAart Bik if (indices[b] && merger.isDim(b, Dim::kSparse)) { 1074a2c9d4bbSAart Bik unsigned tensor = merger.tensor(b); 1075a2c9d4bbSAart Bik assert(idx == merger.index(b)); 1076a2c9d4bbSAart Bik Value op1 = before->getArgument(o); 1077a2c9d4bbSAart Bik Value op2 = codegen.highs[tensor][idx]; 1078a54f4eaeSMogball Value opc = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult, 1079a54f4eaeSMogball op1, op2); 1080a54f4eaeSMogball cond = cond ? rewriter.create<arith::AndIOp>(loc, cond, opc) : opc; 1081a2c9d4bbSAart Bik codegen.pidxs[tensor][idx] = after->getArgument(o++); 1082a2c9d4bbSAart Bik } 1083a2c9d4bbSAart Bik } 10847373cabcSAart Bik if (codegen.redVal) 10857373cabcSAart Bik updateReduc(merger, codegen, after->getArgument(o++)); 1086a2c9d4bbSAart Bik if (needsUniv) 1087a2c9d4bbSAart Bik codegen.loops[idx] = after->getArgument(o++); 1088a2c9d4bbSAart Bik assert(o == operands.size()); 1089a2c9d4bbSAart Bik rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments()); 1090a2c9d4bbSAart Bik rewriter.setInsertionPointToStart(&whileOp.after().front()); 1091a2c9d4bbSAart Bik return whileOp; 1092a2c9d4bbSAart Bik } 1093a2c9d4bbSAart Bik 1094a2c9d4bbSAart Bik /// Generates a for-loop or a while-loop, depending on whether it implements 1095a2c9d4bbSAart Bik /// singleton iteration or co-iteration over the given conjunction. 1096a2c9d4bbSAart Bik static Operation *genLoop(Merger &merger, CodeGen &codegen, 1097a2c9d4bbSAart Bik PatternRewriter &rewriter, linalg::GenericOp op, 1098a2c9d4bbSAart Bik std::vector<unsigned> &topSort, unsigned at, 1099a2c9d4bbSAart Bik bool needsUniv, llvm::BitVector &indices) { 1100a2c9d4bbSAart Bik unsigned idx = topSort[at]; 1101a2c9d4bbSAart Bik if (indices.count() == 1) { 1102a2c9d4bbSAart Bik bool isOuter = at == 0; 1103a2c9d4bbSAart Bik bool isInner = at == topSort.size() - 1; 1104a2c9d4bbSAart Bik return genFor(merger, codegen, rewriter, op, isOuter, isInner, idx, 1105a2c9d4bbSAart Bik indices); 1106a2c9d4bbSAart Bik } 1107a2c9d4bbSAart Bik return genWhile(merger, codegen, rewriter, op, idx, needsUniv, indices); 1108a2c9d4bbSAart Bik } 1109a2c9d4bbSAart Bik 1110a2c9d4bbSAart Bik /// Generates the local variables for this loop, consisting of the sparse 1111a2c9d4bbSAart Bik /// indices, restored universal dense index, and dense positions. 1112a2c9d4bbSAart Bik static void genLocals(Merger &merger, CodeGen &codegen, 1113a2c9d4bbSAart Bik PatternRewriter &rewriter, linalg::GenericOp op, 1114a2c9d4bbSAart Bik std::vector<unsigned> &topSort, unsigned at, 1115a2c9d4bbSAart Bik bool needsUniv, llvm::BitVector &locals) { 1116a2c9d4bbSAart Bik Location loc = op.getLoc(); 1117a2c9d4bbSAart Bik unsigned idx = topSort[at]; 1118a2c9d4bbSAart Bik 1119a2c9d4bbSAart Bik // Initialize sparse indices. 1120a2c9d4bbSAart Bik Value min; 1121a2c9d4bbSAart Bik for (unsigned b = 0, be = locals.size(); b < be; b++) { 1122a2c9d4bbSAart Bik if (locals[b] && merger.isDim(b, Dim::kSparse)) { 1123a2c9d4bbSAart Bik unsigned tensor = merger.tensor(b); 1124a2c9d4bbSAart Bik assert(idx == merger.index(b)); 1125a2c9d4bbSAart Bik Value ptr = codegen.indices[tensor][idx]; 1126a2c9d4bbSAart Bik Value s = codegen.pidxs[tensor][idx]; 1127a2c9d4bbSAart Bik Value load = genLoad(codegen, rewriter, loc, ptr, s); 1128a2c9d4bbSAart Bik codegen.idxs[tensor][idx] = load; 1129a2c9d4bbSAart Bik if (!needsUniv) { 1130a2c9d4bbSAart Bik if (min) { 1131a54f4eaeSMogball Value cmp = rewriter.create<arith::CmpIOp>( 1132a54f4eaeSMogball loc, arith::CmpIPredicate::ult, load, min); 1133a2c9d4bbSAart Bik min = rewriter.create<SelectOp>(loc, cmp, load, min); 1134a2c9d4bbSAart Bik } else { 1135a2c9d4bbSAart Bik min = load; 1136a2c9d4bbSAart Bik } 1137a2c9d4bbSAart Bik } 1138a2c9d4bbSAart Bik } 1139a2c9d4bbSAart Bik } 1140a2c9d4bbSAart Bik 1141a2c9d4bbSAart Bik // Merge dense universal index over minimum. 1142a2c9d4bbSAart Bik if (min) { 1143a2c9d4bbSAart Bik assert(!needsUniv); 1144a2c9d4bbSAart Bik codegen.loops[idx] = min; 1145a2c9d4bbSAart Bik } 1146a2c9d4bbSAart Bik 1147727a63e0SAart Bik // Initialize dense positions. Note that we generate dense indices of the 1148727a63e0SAart Bik // output tensor unconditionally, since they may not appear in the lattice, 1149727a63e0SAart Bik // but may be needed for linearized codegen. 1150a2c9d4bbSAart Bik for (unsigned b = 0, be = locals.size(); b < be; b++) { 1151727a63e0SAart Bik if ((locals[b] || merger.isOutTensor(b, idx)) && 1152727a63e0SAart Bik merger.isDim(b, Dim::kDense)) { 1153a2c9d4bbSAart Bik unsigned tensor = merger.tensor(b); 1154a2c9d4bbSAart Bik assert(idx == merger.index(b)); 1155a2c9d4bbSAart Bik unsigned pat = at; 1156a2c9d4bbSAart Bik for (; pat != 0; pat--) 1157a2c9d4bbSAart Bik if (codegen.pidxs[tensor][topSort[pat - 1]]) 1158a2c9d4bbSAart Bik break; 1159a54f4eaeSMogball Value p = (pat == 0) ? rewriter.create<arith::ConstantIndexOp>(loc, 0) 1160a2c9d4bbSAart Bik : codegen.pidxs[tensor][topSort[pat - 1]]; 1161a2c9d4bbSAart Bik codegen.pidxs[tensor][idx] = genAddress( 1162a2c9d4bbSAart Bik codegen, rewriter, loc, codegen.sizes[idx], p, codegen.loops[idx]); 1163a2c9d4bbSAart Bik } 1164a2c9d4bbSAart Bik } 1165a2c9d4bbSAart Bik } 1166a2c9d4bbSAart Bik 1167a2c9d4bbSAart Bik /// Generates the induction structure for a while-loop. 1168a2c9d4bbSAart Bik static void genWhileInduction(Merger &merger, CodeGen &codegen, 1169a2c9d4bbSAart Bik PatternRewriter &rewriter, linalg::GenericOp op, 1170a2c9d4bbSAart Bik unsigned idx, bool needsUniv, 11717373cabcSAart Bik llvm::BitVector &induction, 11727373cabcSAart Bik scf::WhileOp whileOp) { 1173a2c9d4bbSAart Bik Location loc = op.getLoc(); 11747373cabcSAart Bik // Finalize each else branch of all if statements. 11757373cabcSAart Bik if (codegen.redVal) { 11767373cabcSAart Bik while (auto ifOp = dyn_cast_or_null<scf::IfOp>( 11777373cabcSAart Bik rewriter.getInsertionBlock()->getParentOp())) { 11787373cabcSAart Bik rewriter.create<scf::YieldOp>(loc, codegen.redVal); 11797373cabcSAart Bik updateReduc(merger, codegen, ifOp.getResult(0)); 11807373cabcSAart Bik rewriter.setInsertionPointAfter(ifOp); 11817373cabcSAart Bik } 11827373cabcSAart Bik } 11837373cabcSAart Bik rewriter.setInsertionPointToEnd(&whileOp.after().front()); 11847373cabcSAart Bik // Finalize the induction. Note that the induction could be performed 11857373cabcSAart Bik // in the individual if-branches to avoid re-evaluating the conditions. 11867373cabcSAart Bik // However, that would result in a rather elaborate forest of yield 11877373cabcSAart Bik // instructions during code generation. Moreover, performing the induction 11887373cabcSAart Bik // after the if-statements more closely resembles code generated by TACO. 1189a2c9d4bbSAart Bik unsigned o = 0; 1190a2c9d4bbSAart Bik SmallVector<Value, 4> operands; 1191a54f4eaeSMogball Value one = rewriter.create<arith::ConstantIndexOp>(loc, 1); 1192a2c9d4bbSAart Bik for (unsigned b = 0, be = induction.size(); b < be; b++) { 1193a2c9d4bbSAart Bik if (induction[b] && merger.isDim(b, Dim::kSparse)) { 1194a2c9d4bbSAart Bik unsigned tensor = merger.tensor(b); 1195a2c9d4bbSAart Bik assert(idx == merger.index(b)); 1196a2c9d4bbSAart Bik Value op1 = codegen.idxs[tensor][idx]; 1197a2c9d4bbSAart Bik Value op2 = codegen.loops[idx]; 1198a2c9d4bbSAart Bik Value op3 = codegen.pidxs[tensor][idx]; 1199a54f4eaeSMogball Value cmp = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq, 1200a54f4eaeSMogball op1, op2); 1201a54f4eaeSMogball Value add = rewriter.create<arith::AddIOp>(loc, op3, one); 1202a2c9d4bbSAart Bik operands.push_back(rewriter.create<SelectOp>(loc, cmp, add, op3)); 12037373cabcSAart Bik codegen.pidxs[tensor][idx] = whileOp->getResult(o++); 1204a2c9d4bbSAart Bik } 1205a2c9d4bbSAart Bik } 12067373cabcSAart Bik if (codegen.redVal) { 12077373cabcSAart Bik operands.push_back(codegen.redVal); 12087373cabcSAart Bik updateReduc(merger, codegen, whileOp->getResult(o++)); 12097373cabcSAart Bik } 1210a2c9d4bbSAart Bik if (needsUniv) { 1211a54f4eaeSMogball operands.push_back( 1212a54f4eaeSMogball rewriter.create<arith::AddIOp>(loc, codegen.loops[idx], one)); 12137373cabcSAart Bik codegen.loops[idx] = whileOp->getResult(o++); 1214a2c9d4bbSAart Bik } 1215a2c9d4bbSAart Bik assert(o == operands.size()); 1216a2c9d4bbSAart Bik rewriter.create<scf::YieldOp>(loc, operands); 12177373cabcSAart Bik rewriter.setInsertionPointAfter(whileOp); 12187373cabcSAart Bik } 12197373cabcSAart Bik 12207373cabcSAart Bik /// Generates the induction structure for a for-loop. 12217373cabcSAart Bik static void genForInduction(Merger &merger, CodeGen &codegen, 12227373cabcSAart Bik PatternRewriter &rewriter, linalg::GenericOp op, 12237373cabcSAart Bik Operation *loop) { 12247373cabcSAart Bik Location loc = op.getLoc(); 12257373cabcSAart Bik unsigned o = 0; 12267373cabcSAart Bik SmallVector<Value, 4> operands; 12277373cabcSAart Bik if (codegen.redVal) { 12287373cabcSAart Bik operands.push_back(codegen.redVal); 12297373cabcSAart Bik updateReduc(merger, codegen, loop->getResult(o++)); 12307373cabcSAart Bik } 12317373cabcSAart Bik assert(o == operands.size()); 12327373cabcSAart Bik if (o > 0) 12337373cabcSAart Bik rewriter.create<scf::YieldOp>(loc, operands); 12347373cabcSAart Bik rewriter.setInsertionPointAfter(loop); 1235a2c9d4bbSAart Bik } 1236a2c9d4bbSAart Bik 1237a2c9d4bbSAart Bik /// Generates a single if-statement within a while-loop. 1238a2c9d4bbSAart Bik static scf::IfOp genIf(Merger &merger, CodeGen &codegen, 1239a2c9d4bbSAart Bik PatternRewriter &rewriter, linalg::GenericOp op, 1240a2c9d4bbSAart Bik unsigned idx, llvm::BitVector &conditions) { 1241a2c9d4bbSAart Bik Location loc = op.getLoc(); 12427373cabcSAart Bik SmallVector<Type, 4> types; 1243a2c9d4bbSAart Bik Value cond; 1244a2c9d4bbSAart Bik for (unsigned b = 0, be = conditions.size(); b < be; b++) { 1245a2c9d4bbSAart Bik if (conditions[b]) { 1246a2c9d4bbSAart Bik unsigned tensor = merger.tensor(b); 1247a2c9d4bbSAart Bik assert(idx == merger.index(b)); 1248a2c9d4bbSAart Bik Value clause; 1249a2c9d4bbSAart Bik if (merger.isDim(b, Dim::kSparse)) { 1250a2c9d4bbSAart Bik Value op1 = codegen.idxs[tensor][idx]; 1251a2c9d4bbSAart Bik Value op2 = codegen.loops[idx]; 1252a54f4eaeSMogball clause = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq, 1253a54f4eaeSMogball op1, op2); 1254a2c9d4bbSAart Bik } else { 1255a54f4eaeSMogball clause = rewriter.create<arith::ConstantIntOp>(loc, 1, 1); // true 1256a2c9d4bbSAart Bik } 1257a54f4eaeSMogball cond = cond ? rewriter.create<arith::AndIOp>(loc, cond, clause) : clause; 1258a2c9d4bbSAart Bik } 1259a2c9d4bbSAart Bik } 12607373cabcSAart Bik if (codegen.redVal) 12617373cabcSAart Bik types.push_back(codegen.redVal.getType()); 12627373cabcSAart Bik scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, types, cond, /*else=*/true); 1263a2c9d4bbSAart Bik rewriter.setInsertionPointToStart(&ifOp.thenRegion().front()); 1264a2c9d4bbSAart Bik return ifOp; 1265a2c9d4bbSAart Bik } 1266a2c9d4bbSAart Bik 12677373cabcSAart Bik /// Generates end of true branch of if-statement within a while-loop. 12687373cabcSAart Bik static void endIf(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, 12697373cabcSAart Bik linalg::GenericOp op, scf::IfOp ifOp, Value ifInput) { 12707373cabcSAart Bik if (codegen.redVal) { 12717373cabcSAart Bik rewriter.create<scf::YieldOp>(op.getLoc(), codegen.redVal); 12727373cabcSAart Bik updateReduc(merger, codegen, ifInput); 12737373cabcSAart Bik } 12747373cabcSAart Bik rewriter.setInsertionPointToStart(&ifOp.elseRegion().front()); 12757373cabcSAart Bik } 12767373cabcSAart Bik 1277c8d5dcb0SAart Bik //===----------------------------------------------------------------------===// 1278c8d5dcb0SAart Bik // Sparse compiler synthesis methods (loop sequence). 1279c8d5dcb0SAart Bik //===----------------------------------------------------------------------===// 1280c8d5dcb0SAart Bik 1281c8d5dcb0SAart Bik /// Starts a loop sequence at given level. Returns true if 1282c8d5dcb0SAart Bik /// the universal loop index must be maintained at this level. 1283c8d5dcb0SAart Bik static bool startLoopSeq(Merger &merger, CodeGen &codegen, 1284c8d5dcb0SAart Bik PatternRewriter &rewriter, linalg::GenericOp op, 1285c8d5dcb0SAart Bik std::vector<unsigned> &topSort, unsigned exp, 1286c8d5dcb0SAart Bik unsigned at, unsigned idx, unsigned ldx, 1287c8d5dcb0SAart Bik unsigned lts) { 1288c8d5dcb0SAart Bik assert(codegen.curVecLength == 1); 12897373cabcSAart Bik assert(!codegen.loops[idx]); 1290c8d5dcb0SAart Bik // Emit invariants at this loop sequence level. 12917373cabcSAart Bik genInvariants(merger, codegen, rewriter, op, exp, ldx, /*atStart=*/true); 1292c8d5dcb0SAart Bik // Emit further intitialization at this loop sequence level. 1293c8d5dcb0SAart Bik unsigned l0 = merger.set(lts)[0]; 12947373cabcSAart Bik bool needsUniv = 12957373cabcSAart Bik genInit(merger, codegen, rewriter, op, topSort, at, merger.lat(l0).bits); 1296c8d5dcb0SAart Bik // Maintain the universal index only if it is actually 1297c8d5dcb0SAart Bik // consumed by a subsequent lattice point. 12987373cabcSAart Bik if (needsUniv) { 1299c8d5dcb0SAart Bik unsigned lsize = merger.set(lts).size(); 1300c8d5dcb0SAart Bik for (unsigned i = 1; i < lsize; i++) { 1301c8d5dcb0SAart Bik unsigned li = merger.set(lts)[i]; 1302c8d5dcb0SAart Bik if (!merger.hasAnyDimOf(merger.lat(li).simple, Dim::kSparse)) 1303c8d5dcb0SAart Bik return true; 1304c8d5dcb0SAart Bik } 1305c8d5dcb0SAart Bik } 1306c8d5dcb0SAart Bik return false; 1307c8d5dcb0SAart Bik } 1308c8d5dcb0SAart Bik 1309c8d5dcb0SAart Bik /// Starts a single loop in current sequence. 1310c8d5dcb0SAart Bik static Operation *startLoop(Merger &merger, CodeGen &codegen, 1311c8d5dcb0SAart Bik PatternRewriter &rewriter, linalg::GenericOp op, 1312c8d5dcb0SAart Bik std::vector<unsigned> &topSort, unsigned at, 1313c8d5dcb0SAart Bik unsigned li, bool needsUniv) { 1314c8d5dcb0SAart Bik assert(codegen.curVecLength == 1); 1315c8d5dcb0SAart Bik // Emit the for/while-loop control. 1316c8d5dcb0SAart Bik Operation *loop = genLoop(merger, codegen, rewriter, op, topSort, at, 1317c8d5dcb0SAart Bik needsUniv, merger.lat(li).simple); 1318c8d5dcb0SAart Bik // Emit the locals for this loop. 1319c8d5dcb0SAart Bik genLocals(merger, codegen, rewriter, op, topSort, at, needsUniv, 1320c8d5dcb0SAart Bik merger.lat(li).bits); 1321c8d5dcb0SAart Bik return loop; 1322c8d5dcb0SAart Bik } 1323c8d5dcb0SAart Bik 1324c8d5dcb0SAart Bik /// Ends a single loop in current sequence. Returns new values for needsUniv. 1325c8d5dcb0SAart Bik static bool endLoop(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, 1326c8d5dcb0SAart Bik linalg::GenericOp op, Operation *loop, unsigned idx, 1327c8d5dcb0SAart Bik unsigned li, bool needsUniv) { 1328c8d5dcb0SAart Bik codegen.curVecLength = 1; 1329c8d5dcb0SAart Bik // End a while-loop. 1330c8d5dcb0SAart Bik if (auto whileOp = dyn_cast<scf::WhileOp>(loop)) { 1331c8d5dcb0SAart Bik genWhileInduction(merger, codegen, rewriter, op, idx, needsUniv, 13327373cabcSAart Bik merger.lat(li).bits, whileOp); 1333c8d5dcb0SAart Bik return needsUniv; 1334c8d5dcb0SAart Bik } 1335c8d5dcb0SAart Bik // End a for-loop. 13367373cabcSAart Bik genForInduction(merger, codegen, rewriter, op, loop); 1337c8d5dcb0SAart Bik return false; 1338c8d5dcb0SAart Bik } 1339c8d5dcb0SAart Bik 1340c8d5dcb0SAart Bik /// Ends a loop sequence at given level. 1341c8d5dcb0SAart Bik static void endLoopSeq(Merger &merger, CodeGen &codegen, 1342c8d5dcb0SAart Bik PatternRewriter &rewriter, linalg::GenericOp op, 1343c8d5dcb0SAart Bik unsigned exp, unsigned idx, unsigned ldx) { 1344c8d5dcb0SAart Bik assert(codegen.curVecLength == 1); 1345c8d5dcb0SAart Bik codegen.loops[idx] = Value(); 13467373cabcSAart Bik // Bring a pending reduction back from SIMD form when sequence ends. 13477373cabcSAart Bik if (codegen.redVal) 13487373cabcSAart Bik if (auto vtp = codegen.redVal.getType().dyn_cast<VectorType>()) 13497373cabcSAart Bik updateReduc(merger, codegen, 13507373cabcSAart Bik genVectorReducEnd(codegen, rewriter, op.getLoc(), vtp)); 13517373cabcSAart Bik // Unmark bookkeeping of invariants and loop index. 13527373cabcSAart Bik genInvariants(merger, codegen, rewriter, op, exp, ldx, /*atStart=*/false); 1353c8d5dcb0SAart Bik } 1354c8d5dcb0SAart Bik 1355a2c9d4bbSAart Bik /// Recursively generates code while computing iteration lattices in order 1356a2c9d4bbSAart Bik /// to manage the complexity of implementing co-iteration over unions 1357a2c9d4bbSAart Bik /// and intersections of sparse iterations spaces. 1358a2c9d4bbSAart Bik static void genStmt(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, 1359a2c9d4bbSAart Bik linalg::GenericOp op, std::vector<unsigned> &topSort, 1360a2c9d4bbSAart Bik unsigned exp, unsigned at) { 1361a2c9d4bbSAart Bik // At each leaf, assign remaining tensor (sub)expression to output tensor. 1362a2c9d4bbSAart Bik if (at == topSort.size()) { 1363a2c9d4bbSAart Bik Value rhs = genExp(merger, codegen, rewriter, op, exp); 1364b1d44e59SAart Bik genTensorStore(merger, codegen, rewriter, op, rhs); 1365a2c9d4bbSAart Bik return; 1366a2c9d4bbSAart Bik } 1367a2c9d4bbSAart Bik 1368a2c9d4bbSAart Bik // Construct iteration lattices for current loop index, with L0 at top. 1369a2c9d4bbSAart Bik unsigned idx = topSort[at]; 1370a2c9d4bbSAart Bik unsigned ldx = at == 0 ? -1u : topSort[at - 1]; 1371c8d5dcb0SAart Bik unsigned lts = merger.optimizeSet(merger.buildLattices(exp, idx)); 1372a2c9d4bbSAart Bik 1373c8d5dcb0SAart Bik // Start a loop sequence. 1374c8d5dcb0SAart Bik bool needsUniv = startLoopSeq(merger, codegen, rewriter, op, topSort, exp, at, 1375c8d5dcb0SAart Bik idx, ldx, lts); 1376c8d5dcb0SAart Bik 1377c8d5dcb0SAart Bik // Emit a loop for every lattice point L0 >= Li in this loop sequence. 1378c8d5dcb0SAart Bik unsigned lsize = merger.set(lts).size(); 1379a2c9d4bbSAart Bik for (unsigned i = 0; i < lsize; i++) { 1380c8d5dcb0SAart Bik // Start a loop. 1381a2c9d4bbSAart Bik unsigned li = merger.set(lts)[i]; 1382a2c9d4bbSAart Bik Operation *loop = 1383c8d5dcb0SAart Bik startLoop(merger, codegen, rewriter, op, topSort, at, li, needsUniv); 1384a2c9d4bbSAart Bik 1385a2c9d4bbSAart Bik // Visit all lattices points with Li >= Lj to generate the 1386a2c9d4bbSAart Bik // loop-body, possibly with if statements for coiteration. 13877373cabcSAart Bik Value ifInput = codegen.redVal; 1388a2c9d4bbSAart Bik bool isWhile = dyn_cast<scf::WhileOp>(loop) != nullptr; 1389a2c9d4bbSAart Bik for (unsigned j = 0; j < lsize; j++) { 1390a2c9d4bbSAart Bik unsigned lj = merger.set(lts)[j]; 1391a2c9d4bbSAart Bik unsigned ej = merger.lat(lj).exp; 1392a2c9d4bbSAart Bik if (li == lj || merger.latGT(li, lj)) { 1393a2c9d4bbSAart Bik // Recurse into body of each branch. 1394a2c9d4bbSAart Bik if (isWhile) { 1395a2c9d4bbSAart Bik scf::IfOp ifOp = 1396a2c9d4bbSAart Bik genIf(merger, codegen, rewriter, op, idx, merger.lat(lj).simple); 1397a2c9d4bbSAart Bik genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1); 13987373cabcSAart Bik endIf(merger, codegen, rewriter, op, ifOp, ifInput); 1399a2c9d4bbSAart Bik } else { 1400a2c9d4bbSAart Bik genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1); 1401a2c9d4bbSAart Bik } 1402a2c9d4bbSAart Bik } 1403a2c9d4bbSAart Bik } 1404a2c9d4bbSAart Bik 1405c8d5dcb0SAart Bik // End a loop. 1406c8d5dcb0SAart Bik needsUniv = 1407c8d5dcb0SAart Bik endLoop(merger, codegen, rewriter, op, loop, idx, li, needsUniv); 1408a2c9d4bbSAart Bik } 1409a2c9d4bbSAart Bik 1410c8d5dcb0SAart Bik // End a loop sequence. 1411c8d5dcb0SAart Bik endLoopSeq(merger, codegen, rewriter, op, exp, idx, ldx); 1412a2c9d4bbSAart Bik } 1413a2c9d4bbSAart Bik 1414727a63e0SAart Bik /// Converts the result computed by the sparse kernel into the required form. 141536b66ab9SAart Bik static void genResult(Merger &merger, CodeGen &codegen, 141636b66ab9SAart Bik PatternRewriter &rewriter, linalg::GenericOp op) { 141736b66ab9SAart Bik Location loc = op.getLoc(); 141836b66ab9SAart Bik OpOperand *lhs = op.getOutputOperand(0); 141936b66ab9SAart Bik Type resType = lhs->get().getType(); 142036b66ab9SAart Bik unsigned tensor = lhs->getOperandNumber(); 142136b66ab9SAart Bik auto map = op.getTiedIndexingMap(lhs); 142236b66ab9SAart Bik auto enc = getSparseTensorEncoding(resType); 142336b66ab9SAart Bik Value result = codegen.buffers.back(); // value array 142436b66ab9SAart Bik if (enc) { 142536b66ab9SAart Bik // The sparse annotation unambigiously defines the arrays needed 142636b66ab9SAart Bik // to "reconstruct" the sparse tensor from the storage scheme 142736b66ab9SAart Bik // (even though lowering should never need this eventually). 142836b66ab9SAart Bik SmallVector<Value, 4> args; 142936b66ab9SAart Bik for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { 1430b1d44e59SAart Bik AffineExpr a = map.getResult(perm(enc, d)); 1431b1d44e59SAart Bik if (a.getKind() != AffineExprKind::DimId) 1432b1d44e59SAart Bik continue; // compound 1433b1d44e59SAart Bik unsigned idx = a.cast<AffineDimExpr>().getPosition(); 143436b66ab9SAart Bik if (merger.isDim(tensor, idx, Dim::kSparse)) { 143536b66ab9SAart Bik args.push_back(codegen.pointers[tensor][idx]); 143636b66ab9SAart Bik args.push_back(codegen.indices[tensor][idx]); 143736b66ab9SAart Bik } 143836b66ab9SAart Bik } 143936b66ab9SAart Bik args.push_back(result); 144036b66ab9SAart Bik result = rewriter.create<ToTensorOp>(loc, resType, args); 144136b66ab9SAart Bik } else { 144236b66ab9SAart Bik // To "reconstruct" an non-annotated tensor, sipmly load it 144336b66ab9SAart Bik // from the bufferized value. 144436b66ab9SAart Bik result = rewriter.create<memref::TensorLoadOp>(loc, resType, result); 144536b66ab9SAart Bik } 1446727a63e0SAart Bik rewriter.replaceOp(op, result); 1447727a63e0SAart Bik } 1448727a63e0SAart Bik 14495da21338SAart Bik //===----------------------------------------------------------------------===// 14505da21338SAart Bik // Sparse compiler rewriting methods. 14515da21338SAart Bik //===----------------------------------------------------------------------===// 14525da21338SAart Bik 1453a2c9d4bbSAart Bik namespace { 1454a2c9d4bbSAart Bik 1455a2c9d4bbSAart Bik /// Sparse rewriting rule for generic Lingalg operation. 1456a2c9d4bbSAart Bik struct GenericOpSparsifier : public OpRewritePattern<linalg::GenericOp> { 1457a2c9d4bbSAart Bik public: 1458a2c9d4bbSAart Bik GenericOpSparsifier(MLIRContext *context, SparsificationOptions o) 1459a2c9d4bbSAart Bik : OpRewritePattern<linalg::GenericOp>(context), options(o) {} 1460a2c9d4bbSAart Bik 1461a2c9d4bbSAart Bik LogicalResult matchAndRewrite(linalg::GenericOp op, 1462a2c9d4bbSAart Bik PatternRewriter &rewriter) const override { 1463a2c9d4bbSAart Bik // Detects sparse annotations and translate the per-dimension sparsity 1464a2c9d4bbSAart Bik // information for all tensors to loop indices in the kernel. 1465a2c9d4bbSAart Bik assert(op.getNumOutputs() == 1); 14662f2b5b7dSTobias Gysi unsigned numTensors = op.getNumInputsAndOutputs(); 1467a2c9d4bbSAart Bik unsigned numLoops = op.iterator_types().getValue().size(); 1468a2c9d4bbSAart Bik Merger merger(numTensors, numLoops); 1469bf9ef3efSAart Bik if (!findSparseAnnotations(merger, op)) 1470bf9ef3efSAart Bik return failure(); 1471a2c9d4bbSAart Bik 1472a2c9d4bbSAart Bik // Computes a topologically sorted iteration graph to ensure 1473a2c9d4bbSAart Bik // tensors are visited in natural index order. Fails on cycles. 1474a2c9d4bbSAart Bik // This assumes that higher-level passes have already put the 1475a2c9d4bbSAart Bik // tensors in each tensor expression in a feasible order. 1476a2c9d4bbSAart Bik std::vector<unsigned> topSort; 1477b6d1a31cSAart Bik if (!computeIterationGraph(merger, op, topSort, 1478b6d1a31cSAart Bik SortMask::kIncludeUndef | 1479b6d1a31cSAart Bik SortMask::kIncludeDense) && 1480b6d1a31cSAart Bik !computeIterationGraph(merger, op, topSort, SortMask::kIncludeUndef) && 1481b6d1a31cSAart Bik !computeIterationGraph(merger, op, topSort, SortMask::kIncludeDense) && 1482b6d1a31cSAart Bik !computeIterationGraph(merger, op, topSort, SortMask::kSparseOnly)) 1483a2c9d4bbSAart Bik return failure(); 1484a2c9d4bbSAart Bik 1485266a7414SAart Bik // Builds the tensor expression for the Linalg operation in SSA form. 14867373cabcSAart Bik Optional<unsigned> optExp = merger.buildTensorExpFromLinalg(op); 14877373cabcSAart Bik if (!optExp.hasValue()) 1488266a7414SAart Bik return failure(); 14897373cabcSAart Bik unsigned exp = optExp.getValue(); 1490a2c9d4bbSAart Bik 1491266a7414SAart Bik // Rejects an inadmissable tensor expression. 14927373cabcSAart Bik if (!isAdmissableTensorExp(merger, op, exp)) 149336b66ab9SAart Bik return failure(); 149436b66ab9SAart Bik 1495a2c9d4bbSAart Bik // Recursively generates code. 1496a2c9d4bbSAart Bik CodeGen codegen(options, numTensors, numLoops); 1497c8d5dcb0SAart Bik genBuffers(merger, codegen, rewriter, op); 14987373cabcSAart Bik genStmt(merger, codegen, rewriter, op, topSort, exp, 0); 149936b66ab9SAart Bik genResult(merger, codegen, rewriter, op); 1500a2c9d4bbSAart Bik return success(); 1501a2c9d4bbSAart Bik } 1502a2c9d4bbSAart Bik 1503a2c9d4bbSAart Bik private: 1504a2c9d4bbSAart Bik /// Options to control sparse code generation. 1505a2c9d4bbSAart Bik SparsificationOptions options; 1506a2c9d4bbSAart Bik }; 1507a2c9d4bbSAart Bik 1508a2c9d4bbSAart Bik } // namespace 1509a2c9d4bbSAart Bik 1510a2c9d4bbSAart Bik /// Populates the given patterns list with rewriting rules required for 1511a2c9d4bbSAart Bik /// the sparsification of linear algebra operations. 1512a2c9d4bbSAart Bik void mlir::populateSparsificationPatterns( 1513a2c9d4bbSAart Bik RewritePatternSet &patterns, const SparsificationOptions &options) { 1514a2c9d4bbSAart Bik patterns.add<GenericOpSparsifier>(patterns.getContext(), options); 1515a2c9d4bbSAart Bik } 1516