196a23911SAart Bik //===- Sparsification.cpp - Implementation of sparsification --------------===// 2a2c9d4bbSAart Bik // 3a2c9d4bbSAart Bik // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4a2c9d4bbSAart Bik // See https://llvm.org/LICENSE.txt for license information. 5a2c9d4bbSAart Bik // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6a2c9d4bbSAart Bik // 7a2c9d4bbSAart Bik //===----------------------------------------------------------------------===// 8a2c9d4bbSAart Bik // 996a23911SAart Bik // This file implements lowering sparse tensor types to actual sparse code. 10a2c9d4bbSAart Bik // 11a2c9d4bbSAart Bik // The concept of letting a compiler generate sparse code automatically was 12a2c9d4bbSAart Bik // pioneered for dense linear algebra code in Fortran by [Bik96] in MT1 and 13a2c9d4bbSAart Bik // formalized to tensor algebra by [Kjolstad17,20] for the Sparse Tensor 14a2c9d4bbSAart Bik // Algebra Compiler (TACO). The implementation in this file closely follows 15a2c9d4bbSAart Bik // the "sparse iteration theory" that forms the foundation of TACO. A rewriting 16a2c9d4bbSAart Bik // rule is applied to each tensor expression in linalg (MLIR's tensor index 17a2c9d4bbSAart Bik // notation) where the sparsity of tensors is indicated with annotation using 18a2c9d4bbSAart Bik // a per-dimension specification of sparse/dense storage together with a 19a2c9d4bbSAart Bik // specification of the order on the dimensions. Subsequently, a topologically 20a2c9d4bbSAart Bik // sorted iteration graph, reflecting the required order on indices with respect 21a2c9d4bbSAart Bik // to the dimensions of each tensor, is constructed to ensure that all tensors 22a2c9d4bbSAart Bik // are visited in natural index order. Next, iteration lattices are constructed 23a2c9d4bbSAart Bik // for the tensor expression for every index in topological order. Each 24a2c9d4bbSAart Bik // iteration lattice point consists of a conjunction of tensor indices together 25a2c9d4bbSAart Bik // with a tensor (sub)expression that needs to be evaluated for that 26a2c9d4bbSAart Bik // conjunction. Within the lattice, iteration points are ordered according to 27a2c9d4bbSAart Bik // the way indices are exhausted. As such these iteration lattices drive actual 28a2c9d4bbSAart Bik // sparse code generation, which consists of a tedious but relatively 29a2c9d4bbSAart Bik // straightforward one-to-one mapping from iteration lattices to combinations 30a2c9d4bbSAart Bik // of for-loops, while-loops, and if-statements. 31a2c9d4bbSAart Bik // 32a2c9d4bbSAart Bik // [Bik96] Aart J.C. Bik. Compiler Support for Sparse Matrix Computations. 33a2c9d4bbSAart Bik // PhD thesis, Leiden University, May 1996 (aartbik.com/sparse.php). 34a2c9d4bbSAart Bik // [Kjolstad17] Fredrik Berg Kjolstad, Shoaib Ashraf Kamil, Stephen Chou, 35a2c9d4bbSAart Bik // David Lugato, and Saman Amarasinghe. The Tensor Algebra Compiler. 36a2c9d4bbSAart Bik // Proceedings of the ACM on Programming Languages, October 2017. 37a2c9d4bbSAart Bik // [Kjolstad20] Fredrik Berg Kjolstad. Sparse Tensor Algebra Compilation. 38a2c9d4bbSAart Bik // PhD thesis, MIT, February, 2020 (tensor-compiler.org). 39a2c9d4bbSAart Bik // 40a2c9d4bbSAart Bik // Implementation detail: We use llvm::SmallVector for vectors with 41a2c9d4bbSAart Bik // variable lengths and std::vector for vectors with fixed lengths. 42a2c9d4bbSAart Bik //===----------------------------------------------------------------------===// 43a2c9d4bbSAart Bik 44a2c9d4bbSAart Bik #include "mlir/Dialect/Linalg/IR/LinalgOps.h" 45a2c9d4bbSAart Bik #include "mlir/Dialect/Linalg/Utils/Utils.h" 4666f878ceSMatthias Springer #include "mlir/Dialect/MemRef/IR/MemRef.h" 47a2c9d4bbSAart Bik #include "mlir/Dialect/SCF/SCF.h" 48a2c9d4bbSAart Bik #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h" 49a2c9d4bbSAart Bik #include "mlir/Dialect/SparseTensor/Transforms/Passes.h" 50744146f6SGus Smith #include "mlir/Dialect/SparseTensor/Utils/Merger.h" 51a2c9d4bbSAart Bik #include "mlir/Dialect/StandardOps/IR/Ops.h" 52a2c9d4bbSAart Bik #include "mlir/Dialect/Vector/VectorOps.h" 53a2c9d4bbSAart Bik #include "mlir/IR/Matchers.h" 5496a23911SAart Bik #include "mlir/IR/TensorEncoding.h" 55a2c9d4bbSAart Bik #include "llvm/ADT/SmallBitVector.h" 56a2c9d4bbSAart Bik 57a2c9d4bbSAart Bik using namespace mlir; 5896a23911SAart Bik using namespace mlir::sparse_tensor; 59a2c9d4bbSAart Bik 60a2c9d4bbSAart Bik namespace { 61a2c9d4bbSAart Bik 62a2c9d4bbSAart Bik // Code generation. 63a2c9d4bbSAart Bik struct CodeGen { 6496a23911SAart Bik CodeGen(SparsificationOptions o, unsigned numTensors, unsigned numLoops) 65a2c9d4bbSAart Bik : options(o), loops(numLoops), sizes(numLoops), buffers(numTensors), 66a2c9d4bbSAart Bik pointers(numTensors, std::vector<Value>(numLoops)), 67a2c9d4bbSAart Bik indices(numTensors, std::vector<Value>(numLoops)), 68a2c9d4bbSAart Bik highs(numTensors, std::vector<Value>(numLoops)), 69a2c9d4bbSAart Bik pidxs(numTensors, std::vector<Value>(numLoops)), 70a2c9d4bbSAart Bik idxs(numTensors, std::vector<Value>(numLoops)), redExp(-1u), redVal(), 71a2c9d4bbSAart Bik curVecLength(1), curVecMask() {} 72a2c9d4bbSAart Bik /// Sparsification options. 7396a23911SAart Bik SparsificationOptions options; 74a2c9d4bbSAart Bik /// Universal dense indices and upper bounds (by index). The loops array 75a2c9d4bbSAart Bik /// is updated with the value of the universal dense index in the current 76a2c9d4bbSAart Bik /// loop. The sizes array is set once with the inferred dimension sizes. 77a2c9d4bbSAart Bik std::vector<Value> loops; 78a2c9d4bbSAart Bik std::vector<Value> sizes; 79a2c9d4bbSAart Bik /// Buffers for storing dense and sparse numerical values (by tensor). 80a2c9d4bbSAart Bik /// This array is set once during bufferization of all tensors. 81a2c9d4bbSAart Bik std::vector<Value> buffers; 82a2c9d4bbSAart Bik /// Sparse storage schemes (1-D): pointers and indices (by tensor and index). 83a2c9d4bbSAart Bik /// This array is set once during bufferization of all sparse tensors. 84a2c9d4bbSAart Bik std::vector<std::vector<Value>> pointers; 85a2c9d4bbSAart Bik std::vector<std::vector<Value>> indices; 86a2c9d4bbSAart Bik /// Sparse iteration information (by tensor and index). These arrays 87a2c9d4bbSAart Bik /// are updated to remain current within the current loop. 88a2c9d4bbSAart Bik std::vector<std::vector<Value>> highs; 89a2c9d4bbSAart Bik std::vector<std::vector<Value>> pidxs; 90a2c9d4bbSAart Bik std::vector<std::vector<Value>> idxs; 91a2c9d4bbSAart Bik /// Current reduction, updated during code generation. When indices of a 92a2c9d4bbSAart Bik /// reduction are exhausted, all inner loops can "scalarize" the reduction. 93a2c9d4bbSAart Bik // TODO: currently only done for (a chain of) innermost for-loops, where it 94a2c9d4bbSAart Bik // is most effective; we could generalize to more outer and while-loops. 95a2c9d4bbSAart Bik unsigned redExp; 96a2c9d4bbSAart Bik Value redVal; 97a2c9d4bbSAart Bik // Current vector length and mask. 98a2c9d4bbSAart Bik unsigned curVecLength; 99a2c9d4bbSAart Bik Value curVecMask; 100a2c9d4bbSAart Bik }; 101a2c9d4bbSAart Bik 102a2c9d4bbSAart Bik } // namespace 103a2c9d4bbSAart Bik 104c194b49cSAart Bik // Helper method to apply dimension ordering permutation. 105c194b49cSAart Bik static unsigned perm(SparseTensorEncodingAttr &enc, unsigned d) { 106c194b49cSAart Bik if (enc) { 107c194b49cSAart Bik auto order = enc.getDimOrdering(); 108c194b49cSAart Bik if (order) { 109c194b49cSAart Bik assert(order.isPermutation()); 110c194b49cSAart Bik return order.getDimPosition(d); 111c194b49cSAart Bik } 112c194b49cSAart Bik } 113c194b49cSAart Bik return d; 114c194b49cSAart Bik } 115c194b49cSAart Bik 11696a23911SAart Bik // Helper method to translate dim level type to internal representation. 11796a23911SAart Bik static Dim toDim(SparseTensorEncodingAttr &enc, unsigned d) { 11896a23911SAart Bik if (enc) { 11996a23911SAart Bik SparseTensorEncodingAttr::DimLevelType tp = enc.getDimLevelType()[d]; 12096a23911SAart Bik if (tp == SparseTensorEncodingAttr::DimLevelType::Compressed) 12196a23911SAart Bik return Dim::kSparse; 12296a23911SAart Bik if (tp == SparseTensorEncodingAttr::DimLevelType::Singleton) 12396a23911SAart Bik return Dim::kSingle; 12496a23911SAart Bik } 12596a23911SAart Bik return Dim::kDense; 12696a23911SAart Bik } 12796a23911SAart Bik 12896a23911SAart Bik /// Helper method to inspect sparse encodings in the tensor types. 129a2c9d4bbSAart Bik /// Fills the per-dimension sparsity information for all tensors. 130bf9ef3efSAart Bik static bool findSparseAnnotations(Merger &merger, linalg::GenericOp op) { 131bf9ef3efSAart Bik bool annotated = false; 1322f2b5b7dSTobias Gysi for (OpOperand *t : op.getInputAndOutputOperands()) { 1332f2b5b7dSTobias Gysi auto map = op.getTiedIndexingMap(t); 134c194b49cSAart Bik if (!map.isProjectedPermutation()) 135c194b49cSAart Bik return false; 1362f2b5b7dSTobias Gysi auto enc = getSparseTensorEncoding(t->get().getType()); 137727a63e0SAart Bik if (enc) 138bf9ef3efSAart Bik annotated = true; 1392f2b5b7dSTobias Gysi assert(map.getNumResults() == op.getRank(t)); 140c194b49cSAart Bik for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { 141c194b49cSAart Bik unsigned idx = map.getDimPosition(perm(enc, d)); 1422f2b5b7dSTobias Gysi merger.setDim(t->getOperandNumber(), idx, toDim(enc, d)); 143a2c9d4bbSAart Bik } 144a2c9d4bbSAart Bik } 145bf9ef3efSAart Bik return annotated; 146a2c9d4bbSAart Bik } 147a2c9d4bbSAart Bik 148a2c9d4bbSAart Bik /// A DFS helper to compute a topological sort. Note that recursion is 149a2c9d4bbSAart Bik /// bounded by the number of implicit loops, which is always small. 150a2c9d4bbSAart Bik /// Returns false when a cycle is detected. 151a2c9d4bbSAart Bik static bool topSortDFS(unsigned i, std::vector<unsigned> &visit, 152a2c9d4bbSAart Bik std::vector<unsigned> &topSort, 153a2c9d4bbSAart Bik std::vector<std::vector<bool>> &adjM) { 154a2c9d4bbSAart Bik if (visit[i] != 0) 155a2c9d4bbSAart Bik return visit[i] != 1; // 1 denotes cycle! 156a2c9d4bbSAart Bik visit[i] = 1; 157a2c9d4bbSAart Bik for (unsigned j = 0, e = visit.size(); j < e; j++) 158a2c9d4bbSAart Bik if (adjM[i][j]) 159a2c9d4bbSAart Bik if (!topSortDFS(j, visit, topSort, adjM)) 160a2c9d4bbSAart Bik return false; 161a2c9d4bbSAart Bik visit[i] = 2; 162a2c9d4bbSAart Bik topSort.push_back(i); 163a2c9d4bbSAart Bik return true; 164a2c9d4bbSAart Bik } 165a2c9d4bbSAart Bik 166a2c9d4bbSAart Bik /// Computes a topologically sorted iteration graph for the linalg operation. 167a2c9d4bbSAart Bik /// Ensures all tensors are visited in natural index order. This is essential 168a2c9d4bbSAart Bik /// for sparse storage formats since these only support access along fixed 169a2c9d4bbSAart Bik /// dimensions. Even for dense storage formats, however, the natural index 170a2c9d4bbSAart Bik /// order yields innermost unit-stride access with better spatial locality. 171a2c9d4bbSAart Bik static bool computeIterationGraph(Merger &merger, linalg::GenericOp op, 172a2c9d4bbSAart Bik std::vector<unsigned> &topSort, 173a2c9d4bbSAart Bik bool sparseOnly) { 174a2c9d4bbSAart Bik // Set up an n x n from/to adjacency matrix of the iteration graph 175a2c9d4bbSAart Bik // for the implicit loop indices i_0 .. i_n-1. 176a2c9d4bbSAart Bik unsigned n = op.getNumLoops(); 177a2c9d4bbSAart Bik std::vector<std::vector<bool>> adjM(n, std::vector<bool>(n, false)); 178a2c9d4bbSAart Bik 179a2c9d4bbSAart Bik // Iterate over the indexing maps of every tensor in the tensor expression. 1802f2b5b7dSTobias Gysi for (OpOperand *t : op.getInputAndOutputOperands()) { 1812f2b5b7dSTobias Gysi auto map = op.getTiedIndexingMap(t); 1822f2b5b7dSTobias Gysi auto enc = getSparseTensorEncoding(t->get().getType()); 183a2c9d4bbSAart Bik assert(map.getNumDims() == n); 184a2c9d4bbSAart Bik // Skip dense tensor constraints when sparse only is requested. 185c194b49cSAart Bik if (sparseOnly && !enc) 186a2c9d4bbSAart Bik continue; 187c194b49cSAart Bik // Each tensor expression and optional dimension ordering (row-major 188c194b49cSAart Bik // by default) puts an ordering constraint on the loop indices. For 189c194b49cSAart Bik // example, the tensor expresion A_ijk forces the ordering i < j < k 190c194b49cSAart Bik // on the loop indices if no explicit dimension ordering is given. 191c194b49cSAart Bik for (unsigned d = 1, rank = map.getNumResults(); d < rank; d++) { 192c194b49cSAart Bik unsigned f = map.getDimPosition(perm(enc, d - 1)); 193c194b49cSAart Bik unsigned t = map.getDimPosition(perm(enc, d)); 194a2c9d4bbSAart Bik adjM[f][t] = true; 195a2c9d4bbSAart Bik } 196a2c9d4bbSAart Bik } 197a2c9d4bbSAart Bik 198a2c9d4bbSAart Bik // Topologically sort the iteration graph to determine loop order. 199a2c9d4bbSAart Bik // Report failure for a cyclic iteration graph. 200a2c9d4bbSAart Bik topSort.clear(); 201a2c9d4bbSAart Bik topSort.reserve(n); 202a2c9d4bbSAart Bik std::vector<unsigned> visit(n, 0); 203a2c9d4bbSAart Bik for (unsigned i = 0; i < n; i++) 204a2c9d4bbSAart Bik if (visit[i] == 0) 205a2c9d4bbSAart Bik if (!topSortDFS(i, visit, topSort, adjM)) 206a2c9d4bbSAart Bik return false; // cycle! 207a2c9d4bbSAart Bik std::reverse(std::begin(topSort), std::end(topSort)); 208a2c9d4bbSAart Bik return true; 209a2c9d4bbSAart Bik } 210a2c9d4bbSAart Bik 211a2c9d4bbSAart Bik /// Traverses the SSA tree (possibly a DAG) to build a tensor expression. 212a2c9d4bbSAart Bik /// This simplifies constructing (sub)expressions during iteration lattice 213a2c9d4bbSAart Bik /// building (compared to using the SSA representation everywhere). 214a2c9d4bbSAart Bik static Optional<unsigned> buildTensorExp(Merger &merger, linalg::GenericOp op, 215a2c9d4bbSAart Bik Value val) { 216a2c9d4bbSAart Bik if (auto arg = val.dyn_cast<BlockArgument>()) { 217a2c9d4bbSAart Bik unsigned argN = arg.getArgNumber(); 218619bfe8bSAart Bik // Any argument of the generic op that is not marked as a scalar 219619bfe8bSAart Bik // argument is considered a tensor, indexed by the implicit loop 220619bfe8bSAart Bik // bounds. This includes rank-0 tensor arguments. 221619bfe8bSAart Bik if (arg.getOwner()->getParentOp() == op) { 222619bfe8bSAart Bik OpOperand *t = op.getInputAndOutputOperands()[argN]; 223619bfe8bSAart Bik if (!op.isScalar(t)) 224a2c9d4bbSAart Bik return merger.addExp(Kind::kTensor, argN); 225619bfe8bSAart Bik val = t->get(); // get scalar value 226619bfe8bSAart Bik } 227619bfe8bSAart Bik // Any other argument (marked as scalar argument for the generic op 228619bfe8bSAart Bik // or belonging to an enveloping op) is considered invariant. 229a2c9d4bbSAart Bik return merger.addExp(Kind::kInvariant, val); 230a2c9d4bbSAart Bik } 231a2c9d4bbSAart Bik Operation *def = val.getDefiningOp(); 232a2c9d4bbSAart Bik if (def->getBlock() != &op.region().front()) { 233a2c9d4bbSAart Bik // Something defined outside is invariant. 234a2c9d4bbSAart Bik return merger.addExp(Kind::kInvariant, val); 235a2c9d4bbSAart Bik } else if (def->getNumOperands() == 2) { 236a2c9d4bbSAart Bik // Construct binary operations if subexpressions could be built. 237a2c9d4bbSAart Bik auto x = buildTensorExp(merger, op, def->getOperand(0)); 238a2c9d4bbSAart Bik auto y = buildTensorExp(merger, op, def->getOperand(1)); 239a2c9d4bbSAart Bik if (x.hasValue() && y.hasValue()) { 240a2c9d4bbSAart Bik unsigned e0 = x.getValue(); 241a2c9d4bbSAart Bik unsigned e1 = y.getValue(); 242a2c9d4bbSAart Bik if (isa<MulFOp>(def)) 243a2c9d4bbSAart Bik return merger.addExp(Kind::kMulF, e0, e1); 244a2c9d4bbSAart Bik if (isa<MulIOp>(def)) 245a2c9d4bbSAart Bik return merger.addExp(Kind::kMulI, e0, e1); 246a2c9d4bbSAart Bik if (isa<AddFOp>(def)) 247a2c9d4bbSAart Bik return merger.addExp(Kind::kAddF, e0, e1); 248a2c9d4bbSAart Bik if (isa<AddIOp>(def)) 249a2c9d4bbSAart Bik return merger.addExp(Kind::kAddI, e0, e1); 250a2c9d4bbSAart Bik } 251a2c9d4bbSAart Bik } 252a2c9d4bbSAart Bik // Cannot build (yet). 253a2c9d4bbSAart Bik return None; 254a2c9d4bbSAart Bik } 255a2c9d4bbSAart Bik 25636b66ab9SAart Bik /// Returns true if given tensor co-iterates with conjunction only. 25736b66ab9SAart Bik /// For the output tensor, this defines a "simply dynamic" operation. 25836b66ab9SAart Bik /// For instance: A(I) = A(I) * B(I) * C(I) 25936b66ab9SAart Bik static unsigned isConjunction(Merger &merger, unsigned tensor, unsigned exp) { 26036b66ab9SAart Bik switch (merger.exp(exp).kind) { 26136b66ab9SAart Bik case Kind::kTensor: 26236b66ab9SAart Bik return merger.exp(exp).e0 == tensor; 26336b66ab9SAart Bik case Kind::kMulF: 26436b66ab9SAart Bik case Kind::kMulI: 26536b66ab9SAart Bik return isConjunction(merger, tensor, merger.exp(exp).e0) || 26636b66ab9SAart Bik isConjunction(merger, tensor, merger.exp(exp).e1); 26736b66ab9SAart Bik default: 26836b66ab9SAart Bik return false; 26936b66ab9SAart Bik } 27036b66ab9SAart Bik } 27136b66ab9SAart Bik 27236b66ab9SAart Bik /// Returns true when the tensor expression is admissable for codegen. 27336b66ab9SAart Bik /// Since all sparse input tensors are admissable, we just need to check 27436b66ab9SAart Bik /// whether the output tensor in the tensor expression codegen is admissable. 27536b66ab9SAart Bik static bool isAdmissableTensorExp(Merger &merger, linalg::GenericOp op, 27636b66ab9SAart Bik unsigned exp) { 27736b66ab9SAart Bik OpOperand *lhs = op.getOutputOperand(0); 27836b66ab9SAart Bik unsigned tensor = lhs->getOperandNumber(); 27936b66ab9SAart Bik auto enc = getSparseTensorEncoding(lhs->get().getType()); 28036b66ab9SAart Bik // An non-annotated output tensor is assumed dense, and becomes a random 28136b66ab9SAart Bik // access n-dim memref. Admissable since inserstions cannot occur. 28236b66ab9SAart Bik if (!enc) 28336b66ab9SAart Bik return true; 28436b66ab9SAart Bik // An all-dense annotated "sparse" output tensor becomes a linearized random 28536b66ab9SAart Bik // access 1-dim memref. Also admissable since insertions cannot occur. 28636b66ab9SAart Bik bool allDense = true; 28736b66ab9SAart Bik unsigned numLoops = op.iterator_types().getValue().size(); 28836b66ab9SAart Bik for (unsigned i = 0; i < numLoops; i++) 28936b66ab9SAart Bik if (merger.isDim(tensor, i, Dim::kSparse)) { 29036b66ab9SAart Bik allDense = false; 29136b66ab9SAart Bik break; 29236b66ab9SAart Bik } 29336b66ab9SAart Bik if (allDense) 29436b66ab9SAart Bik return true; 29536b66ab9SAart Bik // A tensor expression with a sparse output tensor that changes its values 29636b66ab9SAart Bik // but not its nonzero structure, an operation called "simply dynamic" in 29736b66ab9SAart Bik // [Bik96,Ch9], is also admissable without special codegen. 29836b66ab9SAart Bik if (isConjunction(merger, tensor, exp)) 29936b66ab9SAart Bik return true; 30036b66ab9SAart Bik // Reject for now since this requires changes to the nonzero structure. 30136b66ab9SAart Bik // TODO: implement "workspaces" [Kjolstad2019] 30236b66ab9SAart Bik return false; 30336b66ab9SAart Bik } 30436b66ab9SAart Bik 305a2c9d4bbSAart Bik /// Maps sparse integer option to actual integral storage type. 30696a23911SAart Bik static Type genIntType(PatternRewriter &rewriter, unsigned width) { 30796a23911SAart Bik if (width == 0) 308a2c9d4bbSAart Bik return rewriter.getIndexType(); 30996a23911SAart Bik return rewriter.getIntegerType(width); 310a2c9d4bbSAart Bik } 311a2c9d4bbSAart Bik 3125879da49SAart Bik /// Detects in-place annotation on tensor argument. 3135879da49SAart Bik static bool getInPlace(Value val) { 3145879da49SAart Bik if (auto arg = val.dyn_cast<BlockArgument>()) 3155879da49SAart Bik if (auto funcOp = dyn_cast<FuncOp>(arg.getOwner()->getParentOp())) 3165879da49SAart Bik if (auto attr = funcOp.getArgAttrOfType<BoolAttr>( 3175879da49SAart Bik arg.getArgNumber(), linalg::LinalgDialect::kInplaceableAttrName)) 3185879da49SAart Bik return attr.getValue(); 3195879da49SAart Bik return false; 3205879da49SAart Bik } 3215879da49SAart Bik 322a2c9d4bbSAart Bik /// Generates buffer for the output tensor. 323a2c9d4bbSAart Bik static Value genOutputBuffer(CodeGen &codegen, PatternRewriter &rewriter, 324a2c9d4bbSAart Bik linalg::GenericOp op, MemRefType denseTp, 325a2c9d4bbSAart Bik ArrayRef<Value> args) { 326a2c9d4bbSAart Bik Location loc = op.getLoc(); 3272f2b5b7dSTobias Gysi Value tensor = op.getOutputOperand(0)->get(); 328a2c9d4bbSAart Bik // The output tensor simply could materialize from the buffer that will 329a2c9d4bbSAart Bik // be generated for the tensor present in the outs() clause. This has 330a2c9d4bbSAart Bik // the major advantage that the sparse kernel only updates the nonzero 3315879da49SAart Bik // positions for the output tensor. 3325879da49SAart Bik if (getInPlace(tensor)) 333a2c9d4bbSAart Bik return rewriter.create<memref::BufferCastOp>(loc, denseTp, tensor); 334a2c9d4bbSAart Bik // By default, a new buffer is allocated which is initialized to the 335a2c9d4bbSAart Bik // tensor defined in the outs() clause. This is always correct but 336a2c9d4bbSAart Bik // introduces a dense initialization component that may negatively 337a2c9d4bbSAart Bik // impact the running complexity of the sparse kernel. 338a2c9d4bbSAart Bik Value init = rewriter.create<memref::BufferCastOp>(loc, denseTp, tensor); 339a2c9d4bbSAart Bik Value alloc = rewriter.create<memref::AllocOp>(loc, denseTp, args); 340a2c9d4bbSAart Bik rewriter.create<linalg::CopyOp>(loc, init, alloc); 341a2c9d4bbSAart Bik return alloc; 342a2c9d4bbSAart Bik } 343a2c9d4bbSAart Bik 344a2c9d4bbSAart Bik /// Local bufferization of all dense and sparse data structures. 345a2c9d4bbSAart Bik /// This code enables testing the first prototype sparse compiler. 346a2c9d4bbSAart Bik // TODO: replace this with a proliferated bufferization strategy 347727a63e0SAart Bik static bool genBuffers(Merger &merger, CodeGen &codegen, 348a2c9d4bbSAart Bik PatternRewriter &rewriter, linalg::GenericOp op) { 349a2c9d4bbSAart Bik Location loc = op.getLoc(); 3502f2b5b7dSTobias Gysi assert(op.getNumInputsAndOutputs() == op.getNumInputs() + 1); 351a2c9d4bbSAart Bik // For every tensor, find lower and upper bound on dimensions, set the 352a2c9d4bbSAart Bik // same bounds on loop indices, and obtain dense or sparse buffer(s). 353a2c9d4bbSAart Bik SmallVector<Value, 4> args; 3542f2b5b7dSTobias Gysi for (OpOperand *t : op.getInputAndOutputOperands()) { 355727a63e0SAart Bik unsigned tensor = t->getOperandNumber(); 3562f2b5b7dSTobias Gysi auto shape = op.getShape(t); 3572f2b5b7dSTobias Gysi auto map = op.getTiedIndexingMap(t); 3582f2b5b7dSTobias Gysi auto enc = getSparseTensorEncoding(t->get().getType()); 359a2c9d4bbSAart Bik // Scan all dimensions of current tensor. 360a2c9d4bbSAart Bik args.clear(); 361c194b49cSAart Bik for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { 362c194b49cSAart Bik unsigned idx = map.getDimPosition(perm(enc, d)); 363a2c9d4bbSAart Bik // Handle sparse storage schemes. 364727a63e0SAart Bik if (merger.isDim(tensor, idx, Dim::kSparse)) { 365a2c9d4bbSAart Bik auto dynShape = {ShapedType::kDynamicSize}; 366a2c9d4bbSAart Bik auto ptrTp = MemRefType::get( 36796a23911SAart Bik dynShape, genIntType(rewriter, enc.getPointerBitWidth())); 368a2c9d4bbSAart Bik auto indTp = MemRefType::get( 36996a23911SAart Bik dynShape, genIntType(rewriter, enc.getIndexBitWidth())); 370a2c9d4bbSAart Bik Value dim = rewriter.create<ConstantIndexOp>(loc, d); 371a2c9d4bbSAart Bik // Generate sparse primitives to obtains pointer and indices. 372727a63e0SAart Bik codegen.pointers[tensor][idx] = 3732f2b5b7dSTobias Gysi rewriter.create<ToPointersOp>(loc, ptrTp, t->get(), dim); 374727a63e0SAart Bik codegen.indices[tensor][idx] = 3752f2b5b7dSTobias Gysi rewriter.create<ToIndicesOp>(loc, indTp, t->get(), dim); 376a2c9d4bbSAart Bik } 377a2c9d4bbSAart Bik // Find lower and upper bound in current dimension. 378a2c9d4bbSAart Bik Value up; 379a2c9d4bbSAart Bik if (shape[d] == MemRefType::kDynamicSize) { 3802f2b5b7dSTobias Gysi up = rewriter.create<memref::DimOp>(loc, t->get(), d); 381a2c9d4bbSAart Bik args.push_back(up); 382a2c9d4bbSAart Bik } else { 383a2c9d4bbSAart Bik up = rewriter.create<ConstantIndexOp>(loc, shape[d]); 384a2c9d4bbSAart Bik } 385727a63e0SAart Bik codegen.sizes[idx] = codegen.highs[tensor][idx] = up; 386a2c9d4bbSAart Bik } 387727a63e0SAart Bik // Perform the required bufferization. Dense inputs materialize 388727a63e0SAart Bik // from the input tensors. Dense outputs need special handling. 389727a63e0SAart Bik // Sparse inputs use sparse primitives to obtain the values. 390727a63e0SAart Bik // We also accept in-place all-dense annotated "sparse" outputs. 3912f2b5b7dSTobias Gysi Type elementType = getElementTypeOrSelf(t->get().getType()); 39296a23911SAart Bik if (!enc) { 393727a63e0SAart Bik // Non-annotated dense tensors. 3942f2b5b7dSTobias Gysi auto denseTp = MemRefType::get(shape, elementType); 395727a63e0SAart Bik if (tensor < op.getNumInputs()) 396727a63e0SAart Bik codegen.buffers[tensor] = 3972f2b5b7dSTobias Gysi rewriter.create<memref::BufferCastOp>(loc, denseTp, t->get()); 398a2c9d4bbSAart Bik else 399727a63e0SAart Bik codegen.buffers[tensor] = 400a2c9d4bbSAart Bik genOutputBuffer(codegen, rewriter, op, denseTp, args); 401a2c9d4bbSAart Bik } else { 402727a63e0SAart Bik // Annotated sparse tensors. 403727a63e0SAart Bik if (tensor == op.getNumInputs() && !getInPlace(t->get())) 404727a63e0SAart Bik return false; // reject output if not in-place 405a2c9d4bbSAart Bik auto dynShape = {ShapedType::kDynamicSize}; 4062f2b5b7dSTobias Gysi auto sparseTp = MemRefType::get(dynShape, elementType); 407727a63e0SAart Bik codegen.buffers[tensor] = 4082f2b5b7dSTobias Gysi rewriter.create<ToValuesOp>(loc, sparseTp, t->get()); 409a2c9d4bbSAart Bik } 410a2c9d4bbSAart Bik } 411727a63e0SAart Bik return true; 412a2c9d4bbSAart Bik } 413a2c9d4bbSAart Bik 414a2c9d4bbSAart Bik /// Constructs vector type. 415a2c9d4bbSAart Bik static VectorType vectorType(CodeGen &codegen, Type etp) { 416a2c9d4bbSAart Bik return VectorType::get(codegen.curVecLength, etp); 417a2c9d4bbSAart Bik } 418a2c9d4bbSAart Bik 419a2c9d4bbSAart Bik /// Constructs vector type from pointer. 420a2c9d4bbSAart Bik static VectorType vectorType(CodeGen &codegen, Value ptr) { 421a2c9d4bbSAart Bik return vectorType(codegen, ptr.getType().cast<MemRefType>().getElementType()); 422a2c9d4bbSAart Bik } 423a2c9d4bbSAart Bik 424a2c9d4bbSAart Bik /// Constructs vector iteration mask. 425a2c9d4bbSAart Bik static Value genVectorMask(CodeGen &codegen, PatternRewriter &rewriter, 426a2c9d4bbSAart Bik Value iv, Value lo, Value hi, Value step) { 427a2c9d4bbSAart Bik Location loc = iv.getLoc(); 428a2c9d4bbSAart Bik VectorType mtp = vectorType(codegen, rewriter.getIntegerType(1)); 429a2c9d4bbSAart Bik // Special case if the vector length evenly divides the trip count (for 430a2c9d4bbSAart Bik // example, "for i = 0, 128, 16"). A constant all-true mask is generated 431a2c9d4bbSAart Bik // so that all subsequent masked memory operations are immediately folded 432a2c9d4bbSAart Bik // into unconditional memory operations. 433a2c9d4bbSAart Bik IntegerAttr loInt, hiInt, stepInt; 434a2c9d4bbSAart Bik if (matchPattern(lo, m_Constant(&loInt)) && 435a2c9d4bbSAart Bik matchPattern(hi, m_Constant(&hiInt)) && 436a2c9d4bbSAart Bik matchPattern(step, m_Constant(&stepInt))) { 437a2c9d4bbSAart Bik if (((hiInt.getInt() - loInt.getInt()) % stepInt.getInt()) == 0) 438a2c9d4bbSAart Bik return rewriter.create<vector::BroadcastOp>( 439a2c9d4bbSAart Bik loc, mtp, rewriter.create<ConstantIntOp>(loc, 1, 1)); 440a2c9d4bbSAart Bik } 441a2c9d4bbSAart Bik // Otherwise, generate a vector mask that avoids overrunning the upperbound 442a2c9d4bbSAart Bik // during vector execution. Here we rely on subsequent loop optimizations to 443a2c9d4bbSAart Bik // avoid executing the mask in all iterations, for example, by splitting the 444a2c9d4bbSAart Bik // loop into an unconditional vector loop and a scalar cleanup loop. 445a2c9d4bbSAart Bik Value end = rewriter.create<SubIOp>(loc, hi, iv); 446a2c9d4bbSAart Bik return rewriter.create<vector::CreateMaskOp>(loc, mtp, end); 447a2c9d4bbSAart Bik } 448a2c9d4bbSAart Bik 449a2c9d4bbSAart Bik /// Generates a vectorized load lhs = a[ind[lo:hi]] or lhs = a[lo:hi]. 450a2c9d4bbSAart Bik static Value genVectorLoad(CodeGen &codegen, PatternRewriter &rewriter, 451a2c9d4bbSAart Bik Value ptr, ArrayRef<Value> args) { 452a2c9d4bbSAart Bik Location loc = ptr.getLoc(); 453a2c9d4bbSAart Bik VectorType vtp = vectorType(codegen, ptr); 454a2c9d4bbSAart Bik Value pass = rewriter.create<ConstantOp>(loc, vtp, rewriter.getZeroAttr(vtp)); 455a2c9d4bbSAart Bik if (args.back().getType().isa<VectorType>()) { 456a2c9d4bbSAart Bik SmallVector<Value, 4> scalarArgs(args.begin(), args.end()); 457a2c9d4bbSAart Bik Value indexVec = args.back(); 458a2c9d4bbSAart Bik scalarArgs.back() = rewriter.create<ConstantIndexOp>(loc, 0); 459a2c9d4bbSAart Bik return rewriter.create<vector::GatherOp>( 460a2c9d4bbSAart Bik loc, vtp, ptr, scalarArgs, indexVec, codegen.curVecMask, pass); 461a2c9d4bbSAart Bik } 462a2c9d4bbSAart Bik return rewriter.create<vector::MaskedLoadOp>(loc, vtp, ptr, args, 463a2c9d4bbSAart Bik codegen.curVecMask, pass); 464a2c9d4bbSAart Bik } 465a2c9d4bbSAart Bik 466a2c9d4bbSAart Bik /// Generates a vectorized store a[ind[lo:hi]] = rhs or a[lo:hi] = rhs. 467a2c9d4bbSAart Bik static void genVectorStore(CodeGen &codegen, PatternRewriter &rewriter, 468a2c9d4bbSAart Bik Value rhs, Value ptr, ArrayRef<Value> args) { 469a2c9d4bbSAart Bik Location loc = ptr.getLoc(); 470a2c9d4bbSAart Bik if (args.back().getType().isa<VectorType>()) { 471a2c9d4bbSAart Bik SmallVector<Value, 4> scalarArgs(args.begin(), args.end()); 472a2c9d4bbSAart Bik Value indexVec = args.back(); 473a2c9d4bbSAart Bik scalarArgs.back() = rewriter.create<ConstantIndexOp>(loc, 0); 474a2c9d4bbSAart Bik rewriter.create<vector::ScatterOp>(loc, ptr, scalarArgs, indexVec, 475a2c9d4bbSAart Bik codegen.curVecMask, rhs); 476a2c9d4bbSAart Bik return; 477a2c9d4bbSAart Bik } 478a2c9d4bbSAart Bik rewriter.create<vector::MaskedStoreOp>(loc, ptr, args, codegen.curVecMask, 479a2c9d4bbSAart Bik rhs); 480a2c9d4bbSAart Bik } 481a2c9d4bbSAart Bik 482a2c9d4bbSAart Bik /// Generates a vectorized invariant. Here we rely on subsequent loop 483a2c9d4bbSAart Bik /// optimizations to hoist the invariant broadcast out of the vector loop. 484a2c9d4bbSAart Bik static Value genVectorInvariantValue(CodeGen &codegen, 485a2c9d4bbSAart Bik PatternRewriter &rewriter, Value val) { 486a2c9d4bbSAart Bik VectorType vtp = vectorType(codegen, val.getType()); 487a2c9d4bbSAart Bik return rewriter.create<vector::BroadcastOp>(val.getLoc(), vtp, val); 488a2c9d4bbSAart Bik } 489a2c9d4bbSAart Bik 490a2c9d4bbSAart Bik /// Generates a load on a dense or sparse tensor. 491a2c9d4bbSAart Bik static Value genTensorLoad(Merger &merger, CodeGen &codegen, 492a2c9d4bbSAart Bik PatternRewriter &rewriter, linalg::GenericOp op, 493a2c9d4bbSAart Bik unsigned exp) { 494a2c9d4bbSAart Bik // Test if the load was hoisted to a higher loop nest. 495a2c9d4bbSAart Bik Value val = merger.exp(exp).val; 496a2c9d4bbSAart Bik if (val) { 497a2c9d4bbSAart Bik if (codegen.curVecLength > 1 && !val.getType().isa<VectorType>()) 498a2c9d4bbSAart Bik return genVectorInvariantValue(codegen, rewriter, val); 499a2c9d4bbSAart Bik return val; 500a2c9d4bbSAart Bik } 501a2c9d4bbSAart Bik // Actual load. 502a2c9d4bbSAart Bik SmallVector<Value, 4> args; 503619bfe8bSAart Bik OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).e0]; 504727a63e0SAart Bik unsigned tensor = t->getOperandNumber(); 505727a63e0SAart Bik auto map = op.getTiedIndexingMap(t); 506727a63e0SAart Bik auto enc = getSparseTensorEncoding(t->get().getType()); 507727a63e0SAart Bik unsigned rank = map.getNumResults(); 50896a23911SAart Bik if (enc) { 509727a63e0SAart Bik unsigned idx = map.getDimPosition(perm(enc, rank - 1)); 510727a63e0SAart Bik assert(codegen.pidxs[tensor][idx] != nullptr); 511727a63e0SAart Bik args.push_back(codegen.pidxs[tensor][idx]); // position index 512727a63e0SAart Bik } else { 513727a63e0SAart Bik for (unsigned d = 0; d < rank; d++) { 514727a63e0SAart Bik unsigned idx = map.getDimPosition(d); 515727a63e0SAart Bik args.push_back(codegen.loops[idx]); // universal dense index 516a2c9d4bbSAart Bik } 517a2c9d4bbSAart Bik } 518a2c9d4bbSAart Bik Location loc = op.getLoc(); 519727a63e0SAart Bik Value ptr = codegen.buffers[tensor]; 520a2c9d4bbSAart Bik if (codegen.curVecLength > 1) 521a2c9d4bbSAart Bik return genVectorLoad(codegen, rewriter, ptr, args); 522a2c9d4bbSAart Bik return rewriter.create<memref::LoadOp>(loc, ptr, args); 523a2c9d4bbSAart Bik } 524a2c9d4bbSAart Bik 525727a63e0SAart Bik /// Generates a store on a dense or sparse tensor. 526a2c9d4bbSAart Bik static void genTensorStore(Merger &merger, CodeGen &codegen, 527a2c9d4bbSAart Bik PatternRewriter &rewriter, linalg::GenericOp op, 528727a63e0SAart Bik OpOperand *t, Value rhs) { 529a2c9d4bbSAart Bik Location loc = op.getLoc(); 530a2c9d4bbSAart Bik // Test if this is a scalarized reduction. 5312f2b5b7dSTobias Gysi OpOperand *lhs = op.getOutputOperand(0); 532727a63e0SAart Bik if (lhs == t && codegen.redVal) { 533a2c9d4bbSAart Bik if (codegen.curVecLength > 1) 534a2c9d4bbSAart Bik rhs = rewriter.create<SelectOp>(loc, codegen.curVecMask, rhs, 535a2c9d4bbSAart Bik codegen.redVal); 536a2c9d4bbSAart Bik codegen.redVal = rhs; 537a2c9d4bbSAart Bik return; 538a2c9d4bbSAart Bik } 539a2c9d4bbSAart Bik // Actual store. 540a2c9d4bbSAart Bik SmallVector<Value, 4> args; 541727a63e0SAart Bik unsigned tensor = t->getOperandNumber(); 542727a63e0SAart Bik auto map = op.getTiedIndexingMap(t); 543727a63e0SAart Bik auto enc = getSparseTensorEncoding(t->get().getType()); 544727a63e0SAart Bik unsigned rank = map.getNumResults(); 545727a63e0SAart Bik if (enc) { 546727a63e0SAart Bik unsigned idx = map.getDimPosition(perm(enc, rank - 1)); 547727a63e0SAart Bik assert(codegen.pidxs[tensor][idx] != nullptr); 548727a63e0SAart Bik args.push_back(codegen.pidxs[tensor][idx]); // position index 549727a63e0SAart Bik } else { 550727a63e0SAart Bik for (unsigned d = 0; d < rank; d++) { 551c194b49cSAart Bik unsigned idx = map.getDimPosition(d); 552a2c9d4bbSAart Bik args.push_back(codegen.loops[idx]); // universal dense index 553a2c9d4bbSAart Bik } 554727a63e0SAart Bik } 555727a63e0SAart Bik Value ptr = codegen.buffers[tensor]; 556a2c9d4bbSAart Bik if (codegen.curVecLength > 1) 557a2c9d4bbSAart Bik genVectorStore(codegen, rewriter, rhs, ptr, args); 558a2c9d4bbSAart Bik else 559a2c9d4bbSAart Bik rewriter.create<memref::StoreOp>(loc, rhs, ptr, args); 560a2c9d4bbSAart Bik } 561a2c9d4bbSAart Bik 562a2c9d4bbSAart Bik /// Generates a pointer/index load from the sparse storage scheme. Narrower 563a2c9d4bbSAart Bik /// data types need to be zero extended before casting the value into the 564a2c9d4bbSAart Bik /// index type used for looping and indexing. 565a2c9d4bbSAart Bik static Value genLoad(CodeGen &codegen, PatternRewriter &rewriter, Location loc, 566a2c9d4bbSAart Bik Value ptr, Value s) { 567a2c9d4bbSAart Bik // See https://llvm.org/docs/GetElementPtr.html for some background on 568a2c9d4bbSAart Bik // the complications described below. 569a2c9d4bbSAart Bik if (codegen.curVecLength > 1) { 570a2c9d4bbSAart Bik // Since the index vector is used in a subsequent gather/scatter operations, 571a2c9d4bbSAart Bik // which effectively defines an unsigned pointer + signed index, we must 572a2c9d4bbSAart Bik // zero extend the vector to an index width. For 8-bit and 16-bit values, 573a2c9d4bbSAart Bik // an 32-bit index width suffices. For 32-bit values, zero extending the 574a2c9d4bbSAart Bik // elements into 64-bit loses some performance since the 32-bit indexed 57586e9bc1aSAart Bik // gather/scatter is more efficient than the 64-bit index variant (if the 57686e9bc1aSAart Bik // negative 32-bit index space is unused, the enableSIMDIndex32 flag can 577727a63e0SAart Bik // preserve this performance). For 64-bit values, there is no good way 578a2c9d4bbSAart Bik // to state that the indices are unsigned, with creates the potential of 579a2c9d4bbSAart Bik // incorrect address calculations in the unlikely case we need such 580a2c9d4bbSAart Bik // extremely large offsets. 581a2c9d4bbSAart Bik Type etp = ptr.getType().cast<MemRefType>().getElementType(); 582a2c9d4bbSAart Bik Value vload = genVectorLoad(codegen, rewriter, ptr, {s}); 583a2c9d4bbSAart Bik if (!etp.isa<IndexType>()) { 584a2c9d4bbSAart Bik if (etp.getIntOrFloatBitWidth() < 32) 585a2c9d4bbSAart Bik vload = rewriter.create<ZeroExtendIOp>( 586a2c9d4bbSAart Bik loc, vload, vectorType(codegen, rewriter.getIntegerType(32))); 58786e9bc1aSAart Bik else if (etp.getIntOrFloatBitWidth() < 64 && 58886e9bc1aSAart Bik !codegen.options.enableSIMDIndex32) 589a2c9d4bbSAart Bik vload = rewriter.create<ZeroExtendIOp>( 590a2c9d4bbSAart Bik loc, vload, vectorType(codegen, rewriter.getIntegerType(64))); 591a2c9d4bbSAart Bik } 592a2c9d4bbSAart Bik return vload; 593a2c9d4bbSAart Bik } 594a2c9d4bbSAart Bik // For the scalar case, we simply zero extend narrower indices into 64-bit 595a2c9d4bbSAart Bik // values before casting to index without a performance penalty. Here too, 596a2c9d4bbSAart Bik // however, indices that already are 64-bit, in theory, cannot express the 597a2c9d4bbSAart Bik // full range as explained above. 598a2c9d4bbSAart Bik Value load = rewriter.create<memref::LoadOp>(loc, ptr, s); 599a2c9d4bbSAart Bik if (!load.getType().isa<IndexType>()) { 600a2c9d4bbSAart Bik if (load.getType().getIntOrFloatBitWidth() < 64) 601a2c9d4bbSAart Bik load = rewriter.create<ZeroExtendIOp>(loc, load, 602a2c9d4bbSAart Bik rewriter.getIntegerType(64)); 603a2c9d4bbSAart Bik load = rewriter.create<IndexCastOp>(loc, load, rewriter.getIndexType()); 604a2c9d4bbSAart Bik } 605a2c9d4bbSAart Bik return load; 606a2c9d4bbSAart Bik } 607a2c9d4bbSAart Bik 608a2c9d4bbSAart Bik /// Generates an invariant value. 609a2c9d4bbSAart Bik static Value genInvariantValue(Merger &merger, CodeGen &codegen, 610a2c9d4bbSAart Bik PatternRewriter &rewriter, unsigned exp) { 611a2c9d4bbSAart Bik Value val = merger.exp(exp).val; 612a2c9d4bbSAart Bik if (codegen.curVecLength > 1) 613a2c9d4bbSAart Bik return genVectorInvariantValue(codegen, rewriter, val); 614a2c9d4bbSAart Bik return val; 615a2c9d4bbSAart Bik } 616a2c9d4bbSAart Bik 617a2c9d4bbSAart Bik /// Generates an address computation "sz * p + i". 618a2c9d4bbSAart Bik static Value genAddress(CodeGen &codegen, PatternRewriter &rewriter, 619a2c9d4bbSAart Bik Location loc, Value size, Value p, Value i) { 620a2c9d4bbSAart Bik Value mul = rewriter.create<MulIOp>(loc, size, p); 621a2c9d4bbSAart Bik if (auto vtp = i.getType().dyn_cast<VectorType>()) { 622a2c9d4bbSAart Bik Value inv = rewriter.create<IndexCastOp>(loc, mul, vtp.getElementType()); 623a2c9d4bbSAart Bik mul = genVectorInvariantValue(codegen, rewriter, inv); 624a2c9d4bbSAart Bik } 625a2c9d4bbSAart Bik return rewriter.create<AddIOp>(loc, mul, i); 626a2c9d4bbSAart Bik } 627a2c9d4bbSAart Bik 628a2c9d4bbSAart Bik /// Generates start of a reduction. 629a2c9d4bbSAart Bik static Value genReductionStart(Merger &merger, CodeGen &codegen, 630a2c9d4bbSAart Bik PatternRewriter &rewriter, 631a2c9d4bbSAart Bik linalg::GenericOp op) { 632a2c9d4bbSAart Bik if (codegen.redVal) 633a2c9d4bbSAart Bik return codegen.redVal; // chained with previous for-loop 634a2c9d4bbSAart Bik if (codegen.curVecLength > 1) { 635a2c9d4bbSAart Bik // TODO: assumes + reductions for now 636a2c9d4bbSAart Bik VectorType vtp = vectorType(codegen, codegen.buffers[codegen.redExp]); 637a2c9d4bbSAart Bik return rewriter.create<ConstantOp>(op.getLoc(), vtp, 638a2c9d4bbSAart Bik rewriter.getZeroAttr(vtp)); 639a2c9d4bbSAart Bik } 640a2c9d4bbSAart Bik return genTensorLoad(merger, codegen, rewriter, op, codegen.redExp); 641a2c9d4bbSAart Bik } 642a2c9d4bbSAart Bik 643a2c9d4bbSAart Bik /// Generates end of a reduction. 644a2c9d4bbSAart Bik static void genReductionEnd(Merger &merger, CodeGen &codegen, 645a2c9d4bbSAart Bik PatternRewriter &rewriter, linalg::GenericOp op) { 646a2c9d4bbSAart Bik Value red = codegen.redVal; 647a2c9d4bbSAart Bik if (!red) 648a2c9d4bbSAart Bik return; 649a2c9d4bbSAart Bik assert(codegen.curVecLength == 1); 650a2c9d4bbSAart Bik codegen.redVal = merger.exp(codegen.redExp).val = Value(); // end chain 6512f2b5b7dSTobias Gysi OpOperand *lhs = op.getOutputOperand(0); 652a2c9d4bbSAart Bik if (auto vtp = red.getType().dyn_cast<VectorType>()) { 653a2c9d4bbSAart Bik // TODO: assumes + reductions for now 654a2c9d4bbSAart Bik StringAttr kind = rewriter.getStringAttr("add"); 655a2c9d4bbSAart Bik Value ld = genTensorLoad(merger, codegen, rewriter, op, codegen.redExp); 656a2c9d4bbSAart Bik // Integer reductions don't accept an accumulator. 657a2c9d4bbSAart Bik if (vtp.getElementType().isa<IntegerType>()) { 658a2c9d4bbSAart Bik red = rewriter.create<vector::ReductionOp>(op.getLoc(), ld.getType(), 659a2c9d4bbSAart Bik kind, red, ValueRange{}); 660a2c9d4bbSAart Bik red = rewriter.create<AddIOp>(op.getLoc(), red, ld); 661a2c9d4bbSAart Bik } else { 662a2c9d4bbSAart Bik red = rewriter.create<vector::ReductionOp>(op.getLoc(), ld.getType(), 663a2c9d4bbSAart Bik kind, red, ld); 664a2c9d4bbSAart Bik } 665a2c9d4bbSAart Bik } 666a2c9d4bbSAart Bik genTensorStore(merger, codegen, rewriter, op, lhs, red); 667a2c9d4bbSAart Bik } 668a2c9d4bbSAart Bik 669a2c9d4bbSAart Bik /// Recursively generates tensor expression. 670a2c9d4bbSAart Bik static Value genExp(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, 671a2c9d4bbSAart Bik linalg::GenericOp op, unsigned exp) { 672a2c9d4bbSAart Bik if (merger.exp(exp).kind == Kind::kTensor) 673a2c9d4bbSAart Bik return genTensorLoad(merger, codegen, rewriter, op, exp); 674a2c9d4bbSAart Bik else if (merger.exp(exp).kind == Kind::kInvariant) 675a2c9d4bbSAart Bik return genInvariantValue(merger, codegen, rewriter, exp); 676a2c9d4bbSAart Bik Value v0 = genExp(merger, codegen, rewriter, op, merger.exp(exp).e0); 677a2c9d4bbSAart Bik Value v1 = genExp(merger, codegen, rewriter, op, merger.exp(exp).e1); 678a2c9d4bbSAart Bik switch (merger.exp(exp).kind) { 679a2c9d4bbSAart Bik case Kind::kTensor: 680a2c9d4bbSAart Bik case Kind::kInvariant: 681a2c9d4bbSAart Bik llvm_unreachable("handled above"); 682a2c9d4bbSAart Bik case Kind::kMulF: 683a2c9d4bbSAart Bik return rewriter.create<MulFOp>(op.getLoc(), v0, v1); 684a2c9d4bbSAart Bik case Kind::kMulI: 685a2c9d4bbSAart Bik return rewriter.create<MulIOp>(op.getLoc(), v0, v1); 686a2c9d4bbSAart Bik case Kind::kAddF: 687a2c9d4bbSAart Bik return rewriter.create<AddFOp>(op.getLoc(), v0, v1); 688a2c9d4bbSAart Bik case Kind::kAddI: 689a2c9d4bbSAart Bik return rewriter.create<AddIOp>(op.getLoc(), v0, v1); 690a2c9d4bbSAart Bik } 691a2c9d4bbSAart Bik llvm_unreachable("unexpected expression kind"); 692a2c9d4bbSAart Bik } 693a2c9d4bbSAart Bik 694a2c9d4bbSAart Bik /// Hoists loop invariant tensor loads for which indices have been exhausted. 695a2c9d4bbSAart Bik static void genInvariants(Merger &merger, CodeGen &codegen, 696a2c9d4bbSAart Bik PatternRewriter &rewriter, linalg::GenericOp op, 697a2c9d4bbSAart Bik unsigned exp, unsigned ldx, bool hoist) { 698a2c9d4bbSAart Bik if (merger.exp(exp).kind == Kind::kTensor) { 699a2c9d4bbSAart Bik // Inspect tensor indices. 700a2c9d4bbSAart Bik bool atLevel = ldx == -1u; 701619bfe8bSAart Bik OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).e0]; 702619bfe8bSAart Bik auto map = op.getTiedIndexingMap(t); 703619bfe8bSAart Bik auto enc = getSparseTensorEncoding(t->get().getType()); 704c194b49cSAart Bik for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { 705c194b49cSAart Bik unsigned idx = map.getDimPosition(perm(enc, d)); 706a2c9d4bbSAart Bik if (!codegen.loops[idx]) 707a2c9d4bbSAart Bik return; // still in play 708a2c9d4bbSAart Bik else if (idx == ldx) 709a2c9d4bbSAart Bik atLevel = true; 710a2c9d4bbSAart Bik } 711a2c9d4bbSAart Bik // All exhausted at this level (atLevel denotes exactly at this level). 7122f2b5b7dSTobias Gysi OpOperand *lhs = op.getOutputOperand(0); 713619bfe8bSAart Bik if (lhs == t) { 714a2c9d4bbSAart Bik codegen.redExp = hoist ? exp : -1u; 715a2c9d4bbSAart Bik } else if (atLevel) { 716a2c9d4bbSAart Bik merger.exp(exp).val = 717a2c9d4bbSAart Bik hoist ? genTensorLoad(merger, codegen, rewriter, op, exp) : Value(); 718a2c9d4bbSAart Bik } 719a2c9d4bbSAart Bik } else if (merger.exp(exp).kind != Kind::kInvariant) { 720a2c9d4bbSAart Bik // Traverse into the binary operations. Note that we only hoist 721a2c9d4bbSAart Bik // tensor loads, since subsequent MLIR/LLVM passes know how to 722a2c9d4bbSAart Bik // deal with all other kinds of derived loop invariants. 723a2c9d4bbSAart Bik unsigned e0 = merger.exp(exp).e0; 724a2c9d4bbSAart Bik unsigned e1 = merger.exp(exp).e1; 725a2c9d4bbSAart Bik genInvariants(merger, codegen, rewriter, op, e0, ldx, hoist); 726a2c9d4bbSAart Bik genInvariants(merger, codegen, rewriter, op, e1, ldx, hoist); 727a2c9d4bbSAart Bik } 728a2c9d4bbSAart Bik } 729a2c9d4bbSAart Bik 730a2c9d4bbSAart Bik /// Generates initialization code for the subsequent loop sequence at 731a2c9d4bbSAart Bik /// current index level. Returns true if the loop sequence needs to 732a2c9d4bbSAart Bik /// maintain the universal index. 733a2c9d4bbSAart Bik static bool genInit(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, 734a2c9d4bbSAart Bik linalg::GenericOp op, std::vector<unsigned> &topSort, 735a2c9d4bbSAart Bik unsigned at, llvm::BitVector &inits) { 736a2c9d4bbSAart Bik bool needsUniv = false; 737a2c9d4bbSAart Bik Location loc = op.getLoc(); 738a2c9d4bbSAart Bik unsigned idx = topSort[at]; 739a2c9d4bbSAart Bik 740a2c9d4bbSAart Bik // Initialize sparse positions. 741a2c9d4bbSAart Bik for (unsigned b = 0, be = inits.size(); b < be; b++) { 742a2c9d4bbSAart Bik if (inits[b]) { 743a2c9d4bbSAart Bik unsigned tensor = merger.tensor(b); 744a2c9d4bbSAart Bik assert(idx == merger.index(b)); 745a2c9d4bbSAart Bik if (merger.isDim(b, Dim::kSparse)) { 746a2c9d4bbSAart Bik // Initialize sparse index. 747a2c9d4bbSAart Bik unsigned pat = at; 748a2c9d4bbSAart Bik for (; pat != 0; pat--) { 749a2c9d4bbSAart Bik if (codegen.pidxs[tensor][topSort[pat - 1]]) 750a2c9d4bbSAart Bik break; 751a2c9d4bbSAart Bik } 752a2c9d4bbSAart Bik Value ptr = codegen.pointers[tensor][idx]; 753a2c9d4bbSAart Bik Value one = rewriter.create<ConstantIndexOp>(loc, 1); 754a2c9d4bbSAart Bik Value p0 = (pat == 0) ? rewriter.create<ConstantIndexOp>(loc, 0) 755a2c9d4bbSAart Bik : codegen.pidxs[tensor][topSort[pat - 1]]; 756a2c9d4bbSAart Bik codegen.pidxs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p0); 757a2c9d4bbSAart Bik Value p1 = rewriter.create<AddIOp>(loc, p0, one); 758a2c9d4bbSAart Bik codegen.highs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p1); 759a2c9d4bbSAart Bik } else { 760a2c9d4bbSAart Bik // Dense index still in play. 761a2c9d4bbSAart Bik needsUniv = true; 762a2c9d4bbSAart Bik } 763a2c9d4bbSAart Bik } 764a2c9d4bbSAart Bik } 765a2c9d4bbSAart Bik 766a2c9d4bbSAart Bik // Initialize the universal dense index. 767a2c9d4bbSAart Bik codegen.loops[idx] = rewriter.create<ConstantIndexOp>(loc, 0); 768a2c9d4bbSAart Bik return needsUniv; 769a2c9d4bbSAart Bik } 770a2c9d4bbSAart Bik 771a2c9d4bbSAart Bik /// Returns vectorization strategy. Any implicit inner loop in the Linalg 772a2c9d4bbSAart Bik /// operation is a candidate. Whether it is actually converted to SIMD code 773a2c9d4bbSAart Bik /// depends on the requested strategy. 774a2c9d4bbSAart Bik static bool isVectorFor(CodeGen &codegen, bool isInner, bool isSparse) { 775a2c9d4bbSAart Bik switch (codegen.options.vectorizationStrategy) { 776a2c9d4bbSAart Bik case SparseVectorizationStrategy::kNone: 777a2c9d4bbSAart Bik return false; 778a2c9d4bbSAart Bik case SparseVectorizationStrategy::kDenseInnerLoop: 779a2c9d4bbSAart Bik return isInner && !isSparse; 780a2c9d4bbSAart Bik case SparseVectorizationStrategy::kAnyStorageInnerLoop: 781a2c9d4bbSAart Bik return isInner; 782a2c9d4bbSAart Bik } 783a2c9d4bbSAart Bik llvm_unreachable("unexpected vectorization strategy"); 784a2c9d4bbSAart Bik } 785a2c9d4bbSAart Bik 786a2c9d4bbSAart Bik /// Returns parallelization strategy. Any implicit loop in the Linalg operation 787a2c9d4bbSAart Bik /// that is marked "parallel" is a candidate. Whether it is actually converted 788a2c9d4bbSAart Bik /// to a parallel operation depends on the requested strategy. 789a2c9d4bbSAart Bik static bool isParallelFor(CodeGen &codegen, bool isOuter, bool isReduction, 790a2c9d4bbSAart Bik bool isSparse, bool isVector) { 791a2c9d4bbSAart Bik switch (codegen.options.parallelizationStrategy) { 792a2c9d4bbSAart Bik case SparseParallelizationStrategy::kNone: 793a2c9d4bbSAart Bik return false; 794a2c9d4bbSAart Bik case SparseParallelizationStrategy::kDenseOuterLoop: 795a2c9d4bbSAart Bik return isOuter && !isSparse && !isReduction && !isVector; 796a2c9d4bbSAart Bik case SparseParallelizationStrategy::kAnyStorageOuterLoop: 797a2c9d4bbSAart Bik return isOuter && !isReduction && !isVector; 798a2c9d4bbSAart Bik case SparseParallelizationStrategy::kDenseAnyLoop: 799a2c9d4bbSAart Bik return !isSparse && !isReduction && !isVector; 800a2c9d4bbSAart Bik case SparseParallelizationStrategy::kAnyStorageAnyLoop: 801a2c9d4bbSAart Bik return !isReduction && !isVector; 802a2c9d4bbSAart Bik } 803a2c9d4bbSAart Bik llvm_unreachable("unexpected parallelization strategy"); 804a2c9d4bbSAart Bik } 805a2c9d4bbSAart Bik 806a2c9d4bbSAart Bik /// Checks unit strides for dense tensors. The iteration graph may have ignored 807a2c9d4bbSAart Bik /// dense access patterns in order to avoid cycles (sparse access patterns are 808a2c9d4bbSAart Bik /// always placed innermost), but that means dense access has become strided. 809a2c9d4bbSAart Bik /// For now, we reject vectorization of such cases. 810a2c9d4bbSAart Bik /// TODO: implement strided load/stores on dense arrays 811a2c9d4bbSAart Bik static bool denseUnitStrides(Merger &merger, linalg::GenericOp op, 812a2c9d4bbSAart Bik unsigned idx) { 8132f2b5b7dSTobias Gysi for (OpOperand *t : op.getInputAndOutputOperands()) { 8142f2b5b7dSTobias Gysi if (!getSparseTensorEncoding(t->get().getType())) { 8152f2b5b7dSTobias Gysi auto map = op.getTiedIndexingMap(t); 816c194b49cSAart Bik for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { 817c194b49cSAart Bik if (map.getDimPosition(d) == idx && d != rank - 1) 818a2c9d4bbSAart Bik return false; 819a2c9d4bbSAart Bik } 820a2c9d4bbSAart Bik } 821a2c9d4bbSAart Bik } 822a2c9d4bbSAart Bik return true; 823a2c9d4bbSAart Bik } 824a2c9d4bbSAart Bik 825a2c9d4bbSAart Bik /// Generates a for-loop on a single index. 826a2c9d4bbSAart Bik static Operation *genFor(Merger &merger, CodeGen &codegen, 827a2c9d4bbSAart Bik PatternRewriter &rewriter, linalg::GenericOp op, 828a2c9d4bbSAart Bik bool isOuter, bool isInner, unsigned idx, 829a2c9d4bbSAart Bik llvm::BitVector &indices) { 830a2c9d4bbSAart Bik unsigned fb = indices.find_first(); 831a2c9d4bbSAart Bik unsigned tensor = merger.tensor(fb); 832a2c9d4bbSAart Bik assert(idx == merger.index(fb)); 833a2c9d4bbSAart Bik auto iteratorTypes = op.iterator_types().getValue(); 834a2c9d4bbSAart Bik bool isReduction = linalg::isReductionIteratorType(iteratorTypes[idx]); 835a2c9d4bbSAart Bik bool isSparse = merger.isDim(fb, Dim::kSparse); 836a2c9d4bbSAart Bik bool isVector = isVectorFor(codegen, isInner, isSparse) && 837a2c9d4bbSAart Bik denseUnitStrides(merger, op, idx); 838a2c9d4bbSAart Bik bool isParallel = 839a2c9d4bbSAart Bik isParallelFor(codegen, isOuter, isReduction, isSparse, isVector); 840a2c9d4bbSAart Bik 841a2c9d4bbSAart Bik // Prepare vector length. 842a2c9d4bbSAart Bik if (isVector) 843a2c9d4bbSAart Bik codegen.curVecLength = codegen.options.vectorLength; 844a2c9d4bbSAart Bik 845a2c9d4bbSAart Bik // Loop bounds and increment. 846a2c9d4bbSAart Bik Location loc = op.getLoc(); 847a2c9d4bbSAart Bik Value lo = isSparse ? codegen.pidxs[tensor][idx] : codegen.loops[idx]; 848a2c9d4bbSAart Bik Value hi = isSparse ? codegen.highs[tensor][idx] : codegen.sizes[idx]; 849a2c9d4bbSAart Bik Value step = rewriter.create<ConstantIndexOp>(loc, codegen.curVecLength); 850a2c9d4bbSAart Bik 851a2c9d4bbSAart Bik // Emit a parallel loop. 852a2c9d4bbSAart Bik if (isParallel) { 853a2c9d4bbSAart Bik assert(!isVector); 854a2c9d4bbSAart Bik scf::ParallelOp parOp = rewriter.create<scf::ParallelOp>(loc, lo, hi, step); 855a2c9d4bbSAart Bik if (isSparse) 856a2c9d4bbSAart Bik codegen.pidxs[tensor][idx] = parOp.getInductionVars()[0]; 857a2c9d4bbSAart Bik else 858a2c9d4bbSAart Bik codegen.loops[idx] = parOp.getInductionVars()[0]; 859a2c9d4bbSAart Bik rewriter.setInsertionPointToStart(parOp.getBody()); 860a2c9d4bbSAart Bik return parOp; 861a2c9d4bbSAart Bik } 862a2c9d4bbSAart Bik 863a2c9d4bbSAart Bik // Emit a sequential loop, potentially with a scalarized reduction. 864a2c9d4bbSAart Bik bool scalarRed = isInner && codegen.redExp != -1u; 865a2c9d4bbSAart Bik SmallVector<Value, 4> operands; 866a2c9d4bbSAart Bik if (scalarRed) { 867a2c9d4bbSAart Bik Value load = genReductionStart(merger, codegen, rewriter, op); 868a2c9d4bbSAart Bik operands.push_back(load); 869a2c9d4bbSAart Bik } 870a2c9d4bbSAart Bik scf::ForOp forOp = rewriter.create<scf::ForOp>(loc, lo, hi, step, operands); 871a2c9d4bbSAart Bik if (scalarRed) { 872a2c9d4bbSAart Bik codegen.redVal = merger.exp(codegen.redExp).val = 873a2c9d4bbSAart Bik forOp.getRegionIterArgs().front(); 874a2c9d4bbSAart Bik } 875a2c9d4bbSAart Bik // Assign induction variable to sparse or dense index. 876a2c9d4bbSAart Bik Value iv = forOp.getInductionVar(); 877a2c9d4bbSAart Bik if (isSparse) 878a2c9d4bbSAart Bik codegen.pidxs[tensor][idx] = iv; 879a2c9d4bbSAart Bik else 880a2c9d4bbSAart Bik codegen.loops[idx] = iv; 881a2c9d4bbSAart Bik rewriter.setInsertionPointToStart(forOp.getBody()); 882a2c9d4bbSAart Bik // Share vector iteration mask between all subsequent loads/stores. 883a2c9d4bbSAart Bik if (isVector) 884a2c9d4bbSAart Bik codegen.curVecMask = genVectorMask(codegen, rewriter, iv, lo, hi, step); 885a2c9d4bbSAart Bik return forOp; 886a2c9d4bbSAart Bik } 887a2c9d4bbSAart Bik 888a2c9d4bbSAart Bik /// Emit a while-loop for co-iteration over multiple indices. 889a2c9d4bbSAart Bik static Operation *genWhile(Merger &merger, CodeGen &codegen, 890a2c9d4bbSAart Bik PatternRewriter &rewriter, linalg::GenericOp op, 891a2c9d4bbSAart Bik unsigned idx, bool needsUniv, 892a2c9d4bbSAart Bik llvm::BitVector &indices) { 893a2c9d4bbSAart Bik SmallVector<Type, 4> types; 894a2c9d4bbSAart Bik SmallVector<Value, 4> operands; 895a2c9d4bbSAart Bik // Construct the while-loop with a parameter for each index. 896a2c9d4bbSAart Bik Type indexType = rewriter.getIndexType(); 897a2c9d4bbSAart Bik for (unsigned b = 0, be = indices.size(); b < be; b++) { 898a2c9d4bbSAart Bik if (indices[b] && merger.isDim(b, Dim::kSparse)) { 899a2c9d4bbSAart Bik unsigned tensor = merger.tensor(b); 900a2c9d4bbSAart Bik assert(idx == merger.index(b)); 901a2c9d4bbSAart Bik types.push_back(indexType); 902a2c9d4bbSAart Bik assert(codegen.pidxs[tensor][idx].getType().isa<IndexType>() && 903a2c9d4bbSAart Bik "type mismatch for sparse index"); 904a2c9d4bbSAart Bik operands.push_back(codegen.pidxs[tensor][idx]); 905a2c9d4bbSAart Bik } 906a2c9d4bbSAart Bik } 907a2c9d4bbSAart Bik if (needsUniv) { 908a2c9d4bbSAart Bik types.push_back(indexType); 909a2c9d4bbSAart Bik assert(codegen.loops[idx].getType().isa<IndexType>() && 910a2c9d4bbSAart Bik "type mismatch for universal index"); 911a2c9d4bbSAart Bik operands.push_back(codegen.loops[idx]); 912a2c9d4bbSAart Bik } 913a2c9d4bbSAart Bik Location loc = op.getLoc(); 914a2c9d4bbSAart Bik scf::WhileOp whileOp = rewriter.create<scf::WhileOp>(loc, types, operands); 915a2c9d4bbSAart Bik Block *before = rewriter.createBlock(&whileOp.before(), {}, types); 916a2c9d4bbSAart Bik Block *after = rewriter.createBlock(&whileOp.after(), {}, types); 917a2c9d4bbSAart Bik 918a2c9d4bbSAart Bik // Build the "before" region, which effectively consists 919a2c9d4bbSAart Bik // of a conjunction of "i < upper" tests on all induction. 920a2c9d4bbSAart Bik rewriter.setInsertionPointToStart(&whileOp.before().front()); 921a2c9d4bbSAart Bik Value cond; 922a2c9d4bbSAart Bik unsigned o = 0; 923a2c9d4bbSAart Bik for (unsigned b = 0, be = indices.size(); b < be; b++) { 924a2c9d4bbSAart Bik if (indices[b] && merger.isDim(b, Dim::kSparse)) { 925a2c9d4bbSAart Bik unsigned tensor = merger.tensor(b); 926a2c9d4bbSAart Bik assert(idx == merger.index(b)); 927a2c9d4bbSAart Bik Value op1 = before->getArgument(o); 928a2c9d4bbSAart Bik Value op2 = codegen.highs[tensor][idx]; 929a2c9d4bbSAart Bik Value opc = rewriter.create<CmpIOp>(loc, CmpIPredicate::ult, op1, op2); 930a2c9d4bbSAart Bik cond = cond ? rewriter.create<AndOp>(loc, cond, opc) : opc; 931a2c9d4bbSAart Bik codegen.pidxs[tensor][idx] = after->getArgument(o++); 932a2c9d4bbSAart Bik } 933a2c9d4bbSAart Bik } 934a2c9d4bbSAart Bik if (needsUniv) 935a2c9d4bbSAart Bik codegen.loops[idx] = after->getArgument(o++); 936a2c9d4bbSAart Bik assert(o == operands.size()); 937a2c9d4bbSAart Bik rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments()); 938a2c9d4bbSAart Bik rewriter.setInsertionPointToStart(&whileOp.after().front()); 939a2c9d4bbSAart Bik return whileOp; 940a2c9d4bbSAart Bik } 941a2c9d4bbSAart Bik 942a2c9d4bbSAart Bik /// Generates a for-loop or a while-loop, depending on whether it implements 943a2c9d4bbSAart Bik /// singleton iteration or co-iteration over the given conjunction. 944a2c9d4bbSAart Bik static Operation *genLoop(Merger &merger, CodeGen &codegen, 945a2c9d4bbSAart Bik PatternRewriter &rewriter, linalg::GenericOp op, 946a2c9d4bbSAart Bik std::vector<unsigned> &topSort, unsigned at, 947a2c9d4bbSAart Bik bool needsUniv, llvm::BitVector &indices) { 948a2c9d4bbSAart Bik unsigned idx = topSort[at]; 949a2c9d4bbSAart Bik if (indices.count() == 1) { 950a2c9d4bbSAart Bik bool isOuter = at == 0; 951a2c9d4bbSAart Bik bool isInner = at == topSort.size() - 1; 952a2c9d4bbSAart Bik return genFor(merger, codegen, rewriter, op, isOuter, isInner, idx, 953a2c9d4bbSAart Bik indices); 954a2c9d4bbSAart Bik } 955a2c9d4bbSAart Bik genReductionEnd(merger, codegen, rewriter, op); // cannot chain 956a2c9d4bbSAart Bik return genWhile(merger, codegen, rewriter, op, idx, needsUniv, indices); 957a2c9d4bbSAart Bik } 958a2c9d4bbSAart Bik 959a2c9d4bbSAart Bik /// Generates the local variables for this loop, consisting of the sparse 960a2c9d4bbSAart Bik /// indices, restored universal dense index, and dense positions. 961a2c9d4bbSAart Bik static void genLocals(Merger &merger, CodeGen &codegen, 962a2c9d4bbSAart Bik PatternRewriter &rewriter, linalg::GenericOp op, 963a2c9d4bbSAart Bik std::vector<unsigned> &topSort, unsigned at, 964a2c9d4bbSAart Bik bool needsUniv, llvm::BitVector &locals) { 965a2c9d4bbSAart Bik Location loc = op.getLoc(); 966a2c9d4bbSAart Bik unsigned idx = topSort[at]; 967a2c9d4bbSAart Bik 968a2c9d4bbSAart Bik // Initialize sparse indices. 969a2c9d4bbSAart Bik Value min; 970a2c9d4bbSAart Bik for (unsigned b = 0, be = locals.size(); b < be; b++) { 971a2c9d4bbSAart Bik if (locals[b] && merger.isDim(b, Dim::kSparse)) { 972a2c9d4bbSAart Bik unsigned tensor = merger.tensor(b); 973a2c9d4bbSAart Bik assert(idx == merger.index(b)); 974a2c9d4bbSAart Bik Value ptr = codegen.indices[tensor][idx]; 975a2c9d4bbSAart Bik Value s = codegen.pidxs[tensor][idx]; 976a2c9d4bbSAart Bik Value load = genLoad(codegen, rewriter, loc, ptr, s); 977a2c9d4bbSAart Bik codegen.idxs[tensor][idx] = load; 978a2c9d4bbSAart Bik if (!needsUniv) { 979a2c9d4bbSAart Bik if (min) { 980a2c9d4bbSAart Bik Value cmp = 981a2c9d4bbSAart Bik rewriter.create<CmpIOp>(loc, CmpIPredicate::ult, load, min); 982a2c9d4bbSAart Bik min = rewriter.create<SelectOp>(loc, cmp, load, min); 983a2c9d4bbSAart Bik } else { 984a2c9d4bbSAart Bik min = load; 985a2c9d4bbSAart Bik } 986a2c9d4bbSAart Bik } 987a2c9d4bbSAart Bik } 988a2c9d4bbSAart Bik } 989a2c9d4bbSAart Bik 990a2c9d4bbSAart Bik // Merge dense universal index over minimum. 991a2c9d4bbSAart Bik if (min) { 992a2c9d4bbSAart Bik assert(!needsUniv); 993a2c9d4bbSAart Bik codegen.loops[idx] = min; 994a2c9d4bbSAart Bik } 995a2c9d4bbSAart Bik 996727a63e0SAart Bik // Initialize dense positions. Note that we generate dense indices of the 997727a63e0SAart Bik // output tensor unconditionally, since they may not appear in the lattice, 998727a63e0SAart Bik // but may be needed for linearized codegen. 999a2c9d4bbSAart Bik for (unsigned b = 0, be = locals.size(); b < be; b++) { 1000727a63e0SAart Bik if ((locals[b] || merger.isOutTensor(b, idx)) && 1001727a63e0SAart Bik merger.isDim(b, Dim::kDense)) { 1002a2c9d4bbSAart Bik unsigned tensor = merger.tensor(b); 1003a2c9d4bbSAart Bik assert(idx == merger.index(b)); 1004a2c9d4bbSAart Bik unsigned pat = at; 1005a2c9d4bbSAart Bik for (; pat != 0; pat--) 1006a2c9d4bbSAart Bik if (codegen.pidxs[tensor][topSort[pat - 1]]) 1007a2c9d4bbSAart Bik break; 1008a2c9d4bbSAart Bik Value p = (pat == 0) ? rewriter.create<ConstantIndexOp>(loc, 0) 1009a2c9d4bbSAart Bik : codegen.pidxs[tensor][topSort[pat - 1]]; 1010a2c9d4bbSAart Bik codegen.pidxs[tensor][idx] = genAddress( 1011a2c9d4bbSAart Bik codegen, rewriter, loc, codegen.sizes[idx], p, codegen.loops[idx]); 1012a2c9d4bbSAart Bik } 1013a2c9d4bbSAart Bik } 1014a2c9d4bbSAart Bik } 1015a2c9d4bbSAart Bik 1016a2c9d4bbSAart Bik /// Generates the induction structure for a while-loop. 1017a2c9d4bbSAart Bik static void genWhileInduction(Merger &merger, CodeGen &codegen, 1018a2c9d4bbSAart Bik PatternRewriter &rewriter, linalg::GenericOp op, 1019a2c9d4bbSAart Bik unsigned idx, bool needsUniv, 1020a2c9d4bbSAart Bik llvm::BitVector &induction, ResultRange results) { 1021a2c9d4bbSAart Bik Location loc = op.getLoc(); 1022a2c9d4bbSAart Bik unsigned o = 0; 1023a2c9d4bbSAart Bik SmallVector<Value, 4> operands; 1024a2c9d4bbSAart Bik Value one = rewriter.create<ConstantIndexOp>(loc, 1); 1025a2c9d4bbSAart Bik for (unsigned b = 0, be = induction.size(); b < be; b++) { 1026a2c9d4bbSAart Bik if (induction[b] && merger.isDim(b, Dim::kSparse)) { 1027a2c9d4bbSAart Bik unsigned tensor = merger.tensor(b); 1028a2c9d4bbSAart Bik assert(idx == merger.index(b)); 1029a2c9d4bbSAart Bik Value op1 = codegen.idxs[tensor][idx]; 1030a2c9d4bbSAart Bik Value op2 = codegen.loops[idx]; 1031a2c9d4bbSAart Bik Value op3 = codegen.pidxs[tensor][idx]; 1032a2c9d4bbSAart Bik Value cmp = rewriter.create<CmpIOp>(loc, CmpIPredicate::eq, op1, op2); 1033a2c9d4bbSAart Bik Value add = rewriter.create<AddIOp>(loc, op3, one); 1034a2c9d4bbSAart Bik operands.push_back(rewriter.create<SelectOp>(loc, cmp, add, op3)); 1035a2c9d4bbSAart Bik codegen.pidxs[tensor][idx] = results[o++]; 1036a2c9d4bbSAart Bik } 1037a2c9d4bbSAart Bik } 1038a2c9d4bbSAart Bik if (needsUniv) { 1039a2c9d4bbSAart Bik operands.push_back(rewriter.create<AddIOp>(loc, codegen.loops[idx], one)); 1040a2c9d4bbSAart Bik codegen.loops[idx] = results[o++]; 1041a2c9d4bbSAart Bik } 1042a2c9d4bbSAart Bik assert(o == operands.size()); 1043a2c9d4bbSAart Bik rewriter.create<scf::YieldOp>(loc, operands); 1044a2c9d4bbSAart Bik } 1045a2c9d4bbSAart Bik 1046a2c9d4bbSAart Bik /// Generates a single if-statement within a while-loop. 1047a2c9d4bbSAart Bik static scf::IfOp genIf(Merger &merger, CodeGen &codegen, 1048a2c9d4bbSAart Bik PatternRewriter &rewriter, linalg::GenericOp op, 1049a2c9d4bbSAart Bik unsigned idx, llvm::BitVector &conditions) { 1050a2c9d4bbSAart Bik Location loc = op.getLoc(); 1051a2c9d4bbSAart Bik Value cond; 1052a2c9d4bbSAart Bik for (unsigned b = 0, be = conditions.size(); b < be; b++) { 1053a2c9d4bbSAart Bik if (conditions[b]) { 1054a2c9d4bbSAart Bik unsigned tensor = merger.tensor(b); 1055a2c9d4bbSAart Bik assert(idx == merger.index(b)); 1056a2c9d4bbSAart Bik Value clause; 1057a2c9d4bbSAart Bik if (merger.isDim(b, Dim::kSparse)) { 1058a2c9d4bbSAart Bik Value op1 = codegen.idxs[tensor][idx]; 1059a2c9d4bbSAart Bik Value op2 = codegen.loops[idx]; 1060a2c9d4bbSAart Bik clause = rewriter.create<CmpIOp>(loc, CmpIPredicate::eq, op1, op2); 1061a2c9d4bbSAart Bik } else { 1062a2c9d4bbSAart Bik clause = rewriter.create<ConstantIntOp>(loc, 1, 1); // true 1063a2c9d4bbSAart Bik } 1064a2c9d4bbSAart Bik cond = cond ? rewriter.create<AndOp>(loc, cond, clause) : clause; 1065a2c9d4bbSAart Bik } 1066a2c9d4bbSAart Bik } 1067a2c9d4bbSAart Bik scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, cond, /*else*/ true); 1068a2c9d4bbSAart Bik rewriter.setInsertionPointToStart(&ifOp.thenRegion().front()); 1069a2c9d4bbSAart Bik return ifOp; 1070a2c9d4bbSAart Bik } 1071a2c9d4bbSAart Bik 1072a2c9d4bbSAart Bik /// Recursively generates code while computing iteration lattices in order 1073a2c9d4bbSAart Bik /// to manage the complexity of implementing co-iteration over unions 1074a2c9d4bbSAart Bik /// and intersections of sparse iterations spaces. 1075a2c9d4bbSAart Bik static void genStmt(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, 1076a2c9d4bbSAart Bik linalg::GenericOp op, std::vector<unsigned> &topSort, 1077a2c9d4bbSAart Bik unsigned exp, unsigned at) { 1078a2c9d4bbSAart Bik // At each leaf, assign remaining tensor (sub)expression to output tensor. 1079a2c9d4bbSAart Bik if (at == topSort.size()) { 10802f2b5b7dSTobias Gysi OpOperand *lhs = op.getOutputOperand(0); 1081a2c9d4bbSAart Bik Value rhs = genExp(merger, codegen, rewriter, op, exp); 1082a2c9d4bbSAart Bik genTensorStore(merger, codegen, rewriter, op, lhs, rhs); 1083a2c9d4bbSAart Bik return; 1084a2c9d4bbSAart Bik } 1085a2c9d4bbSAart Bik assert(codegen.curVecLength == 1); 1086a2c9d4bbSAart Bik 1087a2c9d4bbSAart Bik // Construct iteration lattices for current loop index, with L0 at top. 1088a2c9d4bbSAart Bik // Then emit initialization code for the loop sequence at this level. 1089a2c9d4bbSAart Bik // We maintain the universal dense index if dense indices are still 1090a2c9d4bbSAart Bik // in play for a non-singleton loop sequence. 1091a2c9d4bbSAart Bik Location loc = op.getLoc(); 1092a2c9d4bbSAart Bik unsigned idx = topSort[at]; 1093*043ce4e6SGus Smith unsigned lts = merger.optimizeSet(merger.buildLattices(exp, idx)); 1094a2c9d4bbSAart Bik unsigned lsize = merger.set(lts).size(); 1095a2c9d4bbSAart Bik assert(lsize != 0); 1096a2c9d4bbSAart Bik unsigned l0 = merger.set(lts)[0]; 1097a2c9d4bbSAart Bik unsigned ldx = at == 0 ? -1u : topSort[at - 1]; 1098a2c9d4bbSAart Bik genInvariants(merger, codegen, rewriter, op, exp, ldx, /*hoist=*/true); 1099a2c9d4bbSAart Bik bool needsUniv = false; 1100a2c9d4bbSAart Bik if (genInit(merger, codegen, rewriter, op, topSort, at, 1101a2c9d4bbSAart Bik merger.lat(l0).bits)) { 1102a2c9d4bbSAart Bik // Maintain the universal index only if it is actually 1103a2c9d4bbSAart Bik // consumed by a subsequent lattice point. 1104a2c9d4bbSAart Bik for (unsigned i = 1; i < lsize; i++) { 1105a2c9d4bbSAart Bik unsigned li = merger.set(lts)[i]; 1106a2c9d4bbSAart Bik if (!merger.hasAnyDimOf(merger.lat(li).simple, Dim::kSparse)) { 1107a2c9d4bbSAart Bik needsUniv = true; 1108a2c9d4bbSAart Bik break; 1109a2c9d4bbSAart Bik } 1110a2c9d4bbSAart Bik } 1111a2c9d4bbSAart Bik } 1112a2c9d4bbSAart Bik 1113a2c9d4bbSAart Bik // Emit a loop for every lattice point L0 >= Li. 1114a2c9d4bbSAart Bik for (unsigned i = 0; i < lsize; i++) { 1115a2c9d4bbSAart Bik unsigned li = merger.set(lts)[i]; 1116a2c9d4bbSAart Bik 1117a2c9d4bbSAart Bik // Emit loop. 1118a2c9d4bbSAart Bik codegen.curVecLength = 1; 1119a2c9d4bbSAart Bik llvm::BitVector indices = merger.lat(li).simple; 1120a2c9d4bbSAart Bik Operation *loop = 1121a2c9d4bbSAart Bik genLoop(merger, codegen, rewriter, op, topSort, at, needsUniv, indices); 1122a2c9d4bbSAart Bik genLocals(merger, codegen, rewriter, op, topSort, at, needsUniv, 1123a2c9d4bbSAart Bik merger.lat(li).bits); 1124a2c9d4bbSAart Bik 1125a2c9d4bbSAart Bik // Visit all lattices points with Li >= Lj to generate the 1126a2c9d4bbSAart Bik // loop-body, possibly with if statements for coiteration. 1127a2c9d4bbSAart Bik bool isWhile = dyn_cast<scf::WhileOp>(loop) != nullptr; 1128a2c9d4bbSAart Bik for (unsigned j = 0; j < lsize; j++) { 1129a2c9d4bbSAart Bik unsigned lj = merger.set(lts)[j]; 1130a2c9d4bbSAart Bik unsigned ej = merger.lat(lj).exp; 1131a2c9d4bbSAart Bik if (li == lj || merger.latGT(li, lj)) { 1132a2c9d4bbSAart Bik // Recurse into body of each branch. 1133a2c9d4bbSAart Bik if (isWhile) { 1134a2c9d4bbSAart Bik scf::IfOp ifOp = 1135a2c9d4bbSAart Bik genIf(merger, codegen, rewriter, op, idx, merger.lat(lj).simple); 1136a2c9d4bbSAart Bik genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1); 1137a2c9d4bbSAart Bik rewriter.setInsertionPointToStart(&ifOp.elseRegion().front()); 1138a2c9d4bbSAart Bik } else { 1139a2c9d4bbSAart Bik genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1); 1140a2c9d4bbSAart Bik } 1141a2c9d4bbSAart Bik } 1142a2c9d4bbSAart Bik } 1143a2c9d4bbSAart Bik 1144a2c9d4bbSAart Bik // Wrap-up induction and restore insertion point. 1145a2c9d4bbSAart Bik if (isWhile) { 1146a2c9d4bbSAart Bik scf::WhileOp whileOp = cast<scf::WhileOp>(loop); 1147a2c9d4bbSAart Bik rewriter.setInsertionPointToEnd(&whileOp.after().front()); 1148a2c9d4bbSAart Bik genWhileInduction(merger, codegen, rewriter, op, idx, needsUniv, 1149a2c9d4bbSAart Bik merger.lat(li).bits, whileOp.results()); 1150a2c9d4bbSAart Bik } else { 1151a2c9d4bbSAart Bik needsUniv = false; 1152a2c9d4bbSAart Bik if (codegen.redVal) { 1153a2c9d4bbSAart Bik rewriter.create<scf::YieldOp>(loc, codegen.redVal); 1154a2c9d4bbSAart Bik codegen.redVal = loop->getResult(0); 1155a2c9d4bbSAart Bik } 1156a2c9d4bbSAart Bik } 1157a2c9d4bbSAart Bik rewriter.setInsertionPointAfter(loop); 1158a2c9d4bbSAart Bik } 1159a2c9d4bbSAart Bik 1160a2c9d4bbSAart Bik // Wrap-up loop sequence. 1161a2c9d4bbSAart Bik codegen.curVecLength = 1; 1162a2c9d4bbSAart Bik genReductionEnd(merger, codegen, rewriter, op); 1163a2c9d4bbSAart Bik genInvariants(merger, codegen, rewriter, op, exp, ldx, /*hoist=*/false); 1164a2c9d4bbSAart Bik codegen.loops[idx] = Value(); 1165a2c9d4bbSAart Bik } 1166a2c9d4bbSAart Bik 1167727a63e0SAart Bik /// Converts the result computed by the sparse kernel into the required form. 116836b66ab9SAart Bik static void genResult(Merger &merger, CodeGen &codegen, 116936b66ab9SAart Bik PatternRewriter &rewriter, linalg::GenericOp op) { 117036b66ab9SAart Bik Location loc = op.getLoc(); 117136b66ab9SAart Bik OpOperand *lhs = op.getOutputOperand(0); 117236b66ab9SAart Bik Type resType = lhs->get().getType(); 117336b66ab9SAart Bik unsigned tensor = lhs->getOperandNumber(); 117436b66ab9SAart Bik auto map = op.getTiedIndexingMap(lhs); 117536b66ab9SAart Bik auto enc = getSparseTensorEncoding(resType); 117636b66ab9SAart Bik Value result = codegen.buffers.back(); // value array 117736b66ab9SAart Bik if (enc) { 117836b66ab9SAart Bik // The sparse annotation unambigiously defines the arrays needed 117936b66ab9SAart Bik // to "reconstruct" the sparse tensor from the storage scheme 118036b66ab9SAart Bik // (even though lowering should never need this eventually). 118136b66ab9SAart Bik SmallVector<Value, 4> args; 118236b66ab9SAart Bik for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { 118336b66ab9SAart Bik unsigned idx = map.getDimPosition(perm(enc, d)); 118436b66ab9SAart Bik if (merger.isDim(tensor, idx, Dim::kSparse)) { 118536b66ab9SAart Bik args.push_back(codegen.pointers[tensor][idx]); 118636b66ab9SAart Bik args.push_back(codegen.indices[tensor][idx]); 118736b66ab9SAart Bik } 118836b66ab9SAart Bik } 118936b66ab9SAart Bik args.push_back(result); 119036b66ab9SAart Bik result = rewriter.create<ToTensorOp>(loc, resType, args); 119136b66ab9SAart Bik } else { 119236b66ab9SAart Bik // To "reconstruct" an non-annotated tensor, sipmly load it 119336b66ab9SAart Bik // from the bufferized value. 119436b66ab9SAart Bik result = rewriter.create<memref::TensorLoadOp>(loc, resType, result); 119536b66ab9SAart Bik } 1196727a63e0SAart Bik rewriter.replaceOp(op, result); 1197727a63e0SAart Bik } 1198727a63e0SAart Bik 1199a2c9d4bbSAart Bik namespace { 1200a2c9d4bbSAart Bik 1201a2c9d4bbSAart Bik /// Sparse rewriting rule for generic Lingalg operation. 1202a2c9d4bbSAart Bik struct GenericOpSparsifier : public OpRewritePattern<linalg::GenericOp> { 1203a2c9d4bbSAart Bik public: 1204a2c9d4bbSAart Bik GenericOpSparsifier(MLIRContext *context, SparsificationOptions o) 1205a2c9d4bbSAart Bik : OpRewritePattern<linalg::GenericOp>(context), options(o) {} 1206a2c9d4bbSAart Bik 1207a2c9d4bbSAart Bik LogicalResult matchAndRewrite(linalg::GenericOp op, 1208a2c9d4bbSAart Bik PatternRewriter &rewriter) const override { 1209a2c9d4bbSAart Bik // Detects sparse annotations and translate the per-dimension sparsity 1210a2c9d4bbSAart Bik // information for all tensors to loop indices in the kernel. 1211a2c9d4bbSAart Bik assert(op.getNumOutputs() == 1); 12122f2b5b7dSTobias Gysi unsigned numTensors = op.getNumInputsAndOutputs(); 1213a2c9d4bbSAart Bik unsigned numLoops = op.iterator_types().getValue().size(); 1214a2c9d4bbSAart Bik Merger merger(numTensors, numLoops); 1215bf9ef3efSAart Bik if (!findSparseAnnotations(merger, op)) 1216bf9ef3efSAart Bik return failure(); 1217a2c9d4bbSAart Bik 1218a2c9d4bbSAart Bik // Computes a topologically sorted iteration graph to ensure 1219a2c9d4bbSAart Bik // tensors are visited in natural index order. Fails on cycles. 1220a2c9d4bbSAart Bik // This assumes that higher-level passes have already put the 1221a2c9d4bbSAart Bik // tensors in each tensor expression in a feasible order. 1222a2c9d4bbSAart Bik std::vector<unsigned> topSort; 1223a2c9d4bbSAart Bik if (!computeIterationGraph(merger, op, topSort, /*sparseOnly=*/false) && 1224a2c9d4bbSAart Bik !computeIterationGraph(merger, op, topSort, /*sparseOnly=*/true)) 1225a2c9d4bbSAart Bik return failure(); 1226a2c9d4bbSAart Bik 1227a2c9d4bbSAart Bik // Finds the terminating yield statement and builds the tensor 1228a2c9d4bbSAart Bik // expression for the Linalg operation in SSA form. 1229a2c9d4bbSAart Bik Operation *yield = op.region().front().getTerminator(); 1230a2c9d4bbSAart Bik Optional<unsigned> exp = buildTensorExp(merger, op, yield->getOperand(0)); 1231a2c9d4bbSAart Bik if (!exp.hasValue()) 1232a2c9d4bbSAart Bik return failure(); // build failure 1233a2c9d4bbSAart Bik 123436b66ab9SAart Bik // Reject an inadmissable tensor expression. 123536b66ab9SAart Bik if (!isAdmissableTensorExp(merger, op, exp.getValue())) 123636b66ab9SAart Bik return failure(); 123736b66ab9SAart Bik 1238a2c9d4bbSAart Bik // Recursively generates code. 1239a2c9d4bbSAart Bik CodeGen codegen(options, numTensors, numLoops); 1240727a63e0SAart Bik if (!genBuffers(merger, codegen, rewriter, op)) 1241727a63e0SAart Bik return failure(); // could not bufferize 1242a2c9d4bbSAart Bik genStmt(merger, codegen, rewriter, op, topSort, exp.getValue(), 0); 124336b66ab9SAart Bik genResult(merger, codegen, rewriter, op); 1244a2c9d4bbSAart Bik return success(); 1245a2c9d4bbSAart Bik } 1246a2c9d4bbSAart Bik 1247a2c9d4bbSAart Bik private: 1248a2c9d4bbSAart Bik /// Options to control sparse code generation. 1249a2c9d4bbSAart Bik SparsificationOptions options; 1250a2c9d4bbSAart Bik }; 1251a2c9d4bbSAart Bik 1252a2c9d4bbSAart Bik } // namespace 1253a2c9d4bbSAart Bik 1254a2c9d4bbSAart Bik /// Populates the given patterns list with rewriting rules required for 1255a2c9d4bbSAart Bik /// the sparsification of linear algebra operations. 1256a2c9d4bbSAart Bik void mlir::populateSparsificationPatterns( 1257a2c9d4bbSAart Bik RewritePatternSet &patterns, const SparsificationOptions &options) { 1258a2c9d4bbSAart Bik patterns.add<GenericOpSparsifier>(patterns.getContext(), options); 1259a2c9d4bbSAart Bik } 1260