196a23911SAart Bik //===- Sparsification.cpp - Implementation of sparsification --------------===//
2a2c9d4bbSAart Bik //
3a2c9d4bbSAart Bik // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4a2c9d4bbSAart Bik // See https://llvm.org/LICENSE.txt for license information.
5a2c9d4bbSAart Bik // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6a2c9d4bbSAart Bik //
7a2c9d4bbSAart Bik //===----------------------------------------------------------------------===//
8a2c9d4bbSAart Bik //
996a23911SAart Bik // This file implements lowering sparse tensor types to actual sparse code.
10a2c9d4bbSAart Bik //
11a2c9d4bbSAart Bik // The concept of letting a compiler generate sparse code automatically was
12a2c9d4bbSAart Bik // pioneered for dense linear algebra code in Fortran by [Bik96] in MT1 and
13a2c9d4bbSAart Bik // formalized to tensor algebra by [Kjolstad17,20] for the Sparse Tensor
14a2c9d4bbSAart Bik // Algebra Compiler (TACO). The implementation in this file closely follows
15a2c9d4bbSAart Bik // the "sparse iteration theory" that forms the foundation of TACO. A rewriting
16a2c9d4bbSAart Bik // rule is applied to each tensor expression in linalg (MLIR's tensor index
17a2c9d4bbSAart Bik // notation) where the sparsity of tensors is indicated with annotation using
18a2c9d4bbSAart Bik // a per-dimension specification of sparse/dense storage together with a
19a2c9d4bbSAart Bik // specification of the order on the dimensions. Subsequently, a topologically
20a2c9d4bbSAart Bik // sorted iteration graph, reflecting the required order on indices with respect
21a2c9d4bbSAart Bik // to the dimensions of each tensor, is constructed to ensure that all tensors
22a2c9d4bbSAart Bik // are visited in natural index order. Next, iteration lattices are constructed
23a2c9d4bbSAart Bik // for the tensor expression for every index in topological order. Each
24a2c9d4bbSAart Bik // iteration lattice point consists of a conjunction of tensor indices together
25a2c9d4bbSAart Bik // with a tensor (sub)expression that needs to be evaluated for that
26a2c9d4bbSAart Bik // conjunction. Within the lattice, iteration points are ordered according to
27a2c9d4bbSAart Bik // the way indices are exhausted. As such these iteration lattices drive actual
28a2c9d4bbSAart Bik // sparse code generation, which consists of a tedious but relatively
29a2c9d4bbSAart Bik // straightforward one-to-one mapping from iteration lattices to combinations
30a2c9d4bbSAart Bik // of for-loops, while-loops, and if-statements.
31a2c9d4bbSAart Bik //
32a2c9d4bbSAart Bik // [Bik96] Aart J.C. Bik. Compiler Support for Sparse Matrix Computations.
33a2c9d4bbSAart Bik // PhD thesis, Leiden University, May 1996 (aartbik.com/sparse.php).
34a2c9d4bbSAart Bik // [Kjolstad17] Fredrik Berg Kjolstad, Shoaib Ashraf Kamil, Stephen Chou,
35a2c9d4bbSAart Bik // David Lugato, and Saman Amarasinghe. The Tensor Algebra Compiler.
36a2c9d4bbSAart Bik // Proceedings of the ACM on Programming Languages, October 2017.
37a2c9d4bbSAart Bik // [Kjolstad20] Fredrik Berg Kjolstad. Sparse Tensor Algebra Compilation.
38a2c9d4bbSAart Bik // PhD thesis, MIT, February, 2020 (tensor-compiler.org).
39a2c9d4bbSAart Bik //
40a2c9d4bbSAart Bik // Implementation detail: We use llvm::SmallVector for vectors with
41a2c9d4bbSAart Bik // variable lengths and std::vector for vectors with fixed lengths.
42a2c9d4bbSAart Bik //===----------------------------------------------------------------------===//
43a2c9d4bbSAart Bik 
44a2c9d4bbSAart Bik #include "mlir/Dialect/Linalg/IR/LinalgOps.h"
45a2c9d4bbSAart Bik #include "mlir/Dialect/Linalg/Utils/Utils.h"
4666f878ceSMatthias Springer #include "mlir/Dialect/MemRef/IR/MemRef.h"
47a2c9d4bbSAart Bik #include "mlir/Dialect/SCF/SCF.h"
48a2c9d4bbSAart Bik #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
49a2c9d4bbSAart Bik #include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
50744146f6SGus Smith #include "mlir/Dialect/SparseTensor/Utils/Merger.h"
51a2c9d4bbSAart Bik #include "mlir/Dialect/StandardOps/IR/Ops.h"
52a2c9d4bbSAart Bik #include "mlir/Dialect/Vector/VectorOps.h"
53a2c9d4bbSAart Bik #include "mlir/IR/Matchers.h"
5496a23911SAart Bik #include "mlir/IR/TensorEncoding.h"
55a2c9d4bbSAart Bik #include "llvm/ADT/SmallBitVector.h"
56a2c9d4bbSAart Bik 
57a2c9d4bbSAart Bik using namespace mlir;
5896a23911SAart Bik using namespace mlir::sparse_tensor;
59a2c9d4bbSAart Bik 
60a2c9d4bbSAart Bik namespace {
61a2c9d4bbSAart Bik 
62a2c9d4bbSAart Bik // Code generation.
63a2c9d4bbSAart Bik struct CodeGen {
6496a23911SAart Bik   CodeGen(SparsificationOptions o, unsigned numTensors, unsigned numLoops)
65a2c9d4bbSAart Bik       : options(o), loops(numLoops), sizes(numLoops), buffers(numTensors),
66a2c9d4bbSAart Bik         pointers(numTensors, std::vector<Value>(numLoops)),
67a2c9d4bbSAart Bik         indices(numTensors, std::vector<Value>(numLoops)),
68a2c9d4bbSAart Bik         highs(numTensors, std::vector<Value>(numLoops)),
69a2c9d4bbSAart Bik         pidxs(numTensors, std::vector<Value>(numLoops)),
70a2c9d4bbSAart Bik         idxs(numTensors, std::vector<Value>(numLoops)), redExp(-1u), redVal(),
71a2c9d4bbSAart Bik         curVecLength(1), curVecMask() {}
72a2c9d4bbSAart Bik   /// Sparsification options.
7396a23911SAart Bik   SparsificationOptions options;
74a2c9d4bbSAart Bik   /// Universal dense indices and upper bounds (by index). The loops array
75a2c9d4bbSAart Bik   /// is updated with the value of the universal dense index in the current
76a2c9d4bbSAart Bik   /// loop. The sizes array is set once with the inferred dimension sizes.
77a2c9d4bbSAart Bik   std::vector<Value> loops;
78a2c9d4bbSAart Bik   std::vector<Value> sizes;
79a2c9d4bbSAart Bik   /// Buffers for storing dense and sparse numerical values (by tensor).
80a2c9d4bbSAart Bik   /// This array is set once during bufferization of all tensors.
81a2c9d4bbSAart Bik   std::vector<Value> buffers;
82a2c9d4bbSAart Bik   /// Sparse storage schemes (1-D): pointers and indices (by tensor and index).
83a2c9d4bbSAart Bik   /// This array is set once during bufferization of all sparse tensors.
84a2c9d4bbSAart Bik   std::vector<std::vector<Value>> pointers;
85a2c9d4bbSAart Bik   std::vector<std::vector<Value>> indices;
86a2c9d4bbSAart Bik   /// Sparse iteration information (by tensor and index). These arrays
87a2c9d4bbSAart Bik   /// are updated to remain current within the current loop.
88a2c9d4bbSAart Bik   std::vector<std::vector<Value>> highs;
89a2c9d4bbSAart Bik   std::vector<std::vector<Value>> pidxs;
90a2c9d4bbSAart Bik   std::vector<std::vector<Value>> idxs;
91a2c9d4bbSAart Bik   /// Current reduction, updated during code generation. When indices of a
92a2c9d4bbSAart Bik   /// reduction are exhausted,  all inner loops can "scalarize" the reduction.
93a2c9d4bbSAart Bik   // TODO: currently only done for (a chain of) innermost for-loops, where it
94a2c9d4bbSAart Bik   // is most effective; we could generalize to more outer and while-loops.
95a2c9d4bbSAart Bik   unsigned redExp;
96a2c9d4bbSAart Bik   Value redVal;
97a2c9d4bbSAart Bik   // Current vector length and mask.
98a2c9d4bbSAart Bik   unsigned curVecLength;
99a2c9d4bbSAart Bik   Value curVecMask;
100a2c9d4bbSAart Bik };
101a2c9d4bbSAart Bik 
102a2c9d4bbSAart Bik } // namespace
103a2c9d4bbSAart Bik 
104c194b49cSAart Bik // Helper method to apply dimension ordering permutation.
105c194b49cSAart Bik static unsigned perm(SparseTensorEncodingAttr &enc, unsigned d) {
106c194b49cSAart Bik   if (enc) {
107c194b49cSAart Bik     auto order = enc.getDimOrdering();
108c194b49cSAart Bik     if (order) {
109c194b49cSAart Bik       assert(order.isPermutation());
110c194b49cSAart Bik       return order.getDimPosition(d);
111c194b49cSAart Bik     }
112c194b49cSAart Bik   }
113c194b49cSAart Bik   return d;
114c194b49cSAart Bik }
115c194b49cSAart Bik 
11696a23911SAart Bik // Helper method to translate dim level type to internal representation.
11796a23911SAart Bik static Dim toDim(SparseTensorEncodingAttr &enc, unsigned d) {
11896a23911SAart Bik   if (enc) {
11996a23911SAart Bik     SparseTensorEncodingAttr::DimLevelType tp = enc.getDimLevelType()[d];
12096a23911SAart Bik     if (tp == SparseTensorEncodingAttr::DimLevelType::Compressed)
12196a23911SAart Bik       return Dim::kSparse;
12296a23911SAart Bik     if (tp == SparseTensorEncodingAttr::DimLevelType::Singleton)
12396a23911SAart Bik       return Dim::kSingle;
12496a23911SAart Bik   }
12596a23911SAart Bik   return Dim::kDense;
12696a23911SAart Bik }
12796a23911SAart Bik 
12896a23911SAart Bik /// Helper method to inspect sparse encodings in the tensor types.
129a2c9d4bbSAart Bik /// Fills the per-dimension sparsity information for all tensors.
130bf9ef3efSAart Bik static bool findSparseAnnotations(Merger &merger, linalg::GenericOp op) {
131bf9ef3efSAart Bik   bool annotated = false;
1322f2b5b7dSTobias Gysi   for (OpOperand *t : op.getInputAndOutputOperands()) {
1332f2b5b7dSTobias Gysi     auto map = op.getTiedIndexingMap(t);
134c194b49cSAart Bik     if (!map.isProjectedPermutation())
135c194b49cSAart Bik       return false;
1362f2b5b7dSTobias Gysi     auto enc = getSparseTensorEncoding(t->get().getType());
137727a63e0SAart Bik     if (enc)
138bf9ef3efSAart Bik       annotated = true;
1392f2b5b7dSTobias Gysi     assert(map.getNumResults() == op.getRank(t));
140c194b49cSAart Bik     for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
141c194b49cSAart Bik       unsigned idx = map.getDimPosition(perm(enc, d));
1422f2b5b7dSTobias Gysi       merger.setDim(t->getOperandNumber(), idx, toDim(enc, d));
143a2c9d4bbSAart Bik     }
144a2c9d4bbSAart Bik   }
145bf9ef3efSAart Bik   return annotated;
146a2c9d4bbSAart Bik }
147a2c9d4bbSAart Bik 
148a2c9d4bbSAart Bik /// A DFS helper to compute a topological sort. Note that recursion is
149a2c9d4bbSAart Bik /// bounded by the number of implicit loops, which is always small.
150a2c9d4bbSAart Bik /// Returns false when a cycle is detected.
151a2c9d4bbSAart Bik static bool topSortDFS(unsigned i, std::vector<unsigned> &visit,
152a2c9d4bbSAart Bik                        std::vector<unsigned> &topSort,
153a2c9d4bbSAart Bik                        std::vector<std::vector<bool>> &adjM) {
154a2c9d4bbSAart Bik   if (visit[i] != 0)
155a2c9d4bbSAart Bik     return visit[i] != 1; // 1 denotes cycle!
156a2c9d4bbSAart Bik   visit[i] = 1;
157a2c9d4bbSAart Bik   for (unsigned j = 0, e = visit.size(); j < e; j++)
158a2c9d4bbSAart Bik     if (adjM[i][j])
159a2c9d4bbSAart Bik       if (!topSortDFS(j, visit, topSort, adjM))
160a2c9d4bbSAart Bik         return false;
161a2c9d4bbSAart Bik   visit[i] = 2;
162a2c9d4bbSAart Bik   topSort.push_back(i);
163a2c9d4bbSAart Bik   return true;
164a2c9d4bbSAart Bik }
165a2c9d4bbSAart Bik 
166a2c9d4bbSAart Bik /// Computes a topologically sorted iteration graph for the linalg operation.
167a2c9d4bbSAart Bik /// Ensures all tensors are visited in natural index order. This is essential
168a2c9d4bbSAart Bik /// for sparse storage formats since these only support access along fixed
169a2c9d4bbSAart Bik /// dimensions. Even for dense storage formats, however, the natural index
170a2c9d4bbSAart Bik /// order yields innermost unit-stride access with better spatial locality.
171a2c9d4bbSAart Bik static bool computeIterationGraph(Merger &merger, linalg::GenericOp op,
172a2c9d4bbSAart Bik                                   std::vector<unsigned> &topSort,
173a2c9d4bbSAart Bik                                   bool sparseOnly) {
174a2c9d4bbSAart Bik   // Set up an n x n from/to adjacency matrix of the iteration graph
175a2c9d4bbSAart Bik   // for the implicit loop indices i_0 .. i_n-1.
176a2c9d4bbSAart Bik   unsigned n = op.getNumLoops();
177a2c9d4bbSAart Bik   std::vector<std::vector<bool>> adjM(n, std::vector<bool>(n, false));
178a2c9d4bbSAart Bik 
179a2c9d4bbSAart Bik   // Iterate over the indexing maps of every tensor in the tensor expression.
1802f2b5b7dSTobias Gysi   for (OpOperand *t : op.getInputAndOutputOperands()) {
1812f2b5b7dSTobias Gysi     auto map = op.getTiedIndexingMap(t);
1822f2b5b7dSTobias Gysi     auto enc = getSparseTensorEncoding(t->get().getType());
183a2c9d4bbSAart Bik     assert(map.getNumDims() == n);
184a2c9d4bbSAart Bik     // Skip dense tensor constraints when sparse only is requested.
185c194b49cSAart Bik     if (sparseOnly && !enc)
186a2c9d4bbSAart Bik       continue;
187c194b49cSAart Bik     // Each tensor expression and optional dimension ordering (row-major
188c194b49cSAart Bik     // by default) puts an ordering constraint on the loop indices. For
189c194b49cSAart Bik     // example, the tensor expresion A_ijk forces the ordering i < j < k
190c194b49cSAart Bik     // on the loop indices if no explicit dimension ordering is given.
191c194b49cSAart Bik     for (unsigned d = 1, rank = map.getNumResults(); d < rank; d++) {
192c194b49cSAart Bik       unsigned f = map.getDimPosition(perm(enc, d - 1));
193c194b49cSAart Bik       unsigned t = map.getDimPosition(perm(enc, d));
194a2c9d4bbSAart Bik       adjM[f][t] = true;
195a2c9d4bbSAart Bik     }
196a2c9d4bbSAart Bik   }
197a2c9d4bbSAart Bik 
198a2c9d4bbSAart Bik   // Topologically sort the iteration graph to determine loop order.
199a2c9d4bbSAart Bik   // Report failure for a cyclic iteration graph.
200a2c9d4bbSAart Bik   topSort.clear();
201a2c9d4bbSAart Bik   topSort.reserve(n);
202a2c9d4bbSAart Bik   std::vector<unsigned> visit(n, 0);
203a2c9d4bbSAart Bik   for (unsigned i = 0; i < n; i++)
204a2c9d4bbSAart Bik     if (visit[i] == 0)
205a2c9d4bbSAart Bik       if (!topSortDFS(i, visit, topSort, adjM))
206a2c9d4bbSAart Bik         return false; // cycle!
207a2c9d4bbSAart Bik   std::reverse(std::begin(topSort), std::end(topSort));
208a2c9d4bbSAart Bik   return true;
209a2c9d4bbSAart Bik }
210a2c9d4bbSAart Bik 
211a2c9d4bbSAart Bik /// Traverses the SSA tree (possibly a DAG) to build a tensor expression.
212a2c9d4bbSAart Bik /// This simplifies constructing (sub)expressions during iteration lattice
213a2c9d4bbSAart Bik /// building (compared to using the SSA representation everywhere).
214a2c9d4bbSAart Bik static Optional<unsigned> buildTensorExp(Merger &merger, linalg::GenericOp op,
215a2c9d4bbSAart Bik                                          Value val) {
216a2c9d4bbSAart Bik   if (auto arg = val.dyn_cast<BlockArgument>()) {
217a2c9d4bbSAart Bik     unsigned argN = arg.getArgNumber();
218619bfe8bSAart Bik     // Any argument of the generic op that is not marked as a scalar
219619bfe8bSAart Bik     // argument is considered a tensor, indexed by the implicit loop
220619bfe8bSAart Bik     // bounds. This includes rank-0 tensor arguments.
221619bfe8bSAart Bik     if (arg.getOwner()->getParentOp() == op) {
222619bfe8bSAart Bik       OpOperand *t = op.getInputAndOutputOperands()[argN];
223619bfe8bSAart Bik       if (!op.isScalar(t))
224a2c9d4bbSAart Bik         return merger.addExp(Kind::kTensor, argN);
225619bfe8bSAart Bik       val = t->get(); // get scalar value
226619bfe8bSAart Bik     }
227619bfe8bSAart Bik     // Any other argument (marked as scalar argument for the generic op
228619bfe8bSAart Bik     // or belonging to an enveloping op) is considered invariant.
229a2c9d4bbSAart Bik     return merger.addExp(Kind::kInvariant, val);
230a2c9d4bbSAart Bik   }
231a2c9d4bbSAart Bik   Operation *def = val.getDefiningOp();
232a2c9d4bbSAart Bik   if (def->getBlock() != &op.region().front()) {
233a2c9d4bbSAart Bik     // Something defined outside is invariant.
234a2c9d4bbSAart Bik     return merger.addExp(Kind::kInvariant, val);
235a2c9d4bbSAart Bik   } else if (def->getNumOperands() == 2) {
236a2c9d4bbSAart Bik     // Construct binary operations if subexpressions could be built.
237a2c9d4bbSAart Bik     auto x = buildTensorExp(merger, op, def->getOperand(0));
238a2c9d4bbSAart Bik     auto y = buildTensorExp(merger, op, def->getOperand(1));
239a2c9d4bbSAart Bik     if (x.hasValue() && y.hasValue()) {
240a2c9d4bbSAart Bik       unsigned e0 = x.getValue();
241a2c9d4bbSAart Bik       unsigned e1 = y.getValue();
242a2c9d4bbSAart Bik       if (isa<MulFOp>(def))
243a2c9d4bbSAart Bik         return merger.addExp(Kind::kMulF, e0, e1);
244a2c9d4bbSAart Bik       if (isa<MulIOp>(def))
245a2c9d4bbSAart Bik         return merger.addExp(Kind::kMulI, e0, e1);
246a2c9d4bbSAart Bik       if (isa<AddFOp>(def))
247a2c9d4bbSAart Bik         return merger.addExp(Kind::kAddF, e0, e1);
248a2c9d4bbSAart Bik       if (isa<AddIOp>(def))
249a2c9d4bbSAart Bik         return merger.addExp(Kind::kAddI, e0, e1);
250a2c9d4bbSAart Bik     }
251a2c9d4bbSAart Bik   }
252a2c9d4bbSAart Bik   // Cannot build (yet).
253a2c9d4bbSAart Bik   return None;
254a2c9d4bbSAart Bik }
255a2c9d4bbSAart Bik 
25636b66ab9SAart Bik /// Returns true if given tensor co-iterates with conjunction only.
25736b66ab9SAart Bik /// For the output tensor, this defines a "simply dynamic" operation.
25836b66ab9SAart Bik /// For instance: A(I) = A(I) * B(I) * C(I)
25936b66ab9SAart Bik static unsigned isConjunction(Merger &merger, unsigned tensor, unsigned exp) {
26036b66ab9SAart Bik   switch (merger.exp(exp).kind) {
26136b66ab9SAart Bik   case Kind::kTensor:
26236b66ab9SAart Bik     return merger.exp(exp).e0 == tensor;
26336b66ab9SAart Bik   case Kind::kMulF:
26436b66ab9SAart Bik   case Kind::kMulI:
26536b66ab9SAart Bik     return isConjunction(merger, tensor, merger.exp(exp).e0) ||
26636b66ab9SAart Bik            isConjunction(merger, tensor, merger.exp(exp).e1);
26736b66ab9SAart Bik   default:
26836b66ab9SAart Bik     return false;
26936b66ab9SAart Bik   }
27036b66ab9SAart Bik }
27136b66ab9SAart Bik 
27236b66ab9SAart Bik /// Returns true when the tensor expression is admissable for codegen.
27336b66ab9SAart Bik /// Since all sparse input tensors are admissable, we just need to check
27436b66ab9SAart Bik /// whether the output tensor in the tensor expression codegen is admissable.
27536b66ab9SAart Bik static bool isAdmissableTensorExp(Merger &merger, linalg::GenericOp op,
27636b66ab9SAart Bik                                   unsigned exp) {
27736b66ab9SAart Bik   OpOperand *lhs = op.getOutputOperand(0);
27836b66ab9SAart Bik   unsigned tensor = lhs->getOperandNumber();
27936b66ab9SAart Bik   auto enc = getSparseTensorEncoding(lhs->get().getType());
28036b66ab9SAart Bik   // An non-annotated output tensor is assumed dense, and becomes a random
28136b66ab9SAart Bik   // access n-dim memref. Admissable since inserstions cannot occur.
28236b66ab9SAart Bik   if (!enc)
28336b66ab9SAart Bik     return true;
28436b66ab9SAart Bik   // An all-dense annotated "sparse" output tensor becomes a linearized random
28536b66ab9SAart Bik   // access 1-dim memref. Also admissable since insertions cannot occur.
28636b66ab9SAart Bik   bool allDense = true;
28736b66ab9SAart Bik   unsigned numLoops = op.iterator_types().getValue().size();
28836b66ab9SAart Bik   for (unsigned i = 0; i < numLoops; i++)
28936b66ab9SAart Bik     if (merger.isDim(tensor, i, Dim::kSparse)) {
29036b66ab9SAart Bik       allDense = false;
29136b66ab9SAart Bik       break;
29236b66ab9SAart Bik     }
29336b66ab9SAart Bik   if (allDense)
29436b66ab9SAart Bik     return true;
29536b66ab9SAart Bik   // A tensor expression with a sparse output tensor that changes its values
29636b66ab9SAart Bik   // but not its nonzero structure, an operation called "simply dynamic" in
29736b66ab9SAart Bik   // [Bik96,Ch9], is also admissable without special codegen.
29836b66ab9SAart Bik   if (isConjunction(merger, tensor, exp))
29936b66ab9SAart Bik     return true;
30036b66ab9SAart Bik   // Reject for now since this requires changes to the nonzero structure.
30136b66ab9SAart Bik   // TODO: implement "workspaces" [Kjolstad2019]
30236b66ab9SAart Bik   return false;
30336b66ab9SAart Bik }
30436b66ab9SAart Bik 
305a2c9d4bbSAart Bik /// Maps sparse integer option to actual integral storage type.
30696a23911SAart Bik static Type genIntType(PatternRewriter &rewriter, unsigned width) {
30796a23911SAart Bik   if (width == 0)
308a2c9d4bbSAart Bik     return rewriter.getIndexType();
30996a23911SAart Bik   return rewriter.getIntegerType(width);
310a2c9d4bbSAart Bik }
311a2c9d4bbSAart Bik 
3125879da49SAart Bik /// Detects in-place annotation on tensor argument.
3135879da49SAart Bik static bool getInPlace(Value val) {
3145879da49SAart Bik   if (auto arg = val.dyn_cast<BlockArgument>())
3155879da49SAart Bik     if (auto funcOp = dyn_cast<FuncOp>(arg.getOwner()->getParentOp()))
3165879da49SAart Bik       if (auto attr = funcOp.getArgAttrOfType<BoolAttr>(
3175879da49SAart Bik               arg.getArgNumber(), linalg::LinalgDialect::kInplaceableAttrName))
3185879da49SAart Bik         return attr.getValue();
3195879da49SAart Bik   return false;
3205879da49SAart Bik }
3215879da49SAart Bik 
322a2c9d4bbSAart Bik /// Generates buffer for the output tensor.
323a2c9d4bbSAart Bik static Value genOutputBuffer(CodeGen &codegen, PatternRewriter &rewriter,
324a2c9d4bbSAart Bik                              linalg::GenericOp op, MemRefType denseTp,
325a2c9d4bbSAart Bik                              ArrayRef<Value> args) {
326a2c9d4bbSAart Bik   Location loc = op.getLoc();
3272f2b5b7dSTobias Gysi   Value tensor = op.getOutputOperand(0)->get();
328a2c9d4bbSAart Bik   // The output tensor simply could materialize from the buffer that will
329a2c9d4bbSAart Bik   // be generated for the tensor present in the outs() clause. This has
330a2c9d4bbSAart Bik   // the major advantage that the sparse kernel only updates the nonzero
3315879da49SAart Bik   // positions for the output tensor.
3325879da49SAart Bik   if (getInPlace(tensor))
333a2c9d4bbSAart Bik     return rewriter.create<memref::BufferCastOp>(loc, denseTp, tensor);
334a2c9d4bbSAart Bik   // By default, a new buffer is allocated which is initialized to the
335a2c9d4bbSAart Bik   // tensor defined in the outs() clause. This is always correct but
336a2c9d4bbSAart Bik   // introduces a dense initialization component that may negatively
337a2c9d4bbSAart Bik   // impact the running complexity of the sparse kernel.
338a2c9d4bbSAart Bik   Value init = rewriter.create<memref::BufferCastOp>(loc, denseTp, tensor);
339a2c9d4bbSAart Bik   Value alloc = rewriter.create<memref::AllocOp>(loc, denseTp, args);
340a2c9d4bbSAart Bik   rewriter.create<linalg::CopyOp>(loc, init, alloc);
341a2c9d4bbSAart Bik   return alloc;
342a2c9d4bbSAart Bik }
343a2c9d4bbSAart Bik 
344a2c9d4bbSAart Bik /// Local bufferization of all dense and sparse data structures.
345a2c9d4bbSAart Bik /// This code enables testing the first prototype sparse compiler.
346a2c9d4bbSAart Bik // TODO: replace this with a proliferated bufferization strategy
347727a63e0SAart Bik static bool genBuffers(Merger &merger, CodeGen &codegen,
348a2c9d4bbSAart Bik                        PatternRewriter &rewriter, linalg::GenericOp op) {
349a2c9d4bbSAart Bik   Location loc = op.getLoc();
3502f2b5b7dSTobias Gysi   assert(op.getNumInputsAndOutputs() == op.getNumInputs() + 1);
351a2c9d4bbSAart Bik   // For every tensor, find lower and upper bound on dimensions, set the
352a2c9d4bbSAart Bik   // same bounds on loop indices, and obtain dense or sparse buffer(s).
353a2c9d4bbSAart Bik   SmallVector<Value, 4> args;
3542f2b5b7dSTobias Gysi   for (OpOperand *t : op.getInputAndOutputOperands()) {
355727a63e0SAart Bik     unsigned tensor = t->getOperandNumber();
3562f2b5b7dSTobias Gysi     auto shape = op.getShape(t);
3572f2b5b7dSTobias Gysi     auto map = op.getTiedIndexingMap(t);
3582f2b5b7dSTobias Gysi     auto enc = getSparseTensorEncoding(t->get().getType());
359a2c9d4bbSAart Bik     // Scan all dimensions of current tensor.
360a2c9d4bbSAart Bik     args.clear();
361c194b49cSAart Bik     for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
362c194b49cSAart Bik       unsigned idx = map.getDimPosition(perm(enc, d));
363a2c9d4bbSAart Bik       // Handle sparse storage schemes.
364727a63e0SAart Bik       if (merger.isDim(tensor, idx, Dim::kSparse)) {
365a2c9d4bbSAart Bik         auto dynShape = {ShapedType::kDynamicSize};
366a2c9d4bbSAart Bik         auto ptrTp = MemRefType::get(
36796a23911SAart Bik             dynShape, genIntType(rewriter, enc.getPointerBitWidth()));
368a2c9d4bbSAart Bik         auto indTp = MemRefType::get(
36996a23911SAart Bik             dynShape, genIntType(rewriter, enc.getIndexBitWidth()));
370a2c9d4bbSAart Bik         Value dim = rewriter.create<ConstantIndexOp>(loc, d);
371a2c9d4bbSAart Bik         // Generate sparse primitives to obtains pointer and indices.
372727a63e0SAart Bik         codegen.pointers[tensor][idx] =
3732f2b5b7dSTobias Gysi             rewriter.create<ToPointersOp>(loc, ptrTp, t->get(), dim);
374727a63e0SAart Bik         codegen.indices[tensor][idx] =
3752f2b5b7dSTobias Gysi             rewriter.create<ToIndicesOp>(loc, indTp, t->get(), dim);
376a2c9d4bbSAart Bik       }
377a2c9d4bbSAart Bik       // Find lower and upper bound in current dimension.
378a2c9d4bbSAart Bik       Value up;
379a2c9d4bbSAart Bik       if (shape[d] == MemRefType::kDynamicSize) {
3802f2b5b7dSTobias Gysi         up = rewriter.create<memref::DimOp>(loc, t->get(), d);
381a2c9d4bbSAart Bik         args.push_back(up);
382a2c9d4bbSAart Bik       } else {
383a2c9d4bbSAart Bik         up = rewriter.create<ConstantIndexOp>(loc, shape[d]);
384a2c9d4bbSAart Bik       }
385727a63e0SAart Bik       codegen.sizes[idx] = codegen.highs[tensor][idx] = up;
386a2c9d4bbSAart Bik     }
387727a63e0SAart Bik     // Perform the required bufferization. Dense inputs materialize
388727a63e0SAart Bik     // from the input tensors. Dense outputs need special handling.
389727a63e0SAart Bik     // Sparse inputs use sparse primitives to obtain the values.
390727a63e0SAart Bik     // We also accept in-place all-dense annotated "sparse" outputs.
3912f2b5b7dSTobias Gysi     Type elementType = getElementTypeOrSelf(t->get().getType());
39296a23911SAart Bik     if (!enc) {
393727a63e0SAart Bik       // Non-annotated dense tensors.
3942f2b5b7dSTobias Gysi       auto denseTp = MemRefType::get(shape, elementType);
395727a63e0SAart Bik       if (tensor < op.getNumInputs())
396727a63e0SAart Bik         codegen.buffers[tensor] =
3972f2b5b7dSTobias Gysi             rewriter.create<memref::BufferCastOp>(loc, denseTp, t->get());
398a2c9d4bbSAart Bik       else
399727a63e0SAart Bik         codegen.buffers[tensor] =
400a2c9d4bbSAart Bik             genOutputBuffer(codegen, rewriter, op, denseTp, args);
401a2c9d4bbSAart Bik     } else {
402727a63e0SAart Bik       // Annotated sparse tensors.
403727a63e0SAart Bik       if (tensor == op.getNumInputs() && !getInPlace(t->get()))
404727a63e0SAart Bik         return false; // reject output if not in-place
405a2c9d4bbSAart Bik       auto dynShape = {ShapedType::kDynamicSize};
4062f2b5b7dSTobias Gysi       auto sparseTp = MemRefType::get(dynShape, elementType);
407727a63e0SAart Bik       codegen.buffers[tensor] =
4082f2b5b7dSTobias Gysi           rewriter.create<ToValuesOp>(loc, sparseTp, t->get());
409a2c9d4bbSAart Bik     }
410a2c9d4bbSAart Bik   }
411727a63e0SAart Bik   return true;
412a2c9d4bbSAart Bik }
413a2c9d4bbSAart Bik 
414a2c9d4bbSAart Bik /// Constructs vector type.
415a2c9d4bbSAart Bik static VectorType vectorType(CodeGen &codegen, Type etp) {
416a2c9d4bbSAart Bik   return VectorType::get(codegen.curVecLength, etp);
417a2c9d4bbSAart Bik }
418a2c9d4bbSAart Bik 
419a2c9d4bbSAart Bik /// Constructs vector type from pointer.
420a2c9d4bbSAart Bik static VectorType vectorType(CodeGen &codegen, Value ptr) {
421a2c9d4bbSAart Bik   return vectorType(codegen, ptr.getType().cast<MemRefType>().getElementType());
422a2c9d4bbSAart Bik }
423a2c9d4bbSAart Bik 
424a2c9d4bbSAart Bik /// Constructs vector iteration mask.
425a2c9d4bbSAart Bik static Value genVectorMask(CodeGen &codegen, PatternRewriter &rewriter,
426a2c9d4bbSAart Bik                            Value iv, Value lo, Value hi, Value step) {
427a2c9d4bbSAart Bik   Location loc = iv.getLoc();
428a2c9d4bbSAart Bik   VectorType mtp = vectorType(codegen, rewriter.getIntegerType(1));
429a2c9d4bbSAart Bik   // Special case if the vector length evenly divides the trip count (for
430a2c9d4bbSAart Bik   // example, "for i = 0, 128, 16"). A constant all-true mask is generated
431a2c9d4bbSAart Bik   // so that all subsequent masked memory operations are immediately folded
432a2c9d4bbSAart Bik   // into unconditional memory operations.
433a2c9d4bbSAart Bik   IntegerAttr loInt, hiInt, stepInt;
434a2c9d4bbSAart Bik   if (matchPattern(lo, m_Constant(&loInt)) &&
435a2c9d4bbSAart Bik       matchPattern(hi, m_Constant(&hiInt)) &&
436a2c9d4bbSAart Bik       matchPattern(step, m_Constant(&stepInt))) {
437a2c9d4bbSAart Bik     if (((hiInt.getInt() - loInt.getInt()) % stepInt.getInt()) == 0)
438a2c9d4bbSAart Bik       return rewriter.create<vector::BroadcastOp>(
439a2c9d4bbSAart Bik           loc, mtp, rewriter.create<ConstantIntOp>(loc, 1, 1));
440a2c9d4bbSAart Bik   }
441a2c9d4bbSAart Bik   // Otherwise, generate a vector mask that avoids overrunning the upperbound
442a2c9d4bbSAart Bik   // during vector execution. Here we rely on subsequent loop optimizations to
443a2c9d4bbSAart Bik   // avoid executing the mask in all iterations, for example, by splitting the
444a2c9d4bbSAart Bik   // loop into an unconditional vector loop and a scalar cleanup loop.
445a2c9d4bbSAart Bik   Value end = rewriter.create<SubIOp>(loc, hi, iv);
446a2c9d4bbSAart Bik   return rewriter.create<vector::CreateMaskOp>(loc, mtp, end);
447a2c9d4bbSAart Bik }
448a2c9d4bbSAart Bik 
449a2c9d4bbSAart Bik /// Generates a vectorized load lhs = a[ind[lo:hi]] or lhs = a[lo:hi].
450a2c9d4bbSAart Bik static Value genVectorLoad(CodeGen &codegen, PatternRewriter &rewriter,
451a2c9d4bbSAart Bik                            Value ptr, ArrayRef<Value> args) {
452a2c9d4bbSAart Bik   Location loc = ptr.getLoc();
453a2c9d4bbSAart Bik   VectorType vtp = vectorType(codegen, ptr);
454a2c9d4bbSAart Bik   Value pass = rewriter.create<ConstantOp>(loc, vtp, rewriter.getZeroAttr(vtp));
455a2c9d4bbSAart Bik   if (args.back().getType().isa<VectorType>()) {
456a2c9d4bbSAart Bik     SmallVector<Value, 4> scalarArgs(args.begin(), args.end());
457a2c9d4bbSAart Bik     Value indexVec = args.back();
458a2c9d4bbSAart Bik     scalarArgs.back() = rewriter.create<ConstantIndexOp>(loc, 0);
459a2c9d4bbSAart Bik     return rewriter.create<vector::GatherOp>(
460a2c9d4bbSAart Bik         loc, vtp, ptr, scalarArgs, indexVec, codegen.curVecMask, pass);
461a2c9d4bbSAart Bik   }
462a2c9d4bbSAart Bik   return rewriter.create<vector::MaskedLoadOp>(loc, vtp, ptr, args,
463a2c9d4bbSAart Bik                                                codegen.curVecMask, pass);
464a2c9d4bbSAart Bik }
465a2c9d4bbSAart Bik 
466a2c9d4bbSAart Bik /// Generates a vectorized store a[ind[lo:hi]] = rhs or a[lo:hi] = rhs.
467a2c9d4bbSAart Bik static void genVectorStore(CodeGen &codegen, PatternRewriter &rewriter,
468a2c9d4bbSAart Bik                            Value rhs, Value ptr, ArrayRef<Value> args) {
469a2c9d4bbSAart Bik   Location loc = ptr.getLoc();
470a2c9d4bbSAart Bik   if (args.back().getType().isa<VectorType>()) {
471a2c9d4bbSAart Bik     SmallVector<Value, 4> scalarArgs(args.begin(), args.end());
472a2c9d4bbSAart Bik     Value indexVec = args.back();
473a2c9d4bbSAart Bik     scalarArgs.back() = rewriter.create<ConstantIndexOp>(loc, 0);
474a2c9d4bbSAart Bik     rewriter.create<vector::ScatterOp>(loc, ptr, scalarArgs, indexVec,
475a2c9d4bbSAart Bik                                        codegen.curVecMask, rhs);
476a2c9d4bbSAart Bik     return;
477a2c9d4bbSAart Bik   }
478a2c9d4bbSAart Bik   rewriter.create<vector::MaskedStoreOp>(loc, ptr, args, codegen.curVecMask,
479a2c9d4bbSAart Bik                                          rhs);
480a2c9d4bbSAart Bik }
481a2c9d4bbSAart Bik 
482a2c9d4bbSAart Bik /// Generates a vectorized invariant. Here we rely on subsequent loop
483a2c9d4bbSAart Bik /// optimizations to hoist the invariant broadcast out of the vector loop.
484a2c9d4bbSAart Bik static Value genVectorInvariantValue(CodeGen &codegen,
485a2c9d4bbSAart Bik                                      PatternRewriter &rewriter, Value val) {
486a2c9d4bbSAart Bik   VectorType vtp = vectorType(codegen, val.getType());
487a2c9d4bbSAart Bik   return rewriter.create<vector::BroadcastOp>(val.getLoc(), vtp, val);
488a2c9d4bbSAart Bik }
489a2c9d4bbSAart Bik 
490a2c9d4bbSAart Bik /// Generates a load on a dense or sparse tensor.
491a2c9d4bbSAart Bik static Value genTensorLoad(Merger &merger, CodeGen &codegen,
492a2c9d4bbSAart Bik                            PatternRewriter &rewriter, linalg::GenericOp op,
493a2c9d4bbSAart Bik                            unsigned exp) {
494a2c9d4bbSAart Bik   // Test if the load was hoisted to a higher loop nest.
495a2c9d4bbSAart Bik   Value val = merger.exp(exp).val;
496a2c9d4bbSAart Bik   if (val) {
497a2c9d4bbSAart Bik     if (codegen.curVecLength > 1 && !val.getType().isa<VectorType>())
498a2c9d4bbSAart Bik       return genVectorInvariantValue(codegen, rewriter, val);
499a2c9d4bbSAart Bik     return val;
500a2c9d4bbSAart Bik   }
501a2c9d4bbSAart Bik   // Actual load.
502a2c9d4bbSAart Bik   SmallVector<Value, 4> args;
503619bfe8bSAart Bik   OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).e0];
504727a63e0SAart Bik   unsigned tensor = t->getOperandNumber();
505727a63e0SAart Bik   auto map = op.getTiedIndexingMap(t);
506727a63e0SAart Bik   auto enc = getSparseTensorEncoding(t->get().getType());
507727a63e0SAart Bik   unsigned rank = map.getNumResults();
50896a23911SAart Bik   if (enc) {
509727a63e0SAart Bik     unsigned idx = map.getDimPosition(perm(enc, rank - 1));
510727a63e0SAart Bik     assert(codegen.pidxs[tensor][idx] != nullptr);
511727a63e0SAart Bik     args.push_back(codegen.pidxs[tensor][idx]); // position index
512727a63e0SAart Bik   } else {
513727a63e0SAart Bik     for (unsigned d = 0; d < rank; d++) {
514727a63e0SAart Bik       unsigned idx = map.getDimPosition(d);
515727a63e0SAart Bik       args.push_back(codegen.loops[idx]); // universal dense index
516a2c9d4bbSAart Bik     }
517a2c9d4bbSAart Bik   }
518a2c9d4bbSAart Bik   Location loc = op.getLoc();
519727a63e0SAart Bik   Value ptr = codegen.buffers[tensor];
520a2c9d4bbSAart Bik   if (codegen.curVecLength > 1)
521a2c9d4bbSAart Bik     return genVectorLoad(codegen, rewriter, ptr, args);
522a2c9d4bbSAart Bik   return rewriter.create<memref::LoadOp>(loc, ptr, args);
523a2c9d4bbSAart Bik }
524a2c9d4bbSAart Bik 
525727a63e0SAart Bik /// Generates a store on a dense or sparse tensor.
526a2c9d4bbSAart Bik static void genTensorStore(Merger &merger, CodeGen &codegen,
527a2c9d4bbSAart Bik                            PatternRewriter &rewriter, linalg::GenericOp op,
528727a63e0SAart Bik                            OpOperand *t, Value rhs) {
529a2c9d4bbSAart Bik   Location loc = op.getLoc();
530a2c9d4bbSAart Bik   // Test if this is a scalarized reduction.
5312f2b5b7dSTobias Gysi   OpOperand *lhs = op.getOutputOperand(0);
532727a63e0SAart Bik   if (lhs == t && codegen.redVal) {
533a2c9d4bbSAart Bik     if (codegen.curVecLength > 1)
534a2c9d4bbSAart Bik       rhs = rewriter.create<SelectOp>(loc, codegen.curVecMask, rhs,
535a2c9d4bbSAart Bik                                       codegen.redVal);
536a2c9d4bbSAart Bik     codegen.redVal = rhs;
537a2c9d4bbSAart Bik     return;
538a2c9d4bbSAart Bik   }
539a2c9d4bbSAart Bik   // Actual store.
540a2c9d4bbSAart Bik   SmallVector<Value, 4> args;
541727a63e0SAart Bik   unsigned tensor = t->getOperandNumber();
542727a63e0SAart Bik   auto map = op.getTiedIndexingMap(t);
543727a63e0SAart Bik   auto enc = getSparseTensorEncoding(t->get().getType());
544727a63e0SAart Bik   unsigned rank = map.getNumResults();
545727a63e0SAart Bik   if (enc) {
546727a63e0SAart Bik     unsigned idx = map.getDimPosition(perm(enc, rank - 1));
547727a63e0SAart Bik     assert(codegen.pidxs[tensor][idx] != nullptr);
548727a63e0SAart Bik     args.push_back(codegen.pidxs[tensor][idx]); // position index
549727a63e0SAart Bik   } else {
550727a63e0SAart Bik     for (unsigned d = 0; d < rank; d++) {
551c194b49cSAart Bik       unsigned idx = map.getDimPosition(d);
552a2c9d4bbSAart Bik       args.push_back(codegen.loops[idx]); // universal dense index
553a2c9d4bbSAart Bik     }
554727a63e0SAart Bik   }
555727a63e0SAart Bik   Value ptr = codegen.buffers[tensor];
556a2c9d4bbSAart Bik   if (codegen.curVecLength > 1)
557a2c9d4bbSAart Bik     genVectorStore(codegen, rewriter, rhs, ptr, args);
558a2c9d4bbSAart Bik   else
559a2c9d4bbSAart Bik     rewriter.create<memref::StoreOp>(loc, rhs, ptr, args);
560a2c9d4bbSAart Bik }
561a2c9d4bbSAart Bik 
562a2c9d4bbSAart Bik /// Generates a pointer/index load from the sparse storage scheme. Narrower
563a2c9d4bbSAart Bik /// data types need to be zero extended before casting the value into the
564a2c9d4bbSAart Bik /// index type used for looping and indexing.
565a2c9d4bbSAart Bik static Value genLoad(CodeGen &codegen, PatternRewriter &rewriter, Location loc,
566a2c9d4bbSAart Bik                      Value ptr, Value s) {
567a2c9d4bbSAart Bik   // See https://llvm.org/docs/GetElementPtr.html for some background on
568a2c9d4bbSAart Bik   // the complications described below.
569a2c9d4bbSAart Bik   if (codegen.curVecLength > 1) {
570a2c9d4bbSAart Bik     // Since the index vector is used in a subsequent gather/scatter operations,
571a2c9d4bbSAart Bik     // which effectively defines an unsigned pointer + signed index, we must
572a2c9d4bbSAart Bik     // zero extend the vector to an index width. For 8-bit and 16-bit values,
573a2c9d4bbSAart Bik     // an 32-bit index width suffices. For 32-bit values, zero extending the
574a2c9d4bbSAart Bik     // elements into 64-bit loses some performance since the 32-bit indexed
57586e9bc1aSAart Bik     // gather/scatter is more efficient than the 64-bit index variant (if the
57686e9bc1aSAart Bik     // negative 32-bit index space is unused, the enableSIMDIndex32 flag can
577727a63e0SAart Bik     // preserve this performance). For 64-bit values, there is no good way
578a2c9d4bbSAart Bik     // to state that the indices are unsigned, with creates the potential of
579a2c9d4bbSAart Bik     // incorrect address calculations in the unlikely case we need such
580a2c9d4bbSAart Bik     // extremely large offsets.
581a2c9d4bbSAart Bik     Type etp = ptr.getType().cast<MemRefType>().getElementType();
582a2c9d4bbSAart Bik     Value vload = genVectorLoad(codegen, rewriter, ptr, {s});
583a2c9d4bbSAart Bik     if (!etp.isa<IndexType>()) {
584a2c9d4bbSAart Bik       if (etp.getIntOrFloatBitWidth() < 32)
585a2c9d4bbSAart Bik         vload = rewriter.create<ZeroExtendIOp>(
586a2c9d4bbSAart Bik             loc, vload, vectorType(codegen, rewriter.getIntegerType(32)));
58786e9bc1aSAart Bik       else if (etp.getIntOrFloatBitWidth() < 64 &&
58886e9bc1aSAart Bik                !codegen.options.enableSIMDIndex32)
589a2c9d4bbSAart Bik         vload = rewriter.create<ZeroExtendIOp>(
590a2c9d4bbSAart Bik             loc, vload, vectorType(codegen, rewriter.getIntegerType(64)));
591a2c9d4bbSAart Bik     }
592a2c9d4bbSAart Bik     return vload;
593a2c9d4bbSAart Bik   }
594a2c9d4bbSAart Bik   // For the scalar case, we simply zero extend narrower indices into 64-bit
595a2c9d4bbSAart Bik   // values before casting to index without a performance penalty. Here too,
596a2c9d4bbSAart Bik   // however, indices that already are 64-bit, in theory, cannot express the
597a2c9d4bbSAart Bik   // full range as explained above.
598a2c9d4bbSAart Bik   Value load = rewriter.create<memref::LoadOp>(loc, ptr, s);
599a2c9d4bbSAart Bik   if (!load.getType().isa<IndexType>()) {
600a2c9d4bbSAart Bik     if (load.getType().getIntOrFloatBitWidth() < 64)
601a2c9d4bbSAart Bik       load = rewriter.create<ZeroExtendIOp>(loc, load,
602a2c9d4bbSAart Bik                                             rewriter.getIntegerType(64));
603a2c9d4bbSAart Bik     load = rewriter.create<IndexCastOp>(loc, load, rewriter.getIndexType());
604a2c9d4bbSAart Bik   }
605a2c9d4bbSAart Bik   return load;
606a2c9d4bbSAart Bik }
607a2c9d4bbSAart Bik 
608a2c9d4bbSAart Bik /// Generates an invariant value.
609a2c9d4bbSAart Bik static Value genInvariantValue(Merger &merger, CodeGen &codegen,
610a2c9d4bbSAart Bik                                PatternRewriter &rewriter, unsigned exp) {
611a2c9d4bbSAart Bik   Value val = merger.exp(exp).val;
612a2c9d4bbSAart Bik   if (codegen.curVecLength > 1)
613a2c9d4bbSAart Bik     return genVectorInvariantValue(codegen, rewriter, val);
614a2c9d4bbSAart Bik   return val;
615a2c9d4bbSAart Bik }
616a2c9d4bbSAart Bik 
617a2c9d4bbSAart Bik /// Generates an address computation "sz * p + i".
618a2c9d4bbSAart Bik static Value genAddress(CodeGen &codegen, PatternRewriter &rewriter,
619a2c9d4bbSAart Bik                         Location loc, Value size, Value p, Value i) {
620a2c9d4bbSAart Bik   Value mul = rewriter.create<MulIOp>(loc, size, p);
621a2c9d4bbSAart Bik   if (auto vtp = i.getType().dyn_cast<VectorType>()) {
622a2c9d4bbSAart Bik     Value inv = rewriter.create<IndexCastOp>(loc, mul, vtp.getElementType());
623a2c9d4bbSAart Bik     mul = genVectorInvariantValue(codegen, rewriter, inv);
624a2c9d4bbSAart Bik   }
625a2c9d4bbSAart Bik   return rewriter.create<AddIOp>(loc, mul, i);
626a2c9d4bbSAart Bik }
627a2c9d4bbSAart Bik 
628a2c9d4bbSAart Bik /// Generates start of a reduction.
629a2c9d4bbSAart Bik static Value genReductionStart(Merger &merger, CodeGen &codegen,
630a2c9d4bbSAart Bik                                PatternRewriter &rewriter,
631a2c9d4bbSAart Bik                                linalg::GenericOp op) {
632a2c9d4bbSAart Bik   if (codegen.redVal)
633a2c9d4bbSAart Bik     return codegen.redVal; // chained with previous for-loop
634a2c9d4bbSAart Bik   if (codegen.curVecLength > 1) {
635a2c9d4bbSAart Bik     // TODO: assumes + reductions for now
636a2c9d4bbSAart Bik     VectorType vtp = vectorType(codegen, codegen.buffers[codegen.redExp]);
637a2c9d4bbSAart Bik     return rewriter.create<ConstantOp>(op.getLoc(), vtp,
638a2c9d4bbSAart Bik                                        rewriter.getZeroAttr(vtp));
639a2c9d4bbSAart Bik   }
640a2c9d4bbSAart Bik   return genTensorLoad(merger, codegen, rewriter, op, codegen.redExp);
641a2c9d4bbSAart Bik }
642a2c9d4bbSAart Bik 
643a2c9d4bbSAart Bik /// Generates end of a reduction.
644a2c9d4bbSAart Bik static void genReductionEnd(Merger &merger, CodeGen &codegen,
645a2c9d4bbSAart Bik                             PatternRewriter &rewriter, linalg::GenericOp op) {
646a2c9d4bbSAart Bik   Value red = codegen.redVal;
647a2c9d4bbSAart Bik   if (!red)
648a2c9d4bbSAart Bik     return;
649a2c9d4bbSAart Bik   assert(codegen.curVecLength == 1);
650a2c9d4bbSAart Bik   codegen.redVal = merger.exp(codegen.redExp).val = Value(); // end chain
6512f2b5b7dSTobias Gysi   OpOperand *lhs = op.getOutputOperand(0);
652a2c9d4bbSAart Bik   if (auto vtp = red.getType().dyn_cast<VectorType>()) {
653a2c9d4bbSAart Bik     // TODO: assumes + reductions for now
654a2c9d4bbSAart Bik     StringAttr kind = rewriter.getStringAttr("add");
655a2c9d4bbSAart Bik     Value ld = genTensorLoad(merger, codegen, rewriter, op, codegen.redExp);
656a2c9d4bbSAart Bik     // Integer reductions don't accept an accumulator.
657a2c9d4bbSAart Bik     if (vtp.getElementType().isa<IntegerType>()) {
658a2c9d4bbSAart Bik       red = rewriter.create<vector::ReductionOp>(op.getLoc(), ld.getType(),
659a2c9d4bbSAart Bik                                                  kind, red, ValueRange{});
660a2c9d4bbSAart Bik       red = rewriter.create<AddIOp>(op.getLoc(), red, ld);
661a2c9d4bbSAart Bik     } else {
662a2c9d4bbSAart Bik       red = rewriter.create<vector::ReductionOp>(op.getLoc(), ld.getType(),
663a2c9d4bbSAart Bik                                                  kind, red, ld);
664a2c9d4bbSAart Bik     }
665a2c9d4bbSAart Bik   }
666a2c9d4bbSAart Bik   genTensorStore(merger, codegen, rewriter, op, lhs, red);
667a2c9d4bbSAart Bik }
668a2c9d4bbSAart Bik 
669a2c9d4bbSAart Bik /// Recursively generates tensor expression.
670a2c9d4bbSAart Bik static Value genExp(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
671a2c9d4bbSAart Bik                     linalg::GenericOp op, unsigned exp) {
672a2c9d4bbSAart Bik   if (merger.exp(exp).kind == Kind::kTensor)
673a2c9d4bbSAart Bik     return genTensorLoad(merger, codegen, rewriter, op, exp);
674a2c9d4bbSAart Bik   else if (merger.exp(exp).kind == Kind::kInvariant)
675a2c9d4bbSAart Bik     return genInvariantValue(merger, codegen, rewriter, exp);
676a2c9d4bbSAart Bik   Value v0 = genExp(merger, codegen, rewriter, op, merger.exp(exp).e0);
677a2c9d4bbSAart Bik   Value v1 = genExp(merger, codegen, rewriter, op, merger.exp(exp).e1);
678a2c9d4bbSAart Bik   switch (merger.exp(exp).kind) {
679a2c9d4bbSAart Bik   case Kind::kTensor:
680a2c9d4bbSAart Bik   case Kind::kInvariant:
681a2c9d4bbSAart Bik     llvm_unreachable("handled above");
682a2c9d4bbSAart Bik   case Kind::kMulF:
683a2c9d4bbSAart Bik     return rewriter.create<MulFOp>(op.getLoc(), v0, v1);
684a2c9d4bbSAart Bik   case Kind::kMulI:
685a2c9d4bbSAart Bik     return rewriter.create<MulIOp>(op.getLoc(), v0, v1);
686a2c9d4bbSAart Bik   case Kind::kAddF:
687a2c9d4bbSAart Bik     return rewriter.create<AddFOp>(op.getLoc(), v0, v1);
688a2c9d4bbSAart Bik   case Kind::kAddI:
689a2c9d4bbSAart Bik     return rewriter.create<AddIOp>(op.getLoc(), v0, v1);
690a2c9d4bbSAart Bik   }
691a2c9d4bbSAart Bik   llvm_unreachable("unexpected expression kind");
692a2c9d4bbSAart Bik }
693a2c9d4bbSAart Bik 
694a2c9d4bbSAart Bik /// Hoists loop invariant tensor loads for which indices have been exhausted.
695a2c9d4bbSAart Bik static void genInvariants(Merger &merger, CodeGen &codegen,
696a2c9d4bbSAart Bik                           PatternRewriter &rewriter, linalg::GenericOp op,
697a2c9d4bbSAart Bik                           unsigned exp, unsigned ldx, bool hoist) {
698a2c9d4bbSAart Bik   if (merger.exp(exp).kind == Kind::kTensor) {
699a2c9d4bbSAart Bik     // Inspect tensor indices.
700a2c9d4bbSAart Bik     bool atLevel = ldx == -1u;
701619bfe8bSAart Bik     OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).e0];
702619bfe8bSAart Bik     auto map = op.getTiedIndexingMap(t);
703619bfe8bSAart Bik     auto enc = getSparseTensorEncoding(t->get().getType());
704c194b49cSAart Bik     for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
705c194b49cSAart Bik       unsigned idx = map.getDimPosition(perm(enc, d));
706a2c9d4bbSAart Bik       if (!codegen.loops[idx])
707a2c9d4bbSAart Bik         return; // still in play
708a2c9d4bbSAart Bik       else if (idx == ldx)
709a2c9d4bbSAart Bik         atLevel = true;
710a2c9d4bbSAart Bik     }
711a2c9d4bbSAart Bik     // All exhausted at this level (atLevel denotes exactly at this level).
7122f2b5b7dSTobias Gysi     OpOperand *lhs = op.getOutputOperand(0);
713619bfe8bSAart Bik     if (lhs == t) {
714a2c9d4bbSAart Bik       codegen.redExp = hoist ? exp : -1u;
715a2c9d4bbSAart Bik     } else if (atLevel) {
716a2c9d4bbSAart Bik       merger.exp(exp).val =
717a2c9d4bbSAart Bik           hoist ? genTensorLoad(merger, codegen, rewriter, op, exp) : Value();
718a2c9d4bbSAart Bik     }
719a2c9d4bbSAart Bik   } else if (merger.exp(exp).kind != Kind::kInvariant) {
720a2c9d4bbSAart Bik     // Traverse into the binary operations. Note that we only hoist
721a2c9d4bbSAart Bik     // tensor loads, since subsequent MLIR/LLVM passes know how to
722a2c9d4bbSAart Bik     // deal with all other kinds of derived loop invariants.
723a2c9d4bbSAart Bik     unsigned e0 = merger.exp(exp).e0;
724a2c9d4bbSAart Bik     unsigned e1 = merger.exp(exp).e1;
725a2c9d4bbSAart Bik     genInvariants(merger, codegen, rewriter, op, e0, ldx, hoist);
726a2c9d4bbSAart Bik     genInvariants(merger, codegen, rewriter, op, e1, ldx, hoist);
727a2c9d4bbSAart Bik   }
728a2c9d4bbSAart Bik }
729a2c9d4bbSAart Bik 
730a2c9d4bbSAart Bik /// Generates initialization code for the subsequent loop sequence at
731a2c9d4bbSAart Bik /// current index level. Returns true if the loop sequence needs to
732a2c9d4bbSAart Bik /// maintain the universal index.
733a2c9d4bbSAart Bik static bool genInit(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
734a2c9d4bbSAart Bik                     linalg::GenericOp op, std::vector<unsigned> &topSort,
735a2c9d4bbSAart Bik                     unsigned at, llvm::BitVector &inits) {
736a2c9d4bbSAart Bik   bool needsUniv = false;
737a2c9d4bbSAart Bik   Location loc = op.getLoc();
738a2c9d4bbSAart Bik   unsigned idx = topSort[at];
739a2c9d4bbSAart Bik 
740a2c9d4bbSAart Bik   // Initialize sparse positions.
741a2c9d4bbSAart Bik   for (unsigned b = 0, be = inits.size(); b < be; b++) {
742a2c9d4bbSAart Bik     if (inits[b]) {
743a2c9d4bbSAart Bik       unsigned tensor = merger.tensor(b);
744a2c9d4bbSAart Bik       assert(idx == merger.index(b));
745a2c9d4bbSAart Bik       if (merger.isDim(b, Dim::kSparse)) {
746a2c9d4bbSAart Bik         // Initialize sparse index.
747a2c9d4bbSAart Bik         unsigned pat = at;
748a2c9d4bbSAart Bik         for (; pat != 0; pat--) {
749a2c9d4bbSAart Bik           if (codegen.pidxs[tensor][topSort[pat - 1]])
750a2c9d4bbSAart Bik             break;
751a2c9d4bbSAart Bik         }
752a2c9d4bbSAart Bik         Value ptr = codegen.pointers[tensor][idx];
753a2c9d4bbSAart Bik         Value one = rewriter.create<ConstantIndexOp>(loc, 1);
754a2c9d4bbSAart Bik         Value p0 = (pat == 0) ? rewriter.create<ConstantIndexOp>(loc, 0)
755a2c9d4bbSAart Bik                               : codegen.pidxs[tensor][topSort[pat - 1]];
756a2c9d4bbSAart Bik         codegen.pidxs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p0);
757a2c9d4bbSAart Bik         Value p1 = rewriter.create<AddIOp>(loc, p0, one);
758a2c9d4bbSAart Bik         codegen.highs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p1);
759a2c9d4bbSAart Bik       } else {
760a2c9d4bbSAart Bik         // Dense index still in play.
761a2c9d4bbSAart Bik         needsUniv = true;
762a2c9d4bbSAart Bik       }
763a2c9d4bbSAart Bik     }
764a2c9d4bbSAart Bik   }
765a2c9d4bbSAart Bik 
766a2c9d4bbSAart Bik   // Initialize the universal dense index.
767a2c9d4bbSAart Bik   codegen.loops[idx] = rewriter.create<ConstantIndexOp>(loc, 0);
768a2c9d4bbSAart Bik   return needsUniv;
769a2c9d4bbSAart Bik }
770a2c9d4bbSAart Bik 
771a2c9d4bbSAart Bik /// Returns vectorization strategy. Any implicit inner loop in the Linalg
772a2c9d4bbSAart Bik /// operation is a candidate. Whether it is actually converted to SIMD code
773a2c9d4bbSAart Bik /// depends on the requested strategy.
774a2c9d4bbSAart Bik static bool isVectorFor(CodeGen &codegen, bool isInner, bool isSparse) {
775a2c9d4bbSAart Bik   switch (codegen.options.vectorizationStrategy) {
776a2c9d4bbSAart Bik   case SparseVectorizationStrategy::kNone:
777a2c9d4bbSAart Bik     return false;
778a2c9d4bbSAart Bik   case SparseVectorizationStrategy::kDenseInnerLoop:
779a2c9d4bbSAart Bik     return isInner && !isSparse;
780a2c9d4bbSAart Bik   case SparseVectorizationStrategy::kAnyStorageInnerLoop:
781a2c9d4bbSAart Bik     return isInner;
782a2c9d4bbSAart Bik   }
783a2c9d4bbSAart Bik   llvm_unreachable("unexpected vectorization strategy");
784a2c9d4bbSAart Bik }
785a2c9d4bbSAart Bik 
786a2c9d4bbSAart Bik /// Returns parallelization strategy. Any implicit loop in the Linalg operation
787a2c9d4bbSAart Bik /// that is marked "parallel" is a candidate. Whether it is actually converted
788a2c9d4bbSAart Bik /// to a parallel operation depends on the requested strategy.
789a2c9d4bbSAart Bik static bool isParallelFor(CodeGen &codegen, bool isOuter, bool isReduction,
790a2c9d4bbSAart Bik                           bool isSparse, bool isVector) {
791a2c9d4bbSAart Bik   switch (codegen.options.parallelizationStrategy) {
792a2c9d4bbSAart Bik   case SparseParallelizationStrategy::kNone:
793a2c9d4bbSAart Bik     return false;
794a2c9d4bbSAart Bik   case SparseParallelizationStrategy::kDenseOuterLoop:
795a2c9d4bbSAart Bik     return isOuter && !isSparse && !isReduction && !isVector;
796a2c9d4bbSAart Bik   case SparseParallelizationStrategy::kAnyStorageOuterLoop:
797a2c9d4bbSAart Bik     return isOuter && !isReduction && !isVector;
798a2c9d4bbSAart Bik   case SparseParallelizationStrategy::kDenseAnyLoop:
799a2c9d4bbSAart Bik     return !isSparse && !isReduction && !isVector;
800a2c9d4bbSAart Bik   case SparseParallelizationStrategy::kAnyStorageAnyLoop:
801a2c9d4bbSAart Bik     return !isReduction && !isVector;
802a2c9d4bbSAart Bik   }
803a2c9d4bbSAart Bik   llvm_unreachable("unexpected parallelization strategy");
804a2c9d4bbSAart Bik }
805a2c9d4bbSAart Bik 
806a2c9d4bbSAart Bik /// Checks unit strides for dense tensors. The iteration graph may have ignored
807a2c9d4bbSAart Bik /// dense access patterns in order to avoid cycles (sparse access patterns are
808a2c9d4bbSAart Bik /// always placed innermost), but that means dense access has become strided.
809a2c9d4bbSAart Bik /// For now, we reject vectorization of such cases.
810a2c9d4bbSAart Bik /// TODO: implement strided load/stores on dense arrays
811a2c9d4bbSAart Bik static bool denseUnitStrides(Merger &merger, linalg::GenericOp op,
812a2c9d4bbSAart Bik                              unsigned idx) {
8132f2b5b7dSTobias Gysi   for (OpOperand *t : op.getInputAndOutputOperands()) {
8142f2b5b7dSTobias Gysi     if (!getSparseTensorEncoding(t->get().getType())) {
8152f2b5b7dSTobias Gysi       auto map = op.getTiedIndexingMap(t);
816c194b49cSAart Bik       for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
817c194b49cSAart Bik         if (map.getDimPosition(d) == idx && d != rank - 1)
818a2c9d4bbSAart Bik           return false;
819a2c9d4bbSAart Bik       }
820a2c9d4bbSAart Bik     }
821a2c9d4bbSAart Bik   }
822a2c9d4bbSAart Bik   return true;
823a2c9d4bbSAart Bik }
824a2c9d4bbSAart Bik 
825a2c9d4bbSAart Bik /// Generates a for-loop on a single index.
826a2c9d4bbSAart Bik static Operation *genFor(Merger &merger, CodeGen &codegen,
827a2c9d4bbSAart Bik                          PatternRewriter &rewriter, linalg::GenericOp op,
828a2c9d4bbSAart Bik                          bool isOuter, bool isInner, unsigned idx,
829a2c9d4bbSAart Bik                          llvm::BitVector &indices) {
830a2c9d4bbSAart Bik   unsigned fb = indices.find_first();
831a2c9d4bbSAart Bik   unsigned tensor = merger.tensor(fb);
832a2c9d4bbSAart Bik   assert(idx == merger.index(fb));
833a2c9d4bbSAart Bik   auto iteratorTypes = op.iterator_types().getValue();
834a2c9d4bbSAart Bik   bool isReduction = linalg::isReductionIteratorType(iteratorTypes[idx]);
835a2c9d4bbSAart Bik   bool isSparse = merger.isDim(fb, Dim::kSparse);
836a2c9d4bbSAart Bik   bool isVector = isVectorFor(codegen, isInner, isSparse) &&
837a2c9d4bbSAart Bik                   denseUnitStrides(merger, op, idx);
838a2c9d4bbSAart Bik   bool isParallel =
839a2c9d4bbSAart Bik       isParallelFor(codegen, isOuter, isReduction, isSparse, isVector);
840a2c9d4bbSAart Bik 
841a2c9d4bbSAart Bik   // Prepare vector length.
842a2c9d4bbSAart Bik   if (isVector)
843a2c9d4bbSAart Bik     codegen.curVecLength = codegen.options.vectorLength;
844a2c9d4bbSAart Bik 
845a2c9d4bbSAart Bik   // Loop bounds and increment.
846a2c9d4bbSAart Bik   Location loc = op.getLoc();
847a2c9d4bbSAart Bik   Value lo = isSparse ? codegen.pidxs[tensor][idx] : codegen.loops[idx];
848a2c9d4bbSAart Bik   Value hi = isSparse ? codegen.highs[tensor][idx] : codegen.sizes[idx];
849a2c9d4bbSAart Bik   Value step = rewriter.create<ConstantIndexOp>(loc, codegen.curVecLength);
850a2c9d4bbSAart Bik 
851a2c9d4bbSAart Bik   // Emit a parallel loop.
852a2c9d4bbSAart Bik   if (isParallel) {
853a2c9d4bbSAart Bik     assert(!isVector);
854a2c9d4bbSAart Bik     scf::ParallelOp parOp = rewriter.create<scf::ParallelOp>(loc, lo, hi, step);
855a2c9d4bbSAart Bik     if (isSparse)
856a2c9d4bbSAart Bik       codegen.pidxs[tensor][idx] = parOp.getInductionVars()[0];
857a2c9d4bbSAart Bik     else
858a2c9d4bbSAart Bik       codegen.loops[idx] = parOp.getInductionVars()[0];
859a2c9d4bbSAart Bik     rewriter.setInsertionPointToStart(parOp.getBody());
860a2c9d4bbSAart Bik     return parOp;
861a2c9d4bbSAart Bik   }
862a2c9d4bbSAart Bik 
863a2c9d4bbSAart Bik   // Emit a sequential loop, potentially with a scalarized reduction.
864a2c9d4bbSAart Bik   bool scalarRed = isInner && codegen.redExp != -1u;
865a2c9d4bbSAart Bik   SmallVector<Value, 4> operands;
866a2c9d4bbSAart Bik   if (scalarRed) {
867a2c9d4bbSAart Bik     Value load = genReductionStart(merger, codegen, rewriter, op);
868a2c9d4bbSAart Bik     operands.push_back(load);
869a2c9d4bbSAart Bik   }
870a2c9d4bbSAart Bik   scf::ForOp forOp = rewriter.create<scf::ForOp>(loc, lo, hi, step, operands);
871a2c9d4bbSAart Bik   if (scalarRed) {
872a2c9d4bbSAart Bik     codegen.redVal = merger.exp(codegen.redExp).val =
873a2c9d4bbSAart Bik         forOp.getRegionIterArgs().front();
874a2c9d4bbSAart Bik   }
875a2c9d4bbSAart Bik   // Assign induction variable to sparse or dense index.
876a2c9d4bbSAart Bik   Value iv = forOp.getInductionVar();
877a2c9d4bbSAart Bik   if (isSparse)
878a2c9d4bbSAart Bik     codegen.pidxs[tensor][idx] = iv;
879a2c9d4bbSAart Bik   else
880a2c9d4bbSAart Bik     codegen.loops[idx] = iv;
881a2c9d4bbSAart Bik   rewriter.setInsertionPointToStart(forOp.getBody());
882a2c9d4bbSAart Bik   // Share vector iteration mask between all subsequent loads/stores.
883a2c9d4bbSAart Bik   if (isVector)
884a2c9d4bbSAart Bik     codegen.curVecMask = genVectorMask(codegen, rewriter, iv, lo, hi, step);
885a2c9d4bbSAart Bik   return forOp;
886a2c9d4bbSAart Bik }
887a2c9d4bbSAart Bik 
888a2c9d4bbSAart Bik /// Emit a while-loop for co-iteration over multiple indices.
889a2c9d4bbSAart Bik static Operation *genWhile(Merger &merger, CodeGen &codegen,
890a2c9d4bbSAart Bik                            PatternRewriter &rewriter, linalg::GenericOp op,
891a2c9d4bbSAart Bik                            unsigned idx, bool needsUniv,
892a2c9d4bbSAart Bik                            llvm::BitVector &indices) {
893a2c9d4bbSAart Bik   SmallVector<Type, 4> types;
894a2c9d4bbSAart Bik   SmallVector<Value, 4> operands;
895a2c9d4bbSAart Bik   // Construct the while-loop with a parameter for each index.
896a2c9d4bbSAart Bik   Type indexType = rewriter.getIndexType();
897a2c9d4bbSAart Bik   for (unsigned b = 0, be = indices.size(); b < be; b++) {
898a2c9d4bbSAart Bik     if (indices[b] && merger.isDim(b, Dim::kSparse)) {
899a2c9d4bbSAart Bik       unsigned tensor = merger.tensor(b);
900a2c9d4bbSAart Bik       assert(idx == merger.index(b));
901a2c9d4bbSAart Bik       types.push_back(indexType);
902a2c9d4bbSAart Bik       assert(codegen.pidxs[tensor][idx].getType().isa<IndexType>() &&
903a2c9d4bbSAart Bik              "type mismatch for sparse index");
904a2c9d4bbSAart Bik       operands.push_back(codegen.pidxs[tensor][idx]);
905a2c9d4bbSAart Bik     }
906a2c9d4bbSAart Bik   }
907a2c9d4bbSAart Bik   if (needsUniv) {
908a2c9d4bbSAart Bik     types.push_back(indexType);
909a2c9d4bbSAart Bik     assert(codegen.loops[idx].getType().isa<IndexType>() &&
910a2c9d4bbSAart Bik            "type mismatch for universal index");
911a2c9d4bbSAart Bik     operands.push_back(codegen.loops[idx]);
912a2c9d4bbSAart Bik   }
913a2c9d4bbSAart Bik   Location loc = op.getLoc();
914a2c9d4bbSAart Bik   scf::WhileOp whileOp = rewriter.create<scf::WhileOp>(loc, types, operands);
915a2c9d4bbSAart Bik   Block *before = rewriter.createBlock(&whileOp.before(), {}, types);
916a2c9d4bbSAart Bik   Block *after = rewriter.createBlock(&whileOp.after(), {}, types);
917a2c9d4bbSAart Bik 
918a2c9d4bbSAart Bik   // Build the "before" region, which effectively consists
919a2c9d4bbSAart Bik   // of a conjunction of "i < upper" tests on all induction.
920a2c9d4bbSAart Bik   rewriter.setInsertionPointToStart(&whileOp.before().front());
921a2c9d4bbSAart Bik   Value cond;
922a2c9d4bbSAart Bik   unsigned o = 0;
923a2c9d4bbSAart Bik   for (unsigned b = 0, be = indices.size(); b < be; b++) {
924a2c9d4bbSAart Bik     if (indices[b] && merger.isDim(b, Dim::kSparse)) {
925a2c9d4bbSAart Bik       unsigned tensor = merger.tensor(b);
926a2c9d4bbSAart Bik       assert(idx == merger.index(b));
927a2c9d4bbSAart Bik       Value op1 = before->getArgument(o);
928a2c9d4bbSAart Bik       Value op2 = codegen.highs[tensor][idx];
929a2c9d4bbSAart Bik       Value opc = rewriter.create<CmpIOp>(loc, CmpIPredicate::ult, op1, op2);
930a2c9d4bbSAart Bik       cond = cond ? rewriter.create<AndOp>(loc, cond, opc) : opc;
931a2c9d4bbSAart Bik       codegen.pidxs[tensor][idx] = after->getArgument(o++);
932a2c9d4bbSAart Bik     }
933a2c9d4bbSAart Bik   }
934a2c9d4bbSAart Bik   if (needsUniv)
935a2c9d4bbSAart Bik     codegen.loops[idx] = after->getArgument(o++);
936a2c9d4bbSAart Bik   assert(o == operands.size());
937a2c9d4bbSAart Bik   rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments());
938a2c9d4bbSAart Bik   rewriter.setInsertionPointToStart(&whileOp.after().front());
939a2c9d4bbSAart Bik   return whileOp;
940a2c9d4bbSAart Bik }
941a2c9d4bbSAart Bik 
942a2c9d4bbSAart Bik /// Generates a for-loop or a while-loop, depending on whether it implements
943a2c9d4bbSAart Bik /// singleton iteration or co-iteration over the given conjunction.
944a2c9d4bbSAart Bik static Operation *genLoop(Merger &merger, CodeGen &codegen,
945a2c9d4bbSAart Bik                           PatternRewriter &rewriter, linalg::GenericOp op,
946a2c9d4bbSAart Bik                           std::vector<unsigned> &topSort, unsigned at,
947a2c9d4bbSAart Bik                           bool needsUniv, llvm::BitVector &indices) {
948a2c9d4bbSAart Bik   unsigned idx = topSort[at];
949a2c9d4bbSAart Bik   if (indices.count() == 1) {
950a2c9d4bbSAart Bik     bool isOuter = at == 0;
951a2c9d4bbSAart Bik     bool isInner = at == topSort.size() - 1;
952a2c9d4bbSAart Bik     return genFor(merger, codegen, rewriter, op, isOuter, isInner, idx,
953a2c9d4bbSAart Bik                   indices);
954a2c9d4bbSAart Bik   }
955a2c9d4bbSAart Bik   genReductionEnd(merger, codegen, rewriter, op); // cannot chain
956a2c9d4bbSAart Bik   return genWhile(merger, codegen, rewriter, op, idx, needsUniv, indices);
957a2c9d4bbSAart Bik }
958a2c9d4bbSAart Bik 
959a2c9d4bbSAart Bik /// Generates the local variables for this loop, consisting of the sparse
960a2c9d4bbSAart Bik /// indices, restored universal dense index, and dense positions.
961a2c9d4bbSAart Bik static void genLocals(Merger &merger, CodeGen &codegen,
962a2c9d4bbSAart Bik                       PatternRewriter &rewriter, linalg::GenericOp op,
963a2c9d4bbSAart Bik                       std::vector<unsigned> &topSort, unsigned at,
964a2c9d4bbSAart Bik                       bool needsUniv, llvm::BitVector &locals) {
965a2c9d4bbSAart Bik   Location loc = op.getLoc();
966a2c9d4bbSAart Bik   unsigned idx = topSort[at];
967a2c9d4bbSAart Bik 
968a2c9d4bbSAart Bik   // Initialize sparse indices.
969a2c9d4bbSAart Bik   Value min;
970a2c9d4bbSAart Bik   for (unsigned b = 0, be = locals.size(); b < be; b++) {
971a2c9d4bbSAart Bik     if (locals[b] && merger.isDim(b, Dim::kSparse)) {
972a2c9d4bbSAart Bik       unsigned tensor = merger.tensor(b);
973a2c9d4bbSAart Bik       assert(idx == merger.index(b));
974a2c9d4bbSAart Bik       Value ptr = codegen.indices[tensor][idx];
975a2c9d4bbSAart Bik       Value s = codegen.pidxs[tensor][idx];
976a2c9d4bbSAart Bik       Value load = genLoad(codegen, rewriter, loc, ptr, s);
977a2c9d4bbSAart Bik       codegen.idxs[tensor][idx] = load;
978a2c9d4bbSAart Bik       if (!needsUniv) {
979a2c9d4bbSAart Bik         if (min) {
980a2c9d4bbSAart Bik           Value cmp =
981a2c9d4bbSAart Bik               rewriter.create<CmpIOp>(loc, CmpIPredicate::ult, load, min);
982a2c9d4bbSAart Bik           min = rewriter.create<SelectOp>(loc, cmp, load, min);
983a2c9d4bbSAart Bik         } else {
984a2c9d4bbSAart Bik           min = load;
985a2c9d4bbSAart Bik         }
986a2c9d4bbSAart Bik       }
987a2c9d4bbSAart Bik     }
988a2c9d4bbSAart Bik   }
989a2c9d4bbSAart Bik 
990a2c9d4bbSAart Bik   // Merge dense universal index over minimum.
991a2c9d4bbSAart Bik   if (min) {
992a2c9d4bbSAart Bik     assert(!needsUniv);
993a2c9d4bbSAart Bik     codegen.loops[idx] = min;
994a2c9d4bbSAart Bik   }
995a2c9d4bbSAart Bik 
996727a63e0SAart Bik   // Initialize dense positions. Note that we generate dense indices of the
997727a63e0SAart Bik   // output tensor unconditionally, since they may not appear in the lattice,
998727a63e0SAart Bik   // but may be needed for linearized codegen.
999a2c9d4bbSAart Bik   for (unsigned b = 0, be = locals.size(); b < be; b++) {
1000727a63e0SAart Bik     if ((locals[b] || merger.isOutTensor(b, idx)) &&
1001727a63e0SAart Bik         merger.isDim(b, Dim::kDense)) {
1002a2c9d4bbSAart Bik       unsigned tensor = merger.tensor(b);
1003a2c9d4bbSAart Bik       assert(idx == merger.index(b));
1004a2c9d4bbSAart Bik       unsigned pat = at;
1005a2c9d4bbSAart Bik       for (; pat != 0; pat--)
1006a2c9d4bbSAart Bik         if (codegen.pidxs[tensor][topSort[pat - 1]])
1007a2c9d4bbSAart Bik           break;
1008a2c9d4bbSAart Bik       Value p = (pat == 0) ? rewriter.create<ConstantIndexOp>(loc, 0)
1009a2c9d4bbSAart Bik                            : codegen.pidxs[tensor][topSort[pat - 1]];
1010a2c9d4bbSAart Bik       codegen.pidxs[tensor][idx] = genAddress(
1011a2c9d4bbSAart Bik           codegen, rewriter, loc, codegen.sizes[idx], p, codegen.loops[idx]);
1012a2c9d4bbSAart Bik     }
1013a2c9d4bbSAart Bik   }
1014a2c9d4bbSAart Bik }
1015a2c9d4bbSAart Bik 
1016a2c9d4bbSAart Bik /// Generates the induction structure for a while-loop.
1017a2c9d4bbSAart Bik static void genWhileInduction(Merger &merger, CodeGen &codegen,
1018a2c9d4bbSAart Bik                               PatternRewriter &rewriter, linalg::GenericOp op,
1019a2c9d4bbSAart Bik                               unsigned idx, bool needsUniv,
1020a2c9d4bbSAart Bik                               llvm::BitVector &induction, ResultRange results) {
1021a2c9d4bbSAart Bik   Location loc = op.getLoc();
1022a2c9d4bbSAart Bik   unsigned o = 0;
1023a2c9d4bbSAart Bik   SmallVector<Value, 4> operands;
1024a2c9d4bbSAart Bik   Value one = rewriter.create<ConstantIndexOp>(loc, 1);
1025a2c9d4bbSAart Bik   for (unsigned b = 0, be = induction.size(); b < be; b++) {
1026a2c9d4bbSAart Bik     if (induction[b] && merger.isDim(b, Dim::kSparse)) {
1027a2c9d4bbSAart Bik       unsigned tensor = merger.tensor(b);
1028a2c9d4bbSAart Bik       assert(idx == merger.index(b));
1029a2c9d4bbSAart Bik       Value op1 = codegen.idxs[tensor][idx];
1030a2c9d4bbSAart Bik       Value op2 = codegen.loops[idx];
1031a2c9d4bbSAart Bik       Value op3 = codegen.pidxs[tensor][idx];
1032a2c9d4bbSAart Bik       Value cmp = rewriter.create<CmpIOp>(loc, CmpIPredicate::eq, op1, op2);
1033a2c9d4bbSAart Bik       Value add = rewriter.create<AddIOp>(loc, op3, one);
1034a2c9d4bbSAart Bik       operands.push_back(rewriter.create<SelectOp>(loc, cmp, add, op3));
1035a2c9d4bbSAart Bik       codegen.pidxs[tensor][idx] = results[o++];
1036a2c9d4bbSAart Bik     }
1037a2c9d4bbSAart Bik   }
1038a2c9d4bbSAart Bik   if (needsUniv) {
1039a2c9d4bbSAart Bik     operands.push_back(rewriter.create<AddIOp>(loc, codegen.loops[idx], one));
1040a2c9d4bbSAart Bik     codegen.loops[idx] = results[o++];
1041a2c9d4bbSAart Bik   }
1042a2c9d4bbSAart Bik   assert(o == operands.size());
1043a2c9d4bbSAart Bik   rewriter.create<scf::YieldOp>(loc, operands);
1044a2c9d4bbSAart Bik }
1045a2c9d4bbSAart Bik 
1046a2c9d4bbSAart Bik /// Generates a single if-statement within a while-loop.
1047a2c9d4bbSAart Bik static scf::IfOp genIf(Merger &merger, CodeGen &codegen,
1048a2c9d4bbSAart Bik                        PatternRewriter &rewriter, linalg::GenericOp op,
1049a2c9d4bbSAart Bik                        unsigned idx, llvm::BitVector &conditions) {
1050a2c9d4bbSAart Bik   Location loc = op.getLoc();
1051a2c9d4bbSAart Bik   Value cond;
1052a2c9d4bbSAart Bik   for (unsigned b = 0, be = conditions.size(); b < be; b++) {
1053a2c9d4bbSAart Bik     if (conditions[b]) {
1054a2c9d4bbSAart Bik       unsigned tensor = merger.tensor(b);
1055a2c9d4bbSAart Bik       assert(idx == merger.index(b));
1056a2c9d4bbSAart Bik       Value clause;
1057a2c9d4bbSAart Bik       if (merger.isDim(b, Dim::kSparse)) {
1058a2c9d4bbSAart Bik         Value op1 = codegen.idxs[tensor][idx];
1059a2c9d4bbSAart Bik         Value op2 = codegen.loops[idx];
1060a2c9d4bbSAart Bik         clause = rewriter.create<CmpIOp>(loc, CmpIPredicate::eq, op1, op2);
1061a2c9d4bbSAart Bik       } else {
1062a2c9d4bbSAart Bik         clause = rewriter.create<ConstantIntOp>(loc, 1, 1); // true
1063a2c9d4bbSAart Bik       }
1064a2c9d4bbSAart Bik       cond = cond ? rewriter.create<AndOp>(loc, cond, clause) : clause;
1065a2c9d4bbSAart Bik     }
1066a2c9d4bbSAart Bik   }
1067a2c9d4bbSAart Bik   scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, cond, /*else*/ true);
1068a2c9d4bbSAart Bik   rewriter.setInsertionPointToStart(&ifOp.thenRegion().front());
1069a2c9d4bbSAart Bik   return ifOp;
1070a2c9d4bbSAart Bik }
1071a2c9d4bbSAart Bik 
1072a2c9d4bbSAart Bik /// Recursively generates code while computing iteration lattices in order
1073a2c9d4bbSAart Bik /// to manage the complexity of implementing co-iteration over unions
1074a2c9d4bbSAart Bik /// and intersections of sparse iterations spaces.
1075a2c9d4bbSAart Bik static void genStmt(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
1076a2c9d4bbSAart Bik                     linalg::GenericOp op, std::vector<unsigned> &topSort,
1077a2c9d4bbSAart Bik                     unsigned exp, unsigned at) {
1078a2c9d4bbSAart Bik   // At each leaf, assign remaining tensor (sub)expression to output tensor.
1079a2c9d4bbSAart Bik   if (at == topSort.size()) {
10802f2b5b7dSTobias Gysi     OpOperand *lhs = op.getOutputOperand(0);
1081a2c9d4bbSAart Bik     Value rhs = genExp(merger, codegen, rewriter, op, exp);
1082a2c9d4bbSAart Bik     genTensorStore(merger, codegen, rewriter, op, lhs, rhs);
1083a2c9d4bbSAart Bik     return;
1084a2c9d4bbSAart Bik   }
1085a2c9d4bbSAart Bik   assert(codegen.curVecLength == 1);
1086a2c9d4bbSAart Bik 
1087a2c9d4bbSAart Bik   // Construct iteration lattices for current loop index, with L0 at top.
1088a2c9d4bbSAart Bik   // Then emit initialization code for the loop sequence at this level.
1089a2c9d4bbSAart Bik   // We maintain the universal dense index if dense indices are still
1090a2c9d4bbSAart Bik   // in play for a non-singleton loop sequence.
1091a2c9d4bbSAart Bik   Location loc = op.getLoc();
1092a2c9d4bbSAart Bik   unsigned idx = topSort[at];
1093*043ce4e6SGus Smith   unsigned lts = merger.optimizeSet(merger.buildLattices(exp, idx));
1094a2c9d4bbSAart Bik   unsigned lsize = merger.set(lts).size();
1095a2c9d4bbSAart Bik   assert(lsize != 0);
1096a2c9d4bbSAart Bik   unsigned l0 = merger.set(lts)[0];
1097a2c9d4bbSAart Bik   unsigned ldx = at == 0 ? -1u : topSort[at - 1];
1098a2c9d4bbSAart Bik   genInvariants(merger, codegen, rewriter, op, exp, ldx, /*hoist=*/true);
1099a2c9d4bbSAart Bik   bool needsUniv = false;
1100a2c9d4bbSAart Bik   if (genInit(merger, codegen, rewriter, op, topSort, at,
1101a2c9d4bbSAart Bik               merger.lat(l0).bits)) {
1102a2c9d4bbSAart Bik     // Maintain the universal index only if it is actually
1103a2c9d4bbSAart Bik     // consumed by a subsequent lattice point.
1104a2c9d4bbSAart Bik     for (unsigned i = 1; i < lsize; i++) {
1105a2c9d4bbSAart Bik       unsigned li = merger.set(lts)[i];
1106a2c9d4bbSAart Bik       if (!merger.hasAnyDimOf(merger.lat(li).simple, Dim::kSparse)) {
1107a2c9d4bbSAart Bik         needsUniv = true;
1108a2c9d4bbSAart Bik         break;
1109a2c9d4bbSAart Bik       }
1110a2c9d4bbSAart Bik     }
1111a2c9d4bbSAart Bik   }
1112a2c9d4bbSAart Bik 
1113a2c9d4bbSAart Bik   // Emit a loop for every lattice point L0 >= Li.
1114a2c9d4bbSAart Bik   for (unsigned i = 0; i < lsize; i++) {
1115a2c9d4bbSAart Bik     unsigned li = merger.set(lts)[i];
1116a2c9d4bbSAart Bik 
1117a2c9d4bbSAart Bik     // Emit loop.
1118a2c9d4bbSAart Bik     codegen.curVecLength = 1;
1119a2c9d4bbSAart Bik     llvm::BitVector indices = merger.lat(li).simple;
1120a2c9d4bbSAart Bik     Operation *loop =
1121a2c9d4bbSAart Bik         genLoop(merger, codegen, rewriter, op, topSort, at, needsUniv, indices);
1122a2c9d4bbSAart Bik     genLocals(merger, codegen, rewriter, op, topSort, at, needsUniv,
1123a2c9d4bbSAart Bik               merger.lat(li).bits);
1124a2c9d4bbSAart Bik 
1125a2c9d4bbSAart Bik     // Visit all lattices points with Li >= Lj to generate the
1126a2c9d4bbSAart Bik     // loop-body, possibly with if statements for coiteration.
1127a2c9d4bbSAart Bik     bool isWhile = dyn_cast<scf::WhileOp>(loop) != nullptr;
1128a2c9d4bbSAart Bik     for (unsigned j = 0; j < lsize; j++) {
1129a2c9d4bbSAart Bik       unsigned lj = merger.set(lts)[j];
1130a2c9d4bbSAart Bik       unsigned ej = merger.lat(lj).exp;
1131a2c9d4bbSAart Bik       if (li == lj || merger.latGT(li, lj)) {
1132a2c9d4bbSAart Bik         // Recurse into body of each branch.
1133a2c9d4bbSAart Bik         if (isWhile) {
1134a2c9d4bbSAart Bik           scf::IfOp ifOp =
1135a2c9d4bbSAart Bik               genIf(merger, codegen, rewriter, op, idx, merger.lat(lj).simple);
1136a2c9d4bbSAart Bik           genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1);
1137a2c9d4bbSAart Bik           rewriter.setInsertionPointToStart(&ifOp.elseRegion().front());
1138a2c9d4bbSAart Bik         } else {
1139a2c9d4bbSAart Bik           genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1);
1140a2c9d4bbSAart Bik         }
1141a2c9d4bbSAart Bik       }
1142a2c9d4bbSAart Bik     }
1143a2c9d4bbSAart Bik 
1144a2c9d4bbSAart Bik     // Wrap-up induction and restore insertion point.
1145a2c9d4bbSAart Bik     if (isWhile) {
1146a2c9d4bbSAart Bik       scf::WhileOp whileOp = cast<scf::WhileOp>(loop);
1147a2c9d4bbSAart Bik       rewriter.setInsertionPointToEnd(&whileOp.after().front());
1148a2c9d4bbSAart Bik       genWhileInduction(merger, codegen, rewriter, op, idx, needsUniv,
1149a2c9d4bbSAart Bik                         merger.lat(li).bits, whileOp.results());
1150a2c9d4bbSAart Bik     } else {
1151a2c9d4bbSAart Bik       needsUniv = false;
1152a2c9d4bbSAart Bik       if (codegen.redVal) {
1153a2c9d4bbSAart Bik         rewriter.create<scf::YieldOp>(loc, codegen.redVal);
1154a2c9d4bbSAart Bik         codegen.redVal = loop->getResult(0);
1155a2c9d4bbSAart Bik       }
1156a2c9d4bbSAart Bik     }
1157a2c9d4bbSAart Bik     rewriter.setInsertionPointAfter(loop);
1158a2c9d4bbSAart Bik   }
1159a2c9d4bbSAart Bik 
1160a2c9d4bbSAart Bik   // Wrap-up loop sequence.
1161a2c9d4bbSAart Bik   codegen.curVecLength = 1;
1162a2c9d4bbSAart Bik   genReductionEnd(merger, codegen, rewriter, op);
1163a2c9d4bbSAart Bik   genInvariants(merger, codegen, rewriter, op, exp, ldx, /*hoist=*/false);
1164a2c9d4bbSAart Bik   codegen.loops[idx] = Value();
1165a2c9d4bbSAart Bik }
1166a2c9d4bbSAart Bik 
1167727a63e0SAart Bik /// Converts the result computed by the sparse kernel into the required form.
116836b66ab9SAart Bik static void genResult(Merger &merger, CodeGen &codegen,
116936b66ab9SAart Bik                       PatternRewriter &rewriter, linalg::GenericOp op) {
117036b66ab9SAart Bik   Location loc = op.getLoc();
117136b66ab9SAart Bik   OpOperand *lhs = op.getOutputOperand(0);
117236b66ab9SAart Bik   Type resType = lhs->get().getType();
117336b66ab9SAart Bik   unsigned tensor = lhs->getOperandNumber();
117436b66ab9SAart Bik   auto map = op.getTiedIndexingMap(lhs);
117536b66ab9SAart Bik   auto enc = getSparseTensorEncoding(resType);
117636b66ab9SAart Bik   Value result = codegen.buffers.back(); // value array
117736b66ab9SAart Bik   if (enc) {
117836b66ab9SAart Bik     // The sparse annotation unambigiously defines the arrays needed
117936b66ab9SAart Bik     // to "reconstruct" the sparse tensor from the storage scheme
118036b66ab9SAart Bik     // (even though lowering should never need this eventually).
118136b66ab9SAart Bik     SmallVector<Value, 4> args;
118236b66ab9SAart Bik     for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
118336b66ab9SAart Bik       unsigned idx = map.getDimPosition(perm(enc, d));
118436b66ab9SAart Bik       if (merger.isDim(tensor, idx, Dim::kSparse)) {
118536b66ab9SAart Bik         args.push_back(codegen.pointers[tensor][idx]);
118636b66ab9SAart Bik         args.push_back(codegen.indices[tensor][idx]);
118736b66ab9SAart Bik       }
118836b66ab9SAart Bik     }
118936b66ab9SAart Bik     args.push_back(result);
119036b66ab9SAart Bik     result = rewriter.create<ToTensorOp>(loc, resType, args);
119136b66ab9SAart Bik   } else {
119236b66ab9SAart Bik     // To "reconstruct" an non-annotated tensor, sipmly load it
119336b66ab9SAart Bik     // from the bufferized value.
119436b66ab9SAart Bik     result = rewriter.create<memref::TensorLoadOp>(loc, resType, result);
119536b66ab9SAart Bik   }
1196727a63e0SAart Bik   rewriter.replaceOp(op, result);
1197727a63e0SAart Bik }
1198727a63e0SAart Bik 
1199a2c9d4bbSAart Bik namespace {
1200a2c9d4bbSAart Bik 
1201a2c9d4bbSAart Bik /// Sparse rewriting rule for generic Lingalg operation.
1202a2c9d4bbSAart Bik struct GenericOpSparsifier : public OpRewritePattern<linalg::GenericOp> {
1203a2c9d4bbSAart Bik public:
1204a2c9d4bbSAart Bik   GenericOpSparsifier(MLIRContext *context, SparsificationOptions o)
1205a2c9d4bbSAart Bik       : OpRewritePattern<linalg::GenericOp>(context), options(o) {}
1206a2c9d4bbSAart Bik 
1207a2c9d4bbSAart Bik   LogicalResult matchAndRewrite(linalg::GenericOp op,
1208a2c9d4bbSAart Bik                                 PatternRewriter &rewriter) const override {
1209a2c9d4bbSAart Bik     // Detects sparse annotations and translate the per-dimension sparsity
1210a2c9d4bbSAart Bik     // information for all tensors to loop indices in the kernel.
1211a2c9d4bbSAart Bik     assert(op.getNumOutputs() == 1);
12122f2b5b7dSTobias Gysi     unsigned numTensors = op.getNumInputsAndOutputs();
1213a2c9d4bbSAart Bik     unsigned numLoops = op.iterator_types().getValue().size();
1214a2c9d4bbSAart Bik     Merger merger(numTensors, numLoops);
1215bf9ef3efSAart Bik     if (!findSparseAnnotations(merger, op))
1216bf9ef3efSAart Bik       return failure();
1217a2c9d4bbSAart Bik 
1218a2c9d4bbSAart Bik     // Computes a topologically sorted iteration graph to ensure
1219a2c9d4bbSAart Bik     // tensors are visited in natural index order. Fails on cycles.
1220a2c9d4bbSAart Bik     // This assumes that higher-level passes have already put the
1221a2c9d4bbSAart Bik     // tensors in each tensor expression in a feasible order.
1222a2c9d4bbSAart Bik     std::vector<unsigned> topSort;
1223a2c9d4bbSAart Bik     if (!computeIterationGraph(merger, op, topSort, /*sparseOnly=*/false) &&
1224a2c9d4bbSAart Bik         !computeIterationGraph(merger, op, topSort, /*sparseOnly=*/true))
1225a2c9d4bbSAart Bik       return failure();
1226a2c9d4bbSAart Bik 
1227a2c9d4bbSAart Bik     // Finds the terminating yield statement and builds the tensor
1228a2c9d4bbSAart Bik     // expression for the Linalg operation in SSA form.
1229a2c9d4bbSAart Bik     Operation *yield = op.region().front().getTerminator();
1230a2c9d4bbSAart Bik     Optional<unsigned> exp = buildTensorExp(merger, op, yield->getOperand(0));
1231a2c9d4bbSAart Bik     if (!exp.hasValue())
1232a2c9d4bbSAart Bik       return failure(); // build failure
1233a2c9d4bbSAart Bik 
123436b66ab9SAart Bik     // Reject an inadmissable tensor expression.
123536b66ab9SAart Bik     if (!isAdmissableTensorExp(merger, op, exp.getValue()))
123636b66ab9SAart Bik       return failure();
123736b66ab9SAart Bik 
1238a2c9d4bbSAart Bik     // Recursively generates code.
1239a2c9d4bbSAart Bik     CodeGen codegen(options, numTensors, numLoops);
1240727a63e0SAart Bik     if (!genBuffers(merger, codegen, rewriter, op))
1241727a63e0SAart Bik       return failure(); // could not bufferize
1242a2c9d4bbSAart Bik     genStmt(merger, codegen, rewriter, op, topSort, exp.getValue(), 0);
124336b66ab9SAart Bik     genResult(merger, codegen, rewriter, op);
1244a2c9d4bbSAart Bik     return success();
1245a2c9d4bbSAart Bik   }
1246a2c9d4bbSAart Bik 
1247a2c9d4bbSAart Bik private:
1248a2c9d4bbSAart Bik   /// Options to control sparse code generation.
1249a2c9d4bbSAart Bik   SparsificationOptions options;
1250a2c9d4bbSAart Bik };
1251a2c9d4bbSAart Bik 
1252a2c9d4bbSAart Bik } // namespace
1253a2c9d4bbSAart Bik 
1254a2c9d4bbSAart Bik /// Populates the given patterns list with rewriting rules required for
1255a2c9d4bbSAart Bik /// the sparsification of linear algebra operations.
1256a2c9d4bbSAart Bik void mlir::populateSparsificationPatterns(
1257a2c9d4bbSAart Bik     RewritePatternSet &patterns, const SparsificationOptions &options) {
1258a2c9d4bbSAart Bik   patterns.add<GenericOpSparsifier>(patterns.getContext(), options);
1259a2c9d4bbSAart Bik }
1260