196a23911SAart Bik //===- Sparsification.cpp - Implementation of sparsification --------------===//
2a2c9d4bbSAart Bik //
3a2c9d4bbSAart Bik // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4a2c9d4bbSAart Bik // See https://llvm.org/LICENSE.txt for license information.
5a2c9d4bbSAart Bik // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6a2c9d4bbSAart Bik //
7a2c9d4bbSAart Bik //===----------------------------------------------------------------------===//
8a2c9d4bbSAart Bik //
9160399c7SAart Bik // This file implements converting sparse tensor types to actual sparse code.
10a2c9d4bbSAart Bik //
11a2c9d4bbSAart Bik //===----------------------------------------------------------------------===//
12a2c9d4bbSAart Bik 
1385b8d03eSwren romano #include "CodegenUtils.h"
1453cc3a06SAart Bik 
1576a18618SMatthias Springer #include "mlir/Dialect/Affine/IR/AffineOps.h"
16a54f4eaeSMogball #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
177a1579acSMatthias Springer #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
1857470abcSAlexander Belyaev #include "mlir/Dialect/Bufferization/IR/Bufferization.h"
1936550692SRiver Riddle #include "mlir/Dialect/Func/IR/FuncOps.h"
2063015742SJavier Setoain #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
21b7f2c108Sgysit #include "mlir/Dialect/Linalg/IR/Linalg.h"
22a2c9d4bbSAart Bik #include "mlir/Dialect/Linalg/Utils/Utils.h"
2366f878ceSMatthias Springer #include "mlir/Dialect/MemRef/IR/MemRef.h"
248b68da2cSAlex Zinenko #include "mlir/Dialect/SCF/IR/SCF.h"
258b68da2cSAlex Zinenko #include "mlir/Dialect/SCF/Transforms/Transforms.h"
26a2c9d4bbSAart Bik #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
27a2c9d4bbSAart Bik #include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
28744146f6SGus Smith #include "mlir/Dialect/SparseTensor/Utils/Merger.h"
296d8e2f1eSAart Bik #include "mlir/Dialect/Tensor/IR/Tensor.h"
3099ef9eebSMatthias Springer #include "mlir/Dialect/Vector/IR/VectorOps.h"
31a2c9d4bbSAart Bik #include "mlir/IR/Matchers.h"
3296a23911SAart Bik #include "mlir/IR/TensorEncoding.h"
33a2c9d4bbSAart Bik #include "llvm/ADT/SmallBitVector.h"
34a2c9d4bbSAart Bik 
35a2c9d4bbSAart Bik using namespace mlir;
3696a23911SAart Bik using namespace mlir::sparse_tensor;
37a2c9d4bbSAart Bik 
385da21338SAart Bik //===----------------------------------------------------------------------===//
395da21338SAart Bik // Declarations of data structures.
405da21338SAart Bik //===----------------------------------------------------------------------===//
415da21338SAart Bik 
42a2c9d4bbSAart Bik namespace {
43a2c9d4bbSAart Bik 
44b6d1a31cSAart Bik // Iteration graph sorting.
45e057f25dSAart Bik enum SortMask {
46e057f25dSAart Bik   kSparseOnly = 0x0,
47e057f25dSAart Bik   kIncludeDense = 0x1,
48e057f25dSAart Bik   kIncludeUndef = 0x2,
49e057f25dSAart Bik   kIncludeAll = 0x3
50e057f25dSAart Bik };
51b6d1a31cSAart Bik 
525da21338SAart Bik // Reduction kinds.
537373cabcSAart Bik enum Reduction { kNoReduc, kSum, kProduct, kAnd, kOr, kXor };
545da21338SAart Bik 
55a2c9d4bbSAart Bik // Code generation.
56a2c9d4bbSAart Bik struct CodeGen {
CodeGen__anon3f2435730111::CodeGen57f66e5769SAart Bik   CodeGen(SparsificationOptions o, unsigned numTensors, unsigned numLoops,
587d4da4e1SAart Bik           OpOperand *op, unsigned nest)
59a2c9d4bbSAart Bik       : options(o), loops(numLoops), sizes(numLoops), buffers(numTensors),
60a2c9d4bbSAart Bik         pointers(numTensors, std::vector<Value>(numLoops)),
61a2c9d4bbSAart Bik         indices(numTensors, std::vector<Value>(numLoops)),
62a2c9d4bbSAart Bik         highs(numTensors, std::vector<Value>(numLoops)),
63a2c9d4bbSAart Bik         pidxs(numTensors, std::vector<Value>(numLoops)),
64671e30a1SMehdi Amini         idxs(numTensors, std::vector<Value>(numLoops)), redVal(), sparseOut(op),
65aef20f59SAart Bik         outerParNest(nest), lexIdx(), lexVal(), expValues(), expFilled(),
66aef20f59SAart Bik         expAdded(), expCount(), curVecMask() {}
67a2c9d4bbSAart Bik   /// Sparsification options.
6896a23911SAart Bik   SparsificationOptions options;
69a2c9d4bbSAart Bik   /// Universal dense indices and upper bounds (by index). The loops array
70a2c9d4bbSAart Bik   /// is updated with the value of the universal dense index in the current
71a2c9d4bbSAart Bik   /// loop. The sizes array is set once with the inferred dimension sizes.
72a2c9d4bbSAart Bik   std::vector<Value> loops;
73a2c9d4bbSAart Bik   std::vector<Value> sizes;
74a2c9d4bbSAart Bik   /// Buffers for storing dense and sparse numerical values (by tensor).
75a2c9d4bbSAart Bik   /// This array is set once during bufferization of all tensors.
76a2c9d4bbSAart Bik   std::vector<Value> buffers;
77a2c9d4bbSAart Bik   /// Sparse storage schemes (1-D): pointers and indices (by tensor and index).
78a2c9d4bbSAart Bik   /// This array is set once during bufferization of all sparse tensors.
79a2c9d4bbSAart Bik   std::vector<std::vector<Value>> pointers;
80a2c9d4bbSAart Bik   std::vector<std::vector<Value>> indices;
81a2c9d4bbSAart Bik   /// Sparse iteration information (by tensor and index). These arrays
82a2c9d4bbSAart Bik   /// are updated to remain current within the current loop.
83a2c9d4bbSAart Bik   std::vector<std::vector<Value>> highs;
84a2c9d4bbSAart Bik   std::vector<std::vector<Value>> pidxs;
85a2c9d4bbSAart Bik   std::vector<std::vector<Value>> idxs;
86a2c9d4bbSAart Bik   /// Current reduction, updated during code generation. When indices of a
877373cabcSAart Bik   /// reduction are exhausted, all inner loops can use a scalarized reduction.
88671e30a1SMehdi Amini   unsigned redExp = -1u;
89a2c9d4bbSAart Bik   Value redVal;
90671e30a1SMehdi Amini   Reduction redKind = kNoReduc;
917d4da4e1SAart Bik   // Sparse tensor as output. Implemented either through direct injective
927d4da4e1SAart Bik   // insertion in lexicographic index order (where indices are updated
934f2ec7f9SAart Bik   // in the temporary array `lexIdx`) or through access pattern expansion
944f2ec7f9SAart Bik   // in the innermost loop nest (`expValues` through `expCount`).
95f66e5769SAart Bik   OpOperand *sparseOut;
967d4da4e1SAart Bik   unsigned outerParNest;
97f66e5769SAart Bik   Value lexIdx;
98aef20f59SAart Bik   Value lexVal;
994f2ec7f9SAart Bik   Value expValues;
1004f2ec7f9SAart Bik   Value expFilled;
1014f2ec7f9SAart Bik   Value expAdded;
1024f2ec7f9SAart Bik   Value expCount;
103a2c9d4bbSAart Bik   // Current vector length and mask.
104671e30a1SMehdi Amini   unsigned curVecLength = 1;
105a2c9d4bbSAart Bik   Value curVecMask;
106a2c9d4bbSAart Bik };
107a2c9d4bbSAart Bik 
108a2c9d4bbSAart Bik } // namespace
109a2c9d4bbSAart Bik 
1105da21338SAart Bik //===----------------------------------------------------------------------===//
1115da21338SAart Bik // Sparse compiler analysis methods.
1125da21338SAart Bik //===----------------------------------------------------------------------===//
1135da21338SAart Bik 
114e057f25dSAart Bik /// Helper method to construct a permuted dimension ordering
115e057f25dSAart Bik /// that adheres to the given topological sort.
permute(MLIRContext * context,AffineMap m,std::vector<unsigned> & topSort)116e057f25dSAart Bik static AffineMap permute(MLIRContext *context, AffineMap m,
117e057f25dSAart Bik                          std::vector<unsigned> &topSort) {
118e057f25dSAart Bik   unsigned sz = topSort.size();
119875ee0edSwren romano   assert(m.getNumResults() == sz && "TopoSort/AffineMap size mismatch");
120875ee0edSwren romano   // Construct the inverse of `m`; to avoid the asymptotic complexity
121875ee0edSwren romano   // of calling `m.getPermutedPosition` repeatedly.
122875ee0edSwren romano   SmallVector<unsigned, 4> inv(sz);
123875ee0edSwren romano   for (unsigned i = 0; i < sz; i++)
124875ee0edSwren romano     inv[i] = m.getDimPosition(i);
125875ee0edSwren romano   // Construct the permutation.
126e057f25dSAart Bik   SmallVector<unsigned, 4> perm(sz);
127e057f25dSAart Bik   for (unsigned i = 0; i < sz; i++)
128875ee0edSwren romano     perm[i] = inv[topSort[i]];
129e057f25dSAart Bik   return AffineMap::getPermutationMap(perm, context);
130e057f25dSAart Bik }
131e057f25dSAart Bik 
1325da21338SAart Bik /// Helper method to apply dimension ordering permutation.
perm(const SparseTensorEncodingAttr & enc,unsigned d)1335da21338SAart Bik static unsigned perm(const SparseTensorEncodingAttr &enc, unsigned d) {
134c194b49cSAart Bik   if (enc) {
135c194b49cSAart Bik     auto order = enc.getDimOrdering();
136c194b49cSAart Bik     if (order) {
137c194b49cSAart Bik       assert(order.isPermutation());
138c194b49cSAart Bik       return order.getDimPosition(d);
139c194b49cSAart Bik     }
140c194b49cSAart Bik   }
141c194b49cSAart Bik   return d;
142c194b49cSAart Bik }
143c194b49cSAart Bik 
1445da21338SAart Bik /// Helper method to translate dim level type to internal representation.
toDim(const SparseTensorEncodingAttr & enc,unsigned d)1455da21338SAart Bik static Dim toDim(const SparseTensorEncodingAttr &enc, unsigned d) {
14696a23911SAart Bik   if (enc) {
14796a23911SAart Bik     SparseTensorEncodingAttr::DimLevelType tp = enc.getDimLevelType()[d];
14896a23911SAart Bik     if (tp == SparseTensorEncodingAttr::DimLevelType::Compressed)
14996a23911SAart Bik       return Dim::kSparse;
15096a23911SAart Bik     if (tp == SparseTensorEncodingAttr::DimLevelType::Singleton)
15196a23911SAart Bik       return Dim::kSingle;
15296a23911SAart Bik   }
15396a23911SAart Bik   return Dim::kDense;
15496a23911SAart Bik }
15596a23911SAart Bik 
156b1d44e59SAart Bik /// Helper method to inspect affine expressions. Rejects cases where the
157c8d5dcb0SAart Bik /// same index is used more than once. Also rejects affine expressions
158c8d5dcb0SAart Bik /// that are not a direct index for annotated tensors.
159c8d5dcb0SAart Bik // TODO: accept more affine cases for sparse tensors
findAffine(Merger & merger,unsigned tensor,AffineExpr a,Dim dim,bool isDense)160b1d44e59SAart Bik static bool findAffine(Merger &merger, unsigned tensor, AffineExpr a, Dim dim,
161b1d44e59SAart Bik                        bool isDense) {
162b1d44e59SAart Bik   switch (a.getKind()) {
163b1d44e59SAart Bik   case AffineExprKind::DimId: {
164b1d44e59SAart Bik     unsigned idx = a.cast<AffineDimExpr>().getPosition();
165b1d44e59SAart Bik     if (!merger.isDim(tensor, idx, Dim::kUndef))
166b1d44e59SAart Bik       return false; // used more than once
167b1d44e59SAart Bik     merger.setDim(tensor, idx, dim);
168b1d44e59SAart Bik     return true;
169b1d44e59SAart Bik   }
170b1d44e59SAart Bik   case AffineExprKind::Add:
171b1d44e59SAart Bik   case AffineExprKind::Mul: {
172b1d44e59SAart Bik     if (!isDense)
173b1d44e59SAart Bik       return false;
174b1d44e59SAart Bik     auto binOp = a.cast<AffineBinaryOpExpr>();
175b1d44e59SAart Bik     return findAffine(merger, tensor, binOp.getLHS(), dim, isDense) &&
176b1d44e59SAart Bik            findAffine(merger, tensor, binOp.getRHS(), dim, isDense);
177b1d44e59SAart Bik   }
178b1d44e59SAart Bik   case AffineExprKind::Constant:
179b1d44e59SAart Bik     return isDense;
180b1d44e59SAart Bik   default:
181b1d44e59SAart Bik     return false;
182b1d44e59SAart Bik   }
183b1d44e59SAart Bik }
184b1d44e59SAart Bik 
18596a23911SAart Bik /// Helper method to inspect sparse encodings in the tensor types.
186a2c9d4bbSAart Bik /// Fills the per-dimension sparsity information for all tensors.
187b1d44e59SAart Bik /// Returns true if the sparse annotations and affine subscript
188b1d44e59SAart Bik /// expressions of all tensors are admissable. Returns false if
189b1d44e59SAart Bik /// no annotations are found or inadmissable constructs occur.
findSparseAnnotations(Merger & merger,linalg::GenericOp op)190bf9ef3efSAart Bik static bool findSparseAnnotations(Merger &merger, linalg::GenericOp op) {
191bf9ef3efSAart Bik   bool annotated = false;
1922f2b5b7dSTobias Gysi   for (OpOperand *t : op.getInputAndOutputOperands()) {
1932f2b5b7dSTobias Gysi     auto map = op.getTiedIndexingMap(t);
1942f2b5b7dSTobias Gysi     auto enc = getSparseTensorEncoding(t->get().getType());
195727a63e0SAart Bik     if (enc)
196bf9ef3efSAart Bik       annotated = true;
1972f2b5b7dSTobias Gysi     assert(map.getNumResults() == op.getRank(t));
198c194b49cSAart Bik     for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
199b1d44e59SAart Bik       unsigned tensor = t->getOperandNumber();
200b1d44e59SAart Bik       AffineExpr a = map.getResult(perm(enc, d));
201b1d44e59SAart Bik       if (!findAffine(merger, tensor, a, toDim(enc, d), !enc))
202b1d44e59SAart Bik         return false; // inadmissable affine expression
203a2c9d4bbSAart Bik     }
204a2c9d4bbSAart Bik   }
205bf9ef3efSAart Bik   return annotated;
206a2c9d4bbSAart Bik }
207a2c9d4bbSAart Bik 
208a2c9d4bbSAart Bik /// A DFS helper to compute a topological sort. Note that recursion is
209a2c9d4bbSAart Bik /// bounded by the number of implicit loops, which is always small.
210a2c9d4bbSAart Bik /// Returns false when a cycle is detected.
topSortDFS(unsigned i,std::vector<unsigned> & visit,std::vector<unsigned> & topSort,std::vector<std::vector<bool>> & adjM)211a2c9d4bbSAart Bik static bool topSortDFS(unsigned i, std::vector<unsigned> &visit,
212a2c9d4bbSAart Bik                        std::vector<unsigned> &topSort,
213a2c9d4bbSAart Bik                        std::vector<std::vector<bool>> &adjM) {
214a2c9d4bbSAart Bik   if (visit[i] != 0)
215a2c9d4bbSAart Bik     return visit[i] != 1; // 1 denotes cycle!
216a2c9d4bbSAart Bik   visit[i] = 1;
217a2c9d4bbSAart Bik   for (unsigned j = 0, e = visit.size(); j < e; j++)
218a2c9d4bbSAart Bik     if (adjM[i][j])
219a2c9d4bbSAart Bik       if (!topSortDFS(j, visit, topSort, adjM))
220a2c9d4bbSAart Bik         return false;
221a2c9d4bbSAart Bik   visit[i] = 2;
222a2c9d4bbSAart Bik   topSort.push_back(i);
223a2c9d4bbSAart Bik   return true;
224a2c9d4bbSAart Bik }
225a2c9d4bbSAart Bik 
226b1d44e59SAart Bik /// Helper method to add all constraints from the indices in one affine
227b1d44e59SAart Bik /// expression before all indices in the other affine expression. For
228b1d44e59SAart Bik /// example i0+i1 < i2+i3+1 yields i0<i2, i0<i3, i1<i2, and i1<i3.
addAffineOrderings(std::vector<std::vector<bool>> & adjM,AffineExpr a,AffineExpr b,unsigned fidx)229b1d44e59SAart Bik static void addAffineOrderings(std::vector<std::vector<bool>> &adjM,
230b1d44e59SAart Bik                                AffineExpr a, AffineExpr b, unsigned fidx) {
231b1d44e59SAart Bik   switch (a.getKind()) {
232b1d44e59SAart Bik   case AffineExprKind::DimId: {
233b1d44e59SAart Bik     unsigned idx = a.cast<AffineDimExpr>().getPosition();
234b1d44e59SAart Bik     if (b)
235b1d44e59SAart Bik       addAffineOrderings(adjM, b, AffineExpr(), idx);
236b1d44e59SAart Bik     else
237b1d44e59SAart Bik       adjM[fidx][idx] = true;
238b1d44e59SAart Bik     break;
239b1d44e59SAart Bik   }
240b1d44e59SAart Bik   case AffineExprKind::Add:
241b1d44e59SAart Bik   case AffineExprKind::Mul: {
242b1d44e59SAart Bik     auto binOp = a.cast<AffineBinaryOpExpr>();
243b1d44e59SAart Bik     addAffineOrderings(adjM, binOp.getLHS(), b, fidx);
244b1d44e59SAart Bik     addAffineOrderings(adjM, binOp.getRHS(), b, fidx);
245b1d44e59SAart Bik     break;
246b1d44e59SAart Bik   }
247b1d44e59SAart Bik   default:
248b1d44e59SAart Bik     break;
249b1d44e59SAart Bik   }
250b1d44e59SAart Bik }
251b1d44e59SAart Bik 
252a2c9d4bbSAart Bik /// Computes a topologically sorted iteration graph for the linalg operation.
253a2c9d4bbSAart Bik /// Ensures all tensors are visited in natural index order. This is essential
254a2c9d4bbSAart Bik /// for sparse storage formats since these only support access along fixed
255a2c9d4bbSAart Bik /// dimensions. Even for dense storage formats, however, the natural index
256a2c9d4bbSAart Bik /// order yields innermost unit-stride access with better spatial locality.
computeIterationGraph(Merger & merger,linalg::GenericOp op,std::vector<unsigned> & topSort,unsigned mask,OpOperand * skip=nullptr)257a2c9d4bbSAart Bik static bool computeIterationGraph(Merger &merger, linalg::GenericOp op,
258e057f25dSAart Bik                                   std::vector<unsigned> &topSort, unsigned mask,
259e057f25dSAart Bik                                   OpOperand *skip = nullptr) {
260a2c9d4bbSAart Bik   // Set up an n x n from/to adjacency matrix of the iteration graph
261a2c9d4bbSAart Bik   // for the implicit loop indices i_0 .. i_n-1.
262a2c9d4bbSAart Bik   unsigned n = op.getNumLoops();
263a2c9d4bbSAart Bik   std::vector<std::vector<bool>> adjM(n, std::vector<bool>(n, false));
264a2c9d4bbSAart Bik 
265a2c9d4bbSAart Bik   // Iterate over the indexing maps of every tensor in the tensor expression.
2662f2b5b7dSTobias Gysi   for (OpOperand *t : op.getInputAndOutputOperands()) {
267e057f25dSAart Bik     // Skip tensor during cycle resolution.
268e057f25dSAart Bik     if (t == skip)
269e057f25dSAart Bik       continue;
270e057f25dSAart Bik     // Get map and encoding.
2712f2b5b7dSTobias Gysi     auto map = op.getTiedIndexingMap(t);
2722f2b5b7dSTobias Gysi     auto enc = getSparseTensorEncoding(t->get().getType());
273a2c9d4bbSAart Bik     assert(map.getNumDims() == n);
274b6d1a31cSAart Bik     // Skip dense tensor constraints when not requested.
275b6d1a31cSAart Bik     if (!(mask & SortMask::kIncludeDense) && !enc)
276a2c9d4bbSAart Bik       continue;
277c194b49cSAart Bik     // Each tensor expression and optional dimension ordering (row-major
278c194b49cSAart Bik     // by default) puts an ordering constraint on the loop indices. For
279c194b49cSAart Bik     // example, the tensor expresion A_ijk forces the ordering i < j < k
280c194b49cSAart Bik     // on the loop indices if no explicit dimension ordering is given.
281c194b49cSAart Bik     for (unsigned d = 1, rank = map.getNumResults(); d < rank; d++) {
282b1d44e59SAart Bik       AffineExpr f = map.getResult(perm(enc, d - 1));
283b1d44e59SAart Bik       AffineExpr t = map.getResult(perm(enc, d));
284b1d44e59SAart Bik       addAffineOrderings(adjM, f, t, 0);
285a2c9d4bbSAart Bik     }
286b6d1a31cSAart Bik     // Push unrelated loops into sparse iteration space, so these
287b6d1a31cSAart Bik     // will be skipped more often.
288b6d1a31cSAart Bik     if (mask & SortMask::kIncludeUndef) {
289b6d1a31cSAart Bik       unsigned tensor = t->getOperandNumber();
290b6d1a31cSAart Bik       for (unsigned i = 0; i < n; i++)
291b6d1a31cSAart Bik         if (merger.isDim(tensor, i, Dim::kSparse))
292b6d1a31cSAart Bik           for (unsigned j = 0; j < n; j++)
293b6d1a31cSAart Bik             if (merger.isDim(tensor, j, Dim::kUndef))
294b6d1a31cSAart Bik               adjM[i][j] = true;
295b6d1a31cSAart Bik     }
296a2c9d4bbSAart Bik   }
297a2c9d4bbSAart Bik 
298a2c9d4bbSAart Bik   // Topologically sort the iteration graph to determine loop order.
299a2c9d4bbSAart Bik   // Report failure for a cyclic iteration graph.
300a2c9d4bbSAart Bik   topSort.clear();
301a2c9d4bbSAart Bik   topSort.reserve(n);
302a2c9d4bbSAart Bik   std::vector<unsigned> visit(n, 0);
303a2c9d4bbSAart Bik   for (unsigned i = 0; i < n; i++)
304a2c9d4bbSAart Bik     if (visit[i] == 0)
305a2c9d4bbSAart Bik       if (!topSortDFS(i, visit, topSort, adjM))
306a2c9d4bbSAart Bik         return false; // cycle!
307a2c9d4bbSAart Bik   std::reverse(std::begin(topSort), std::end(topSort));
308a2c9d4bbSAart Bik   return true;
309a2c9d4bbSAart Bik }
310a2c9d4bbSAart Bik 
311f66e5769SAart Bik /// Returns true if tensor materializes uninitialized into the computation.
isMaterializing(Value val)312c8d5dcb0SAart Bik static bool isMaterializing(Value val) {
313c8d5dcb0SAart Bik   return val.getDefiningOp<linalg::InitTensorOp>() ||
3146232a8f3SMatthias Springer          val.getDefiningOp<bufferization::AllocTensorOp>();
315c8d5dcb0SAart Bik }
316c8d5dcb0SAart Bik 
31736b66ab9SAart Bik /// Returns true when the tensor expression is admissable for codegen.
31836b66ab9SAart Bik /// Since all sparse input tensors are admissable, we just need to check
3197d4da4e1SAart Bik /// whether the out tensor in the tensor expression codegen is admissable.
3207d4da4e1SAart Bik /// Sets `sparseOut` to the tensor and `outerParNest` to the outer injective
3217d4da4e1SAart Bik /// nesting depth when a "truly dynamic" sparse tensor output occurs.
isAdmissableTensorExp(Merger & merger,linalg::GenericOp op,std::vector<unsigned> & topSort,unsigned exp,OpOperand ** sparseOut,unsigned & outerParNest)32236b66ab9SAart Bik static bool isAdmissableTensorExp(Merger &merger, linalg::GenericOp op,
3237d4da4e1SAart Bik                                   std::vector<unsigned> &topSort, unsigned exp,
3247d4da4e1SAart Bik                                   OpOperand **sparseOut,
3257d4da4e1SAart Bik                                   unsigned &outerParNest) {
32636b66ab9SAart Bik   OpOperand *lhs = op.getOutputOperand(0);
32736b66ab9SAart Bik   unsigned tensor = lhs->getOperandNumber();
32836b66ab9SAart Bik   auto enc = getSparseTensorEncoding(lhs->get().getType());
32936b66ab9SAart Bik   // An non-annotated output tensor is assumed dense, and becomes a random
330b1d44e59SAart Bik   // access n-dim memref. Admissable since insertions cannot occur.
33136b66ab9SAart Bik   if (!enc)
33236b66ab9SAart Bik     return true;
33336b66ab9SAart Bik   // An all-dense annotated "sparse" output tensor becomes a linearized random
33436b66ab9SAart Bik   // access 1-dim memref. Also admissable since insertions cannot occur.
33536b66ab9SAart Bik   bool allDense = true;
3367d4da4e1SAart Bik   auto iteratorTypes = op.iterator_types().getValue();
3377d4da4e1SAart Bik   unsigned numLoops = iteratorTypes.size();
33836b66ab9SAart Bik   for (unsigned i = 0; i < numLoops; i++)
33936b66ab9SAart Bik     if (merger.isDim(tensor, i, Dim::kSparse)) {
34036b66ab9SAart Bik       allDense = false;
34136b66ab9SAart Bik       break;
34236b66ab9SAart Bik     }
34336b66ab9SAart Bik   if (allDense)
34436b66ab9SAart Bik     return true;
34536b66ab9SAart Bik   // A tensor expression with a sparse output tensor that changes its values
34636b66ab9SAart Bik   // but not its nonzero structure, an operation called "simply dynamic" in
347c66303c2SMatthias Springer   // [Bik96,Ch9], is also admissable without special codegen.
348c66303c2SMatthias Springer   if (merger.isSingleCondition(tensor, exp))
349f66e5769SAart Bik     return true;
350f66e5769SAart Bik   // Accept "truly dynamic" if the output tensor materializes uninitialized
351f66e5769SAart Bik   // into the computation and insertions occur in lexicographic index order.
352f66e5769SAart Bik   if (isMaterializing(lhs->get())) {
3537d4da4e1SAart Bik     unsigned nest = 0;
3547d4da4e1SAart Bik     for (unsigned i = 0; i < numLoops; i++) {
3557d4da4e1SAart Bik       if (isReductionIterator(iteratorTypes[topSort[i]]))
3567d4da4e1SAart Bik         break; // terminate at first reduction
3577d4da4e1SAart Bik       nest++;
3587d4da4e1SAart Bik     }
3597d4da4e1SAart Bik     // Determine admissable dynamic insertion situations:
3607d4da4e1SAart Bik     // (1) fully injective, since there are no reductions,
3614f2ec7f9SAart Bik     // (2) admissable 1-d expansion in innermost dimension.
3624f2ec7f9SAart Bik     if (nest >= op.getRank(lhs) - 1) {
363f66e5769SAart Bik       *sparseOut = lhs;
3647d4da4e1SAart Bik       outerParNest = nest;
365f66e5769SAart Bik       return true;
366f66e5769SAart Bik     }
3677d4da4e1SAart Bik   }
36836b66ab9SAart Bik   return false;
36936b66ab9SAart Bik }
37036b66ab9SAart Bik 
3715da21338SAart Bik //===----------------------------------------------------------------------===//
3727373cabcSAart Bik // Sparse compiler synthesis methods (reductions).
3735da21338SAart Bik //===----------------------------------------------------------------------===//
3745da21338SAart Bik 
375fe0bf7d4SMatthias Springer /// Maps reduction kind to vector::CombiningKind.
getCombiningKind(Reduction kind)376fe0bf7d4SMatthias Springer static vector::CombiningKind getCombiningKind(Reduction kind) {
3775da21338SAart Bik   switch (kind) {
3787373cabcSAart Bik   case kNoReduc:
3797373cabcSAart Bik     break;
3805da21338SAart Bik   case kSum:
381fe0bf7d4SMatthias Springer     return vector::CombiningKind::ADD;
3825da21338SAart Bik   case kProduct:
383fe0bf7d4SMatthias Springer     return vector::CombiningKind::MUL;
3845da21338SAart Bik   case kAnd:
385fe0bf7d4SMatthias Springer     return vector::CombiningKind::AND;
3865da21338SAart Bik   case kOr:
387fe0bf7d4SMatthias Springer     return vector::CombiningKind::OR;
3885da21338SAart Bik   case kXor:
389fe0bf7d4SMatthias Springer     return vector::CombiningKind::XOR;
3905da21338SAart Bik   }
3915da21338SAart Bik   llvm_unreachable("unknown reduction kind");
3925da21338SAart Bik }
3935da21338SAart Bik 
3945da21338SAart Bik /// Maps operation to reduction.
getReduction(Kind kind)3955da21338SAart Bik static Reduction getReduction(Kind kind) {
3965da21338SAart Bik   switch (kind) {
3975da21338SAart Bik   case Kind::kAddF:
3985799f843SAart Bik   case Kind::kAddC:
3995da21338SAart Bik   case Kind::kAddI:
4005da21338SAart Bik   case Kind::kSubF:
4015799f843SAart Bik   case Kind::kSubC:
4025da21338SAart Bik   case Kind::kSubI:
4035da21338SAart Bik     return kSum;
4045da21338SAart Bik   case Kind::kMulF:
4055799f843SAart Bik   case Kind::kMulC:
4065da21338SAart Bik   case Kind::kMulI:
4075da21338SAart Bik     return kProduct;
4085da21338SAart Bik   case Kind::kAndI:
4095da21338SAart Bik     return kAnd;
4105da21338SAart Bik   case Kind::kOrI:
4115da21338SAart Bik     return kOr;
4125da21338SAart Bik   case Kind::kXorI:
4135da21338SAart Bik     return kXor;
4145da21338SAart Bik   default:
4155da21338SAart Bik     llvm_unreachable("unexpected reduction operator");
4165da21338SAart Bik   }
4175da21338SAart Bik }
4185da21338SAart Bik 
4197373cabcSAart Bik /// Generates an initial value for a vector reduction, following the scheme
4205da21338SAart Bik /// given in Chapter 5 of "The Software Vectorization Handbook", where the
4215da21338SAart Bik /// initial scalar value is correctly embedded in the vector reduction value,
4225da21338SAart Bik /// and a straightforward horizontal reduction will complete the operation.
genVectorReducInit(CodeGen & codegen,OpBuilder & builder,Location loc,VectorType vtp)423e9fa5590SMatthias Springer static Value genVectorReducInit(CodeGen &codegen, OpBuilder &builder,
4247373cabcSAart Bik                                 Location loc, VectorType vtp) {
4257373cabcSAart Bik   Value r = codegen.redVal;
4267373cabcSAart Bik   switch (codegen.redKind) {
4277373cabcSAart Bik   case kNoReduc:
4287373cabcSAart Bik     break;
4295da21338SAart Bik   case kSum:
43085b8d03eSwren romano   case kXor:
4315da21338SAart Bik     // Initialize reduction vector to: | 0 | .. | 0 | r |
432e9fa5590SMatthias Springer     return builder.create<vector::InsertElementOp>(
433e9fa5590SMatthias Springer         loc, r, constantZero(builder, loc, vtp),
434e9fa5590SMatthias Springer         constantIndex(builder, loc, 0));
43585b8d03eSwren romano   case kProduct:
4365da21338SAart Bik     // Initialize reduction vector to: | 1 | .. | 1 | r |
437e9fa5590SMatthias Springer     return builder.create<vector::InsertElementOp>(
438e9fa5590SMatthias Springer         loc, r, constantOne(builder, loc, vtp), constantIndex(builder, loc, 0));
4395da21338SAart Bik   case kAnd:
4405da21338SAart Bik   case kOr:
4415da21338SAart Bik     // Initialize reduction vector to: | r | .. | r | r |
442e9fa5590SMatthias Springer     return builder.create<vector::BroadcastOp>(loc, vtp, r);
4435da21338SAart Bik   }
4445da21338SAart Bik   llvm_unreachable("unknown reduction kind");
4455da21338SAart Bik }
4465da21338SAart Bik 
4477373cabcSAart Bik /// Generates final value for a vector reduction.
genVectorReducEnd(CodeGen & codegen,OpBuilder & builder,Location loc,VectorType vtp)448e9fa5590SMatthias Springer static Value genVectorReducEnd(CodeGen &codegen, OpBuilder &builder,
4497373cabcSAart Bik                                Location loc, VectorType vtp) {
450fe0bf7d4SMatthias Springer   vector::CombiningKind kind = getCombiningKind(codegen.redKind);
451e9fa5590SMatthias Springer   return builder.create<vector::ReductionOp>(loc, kind, codegen.redVal);
4527373cabcSAart Bik }
4537373cabcSAart Bik 
4547373cabcSAart Bik /// Updates scalarized reduction value.
updateReduc(Merger & merger,CodeGen & codegen,Value reduc)4557373cabcSAart Bik static void updateReduc(Merger &merger, CodeGen &codegen, Value reduc) {
4567373cabcSAart Bik   assert(codegen.redKind != kNoReduc);
4577373cabcSAart Bik   codegen.redVal = merger.exp(codegen.redExp).val = reduc;
4587373cabcSAart Bik }
4597373cabcSAart Bik 
4607373cabcSAart Bik //===----------------------------------------------------------------------===//
4617373cabcSAart Bik // Sparse compiler synthesis methods (statements and expressions).
4627373cabcSAart Bik //===----------------------------------------------------------------------===//
4637373cabcSAart Bik 
464ec97a205SAart Bik /// Generates buffer for the output tensor. Note that all sparse kernels
465ec97a205SAart Bik /// assume that when all elements are written to (viz. x(i) = y(i) * z(i)),
466ec97a205SAart Bik /// the output buffer is already initialized to all zeroes and only nonzeroes
467ec97a205SAart Bik /// values are computed and written out. For updates (viz. x(i) += y(i) * z(i)),
468ec97a205SAart Bik /// only nonzeroes values are used for the updates and no assumption on the
469eca6f916SAart Bik /// original contents of the output buffer is necessary.
genOutputBuffer(CodeGen & codegen,OpBuilder & builder,linalg::GenericOp op,MemRefType denseTp,ArrayRef<Value> args)470e9fa5590SMatthias Springer static Value genOutputBuffer(CodeGen &codegen, OpBuilder &builder,
471a2c9d4bbSAart Bik                              linalg::GenericOp op, MemRefType denseTp,
472a2c9d4bbSAart Bik                              ArrayRef<Value> args) {
473a2c9d4bbSAart Bik   Location loc = op.getLoc();
474eca6f916SAart Bik   OpOperand *lhs = op.getOutputOperand(0);
475eca6f916SAart Bik   Value tensor = lhs->get();
476eca6f916SAart Bik   bool isInit = op.isInitTensor(lhs);
477c66303c2SMatthias Springer   // An output tensor can simply materialize from the buffer of the tensor that
478c66303c2SMatthias Springer   // appears in the outs() clause. For updates, this has the advantage that only
479c66303c2SMatthias Springer   // the nonzero value are involved in the computation, keeping the operation
480c66303c2SMatthias Springer   // O(nnz). In all other cases, we are forced to zero out the buffer to enforce
481c66303c2SMatthias Springer   // the assumption above, which may negatively impact running complexity
482c66303c2SMatthias Springer   // (viz. O(n^2 + nnz) vs. O(nnz) for matrices).
483eca6f916SAart Bik   // TODO: use better analysis to avoid zeroing out the buffer?
484c66303c2SMatthias Springer   Value init = builder.create<bufferization::ToMemrefOp>(loc, denseTp, tensor);
485eca6f916SAart Bik   if (!isInit) {
486eca6f916SAart Bik     Value zero = constantZero(builder, loc, denseTp.getElementType());
487eca6f916SAart Bik     builder.create<linalg::FillOp>(loc, ValueRange{zero}, ValueRange{init});
488eca6f916SAart Bik   }
489eca6f916SAart Bik   return init;
490eca6f916SAart Bik }
491a2c9d4bbSAart Bik 
492a2c9d4bbSAart Bik /// Local bufferization of all dense and sparse data structures.
493a2c9d4bbSAart Bik /// This code enables testing the first prototype sparse compiler.
494a2c9d4bbSAart Bik // TODO: replace this with a proliferated bufferization strategy
genBuffers(Merger & merger,CodeGen & codegen,OpBuilder & builder,linalg::GenericOp op)495e9fa5590SMatthias Springer static void genBuffers(Merger &merger, CodeGen &codegen, OpBuilder &builder,
496e9fa5590SMatthias Springer                        linalg::GenericOp op) {
497a2c9d4bbSAart Bik   Location loc = op.getLoc();
4982f2b5b7dSTobias Gysi   assert(op.getNumInputsAndOutputs() == op.getNumInputs() + 1);
499a2c9d4bbSAart Bik   // For every tensor, find lower and upper bound on dimensions, set the
500a2c9d4bbSAart Bik   // same bounds on loop indices, and obtain dense or sparse buffer(s).
501a2c9d4bbSAart Bik   SmallVector<Value, 4> args;
5022f2b5b7dSTobias Gysi   for (OpOperand *t : op.getInputAndOutputOperands()) {
503727a63e0SAart Bik     unsigned tensor = t->getOperandNumber();
5042f2b5b7dSTobias Gysi     auto shape = op.getShape(t);
5052f2b5b7dSTobias Gysi     auto map = op.getTiedIndexingMap(t);
5062f2b5b7dSTobias Gysi     auto enc = getSparseTensorEncoding(t->get().getType());
507a2c9d4bbSAart Bik     // Scan all dimensions of current tensor.
508a2c9d4bbSAart Bik     args.clear();
509c194b49cSAart Bik     for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
510b1d44e59SAart Bik       AffineExpr a = map.getResult(perm(enc, d));
511b1d44e59SAart Bik       if (a.getKind() != AffineExprKind::DimId)
512b1d44e59SAart Bik         continue; // compound
513b1d44e59SAart Bik       unsigned idx = a.cast<AffineDimExpr>().getPosition();
514a2c9d4bbSAart Bik       // Handle sparse storage schemes.
515727a63e0SAart Bik       if (merger.isDim(tensor, idx, Dim::kSparse)) {
516a2c9d4bbSAart Bik         auto dynShape = {ShapedType::kDynamicSize};
51785b8d03eSwren romano         auto ptrTp =
518e9fa5590SMatthias Springer             MemRefType::get(dynShape, getPointerOverheadType(builder, enc));
51985b8d03eSwren romano         auto indTp =
520e9fa5590SMatthias Springer             MemRefType::get(dynShape, getIndexOverheadType(builder, enc));
521e9fa5590SMatthias Springer         Value dim = constantIndex(builder, loc, d);
522a2c9d4bbSAart Bik         // Generate sparse primitives to obtains pointer and indices.
523727a63e0SAart Bik         codegen.pointers[tensor][idx] =
524e9fa5590SMatthias Springer             builder.create<ToPointersOp>(loc, ptrTp, t->get(), dim);
525727a63e0SAart Bik         codegen.indices[tensor][idx] =
526e9fa5590SMatthias Springer             builder.create<ToIndicesOp>(loc, indTp, t->get(), dim);
527a2c9d4bbSAart Bik       }
528d37d72eaSAart Bik       // Find upper bound in current dimension.
529817303efSAart Bik       unsigned p = perm(enc, d);
530e9fa5590SMatthias Springer       Value up = linalg::createOrFoldDimOp(builder, loc, t->get(), p);
531676bfb2aSRiver Riddle       if (ShapedType::isDynamic(shape[p]))
532a2c9d4bbSAart Bik         args.push_back(up);
533817303efSAart Bik       assert(codegen.highs[tensor][idx] == nullptr);
534727a63e0SAart Bik       codegen.sizes[idx] = codegen.highs[tensor][idx] = up;
535a2c9d4bbSAart Bik     }
536727a63e0SAart Bik     // Perform the required bufferization. Dense inputs materialize
537727a63e0SAart Bik     // from the input tensors. Dense outputs need special handling.
538727a63e0SAart Bik     // Sparse inputs use sparse primitives to obtain the values.
539727a63e0SAart Bik     // We also accept in-place all-dense annotated "sparse" outputs.
5402f2b5b7dSTobias Gysi     Type elementType = getElementTypeOrSelf(t->get().getType());
54196a23911SAart Bik     if (!enc) {
542727a63e0SAart Bik       // Non-annotated dense tensors.
5432f2b5b7dSTobias Gysi       auto denseTp = MemRefType::get(shape, elementType);
544727a63e0SAart Bik       if (tensor < op.getNumInputs())
545727a63e0SAart Bik         codegen.buffers[tensor] =
546e9fa5590SMatthias Springer             builder.create<bufferization::ToMemrefOp>(loc, denseTp, t->get());
547a2c9d4bbSAart Bik       else
548727a63e0SAart Bik         codegen.buffers[tensor] =
549e9fa5590SMatthias Springer             genOutputBuffer(codegen, builder, op, denseTp, args);
550f66e5769SAart Bik     } else if (t == codegen.sparseOut) {
551f66e5769SAart Bik       // True sparse output needs a lexIdx array.
552e9fa5590SMatthias Springer       Value rank = constantIndex(builder, loc, op.getRank(t));
553f66e5769SAart Bik       auto dynShape = {ShapedType::kDynamicSize};
554e9fa5590SMatthias Springer       auto memTp = MemRefType::get(dynShape, builder.getIndexType());
555e9fa5590SMatthias Springer       codegen.lexIdx = builder.create<memref::AllocaOp>(loc, memTp, rank);
556aef20f59SAart Bik       codegen.lexVal = builder.create<memref::AllocaOp>(
557aef20f59SAart Bik           loc, MemRefType::get({}, elementType));
558a2c9d4bbSAart Bik     } else {
559727a63e0SAart Bik       // Annotated sparse tensors.
560a2c9d4bbSAart Bik       auto dynShape = {ShapedType::kDynamicSize};
5612f2b5b7dSTobias Gysi       auto sparseTp = MemRefType::get(dynShape, elementType);
562727a63e0SAart Bik       codegen.buffers[tensor] =
563e9fa5590SMatthias Springer           builder.create<ToValuesOp>(loc, sparseTp, t->get());
564a2c9d4bbSAart Bik     }
565a2c9d4bbSAart Bik   }
566a2c9d4bbSAart Bik }
567a2c9d4bbSAart Bik 
568a2c9d4bbSAart Bik /// Constructs vector type.
vectorType(CodeGen & codegen,Type etp)569a2c9d4bbSAart Bik static VectorType vectorType(CodeGen &codegen, Type etp) {
5707783a178SJavier Setoain   unsigned numScalableDims = codegen.options.enableVLAVectorization;
5717783a178SJavier Setoain   return VectorType::get(codegen.curVecLength, etp, numScalableDims);
572a2c9d4bbSAart Bik }
573a2c9d4bbSAart Bik 
574a2c9d4bbSAart Bik /// Constructs vector type from pointer.
vectorType(CodeGen & codegen,Value ptr)575a2c9d4bbSAart Bik static VectorType vectorType(CodeGen &codegen, Value ptr) {
576a2c9d4bbSAart Bik   return vectorType(codegen, ptr.getType().cast<MemRefType>().getElementType());
577a2c9d4bbSAart Bik }
578a2c9d4bbSAart Bik 
579a2c9d4bbSAart Bik /// Constructs vector iteration mask.
genVectorMask(CodeGen & codegen,OpBuilder & builder,Value iv,Value lo,Value hi,Value step)580e9fa5590SMatthias Springer static Value genVectorMask(CodeGen &codegen, OpBuilder &builder, Value iv,
581e9fa5590SMatthias Springer                            Value lo, Value hi, Value step) {
582a2c9d4bbSAart Bik   Location loc = iv.getLoc();
583e9fa5590SMatthias Springer   VectorType mtp = vectorType(codegen, builder.getI1Type());
584a2c9d4bbSAart Bik   // Special case if the vector length evenly divides the trip count (for
585a2c9d4bbSAart Bik   // example, "for i = 0, 128, 16"). A constant all-true mask is generated
586a2c9d4bbSAart Bik   // so that all subsequent masked memory operations are immediately folded
587a2c9d4bbSAart Bik   // into unconditional memory operations.
588a2c9d4bbSAart Bik   IntegerAttr loInt, hiInt, stepInt;
589a2c9d4bbSAart Bik   if (matchPattern(lo, m_Constant(&loInt)) &&
590a2c9d4bbSAart Bik       matchPattern(hi, m_Constant(&hiInt)) &&
591a2c9d4bbSAart Bik       matchPattern(step, m_Constant(&stepInt))) {
592a2c9d4bbSAart Bik     if (((hiInt.getInt() - loInt.getInt()) % stepInt.getInt()) == 0)
593e9fa5590SMatthias Springer       return builder.create<vector::BroadcastOp>(
594e9fa5590SMatthias Springer           loc, mtp, constantI1(builder, loc, true));
595a2c9d4bbSAart Bik   }
596a2c9d4bbSAart Bik   // Otherwise, generate a vector mask that avoids overrunning the upperbound
597a2c9d4bbSAart Bik   // during vector execution. Here we rely on subsequent loop optimizations to
598a2c9d4bbSAart Bik   // avoid executing the mask in all iterations, for example, by splitting the
599a2c9d4bbSAart Bik   // loop into an unconditional vector loop and a scalar cleanup loop.
60076a18618SMatthias Springer   auto minMap = AffineMap::get(
60176a18618SMatthias Springer       /*dimCount=*/2, /*symbolCount=*/1,
602e9fa5590SMatthias Springer       {builder.getAffineSymbolExpr(0),
603e9fa5590SMatthias Springer        builder.getAffineDimExpr(0) - builder.getAffineDimExpr(1)},
604e9fa5590SMatthias Springer       builder.getContext());
60576a18618SMatthias Springer   Value end =
606e9fa5590SMatthias Springer       builder.createOrFold<AffineMinOp>(loc, minMap, ValueRange{hi, iv, step});
607e9fa5590SMatthias Springer   return builder.create<vector::CreateMaskOp>(loc, mtp, end);
608a2c9d4bbSAart Bik }
609a2c9d4bbSAart Bik 
610a2c9d4bbSAart Bik /// Generates a vectorized load lhs = a[ind[lo:hi]] or lhs = a[lo:hi].
genVectorLoad(CodeGen & codegen,OpBuilder & builder,Value ptr,ArrayRef<Value> args)611e9fa5590SMatthias Springer static Value genVectorLoad(CodeGen &codegen, OpBuilder &builder, Value ptr,
612e9fa5590SMatthias Springer                            ArrayRef<Value> args) {
613a2c9d4bbSAart Bik   Location loc = ptr.getLoc();
614a2c9d4bbSAart Bik   VectorType vtp = vectorType(codegen, ptr);
615e9fa5590SMatthias Springer   Value pass = constantZero(builder, loc, vtp);
616a2c9d4bbSAart Bik   if (args.back().getType().isa<VectorType>()) {
617a2c9d4bbSAart Bik     SmallVector<Value, 4> scalarArgs(args.begin(), args.end());
618a2c9d4bbSAart Bik     Value indexVec = args.back();
619e9fa5590SMatthias Springer     scalarArgs.back() = constantIndex(builder, loc, 0);
620e9fa5590SMatthias Springer     return builder.create<vector::GatherOp>(loc, vtp, ptr, scalarArgs, indexVec,
621e9fa5590SMatthias Springer                                             codegen.curVecMask, pass);
622a2c9d4bbSAart Bik   }
623e9fa5590SMatthias Springer   return builder.create<vector::MaskedLoadOp>(loc, vtp, ptr, args,
624a2c9d4bbSAart Bik                                               codegen.curVecMask, pass);
625a2c9d4bbSAart Bik }
626a2c9d4bbSAart Bik 
627a2c9d4bbSAart Bik /// Generates a vectorized store a[ind[lo:hi]] = rhs or a[lo:hi] = rhs.
genVectorStore(CodeGen & codegen,OpBuilder & builder,Value rhs,Value ptr,ArrayRef<Value> args)628e9fa5590SMatthias Springer static void genVectorStore(CodeGen &codegen, OpBuilder &builder, Value rhs,
629e9fa5590SMatthias Springer                            Value ptr, ArrayRef<Value> args) {
630a2c9d4bbSAart Bik   Location loc = ptr.getLoc();
631a2c9d4bbSAart Bik   if (args.back().getType().isa<VectorType>()) {
632a2c9d4bbSAart Bik     SmallVector<Value, 4> scalarArgs(args.begin(), args.end());
633a2c9d4bbSAart Bik     Value indexVec = args.back();
634e9fa5590SMatthias Springer     scalarArgs.back() = constantIndex(builder, loc, 0);
635e9fa5590SMatthias Springer     builder.create<vector::ScatterOp>(loc, ptr, scalarArgs, indexVec,
636a2c9d4bbSAart Bik                                       codegen.curVecMask, rhs);
637a2c9d4bbSAart Bik     return;
638a2c9d4bbSAart Bik   }
639e9fa5590SMatthias Springer   builder.create<vector::MaskedStoreOp>(loc, ptr, args, codegen.curVecMask,
640a2c9d4bbSAart Bik                                         rhs);
641a2c9d4bbSAart Bik }
642a2c9d4bbSAart Bik 
643a2c9d4bbSAart Bik /// Generates a vectorized invariant. Here we rely on subsequent loop
644a2c9d4bbSAart Bik /// optimizations to hoist the invariant broadcast out of the vector loop.
genVectorInvariantValue(CodeGen & codegen,OpBuilder & builder,Value val)645e9fa5590SMatthias Springer static Value genVectorInvariantValue(CodeGen &codegen, OpBuilder &builder,
646e9fa5590SMatthias Springer                                      Value val) {
647a2c9d4bbSAart Bik   VectorType vtp = vectorType(codegen, val.getType());
648e9fa5590SMatthias Springer   return builder.create<vector::BroadcastOp>(val.getLoc(), vtp, val);
649a2c9d4bbSAart Bik }
650a2c9d4bbSAart Bik 
651b1d44e59SAart Bik /// Generates an affine expression.
652b1d44e59SAart Bik //
653b1d44e59SAart Bik // TODO: generalize for sparse tensor subscripts
654b1d44e59SAart Bik //
genAffine(CodeGen & codegen,OpBuilder & builder,AffineExpr a,Location loc)655e9fa5590SMatthias Springer static Value genAffine(CodeGen &codegen, OpBuilder &builder, AffineExpr a,
656e9fa5590SMatthias Springer                        Location loc) {
657b1d44e59SAart Bik   switch (a.getKind()) {
658b1d44e59SAart Bik   case AffineExprKind::DimId: {
659b1d44e59SAart Bik     unsigned idx = a.cast<AffineDimExpr>().getPosition();
660b1d44e59SAart Bik     return codegen.loops[idx]; // universal dense index
661b1d44e59SAart Bik   }
662b1d44e59SAart Bik   case AffineExprKind::Add: {
663b1d44e59SAart Bik     auto binOp = a.cast<AffineBinaryOpExpr>();
664e9fa5590SMatthias Springer     return builder.create<arith::AddIOp>(
665e9fa5590SMatthias Springer         loc, genAffine(codegen, builder, binOp.getLHS(), loc),
666e9fa5590SMatthias Springer         genAffine(codegen, builder, binOp.getRHS(), loc));
667b1d44e59SAart Bik   }
668b1d44e59SAart Bik   case AffineExprKind::Mul: {
669b1d44e59SAart Bik     auto binOp = a.cast<AffineBinaryOpExpr>();
670e9fa5590SMatthias Springer     return builder.create<arith::MulIOp>(
671e9fa5590SMatthias Springer         loc, genAffine(codegen, builder, binOp.getLHS(), loc),
672e9fa5590SMatthias Springer         genAffine(codegen, builder, binOp.getRHS(), loc));
673b1d44e59SAart Bik   }
674b1d44e59SAart Bik   case AffineExprKind::Constant: {
675b1d44e59SAart Bik     int64_t c = a.cast<AffineConstantExpr>().getValue();
676e9fa5590SMatthias Springer     return constantIndex(builder, loc, c);
677b1d44e59SAart Bik   }
678b1d44e59SAart Bik   default:
679b1d44e59SAart Bik     llvm_unreachable("unexpected affine subscript");
680b1d44e59SAart Bik   }
681b1d44e59SAart Bik }
682b1d44e59SAart Bik 
6834f2ec7f9SAart Bik /// Generates index for load/store on sparse tensor.
genIndex(CodeGen & codegen,linalg::GenericOp op,OpOperand * t)6844f2ec7f9SAart Bik static Value genIndex(CodeGen &codegen, linalg::GenericOp op, OpOperand *t) {
6854f2ec7f9SAart Bik   auto map = op.getTiedIndexingMap(t);
6864f2ec7f9SAart Bik   auto enc = getSparseTensorEncoding(t->get().getType());
6874f2ec7f9SAart Bik   AffineExpr a = map.getResult(perm(enc, map.getNumResults() - 1));
6884f2ec7f9SAart Bik   assert(a.getKind() == AffineExprKind::DimId);
6894f2ec7f9SAart Bik   unsigned idx = a.cast<AffineDimExpr>().getPosition();
6904f2ec7f9SAart Bik   return codegen.loops[idx];
6914f2ec7f9SAart Bik }
6924f2ec7f9SAart Bik 
693b1d44e59SAart Bik /// Generates subscript for load/store on a dense or sparse tensor.
genSubscript(CodeGen & codegen,OpBuilder & builder,linalg::GenericOp op,OpOperand * t,SmallVector<Value,4> & args)694e9fa5590SMatthias Springer static Value genSubscript(CodeGen &codegen, OpBuilder &builder,
695b1d44e59SAart Bik                           linalg::GenericOp op, OpOperand *t,
696b1d44e59SAart Bik                           SmallVector<Value, 4> &args) {
697b1d44e59SAart Bik   unsigned tensor = t->getOperandNumber();
698b1d44e59SAart Bik   auto map = op.getTiedIndexingMap(t);
699b1d44e59SAart Bik   auto enc = getSparseTensorEncoding(t->get().getType());
700b1d44e59SAart Bik   unsigned rank = map.getNumResults();
701b1d44e59SAart Bik   if (enc) {
702b1d44e59SAart Bik     // Note that currently, all sparse subscripts are simple.
703b1d44e59SAart Bik     // TODO: accept affine too?
704c8d5dcb0SAart Bik     AffineExpr a = map.getResult(perm(enc, rank - 1));
705c8d5dcb0SAart Bik     assert(a.getKind() == AffineExprKind::DimId);
706c8d5dcb0SAart Bik     unsigned idx = a.cast<AffineDimExpr>().getPosition();
707b1d44e59SAart Bik     assert(codegen.pidxs[tensor][idx] != nullptr);
708b1d44e59SAart Bik     args.push_back(codegen.pidxs[tensor][idx]); // position index
709b1d44e59SAart Bik   } else {
710b1d44e59SAart Bik     for (unsigned d = 0; d < rank; d++) {
711b1d44e59SAart Bik       AffineExpr a = map.getResult(perm(enc, d));
712e9fa5590SMatthias Springer       args.push_back(genAffine(codegen, builder, a, op.getLoc()));
713b1d44e59SAart Bik     }
714b1d44e59SAart Bik   }
715b1d44e59SAart Bik   return codegen.buffers[tensor];
716b1d44e59SAart Bik }
717b1d44e59SAart Bik 
7184f2ec7f9SAart Bik /// Generates insertion code to implement dynamic tensor load.
genInsertionLoad(CodeGen & codegen,OpBuilder & builder,linalg::GenericOp op,OpOperand * t)719e9fa5590SMatthias Springer static Value genInsertionLoad(CodeGen &codegen, OpBuilder &builder,
7204f2ec7f9SAart Bik                               linalg::GenericOp op, OpOperand *t) {
7214f2ec7f9SAart Bik   Location loc = op.getLoc();
7224f2ec7f9SAart Bik   // Direct lexicographic index order, tensor loads as zero.
7234f2ec7f9SAart Bik   if (!codegen.expValues) {
7244f2ec7f9SAart Bik     Type tp = getElementTypeOrSelf(t->get().getType());
725e9fa5590SMatthias Springer     return constantZero(builder, loc, tp);
7264f2ec7f9SAart Bik   }
7274f2ec7f9SAart Bik   // Load from expanded access pattern.
7284f2ec7f9SAart Bik   Value index = genIndex(codegen, op, t);
729e9fa5590SMatthias Springer   return builder.create<memref::LoadOp>(loc, codegen.expValues, index);
7304f2ec7f9SAart Bik }
7314f2ec7f9SAart Bik 
7324f2ec7f9SAart Bik /// Generates insertion code to implement dynamic tensor store.
genInsertionStore(CodeGen & codegen,OpBuilder & builder,linalg::GenericOp op,OpOperand * t,Value rhs)733e9fa5590SMatthias Springer static void genInsertionStore(CodeGen &codegen, OpBuilder &builder,
7344f2ec7f9SAart Bik                               linalg::GenericOp op, OpOperand *t, Value rhs) {
7354f2ec7f9SAart Bik   Location loc = op.getLoc();
7364f2ec7f9SAart Bik   // Direct insertion in lexicographic index order.
7374f2ec7f9SAart Bik   if (!codegen.expValues) {
738aef20f59SAart Bik     builder.create<memref::StoreOp>(loc, rhs, codegen.lexVal);
739aef20f59SAart Bik     builder.create<LexInsertOp>(loc, t->get(), codegen.lexIdx, codegen.lexVal);
7404f2ec7f9SAart Bik     return;
7414f2ec7f9SAart Bik   }
7424f2ec7f9SAart Bik   // Generates insertion code along expanded access pattern.
7434f2ec7f9SAart Bik   //   if (!expFilled[i]) then
7444f2ec7f9SAart Bik   //     expFilled[i] = true
7454f2ec7f9SAart Bik   //     expAdded[inserts++] = i
7464f2ec7f9SAart Bik   //   endif
7474f2ec7f9SAart Bik   //   values[i] = rhs
7484f2ec7f9SAart Bik   Value index = genIndex(codegen, op, t);
749e9fa5590SMatthias Springer   Value fval = constantI1(builder, loc, false);
750e9fa5590SMatthias Springer   Value tval = constantI1(builder, loc, true);
7514f2ec7f9SAart Bik   // If statement.
752e9fa5590SMatthias Springer   Value filled = builder.create<memref::LoadOp>(loc, codegen.expFilled, index);
753e9fa5590SMatthias Springer   Value cond = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
7544f2ec7f9SAart Bik                                              filled, fval);
755e9fa5590SMatthias Springer   scf::IfOp ifOp = builder.create<scf::IfOp>(loc, builder.getIndexType(), cond,
756e9fa5590SMatthias Springer                                              /*else=*/true);
7574f2ec7f9SAart Bik   // True branch.
758e9fa5590SMatthias Springer   builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
759e9fa5590SMatthias Springer   builder.create<memref::StoreOp>(loc, tval, codegen.expFilled, index);
760e9fa5590SMatthias Springer   builder.create<memref::StoreOp>(loc, index, codegen.expAdded,
7614f2ec7f9SAart Bik                                   codegen.expCount);
762e9fa5590SMatthias Springer   Value one = constantIndex(builder, loc, 1);
763e9fa5590SMatthias Springer   Value add = builder.create<arith::AddIOp>(loc, codegen.expCount, one);
764e9fa5590SMatthias Springer   builder.create<scf::YieldOp>(loc, add);
7654f2ec7f9SAart Bik   // False branch.
766e9fa5590SMatthias Springer   builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
767e9fa5590SMatthias Springer   builder.create<scf::YieldOp>(loc, codegen.expCount);
768e9fa5590SMatthias Springer   builder.setInsertionPointAfter(ifOp);
7694f2ec7f9SAart Bik   // Value assignment.
7704f2ec7f9SAart Bik   codegen.expCount = ifOp.getResult(0);
771e9fa5590SMatthias Springer   builder.create<memref::StoreOp>(loc, rhs, codegen.expValues, index);
7724f2ec7f9SAart Bik }
7734f2ec7f9SAart Bik 
774a2c9d4bbSAart Bik /// Generates a load on a dense or sparse tensor.
genTensorLoad(Merger & merger,CodeGen & codegen,OpBuilder & builder,linalg::GenericOp op,unsigned exp)775e9fa5590SMatthias Springer static Value genTensorLoad(Merger &merger, CodeGen &codegen, OpBuilder &builder,
776e9fa5590SMatthias Springer                            linalg::GenericOp op, unsigned exp) {
777a2c9d4bbSAart Bik   // Test if the load was hoisted to a higher loop nest.
778a2c9d4bbSAart Bik   Value val = merger.exp(exp).val;
779a2c9d4bbSAart Bik   if (val) {
780a2c9d4bbSAart Bik     if (codegen.curVecLength > 1 && !val.getType().isa<VectorType>())
781e9fa5590SMatthias Springer       return genVectorInvariantValue(codegen, builder, val);
782a2c9d4bbSAart Bik     return val;
783a2c9d4bbSAart Bik   }
7844f2ec7f9SAart Bik   // Load during insertion.
7857d4da4e1SAart Bik   OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).tensor];
7864f2ec7f9SAart Bik   if (t == codegen.sparseOut)
787e9fa5590SMatthias Springer     return genInsertionLoad(codegen, builder, op, t);
788a2c9d4bbSAart Bik   // Actual load.
789a2c9d4bbSAart Bik   SmallVector<Value, 4> args;
790e9fa5590SMatthias Springer   Value ptr = genSubscript(codegen, builder, op, t, args);
791a2c9d4bbSAart Bik   if (codegen.curVecLength > 1)
792e9fa5590SMatthias Springer     return genVectorLoad(codegen, builder, ptr, args);
793e9fa5590SMatthias Springer   return builder.create<memref::LoadOp>(op.getLoc(), ptr, args);
794a2c9d4bbSAart Bik }
795a2c9d4bbSAart Bik 
796727a63e0SAart Bik /// Generates a store on a dense or sparse tensor.
genTensorStore(Merger & merger,CodeGen & codegen,OpBuilder & builder,linalg::GenericOp op,unsigned exp,Value rhs)797e9fa5590SMatthias Springer static void genTensorStore(Merger &merger, CodeGen &codegen, OpBuilder &builder,
798e9fa5590SMatthias Springer                            linalg::GenericOp op, unsigned exp, Value rhs) {
799f66e5769SAart Bik   Location loc = op.getLoc();
800a2c9d4bbSAart Bik   // Test if this is a scalarized reduction.
801b1d44e59SAart Bik   if (codegen.redVal) {
802a2c9d4bbSAart Bik     if (codegen.curVecLength > 1)
803e9fa5590SMatthias Springer       rhs = builder.create<arith::SelectOp>(loc, codegen.curVecMask, rhs,
804a2c9d4bbSAart Bik                                             codegen.redVal);
8057373cabcSAart Bik     updateReduc(merger, codegen, rhs);
806a2c9d4bbSAart Bik     return;
807a2c9d4bbSAart Bik   }
8084f2ec7f9SAart Bik   // Store during insertion.
809f66e5769SAart Bik   OpOperand *t = op.getOutputOperand(0);
810f66e5769SAart Bik   if (t == codegen.sparseOut) {
8112c332660SJim Kitchen     if (!rhs) {
8122c332660SJim Kitchen       // Only unary and binary are allowed to return uninitialized rhs
8132c332660SJim Kitchen       // to indicate missing output.
8142617f2f7SAart Bik       assert(merger.exp(exp).kind == kUnary || merger.exp(exp).kind == kBinary);
8152c332660SJim Kitchen     } else {
816e9fa5590SMatthias Springer       genInsertionStore(codegen, builder, op, t, rhs);
8172c332660SJim Kitchen     }
818f66e5769SAart Bik     return;
819f66e5769SAart Bik   }
820a2c9d4bbSAart Bik   // Actual store.
821a2c9d4bbSAart Bik   SmallVector<Value, 4> args;
822e9fa5590SMatthias Springer   Value ptr = genSubscript(codegen, builder, op, t, args);
823a2c9d4bbSAart Bik   if (codegen.curVecLength > 1)
824e9fa5590SMatthias Springer     genVectorStore(codegen, builder, rhs, ptr, args);
825a2c9d4bbSAart Bik   else
826e9fa5590SMatthias Springer     builder.create<memref::StoreOp>(loc, rhs, ptr, args);
827a2c9d4bbSAart Bik }
828a2c9d4bbSAart Bik 
829a2c9d4bbSAart Bik /// Generates a pointer/index load from the sparse storage scheme. Narrower
830a2c9d4bbSAart Bik /// data types need to be zero extended before casting the value into the
831a2c9d4bbSAart Bik /// index type used for looping and indexing.
genLoad(CodeGen & codegen,OpBuilder & builder,Location loc,Value ptr,Value s)832e9fa5590SMatthias Springer static Value genLoad(CodeGen &codegen, OpBuilder &builder, Location loc,
833a2c9d4bbSAart Bik                      Value ptr, Value s) {
834a2c9d4bbSAart Bik   // See https://llvm.org/docs/GetElementPtr.html for some background on
835a2c9d4bbSAart Bik   // the complications described below.
836a2c9d4bbSAart Bik   if (codegen.curVecLength > 1) {
837a2c9d4bbSAart Bik     // Since the index vector is used in a subsequent gather/scatter operations,
838a2c9d4bbSAart Bik     // which effectively defines an unsigned pointer + signed index, we must
839a2c9d4bbSAart Bik     // zero extend the vector to an index width. For 8-bit and 16-bit values,
840a2c9d4bbSAart Bik     // an 32-bit index width suffices. For 32-bit values, zero extending the
841a2c9d4bbSAart Bik     // elements into 64-bit loses some performance since the 32-bit indexed
84286e9bc1aSAart Bik     // gather/scatter is more efficient than the 64-bit index variant (if the
84386e9bc1aSAart Bik     // negative 32-bit index space is unused, the enableSIMDIndex32 flag can
844727a63e0SAart Bik     // preserve this performance). For 64-bit values, there is no good way
845a2c9d4bbSAart Bik     // to state that the indices are unsigned, with creates the potential of
846a2c9d4bbSAart Bik     // incorrect address calculations in the unlikely case we need such
847a2c9d4bbSAart Bik     // extremely large offsets.
848a2c9d4bbSAart Bik     Type etp = ptr.getType().cast<MemRefType>().getElementType();
849e9fa5590SMatthias Springer     Value vload = genVectorLoad(codegen, builder, ptr, {s});
850a2c9d4bbSAart Bik     if (!etp.isa<IndexType>()) {
851a2c9d4bbSAart Bik       if (etp.getIntOrFloatBitWidth() < 32)
852e9fa5590SMatthias Springer         vload = builder.create<arith::ExtUIOp>(
853e9fa5590SMatthias Springer             loc, vectorType(codegen, builder.getI32Type()), vload);
85486e9bc1aSAart Bik       else if (etp.getIntOrFloatBitWidth() < 64 &&
85586e9bc1aSAart Bik                !codegen.options.enableSIMDIndex32)
856e9fa5590SMatthias Springer         vload = builder.create<arith::ExtUIOp>(
857e9fa5590SMatthias Springer             loc, vectorType(codegen, builder.getI64Type()), vload);
858a2c9d4bbSAart Bik     }
859a2c9d4bbSAart Bik     return vload;
860a2c9d4bbSAart Bik   }
861a2c9d4bbSAart Bik   // For the scalar case, we simply zero extend narrower indices into 64-bit
862a2c9d4bbSAart Bik   // values before casting to index without a performance penalty. Here too,
863a2c9d4bbSAart Bik   // however, indices that already are 64-bit, in theory, cannot express the
864a2c9d4bbSAart Bik   // full range as explained above.
865e9fa5590SMatthias Springer   Value load = builder.create<memref::LoadOp>(loc, ptr, s);
866a2c9d4bbSAart Bik   if (!load.getType().isa<IndexType>()) {
867a2c9d4bbSAart Bik     if (load.getType().getIntOrFloatBitWidth() < 64)
868e9fa5590SMatthias Springer       load = builder.create<arith::ExtUIOp>(loc, builder.getI64Type(), load);
869a54f4eaeSMogball     load =
870e9fa5590SMatthias Springer         builder.create<arith::IndexCastOp>(loc, builder.getIndexType(), load);
871a2c9d4bbSAart Bik   }
872a2c9d4bbSAart Bik   return load;
873a2c9d4bbSAart Bik }
874a2c9d4bbSAart Bik 
875a2c9d4bbSAart Bik /// Generates an invariant value.
genInvariantValue(Merger & merger,CodeGen & codegen,OpBuilder & builder,unsigned exp)876a2c9d4bbSAart Bik static Value genInvariantValue(Merger &merger, CodeGen &codegen,
877e9fa5590SMatthias Springer                                OpBuilder &builder, unsigned exp) {
878a2c9d4bbSAart Bik   Value val = merger.exp(exp).val;
879a2c9d4bbSAart Bik   if (codegen.curVecLength > 1)
880e9fa5590SMatthias Springer     return genVectorInvariantValue(codegen, builder, val);
881a2c9d4bbSAart Bik   return val;
882a2c9d4bbSAart Bik }
883a2c9d4bbSAart Bik 
884a2c9d4bbSAart Bik /// Generates an address computation "sz * p + i".
genAddress(CodeGen & codegen,OpBuilder & builder,Location loc,Value size,Value p,Value i)885e9fa5590SMatthias Springer static Value genAddress(CodeGen &codegen, OpBuilder &builder, Location loc,
886e9fa5590SMatthias Springer                         Value size, Value p, Value i) {
887e9fa5590SMatthias Springer   Value mul = builder.create<arith::MulIOp>(loc, size, p);
888a2c9d4bbSAart Bik   if (auto vtp = i.getType().dyn_cast<VectorType>()) {
889a54f4eaeSMogball     Value inv =
890e9fa5590SMatthias Springer         builder.create<arith::IndexCastOp>(loc, vtp.getElementType(), mul);
891e9fa5590SMatthias Springer     mul = genVectorInvariantValue(codegen, builder, inv);
892a2c9d4bbSAart Bik   }
893e9fa5590SMatthias Springer   return builder.create<arith::AddIOp>(loc, mul, i);
894a2c9d4bbSAart Bik }
895a2c9d4bbSAart Bik 
89653cc3a06SAart Bik /// Generates an index value.
genIndexValue(CodeGen & codegen,OpBuilder & builder,unsigned idx,unsigned ldx)8972a288616SAart Bik static Value genIndexValue(CodeGen &codegen, OpBuilder &builder, unsigned idx,
8982a288616SAart Bik                            unsigned ldx) {
89969a7759bSAart Bik   Value ival = codegen.loops[idx];
90069a7759bSAart Bik   Type itype = ival.getType();
90169a7759bSAart Bik   // During vectorization, we either encounter:
90269a7759bSAart Bik   // (1) indices already in vector form, as in ... = ind[lo:hi], good to go, or
90369a7759bSAart Bik   // (2) single index, as in ... = i, must convert to [i, i+1, ...] for inner i.
90469a7759bSAart Bik   unsigned vl = codegen.curVecLength;
90569a7759bSAart Bik   if (vl > 1 && !itype.isa<VectorType>()) {
90669a7759bSAart Bik     Location loc = ival.getLoc();
90769a7759bSAart Bik     VectorType vtp = vectorType(codegen, itype);
908e9fa5590SMatthias Springer     ival = builder.create<vector::BroadcastOp>(loc, vtp, ival);
90969a7759bSAart Bik     if (idx == ldx) {
91063015742SJavier Setoain       Value incr;
91163015742SJavier Setoain       if (vtp.isScalable()) {
912e9fa5590SMatthias Springer         Type stepvty = vectorType(codegen, builder.getI64Type());
913e9fa5590SMatthias Springer         Value stepv = builder.create<LLVM::StepVectorOp>(loc, stepvty);
914e9fa5590SMatthias Springer         incr = builder.create<arith::IndexCastOp>(loc, vtp, stepv);
91563015742SJavier Setoain       } else {
91669a7759bSAart Bik         SmallVector<APInt, 4> integers;
91769a7759bSAart Bik         for (unsigned i = 0; i < vl; i++)
91869a7759bSAart Bik           integers.push_back(APInt(/*width=*/64, i));
91969a7759bSAart Bik         auto values = DenseElementsAttr::get(vtp, integers);
920e9fa5590SMatthias Springer         incr = builder.create<arith::ConstantOp>(loc, vtp, values);
92163015742SJavier Setoain       }
922e9fa5590SMatthias Springer       ival = builder.create<arith::AddIOp>(loc, ival, incr);
92369a7759bSAart Bik     }
92469a7759bSAart Bik   }
92569a7759bSAart Bik   return ival;
92653cc3a06SAart Bik }
92753cc3a06SAart Bik 
9282a288616SAart Bik /// Semi-ring branches are simply inlined by the sparse compiler. Prior
9292a288616SAart Bik /// analysis has verified that all computations are "local" to the inlined
9302a288616SAart Bik /// branch or otherwise invariantly defined outside the loop nest, with the
9312a288616SAart Bik /// exception of index computations, which need to be relinked to actual
9322a288616SAart Bik /// inlined cloned code.
relinkBranch(CodeGen & codegen,RewriterBase & rewriter,Block * block,Value e,unsigned ldx)9332a288616SAart Bik static Value relinkBranch(CodeGen &codegen, RewriterBase &rewriter,
9342a288616SAart Bik                           Block *block, Value e, unsigned ldx) {
9352a288616SAart Bik   if (Operation *def = e.getDefiningOp()) {
9362a288616SAart Bik     if (auto indexOp = dyn_cast<linalg::IndexOp>(def))
9372a288616SAart Bik       return genIndexValue(codegen, rewriter, indexOp.dim(), ldx);
9382a288616SAart Bik     if (def->getBlock() == block) {
9392a288616SAart Bik       for (unsigned i = 0, n = def->getNumOperands(); i < n; i++)
9402a288616SAart Bik         def->setOperand(
9412a288616SAart Bik             i, relinkBranch(codegen, rewriter, block, def->getOperand(i), ldx));
9422a288616SAart Bik     }
9432a288616SAart Bik   }
9442a288616SAart Bik   return e;
9452a288616SAart Bik }
9462a288616SAart Bik 
947a2c9d4bbSAart Bik /// Recursively generates tensor expression.
genExp(Merger & merger,CodeGen & codegen,RewriterBase & rewriter,linalg::GenericOp op,unsigned exp,unsigned ldx)948e9fa5590SMatthias Springer static Value genExp(Merger &merger, CodeGen &codegen, RewriterBase &rewriter,
94969a7759bSAart Bik                     linalg::GenericOp op, unsigned exp, unsigned ldx) {
950b8a021dbSAart Bik   Location loc = op.getLoc();
951123e8dfcSAart Bik   if (exp == -1u)
952123e8dfcSAart Bik     return Value();
953a2c9d4bbSAart Bik   if (merger.exp(exp).kind == Kind::kTensor)
954a2c9d4bbSAart Bik     return genTensorLoad(merger, codegen, rewriter, op, exp);
955b8a021dbSAart Bik   if (merger.exp(exp).kind == Kind::kInvariant)
956a2c9d4bbSAart Bik     return genInvariantValue(merger, codegen, rewriter, exp);
95753cc3a06SAart Bik   if (merger.exp(exp).kind == Kind::kIndex)
9582a288616SAart Bik     return genIndexValue(codegen, rewriter, merger.exp(exp).index, ldx);
95969a7759bSAart Bik   Value v0 =
96069a7759bSAart Bik       genExp(merger, codegen, rewriter, op, merger.exp(exp).children.e0, ldx);
96169a7759bSAart Bik   Value v1 =
96269a7759bSAart Bik       genExp(merger, codegen, rewriter, op, merger.exp(exp).children.e1, ldx);
9632a288616SAart Bik   Value ee = merger.buildExp(rewriter, loc, exp, v0, v1);
9642a288616SAart Bik   if (ee && (merger.exp(exp).kind == Kind::kUnary ||
9652a288616SAart Bik              merger.exp(exp).kind == Kind::kBinary ||
9662a288616SAart Bik              merger.exp(exp).kind == Kind::kBinaryBranch))
9672a288616SAart Bik     ee = relinkBranch(codegen, rewriter, ee.getParentBlock(), ee, ldx);
9682a288616SAart Bik   return ee;
969a2c9d4bbSAart Bik }
970a2c9d4bbSAart Bik 
971b1d44e59SAart Bik /// Determines if affine expression is invariant.
isInvariantAffine(const CodeGen & codegen,AffineExpr a,unsigned ldx,bool & atLevel)972b1d44e59SAart Bik static bool isInvariantAffine(const CodeGen &codegen, AffineExpr a,
973b1d44e59SAart Bik                               unsigned ldx, bool &atLevel) {
974b1d44e59SAart Bik   switch (a.getKind()) {
975b1d44e59SAart Bik   case AffineExprKind::DimId: {
976b1d44e59SAart Bik     unsigned idx = a.cast<AffineDimExpr>().getPosition();
977b1d44e59SAart Bik     if (idx == ldx)
978b1d44e59SAart Bik       atLevel = true;
979b1d44e59SAart Bik     return codegen.loops[idx] != nullptr; // no longer in play?
980b1d44e59SAart Bik   }
981b1d44e59SAart Bik   case AffineExprKind::Add:
982b1d44e59SAart Bik   case AffineExprKind::Mul: {
983b1d44e59SAart Bik     auto binOp = a.cast<AffineBinaryOpExpr>();
984b1d44e59SAart Bik     return isInvariantAffine(codegen, binOp.getLHS(), ldx, atLevel) &&
985b1d44e59SAart Bik            isInvariantAffine(codegen, binOp.getRHS(), ldx, atLevel);
986b1d44e59SAart Bik   }
987b1d44e59SAart Bik   default:
988b1d44e59SAart Bik     return true;
989b1d44e59SAart Bik   }
990b1d44e59SAart Bik }
991b1d44e59SAart Bik 
992a2c9d4bbSAart Bik /// Hoists loop invariant tensor loads for which indices have been exhausted.
genInvariants(Merger & merger,CodeGen & codegen,OpBuilder & builder,linalg::GenericOp op,unsigned exp,unsigned ldx,bool atStart,Kind last=Kind::kTensor)993e9fa5590SMatthias Springer static void genInvariants(Merger &merger, CodeGen &codegen, OpBuilder &builder,
994e9fa5590SMatthias Springer                           linalg::GenericOp op, unsigned exp, unsigned ldx,
995e9fa5590SMatthias Springer                           bool atStart, Kind last = Kind::kTensor) {
996123e8dfcSAart Bik   if (exp == -1u)
997123e8dfcSAart Bik     return;
998a2c9d4bbSAart Bik   if (merger.exp(exp).kind == Kind::kTensor) {
999a2c9d4bbSAart Bik     // Inspect tensor indices.
1000a2c9d4bbSAart Bik     bool atLevel = ldx == -1u;
10014569c14aSGus Smith     OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).tensor];
1002619bfe8bSAart Bik     auto map = op.getTiedIndexingMap(t);
1003619bfe8bSAart Bik     auto enc = getSparseTensorEncoding(t->get().getType());
1004c194b49cSAart Bik     for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
1005b1d44e59SAart Bik       AffineExpr a = map.getResult(perm(enc, d));
1006b1d44e59SAart Bik       if (!isInvariantAffine(codegen, a, ldx, atLevel))
1007a2c9d4bbSAart Bik         return; // still in play
1008a2c9d4bbSAart Bik     }
1009a2c9d4bbSAart Bik     // All exhausted at this level (atLevel denotes exactly at this level).
10107373cabcSAart Bik     if (!atLevel)
10117373cabcSAart Bik       return;
10122f2b5b7dSTobias Gysi     OpOperand *lhs = op.getOutputOperand(0);
1013619bfe8bSAart Bik     if (lhs == t) {
10147373cabcSAart Bik       // Start or end a scalarized reduction
10157373cabcSAart Bik       if (atStart) {
1016e9fa5590SMatthias Springer         Value load = genTensorLoad(merger, codegen, builder, op, exp);
10175da21338SAart Bik         codegen.redKind = getReduction(last);
10187373cabcSAart Bik         codegen.redExp = exp;
10197373cabcSAart Bik         updateReduc(merger, codegen, load);
10207373cabcSAart Bik       } else {
10217373cabcSAart Bik         Value redVal = codegen.redVal;
10227373cabcSAart Bik         updateReduc(merger, codegen, Value());
10237373cabcSAart Bik         codegen.redExp = -1u;
10247373cabcSAart Bik         codegen.redKind = kNoReduc;
1025e9fa5590SMatthias Springer         genTensorStore(merger, codegen, builder, op, exp, redVal);
10267373cabcSAart Bik       }
10277373cabcSAart Bik     } else {
10287373cabcSAart Bik       // Start or end loop invariant hoisting of a tensor load.
1029a2c9d4bbSAart Bik       merger.exp(exp).val =
1030e9fa5590SMatthias Springer           atStart ? genTensorLoad(merger, codegen, builder, op, exp) : Value();
1031a2c9d4bbSAart Bik     }
103253cc3a06SAart Bik   } else if (merger.exp(exp).kind != Kind::kInvariant &&
103353cc3a06SAart Bik              merger.exp(exp).kind != Kind::kIndex) {
1034a2c9d4bbSAart Bik     // Traverse into the binary operations. Note that we only hoist
1035a2c9d4bbSAart Bik     // tensor loads, since subsequent MLIR/LLVM passes know how to
1036a2c9d4bbSAart Bik     // deal with all other kinds of derived loop invariants.
10375da21338SAart Bik     Kind last = merger.exp(exp).kind;
10384569c14aSGus Smith     unsigned e0 = merger.exp(exp).children.e0;
10394569c14aSGus Smith     unsigned e1 = merger.exp(exp).children.e1;
1040e9fa5590SMatthias Springer     genInvariants(merger, codegen, builder, op, e0, ldx, atStart, last);
1041e9fa5590SMatthias Springer     genInvariants(merger, codegen, builder, op, e1, ldx, atStart, last);
1042a2c9d4bbSAart Bik   }
1043a2c9d4bbSAart Bik }
1044a2c9d4bbSAart Bik 
10454f2ec7f9SAart Bik /// Generates an expanded access pattern in innermost dimension.
genExpansion(Merger & merger,CodeGen & codegen,OpBuilder & builder,linalg::GenericOp op,unsigned at,bool atStart)1046e9fa5590SMatthias Springer static void genExpansion(Merger &merger, CodeGen &codegen, OpBuilder &builder,
1047e9fa5590SMatthias Springer                          linalg::GenericOp op, unsigned at, bool atStart) {
10484f2ec7f9SAart Bik   OpOperand *lhs = codegen.sparseOut;
10494f2ec7f9SAart Bik   if (!lhs || codegen.outerParNest != op.getRank(lhs) - 1 ||
10504f2ec7f9SAart Bik       at != codegen.outerParNest)
10514f2ec7f9SAart Bik     return; // not needed at this level
10524f2ec7f9SAart Bik   // Generate start or end of an expanded access pattern.
10534f2ec7f9SAart Bik   Value tensor = lhs->get();
10544f2ec7f9SAart Bik   Location loc = op.getLoc();
10554f2ec7f9SAart Bik   if (atStart) {
10564f2ec7f9SAart Bik     auto dynShape = {ShapedType::kDynamicSize};
10574f2ec7f9SAart Bik     Type etp = tensor.getType().cast<ShapedType>().getElementType();
10584f2ec7f9SAart Bik     Type t1 = MemRefType::get(dynShape, etp);
1059e9fa5590SMatthias Springer     Type t2 = MemRefType::get(dynShape, builder.getI1Type());
1060e9fa5590SMatthias Springer     Type t3 = MemRefType::get(dynShape, builder.getIndexType());
1061e9fa5590SMatthias Springer     Type t4 = builder.getIndexType();
10624f2ec7f9SAart Bik     auto res =
1063e9fa5590SMatthias Springer         builder.create<ExpandOp>(loc, TypeRange({t1, t2, t3, t4}), tensor);
10644f2ec7f9SAart Bik     assert(res.getNumResults() == 4);
10654f2ec7f9SAart Bik     assert(!codegen.expValues);
10664f2ec7f9SAart Bik     codegen.expValues = res.getResult(0);
10674f2ec7f9SAart Bik     codegen.expFilled = res.getResult(1);
10684f2ec7f9SAart Bik     codegen.expAdded = res.getResult(2);
10694f2ec7f9SAart Bik     codegen.expCount = res.getResult(3);
10704f2ec7f9SAart Bik   } else {
10714f2ec7f9SAart Bik     assert(codegen.expValues);
1072e9fa5590SMatthias Springer     builder.create<CompressOp>(loc, tensor, codegen.lexIdx, codegen.expValues,
10734f2ec7f9SAart Bik                                codegen.expFilled, codegen.expAdded,
10744f2ec7f9SAart Bik                                codegen.expCount);
10754f2ec7f9SAart Bik     codegen.expValues = codegen.expFilled = codegen.expAdded =
10764f2ec7f9SAart Bik         codegen.expCount = Value();
10774f2ec7f9SAart Bik   }
10784f2ec7f9SAart Bik }
10794f2ec7f9SAart Bik 
1080a2c9d4bbSAart Bik /// Generates initialization code for the subsequent loop sequence at
1081a2c9d4bbSAart Bik /// current index level. Returns true if the loop sequence needs to
1082a2c9d4bbSAart Bik /// maintain the universal index.
genInit(Merger & merger,CodeGen & codegen,OpBuilder & builder,linalg::GenericOp op,std::vector<unsigned> & topSort,unsigned at,BitVector & inits)1083e9fa5590SMatthias Springer static bool genInit(Merger &merger, CodeGen &codegen, OpBuilder &builder,
1084a2c9d4bbSAart Bik                     linalg::GenericOp op, std::vector<unsigned> &topSort,
1085d10d49dcSRiver Riddle                     unsigned at, BitVector &inits) {
1086a2c9d4bbSAart Bik   bool needsUniv = false;
1087a2c9d4bbSAart Bik   Location loc = op.getLoc();
1088a2c9d4bbSAart Bik   unsigned idx = topSort[at];
1089a2c9d4bbSAart Bik 
1090a2c9d4bbSAart Bik   // Initialize sparse positions.
1091a2c9d4bbSAart Bik   for (unsigned b = 0, be = inits.size(); b < be; b++) {
1092a2c9d4bbSAart Bik     if (inits[b]) {
1093a2c9d4bbSAart Bik       unsigned tensor = merger.tensor(b);
1094a2c9d4bbSAart Bik       assert(idx == merger.index(b));
1095a2c9d4bbSAart Bik       if (merger.isDim(b, Dim::kSparse)) {
1096a2c9d4bbSAart Bik         // Initialize sparse index.
1097a2c9d4bbSAart Bik         unsigned pat = at;
1098a2c9d4bbSAart Bik         for (; pat != 0; pat--) {
1099a2c9d4bbSAart Bik           if (codegen.pidxs[tensor][topSort[pat - 1]])
1100a2c9d4bbSAart Bik             break;
1101a2c9d4bbSAart Bik         }
1102a2c9d4bbSAart Bik         Value ptr = codegen.pointers[tensor][idx];
1103e9fa5590SMatthias Springer         Value one = constantIndex(builder, loc, 1);
1104e9fa5590SMatthias Springer         Value p0 = (pat == 0) ? constantIndex(builder, loc, 0)
1105a2c9d4bbSAart Bik                               : codegen.pidxs[tensor][topSort[pat - 1]];
1106e9fa5590SMatthias Springer         codegen.pidxs[tensor][idx] = genLoad(codegen, builder, loc, ptr, p0);
1107e9fa5590SMatthias Springer         Value p1 = builder.create<arith::AddIOp>(loc, p0, one);
1108e9fa5590SMatthias Springer         codegen.highs[tensor][idx] = genLoad(codegen, builder, loc, ptr, p1);
1109a2c9d4bbSAart Bik       } else {
1110a2c9d4bbSAart Bik         // Dense index still in play.
1111a2c9d4bbSAart Bik         needsUniv = true;
1112a2c9d4bbSAart Bik       }
1113a2c9d4bbSAart Bik     }
1114a2c9d4bbSAart Bik   }
1115a2c9d4bbSAart Bik 
1116a2c9d4bbSAart Bik   // Initialize the universal dense index.
1117e9fa5590SMatthias Springer   codegen.loops[idx] = constantIndex(builder, loc, 0);
1118a2c9d4bbSAart Bik   return needsUniv;
1119a2c9d4bbSAart Bik }
1120a2c9d4bbSAart Bik 
1121a2c9d4bbSAart Bik /// Returns vectorization strategy. Any implicit inner loop in the Linalg
1122a2c9d4bbSAart Bik /// operation is a candidate. Whether it is actually converted to SIMD code
1123a2c9d4bbSAart Bik /// depends on the requested strategy.
isVectorFor(CodeGen & codegen,bool isInner,bool isReduction,bool isSparse)112453cc3a06SAart Bik static bool isVectorFor(CodeGen &codegen, bool isInner, bool isReduction,
112553cc3a06SAart Bik                         bool isSparse) {
112653cc3a06SAart Bik   // Reject vectorization of sparse output, unless innermost is reduction.
112753cc3a06SAart Bik   if (codegen.sparseOut && !isReduction)
112853cc3a06SAart Bik     return false;
112953cc3a06SAart Bik   // Inspect strategy.
1130a2c9d4bbSAart Bik   switch (codegen.options.vectorizationStrategy) {
1131a2c9d4bbSAart Bik   case SparseVectorizationStrategy::kNone:
1132a2c9d4bbSAart Bik     return false;
1133a2c9d4bbSAart Bik   case SparseVectorizationStrategy::kDenseInnerLoop:
1134a2c9d4bbSAart Bik     return isInner && !isSparse;
1135a2c9d4bbSAart Bik   case SparseVectorizationStrategy::kAnyStorageInnerLoop:
1136a2c9d4bbSAart Bik     return isInner;
1137a2c9d4bbSAart Bik   }
1138a2c9d4bbSAart Bik   llvm_unreachable("unexpected vectorization strategy");
1139a2c9d4bbSAart Bik }
1140a2c9d4bbSAart Bik 
1141a2c9d4bbSAart Bik /// Returns parallelization strategy. Any implicit loop in the Linalg operation
1142a2c9d4bbSAart Bik /// that is marked "parallel" is a candidate. Whether it is actually converted
1143a2c9d4bbSAart Bik /// to a parallel operation depends on the requested strategy.
isParallelFor(CodeGen & codegen,bool isOuter,bool isReduction,bool isSparse,bool isVector)1144a2c9d4bbSAart Bik static bool isParallelFor(CodeGen &codegen, bool isOuter, bool isReduction,
1145a2c9d4bbSAart Bik                           bool isSparse, bool isVector) {
114653cc3a06SAart Bik   // Reject parallelization of sparse output.
114753cc3a06SAart Bik   if (codegen.sparseOut)
114853cc3a06SAart Bik     return false;
114953cc3a06SAart Bik   // Inspect strategy.
1150a2c9d4bbSAart Bik   switch (codegen.options.parallelizationStrategy) {
1151a2c9d4bbSAart Bik   case SparseParallelizationStrategy::kNone:
1152a2c9d4bbSAart Bik     return false;
1153a2c9d4bbSAart Bik   case SparseParallelizationStrategy::kDenseOuterLoop:
1154a2c9d4bbSAart Bik     return isOuter && !isSparse && !isReduction && !isVector;
1155a2c9d4bbSAart Bik   case SparseParallelizationStrategy::kAnyStorageOuterLoop:
1156a2c9d4bbSAart Bik     return isOuter && !isReduction && !isVector;
1157a2c9d4bbSAart Bik   case SparseParallelizationStrategy::kDenseAnyLoop:
1158a2c9d4bbSAart Bik     return !isSparse && !isReduction && !isVector;
1159a2c9d4bbSAart Bik   case SparseParallelizationStrategy::kAnyStorageAnyLoop:
1160a2c9d4bbSAart Bik     return !isReduction && !isVector;
1161a2c9d4bbSAart Bik   }
1162a2c9d4bbSAart Bik   llvm_unreachable("unexpected parallelization strategy");
1163a2c9d4bbSAart Bik }
1164a2c9d4bbSAart Bik 
1165849f016cSAart Bik /// Checks unit stride for dense tensors. The iteration graph may have ignored
1166a2c9d4bbSAart Bik /// dense access patterns in order to avoid cycles (sparse access patterns are
1167a2c9d4bbSAart Bik /// always placed innermost), but that means dense access has become strided.
1168849f016cSAart Bik /// This prevents effective vectorization.
denseUnitStrides(Merger & merger,linalg::GenericOp op,unsigned idx)1169a2c9d4bbSAart Bik static bool denseUnitStrides(Merger &merger, linalg::GenericOp op,
1170849f016cSAart Bik                              unsigned idx) {
11712f2b5b7dSTobias Gysi   for (OpOperand *t : op.getInputAndOutputOperands()) {
11722f2b5b7dSTobias Gysi     if (!getSparseTensorEncoding(t->get().getType())) {
11732f2b5b7dSTobias Gysi       auto map = op.getTiedIndexingMap(t);
1174c194b49cSAart Bik       for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
1175b1d44e59SAart Bik         AffineExpr a = map.getResult(d);
1176849f016cSAart Bik         // Report non-unit stride if innermost index appears at an outer
1177849f016cSAart Bik         // dimension (true non-unit stride) or if the innermost index appears
1178849f016cSAart Bik         // in a compound subscript in the innermost dimension. Even if the
1179849f016cSAart Bik         // latter is unit stride, it does not play well with scatter/gather.
1180c8d5dcb0SAart Bik         // TODO: accept unit stride affine innermost like a[i,j+k+1]?
1181849f016cSAart Bik         if (a.isFunctionOfDim(idx) &&
1182849f016cSAart Bik             ((d != rank - 1) || (a.getKind() != AffineExprKind::DimId)))
1183a2c9d4bbSAart Bik           return false;
1184a2c9d4bbSAart Bik       }
1185a2c9d4bbSAart Bik     }
1186a2c9d4bbSAart Bik   }
1187a2c9d4bbSAart Bik   return true;
1188a2c9d4bbSAart Bik }
1189a2c9d4bbSAart Bik 
1190a2c9d4bbSAart Bik /// Generates a for-loop on a single index.
genFor(Merger & merger,CodeGen & codegen,OpBuilder & builder,linalg::GenericOp op,bool isOuter,bool isInner,unsigned idx,BitVector & indices)1191e9fa5590SMatthias Springer static Operation *genFor(Merger &merger, CodeGen &codegen, OpBuilder &builder,
1192e9fa5590SMatthias Springer                          linalg::GenericOp op, bool isOuter, bool isInner,
1193e9fa5590SMatthias Springer                          unsigned idx, BitVector &indices) {
1194a2c9d4bbSAart Bik   unsigned fb = indices.find_first();
1195a2c9d4bbSAart Bik   unsigned tensor = merger.tensor(fb);
1196a2c9d4bbSAart Bik   assert(idx == merger.index(fb));
1197a2c9d4bbSAart Bik   auto iteratorTypes = op.iterator_types().getValue();
1198583a7542STobias Gysi   bool isReduction = isReductionIterator(iteratorTypes[idx]);
1199a2c9d4bbSAart Bik   bool isSparse = merger.isDim(fb, Dim::kSparse);
120053cc3a06SAart Bik   bool isVector = isVectorFor(codegen, isInner, isReduction, isSparse) &&
1201a2c9d4bbSAart Bik                   denseUnitStrides(merger, op, idx);
1202a2c9d4bbSAart Bik   bool isParallel =
1203a2c9d4bbSAart Bik       isParallelFor(codegen, isOuter, isReduction, isSparse, isVector);
1204a2c9d4bbSAart Bik 
1205a2c9d4bbSAart Bik   // Prepare vector length.
1206a2c9d4bbSAart Bik   if (isVector)
1207a2c9d4bbSAart Bik     codegen.curVecLength = codegen.options.vectorLength;
1208a2c9d4bbSAart Bik 
1209a2c9d4bbSAart Bik   // Loop bounds and increment.
1210a2c9d4bbSAart Bik   Location loc = op.getLoc();
1211a2c9d4bbSAart Bik   Value lo = isSparse ? codegen.pidxs[tensor][idx] : codegen.loops[idx];
1212a2c9d4bbSAart Bik   Value hi = isSparse ? codegen.highs[tensor][idx] : codegen.sizes[idx];
1213e9fa5590SMatthias Springer   Value step = constantIndex(builder, loc, codegen.curVecLength);
12147783a178SJavier Setoain   if (isVector && codegen.options.enableVLAVectorization) {
1215e9fa5590SMatthias Springer     Value vscale = builder.create<vector::VectorScaleOp>(
1216e9fa5590SMatthias Springer         loc, IndexType::get(builder.getContext()));
1217e9fa5590SMatthias Springer     step = builder.create<arith::MulIOp>(loc, vscale, step);
12187783a178SJavier Setoain   }
1219a2c9d4bbSAart Bik 
1220a2c9d4bbSAart Bik   // Emit a parallel loop.
1221a2c9d4bbSAart Bik   if (isParallel) {
1222a2c9d4bbSAart Bik     assert(!isVector);
1223e9fa5590SMatthias Springer     scf::ParallelOp parOp = builder.create<scf::ParallelOp>(loc, lo, hi, step);
1224a2c9d4bbSAart Bik     if (isSparse)
1225a2c9d4bbSAart Bik       codegen.pidxs[tensor][idx] = parOp.getInductionVars()[0];
1226a2c9d4bbSAart Bik     else
1227a2c9d4bbSAart Bik       codegen.loops[idx] = parOp.getInductionVars()[0];
1228e9fa5590SMatthias Springer     builder.setInsertionPointToStart(parOp.getBody());
1229a2c9d4bbSAart Bik     return parOp;
1230a2c9d4bbSAart Bik   }
1231a2c9d4bbSAart Bik 
12327373cabcSAart Bik   // Emit a sequential or vector loop.
1233a2c9d4bbSAart Bik   SmallVector<Value, 4> operands;
12347373cabcSAart Bik   if (codegen.redVal) {
12357373cabcSAart Bik     // In a vector loop, bring reduction into SIMD form, if not already.
12367373cabcSAart Bik     if (isVector && !codegen.redVal.getType().isa<VectorType>()) {
12377373cabcSAart Bik       VectorType vtp = vectorType(codegen, codegen.redVal.getType());
1238e9fa5590SMatthias Springer       Value vred = genVectorReducInit(codegen, builder, loc, vtp);
12397373cabcSAart Bik       updateReduc(merger, codegen, vred);
12407373cabcSAart Bik     }
12417373cabcSAart Bik     operands.push_back(codegen.redVal);
1242a2c9d4bbSAart Bik   }
12434f2ec7f9SAart Bik   if (codegen.expValues)
12444f2ec7f9SAart Bik     operands.push_back(codegen.expCount);
1245e9fa5590SMatthias Springer   scf::ForOp forOp = builder.create<scf::ForOp>(loc, lo, hi, step, operands);
12467373cabcSAart Bik   if (codegen.redVal)
12477373cabcSAart Bik     updateReduc(merger, codegen, forOp.getRegionIterArgs().front());
12484f2ec7f9SAart Bik   if (codegen.expValues)
12494f2ec7f9SAart Bik     codegen.expCount = forOp.getRegionIterArgs().back();
1250a2c9d4bbSAart Bik   // Assign induction variable to sparse or dense index.
1251a2c9d4bbSAart Bik   Value iv = forOp.getInductionVar();
1252a2c9d4bbSAart Bik   if (isSparse)
1253a2c9d4bbSAart Bik     codegen.pidxs[tensor][idx] = iv;
1254a2c9d4bbSAart Bik   else
1255a2c9d4bbSAart Bik     codegen.loops[idx] = iv;
1256e9fa5590SMatthias Springer   builder.setInsertionPointToStart(forOp.getBody());
1257a2c9d4bbSAart Bik   // Share vector iteration mask between all subsequent loads/stores.
1258a2c9d4bbSAart Bik   if (isVector)
1259e9fa5590SMatthias Springer     codegen.curVecMask = genVectorMask(codegen, builder, iv, lo, hi, step);
1260a2c9d4bbSAart Bik   return forOp;
1261a2c9d4bbSAart Bik }
1262a2c9d4bbSAart Bik 
1263a2c9d4bbSAart Bik /// Emit a while-loop for co-iteration over multiple indices.
genWhile(Merger & merger,CodeGen & codegen,OpBuilder & builder,linalg::GenericOp op,unsigned idx,bool needsUniv,BitVector & indices)1264e9fa5590SMatthias Springer static Operation *genWhile(Merger &merger, CodeGen &codegen, OpBuilder &builder,
1265e9fa5590SMatthias Springer                            linalg::GenericOp op, unsigned idx, bool needsUniv,
1266e9fa5590SMatthias Springer                            BitVector &indices) {
1267a2c9d4bbSAart Bik   SmallVector<Type, 4> types;
1268a2c9d4bbSAart Bik   SmallVector<Value, 4> operands;
1269a2c9d4bbSAart Bik   // Construct the while-loop with a parameter for each index.
1270e9fa5590SMatthias Springer   Type indexType = builder.getIndexType();
1271a2c9d4bbSAart Bik   for (unsigned b = 0, be = indices.size(); b < be; b++) {
1272a2c9d4bbSAart Bik     if (indices[b] && merger.isDim(b, Dim::kSparse)) {
1273a2c9d4bbSAart Bik       unsigned tensor = merger.tensor(b);
1274a2c9d4bbSAart Bik       assert(idx == merger.index(b));
1275a2c9d4bbSAart Bik       types.push_back(indexType);
1276a2c9d4bbSAart Bik       operands.push_back(codegen.pidxs[tensor][idx]);
1277a2c9d4bbSAart Bik     }
1278a2c9d4bbSAart Bik   }
12797373cabcSAart Bik   if (codegen.redVal) {
12807373cabcSAart Bik     types.push_back(codegen.redVal.getType());
12817373cabcSAart Bik     operands.push_back(codegen.redVal);
12827373cabcSAart Bik   }
12834f2ec7f9SAart Bik   if (codegen.expValues) {
12844f2ec7f9SAart Bik     types.push_back(indexType);
12854f2ec7f9SAart Bik     operands.push_back(codegen.expCount);
12864f2ec7f9SAart Bik   }
1287a2c9d4bbSAart Bik   if (needsUniv) {
1288a2c9d4bbSAart Bik     types.push_back(indexType);
1289a2c9d4bbSAart Bik     operands.push_back(codegen.loops[idx]);
1290a2c9d4bbSAart Bik   }
12917373cabcSAart Bik   assert(types.size() == operands.size());
1292a2c9d4bbSAart Bik   Location loc = op.getLoc();
1293e9fa5590SMatthias Springer   scf::WhileOp whileOp = builder.create<scf::WhileOp>(loc, types, operands);
1294e084679fSRiver Riddle 
1295e084679fSRiver Riddle   SmallVector<Location> locs(types.size(), loc);
1296e9fa5590SMatthias Springer   Block *before = builder.createBlock(&whileOp.getBefore(), {}, types, locs);
1297e9fa5590SMatthias Springer   Block *after = builder.createBlock(&whileOp.getAfter(), {}, types, locs);
1298a2c9d4bbSAart Bik 
1299a2c9d4bbSAart Bik   // Build the "before" region, which effectively consists
1300a2c9d4bbSAart Bik   // of a conjunction of "i < upper" tests on all induction.
1301e9fa5590SMatthias Springer   builder.setInsertionPointToStart(&whileOp.getBefore().front());
1302a2c9d4bbSAart Bik   Value cond;
1303a2c9d4bbSAart Bik   unsigned o = 0;
1304a2c9d4bbSAart Bik   for (unsigned b = 0, be = indices.size(); b < be; b++) {
1305a2c9d4bbSAart Bik     if (indices[b] && merger.isDim(b, Dim::kSparse)) {
1306a2c9d4bbSAart Bik       unsigned tensor = merger.tensor(b);
1307a2c9d4bbSAart Bik       assert(idx == merger.index(b));
1308a2c9d4bbSAart Bik       Value op1 = before->getArgument(o);
1309a2c9d4bbSAart Bik       Value op2 = codegen.highs[tensor][idx];
1310e9fa5590SMatthias Springer       Value opc = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult,
1311a54f4eaeSMogball                                                 op1, op2);
1312e9fa5590SMatthias Springer       cond = cond ? builder.create<arith::AndIOp>(loc, cond, opc) : opc;
1313a2c9d4bbSAart Bik       codegen.pidxs[tensor][idx] = after->getArgument(o++);
1314a2c9d4bbSAart Bik     }
1315a2c9d4bbSAart Bik   }
13167373cabcSAart Bik   if (codegen.redVal)
13177373cabcSAart Bik     updateReduc(merger, codegen, after->getArgument(o++));
13184f2ec7f9SAart Bik   if (codegen.expValues)
13194f2ec7f9SAart Bik     codegen.expCount = after->getArgument(o++);
1320a2c9d4bbSAart Bik   if (needsUniv)
1321a2c9d4bbSAart Bik     codegen.loops[idx] = after->getArgument(o++);
1322a2c9d4bbSAart Bik   assert(o == operands.size());
1323e9fa5590SMatthias Springer   builder.create<scf::ConditionOp>(loc, cond, before->getArguments());
1324e9fa5590SMatthias Springer   builder.setInsertionPointToStart(&whileOp.getAfter().front());
1325a2c9d4bbSAart Bik   return whileOp;
1326a2c9d4bbSAart Bik }
1327a2c9d4bbSAart Bik 
1328a2c9d4bbSAart Bik /// Generates a for-loop or a while-loop, depending on whether it implements
1329a2c9d4bbSAart Bik /// singleton iteration or co-iteration over the given conjunction.
genLoop(Merger & merger,CodeGen & codegen,OpBuilder & builder,linalg::GenericOp op,std::vector<unsigned> & topSort,unsigned at,bool needsUniv,BitVector & indices)1330e9fa5590SMatthias Springer static Operation *genLoop(Merger &merger, CodeGen &codegen, OpBuilder &builder,
1331e9fa5590SMatthias Springer                           linalg::GenericOp op, std::vector<unsigned> &topSort,
1332e9fa5590SMatthias Springer                           unsigned at, bool needsUniv, BitVector &indices) {
1333a2c9d4bbSAart Bik   unsigned idx = topSort[at];
1334a2c9d4bbSAart Bik   if (indices.count() == 1) {
1335a2c9d4bbSAart Bik     bool isOuter = at == 0;
1336a2c9d4bbSAart Bik     bool isInner = at == topSort.size() - 1;
1337e9fa5590SMatthias Springer     return genFor(merger, codegen, builder, op, isOuter, isInner, idx, indices);
1338a2c9d4bbSAart Bik   }
1339e9fa5590SMatthias Springer   return genWhile(merger, codegen, builder, op, idx, needsUniv, indices);
1340a2c9d4bbSAart Bik }
1341a2c9d4bbSAart Bik 
1342a2c9d4bbSAart Bik /// Generates the local variables for this loop, consisting of the sparse
1343a2c9d4bbSAart Bik /// indices, restored universal dense index, and dense positions.
genLocals(Merger & merger,CodeGen & codegen,OpBuilder & builder,linalg::GenericOp op,std::vector<unsigned> & topSort,unsigned at,bool needsUniv,BitVector & locals)1344e9fa5590SMatthias Springer static void genLocals(Merger &merger, CodeGen &codegen, OpBuilder &builder,
1345e9fa5590SMatthias Springer                       linalg::GenericOp op, std::vector<unsigned> &topSort,
1346e9fa5590SMatthias Springer                       unsigned at, bool needsUniv, BitVector &locals) {
1347a2c9d4bbSAart Bik   Location loc = op.getLoc();
1348a2c9d4bbSAart Bik   unsigned idx = topSort[at];
1349a2c9d4bbSAart Bik 
1350a2c9d4bbSAart Bik   // Initialize sparse indices.
1351a2c9d4bbSAart Bik   Value min;
1352a2c9d4bbSAart Bik   for (unsigned b = 0, be = locals.size(); b < be; b++) {
1353a2c9d4bbSAart Bik     if (locals[b] && merger.isDim(b, Dim::kSparse)) {
1354a2c9d4bbSAart Bik       unsigned tensor = merger.tensor(b);
1355a2c9d4bbSAart Bik       assert(idx == merger.index(b));
1356a2c9d4bbSAart Bik       Value ptr = codegen.indices[tensor][idx];
1357a2c9d4bbSAart Bik       Value s = codegen.pidxs[tensor][idx];
1358e9fa5590SMatthias Springer       Value load = genLoad(codegen, builder, loc, ptr, s);
1359a2c9d4bbSAart Bik       codegen.idxs[tensor][idx] = load;
1360a2c9d4bbSAart Bik       if (!needsUniv) {
1361a2c9d4bbSAart Bik         if (min) {
1362e9fa5590SMatthias Springer           Value cmp = builder.create<arith::CmpIOp>(
1363a54f4eaeSMogball               loc, arith::CmpIPredicate::ult, load, min);
1364e9fa5590SMatthias Springer           min = builder.create<arith::SelectOp>(loc, cmp, load, min);
1365a2c9d4bbSAart Bik         } else {
1366a2c9d4bbSAart Bik           min = load;
1367a2c9d4bbSAart Bik         }
1368a2c9d4bbSAart Bik       }
1369a2c9d4bbSAart Bik     }
1370a2c9d4bbSAart Bik   }
1371a2c9d4bbSAart Bik 
1372a2c9d4bbSAart Bik   // Merge dense universal index over minimum.
1373a2c9d4bbSAart Bik   if (min) {
1374a2c9d4bbSAart Bik     assert(!needsUniv);
1375a2c9d4bbSAart Bik     codegen.loops[idx] = min;
1376a2c9d4bbSAart Bik   }
1377a2c9d4bbSAart Bik 
1378727a63e0SAart Bik   // Initialize dense positions. Note that we generate dense indices of the
1379727a63e0SAart Bik   // output tensor unconditionally, since they may not appear in the lattice,
1380727a63e0SAart Bik   // but may be needed for linearized codegen.
1381a2c9d4bbSAart Bik   for (unsigned b = 0, be = locals.size(); b < be; b++) {
1382727a63e0SAart Bik     if ((locals[b] || merger.isOutTensor(b, idx)) &&
1383727a63e0SAart Bik         merger.isDim(b, Dim::kDense)) {
1384a2c9d4bbSAart Bik       unsigned tensor = merger.tensor(b);
1385a2c9d4bbSAart Bik       assert(idx == merger.index(b));
1386a2c9d4bbSAart Bik       unsigned pat = at;
1387a2c9d4bbSAart Bik       for (; pat != 0; pat--)
1388a2c9d4bbSAart Bik         if (codegen.pidxs[tensor][topSort[pat - 1]])
1389a2c9d4bbSAart Bik           break;
1390e9fa5590SMatthias Springer       Value p = (pat == 0) ? constantIndex(builder, loc, 0)
1391a2c9d4bbSAart Bik                            : codegen.pidxs[tensor][topSort[pat - 1]];
1392a2c9d4bbSAart Bik       codegen.pidxs[tensor][idx] = genAddress(
1393e9fa5590SMatthias Springer           codegen, builder, loc, codegen.sizes[idx], p, codegen.loops[idx]);
1394a2c9d4bbSAart Bik     }
1395a2c9d4bbSAart Bik   }
1396f66e5769SAart Bik 
13974f2ec7f9SAart Bik   // Move the insertion indices in lexicographic index order. During access
13984f2ec7f9SAart Bik   // pattern expansion, we can skip setting the innermost dimension.
13994f2ec7f9SAart Bik   if (codegen.sparseOut && !codegen.expValues) {
1400e9fa5590SMatthias Springer     Value pos = constantIndex(builder, loc, at);
1401e9fa5590SMatthias Springer     builder.create<memref::StoreOp>(loc, codegen.loops[idx], codegen.lexIdx,
1402f66e5769SAart Bik                                     pos);
1403f66e5769SAart Bik   }
1404a2c9d4bbSAart Bik }
1405a2c9d4bbSAart Bik 
1406a2c9d4bbSAart Bik /// Generates the induction structure for a while-loop.
genWhileInduction(Merger & merger,CodeGen & codegen,OpBuilder & builder,linalg::GenericOp op,unsigned idx,bool needsUniv,BitVector & induction,scf::WhileOp whileOp)1407a2c9d4bbSAart Bik static void genWhileInduction(Merger &merger, CodeGen &codegen,
1408e9fa5590SMatthias Springer                               OpBuilder &builder, linalg::GenericOp op,
1409a2c9d4bbSAart Bik                               unsigned idx, bool needsUniv,
14102c332660SJim Kitchen                               BitVector &induction, scf::WhileOp whileOp) {
1411a2c9d4bbSAart Bik   Location loc = op.getLoc();
14127373cabcSAart Bik   // Finalize each else branch of all if statements.
14134f2ec7f9SAart Bik   if (codegen.redVal || codegen.expValues) {
14147373cabcSAart Bik     while (auto ifOp = dyn_cast_or_null<scf::IfOp>(
1415e9fa5590SMatthias Springer                builder.getInsertionBlock()->getParentOp())) {
14164f2ec7f9SAart Bik       unsigned y = 0;
14174f2ec7f9SAart Bik       SmallVector<Value, 4> yields;
14184f2ec7f9SAart Bik       if (codegen.redVal) {
14194f2ec7f9SAart Bik         yields.push_back(codegen.redVal);
14204f2ec7f9SAart Bik         updateReduc(merger, codegen, ifOp.getResult(y++));
14214f2ec7f9SAart Bik       }
14224f2ec7f9SAart Bik       if (codegen.expValues) {
14234f2ec7f9SAart Bik         yields.push_back(codegen.expCount);
14244f2ec7f9SAart Bik         codegen.expCount = ifOp->getResult(y++);
14254f2ec7f9SAart Bik       }
14264f2ec7f9SAart Bik       assert(y == yields.size());
1427e9fa5590SMatthias Springer       builder.create<scf::YieldOp>(loc, yields);
1428e9fa5590SMatthias Springer       builder.setInsertionPointAfter(ifOp);
14297373cabcSAart Bik     }
14307373cabcSAart Bik   }
1431e9fa5590SMatthias Springer   builder.setInsertionPointToEnd(&whileOp.getAfter().front());
14327373cabcSAart Bik   // Finalize the induction. Note that the induction could be performed
14337373cabcSAart Bik   // in the individual if-branches to avoid re-evaluating the conditions.
14347373cabcSAart Bik   // However, that would result in a rather elaborate forest of yield
14357373cabcSAart Bik   // instructions during code generation. Moreover, performing the induction
14367373cabcSAart Bik   // after the if-statements more closely resembles code generated by TACO.
1437a2c9d4bbSAart Bik   unsigned o = 0;
1438a2c9d4bbSAart Bik   SmallVector<Value, 4> operands;
1439e9fa5590SMatthias Springer   Value one = constantIndex(builder, loc, 1);
1440a2c9d4bbSAart Bik   for (unsigned b = 0, be = induction.size(); b < be; b++) {
1441a2c9d4bbSAart Bik     if (induction[b] && merger.isDim(b, Dim::kSparse)) {
1442a2c9d4bbSAart Bik       unsigned tensor = merger.tensor(b);
1443a2c9d4bbSAart Bik       assert(idx == merger.index(b));
1444a2c9d4bbSAart Bik       Value op1 = codegen.idxs[tensor][idx];
1445a2c9d4bbSAart Bik       Value op2 = codegen.loops[idx];
1446a2c9d4bbSAart Bik       Value op3 = codegen.pidxs[tensor][idx];
1447e9fa5590SMatthias Springer       Value cmp = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
1448a54f4eaeSMogball                                                 op1, op2);
1449e9fa5590SMatthias Springer       Value add = builder.create<arith::AddIOp>(loc, op3, one);
1450e9fa5590SMatthias Springer       operands.push_back(builder.create<arith::SelectOp>(loc, cmp, add, op3));
14517373cabcSAart Bik       codegen.pidxs[tensor][idx] = whileOp->getResult(o++);
1452a2c9d4bbSAart Bik     }
1453a2c9d4bbSAart Bik   }
14547373cabcSAart Bik   if (codegen.redVal) {
14557373cabcSAart Bik     operands.push_back(codegen.redVal);
14567373cabcSAart Bik     updateReduc(merger, codegen, whileOp->getResult(o++));
14577373cabcSAart Bik   }
14584f2ec7f9SAart Bik   if (codegen.expValues) {
14594f2ec7f9SAart Bik     operands.push_back(codegen.expCount);
14604f2ec7f9SAart Bik     codegen.expCount = whileOp->getResult(o++);
14614f2ec7f9SAart Bik   }
1462a2c9d4bbSAart Bik   if (needsUniv) {
1463a54f4eaeSMogball     operands.push_back(
1464e9fa5590SMatthias Springer         builder.create<arith::AddIOp>(loc, codegen.loops[idx], one));
14657373cabcSAart Bik     codegen.loops[idx] = whileOp->getResult(o++);
1466a2c9d4bbSAart Bik   }
1467a2c9d4bbSAart Bik   assert(o == operands.size());
1468e9fa5590SMatthias Springer   builder.create<scf::YieldOp>(loc, operands);
1469e9fa5590SMatthias Springer   builder.setInsertionPointAfter(whileOp);
14707373cabcSAart Bik }
14717373cabcSAart Bik 
14727373cabcSAart Bik /// Generates the induction structure for a for-loop.
genForInduction(Merger & merger,CodeGen & codegen,OpBuilder & builder,linalg::GenericOp op,Operation * loop)14737373cabcSAart Bik static void genForInduction(Merger &merger, CodeGen &codegen,
1474e9fa5590SMatthias Springer                             OpBuilder &builder, linalg::GenericOp op,
14757373cabcSAart Bik                             Operation *loop) {
14767373cabcSAart Bik   Location loc = op.getLoc();
14777373cabcSAart Bik   unsigned o = 0;
14787373cabcSAart Bik   SmallVector<Value, 4> operands;
14797373cabcSAart Bik   if (codegen.redVal) {
14807373cabcSAart Bik     operands.push_back(codegen.redVal);
14817373cabcSAart Bik     updateReduc(merger, codegen, loop->getResult(o++));
14827373cabcSAart Bik   }
14834f2ec7f9SAart Bik   if (codegen.expValues) {
14844f2ec7f9SAart Bik     operands.push_back(codegen.expCount);
14854f2ec7f9SAart Bik     codegen.expCount = loop->getResult(o++);
14864f2ec7f9SAart Bik   }
14877373cabcSAart Bik   assert(o == operands.size());
14887373cabcSAart Bik   if (o > 0)
1489e9fa5590SMatthias Springer     builder.create<scf::YieldOp>(loc, operands);
1490e9fa5590SMatthias Springer   builder.setInsertionPointAfter(loop);
1491a2c9d4bbSAart Bik }
1492a2c9d4bbSAart Bik 
1493a2c9d4bbSAart Bik /// Generates a single if-statement within a while-loop.
genIf(Merger & merger,CodeGen & codegen,OpBuilder & builder,linalg::GenericOp op,unsigned idx,BitVector & conditions)1494e9fa5590SMatthias Springer static scf::IfOp genIf(Merger &merger, CodeGen &codegen, OpBuilder &builder,
1495e9fa5590SMatthias Springer                        linalg::GenericOp op, unsigned idx,
1496e9fa5590SMatthias Springer                        BitVector &conditions) {
1497a2c9d4bbSAart Bik   Location loc = op.getLoc();
14987373cabcSAart Bik   SmallVector<Type, 4> types;
1499a2c9d4bbSAart Bik   Value cond;
1500a2c9d4bbSAart Bik   for (unsigned b = 0, be = conditions.size(); b < be; b++) {
1501a2c9d4bbSAart Bik     if (conditions[b]) {
1502a2c9d4bbSAart Bik       unsigned tensor = merger.tensor(b);
1503a2c9d4bbSAart Bik       assert(idx == merger.index(b));
1504a2c9d4bbSAart Bik       Value clause;
1505a2c9d4bbSAart Bik       if (merger.isDim(b, Dim::kSparse)) {
1506a2c9d4bbSAart Bik         Value op1 = codegen.idxs[tensor][idx];
1507a2c9d4bbSAart Bik         Value op2 = codegen.loops[idx];
1508e9fa5590SMatthias Springer         clause = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
1509a54f4eaeSMogball                                                op1, op2);
1510a2c9d4bbSAart Bik       } else {
1511e9fa5590SMatthias Springer         clause = constantI1(builder, loc, true);
1512a2c9d4bbSAart Bik       }
1513e9fa5590SMatthias Springer       cond = cond ? builder.create<arith::AndIOp>(loc, cond, clause) : clause;
1514a2c9d4bbSAart Bik     }
1515a2c9d4bbSAart Bik   }
15167373cabcSAart Bik   if (codegen.redVal)
15177373cabcSAart Bik     types.push_back(codegen.redVal.getType());
15184f2ec7f9SAart Bik   if (codegen.expValues)
1519e9fa5590SMatthias Springer     types.push_back(builder.getIndexType());
1520e9fa5590SMatthias Springer   scf::IfOp ifOp = builder.create<scf::IfOp>(loc, types, cond, /*else=*/true);
1521e9fa5590SMatthias Springer   builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
1522a2c9d4bbSAart Bik   return ifOp;
1523a2c9d4bbSAart Bik }
1524a2c9d4bbSAart Bik 
15257373cabcSAart Bik /// Generates end of true branch of if-statement within a while-loop.
endIf(Merger & merger,CodeGen & codegen,OpBuilder & builder,linalg::GenericOp op,scf::IfOp ifOp,Operation * loop,Value redInput,Value cntInput)1526e9fa5590SMatthias Springer static void endIf(Merger &merger, CodeGen &codegen, OpBuilder &builder,
15274f2ec7f9SAart Bik                   linalg::GenericOp op, scf::IfOp ifOp, Operation *loop,
15284f2ec7f9SAart Bik                   Value redInput, Value cntInput) {
15294f2ec7f9SAart Bik   SmallVector<Value, 4> operands;
15307373cabcSAart Bik   if (codegen.redVal) {
15314f2ec7f9SAart Bik     operands.push_back(codegen.redVal);
15324f2ec7f9SAart Bik     updateReduc(merger, codegen, redInput);
15337373cabcSAart Bik   }
15344f2ec7f9SAart Bik   if (codegen.expValues) {
15354f2ec7f9SAart Bik     operands.push_back(codegen.expCount);
15364f2ec7f9SAart Bik     codegen.expCount = cntInput;
15374f2ec7f9SAart Bik   }
15384f2ec7f9SAart Bik   if (!operands.empty())
1539e9fa5590SMatthias Springer     builder.create<scf::YieldOp>(op.getLoc(), operands);
1540e9fa5590SMatthias Springer   builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
15417373cabcSAart Bik }
15427373cabcSAart Bik 
1543c8d5dcb0SAart Bik //===----------------------------------------------------------------------===//
1544c8d5dcb0SAart Bik // Sparse compiler synthesis methods (loop sequence).
1545c8d5dcb0SAart Bik //===----------------------------------------------------------------------===//
1546c8d5dcb0SAart Bik 
1547c8d5dcb0SAart Bik /// Starts a loop sequence at given level. Returns true if
1548c8d5dcb0SAart Bik /// the universal loop index must be maintained at this level.
startLoopSeq(Merger & merger,CodeGen & codegen,OpBuilder & builder,linalg::GenericOp op,std::vector<unsigned> & topSort,unsigned exp,unsigned at,unsigned idx,unsigned ldx,unsigned lts)1549e9fa5590SMatthias Springer static bool startLoopSeq(Merger &merger, CodeGen &codegen, OpBuilder &builder,
1550e9fa5590SMatthias Springer                          linalg::GenericOp op, std::vector<unsigned> &topSort,
1551e9fa5590SMatthias Springer                          unsigned exp, unsigned at, unsigned idx, unsigned ldx,
1552c8d5dcb0SAart Bik                          unsigned lts) {
1553c8d5dcb0SAart Bik   assert(codegen.curVecLength == 1);
15547373cabcSAart Bik   assert(!codegen.loops[idx]);
1555c8d5dcb0SAart Bik   // Emit invariants at this loop sequence level.
1556e9fa5590SMatthias Springer   genInvariants(merger, codegen, builder, op, exp, ldx, /*atStart=*/true);
15574f2ec7f9SAart Bik   // Emit access pattern expansion for sparse tensor output.
1558e9fa5590SMatthias Springer   genExpansion(merger, codegen, builder, op, at, /*atStart=*/true);
1559c8d5dcb0SAart Bik   // Emit further intitialization at this loop sequence level.
1560c8d5dcb0SAart Bik   unsigned l0 = merger.set(lts)[0];
15617373cabcSAart Bik   bool needsUniv =
1562e9fa5590SMatthias Springer       genInit(merger, codegen, builder, op, topSort, at, merger.lat(l0).bits);
1563c8d5dcb0SAart Bik   // Maintain the universal index only if it is actually
1564c8d5dcb0SAart Bik   // consumed by a subsequent lattice point.
15657373cabcSAart Bik   if (needsUniv) {
1566c8d5dcb0SAart Bik     unsigned lsize = merger.set(lts).size();
1567c8d5dcb0SAart Bik     for (unsigned i = 1; i < lsize; i++) {
1568c8d5dcb0SAart Bik       unsigned li = merger.set(lts)[i];
1569c8d5dcb0SAart Bik       if (!merger.hasAnyDimOf(merger.lat(li).simple, Dim::kSparse))
1570c8d5dcb0SAart Bik         return true;
1571c8d5dcb0SAart Bik     }
1572c8d5dcb0SAart Bik   }
1573c8d5dcb0SAart Bik   return false;
1574c8d5dcb0SAart Bik }
1575c8d5dcb0SAart Bik 
1576c8d5dcb0SAart Bik /// Starts a single loop in current sequence.
startLoop(Merger & merger,CodeGen & codegen,OpBuilder & builder,linalg::GenericOp op,std::vector<unsigned> & topSort,unsigned at,unsigned li,bool needsUniv)1577c8d5dcb0SAart Bik static Operation *startLoop(Merger &merger, CodeGen &codegen,
1578e9fa5590SMatthias Springer                             OpBuilder &builder, linalg::GenericOp op,
1579c8d5dcb0SAart Bik                             std::vector<unsigned> &topSort, unsigned at,
1580c8d5dcb0SAart Bik                             unsigned li, bool needsUniv) {
1581c8d5dcb0SAart Bik   assert(codegen.curVecLength == 1);
1582c8d5dcb0SAart Bik   // Emit the for/while-loop control.
1583e9fa5590SMatthias Springer   Operation *loop = genLoop(merger, codegen, builder, op, topSort, at,
1584c8d5dcb0SAart Bik                             needsUniv, merger.lat(li).simple);
1585c8d5dcb0SAart Bik   // Emit the locals for this loop.
1586e9fa5590SMatthias Springer   genLocals(merger, codegen, builder, op, topSort, at, needsUniv,
1587c8d5dcb0SAart Bik             merger.lat(li).bits);
1588c8d5dcb0SAart Bik   return loop;
1589c8d5dcb0SAart Bik }
1590c8d5dcb0SAart Bik 
1591c8d5dcb0SAart Bik /// Ends a single loop in current sequence. Returns new values for needsUniv.
endLoop(Merger & merger,CodeGen & codegen,OpBuilder & builder,linalg::GenericOp op,Operation * loop,unsigned idx,unsigned li,bool needsUniv)1592e9fa5590SMatthias Springer static bool endLoop(Merger &merger, CodeGen &codegen, OpBuilder &builder,
1593c8d5dcb0SAart Bik                     linalg::GenericOp op, Operation *loop, unsigned idx,
1594c8d5dcb0SAart Bik                     unsigned li, bool needsUniv) {
1595c8d5dcb0SAart Bik   codegen.curVecLength = 1;
1596c8d5dcb0SAart Bik   // End a while-loop.
1597c8d5dcb0SAart Bik   if (auto whileOp = dyn_cast<scf::WhileOp>(loop)) {
1598e9fa5590SMatthias Springer     genWhileInduction(merger, codegen, builder, op, idx, needsUniv,
15997373cabcSAart Bik                       merger.lat(li).bits, whileOp);
1600c8d5dcb0SAart Bik     return needsUniv;
1601c8d5dcb0SAart Bik   }
1602c8d5dcb0SAart Bik   // End a for-loop.
1603e9fa5590SMatthias Springer   genForInduction(merger, codegen, builder, op, loop);
1604c8d5dcb0SAart Bik   return false;
1605c8d5dcb0SAart Bik }
1606c8d5dcb0SAart Bik 
1607c8d5dcb0SAart Bik /// Ends a loop sequence at given level.
endLoopSeq(Merger & merger,CodeGen & codegen,OpBuilder & builder,linalg::GenericOp op,unsigned exp,unsigned at,unsigned idx,unsigned ldx)1608e9fa5590SMatthias Springer static void endLoopSeq(Merger &merger, CodeGen &codegen, OpBuilder &builder,
1609e9fa5590SMatthias Springer                        linalg::GenericOp op, unsigned exp, unsigned at,
1610e9fa5590SMatthias Springer                        unsigned idx, unsigned ldx) {
1611c8d5dcb0SAart Bik   assert(codegen.curVecLength == 1);
1612c8d5dcb0SAart Bik   codegen.loops[idx] = Value();
16137373cabcSAart Bik   // Bring a pending reduction back from SIMD form when sequence ends.
16147373cabcSAart Bik   if (codegen.redVal)
16157373cabcSAart Bik     if (auto vtp = codegen.redVal.getType().dyn_cast<VectorType>())
16167373cabcSAart Bik       updateReduc(merger, codegen,
1617e9fa5590SMatthias Springer                   genVectorReducEnd(codegen, builder, op.getLoc(), vtp));
16187373cabcSAart Bik   // Unmark bookkeeping of invariants and loop index.
1619e9fa5590SMatthias Springer   genInvariants(merger, codegen, builder, op, exp, ldx, /*atStart=*/false);
16204f2ec7f9SAart Bik   // Finalize access pattern expansion for sparse tensor output.
1621e9fa5590SMatthias Springer   genExpansion(merger, codegen, builder, op, at, /*atStart=*/false);
1622c8d5dcb0SAart Bik }
1623c8d5dcb0SAart Bik 
1624a2c9d4bbSAart Bik /// Recursively generates code while computing iteration lattices in order
1625a2c9d4bbSAart Bik /// to manage the complexity of implementing co-iteration over unions
1626a2c9d4bbSAart Bik /// and intersections of sparse iterations spaces.
genStmt(Merger & merger,CodeGen & codegen,RewriterBase & rewriter,linalg::GenericOp op,std::vector<unsigned> & topSort,unsigned exp,unsigned at)1627e9fa5590SMatthias Springer static void genStmt(Merger &merger, CodeGen &codegen, RewriterBase &rewriter,
1628a2c9d4bbSAart Bik                     linalg::GenericOp op, std::vector<unsigned> &topSort,
1629a2c9d4bbSAart Bik                     unsigned exp, unsigned at) {
1630a2c9d4bbSAart Bik   // At each leaf, assign remaining tensor (sub)expression to output tensor.
1631a2c9d4bbSAart Bik   if (at == topSort.size()) {
163269a7759bSAart Bik     unsigned ldx = topSort[at - 1];
163369a7759bSAart Bik     Value rhs = genExp(merger, codegen, rewriter, op, exp, ldx);
16342c332660SJim Kitchen     genTensorStore(merger, codegen, rewriter, op, exp, rhs);
1635a2c9d4bbSAart Bik     return;
1636a2c9d4bbSAart Bik   }
1637a2c9d4bbSAart Bik 
1638a2c9d4bbSAart Bik   // Construct iteration lattices for current loop index, with L0 at top.
1639a2c9d4bbSAart Bik   unsigned idx = topSort[at];
1640a2c9d4bbSAart Bik   unsigned ldx = at == 0 ? -1u : topSort[at - 1];
1641c8d5dcb0SAart Bik   unsigned lts = merger.optimizeSet(merger.buildLattices(exp, idx));
1642a2c9d4bbSAart Bik 
1643c8d5dcb0SAart Bik   // Start a loop sequence.
1644c8d5dcb0SAart Bik   bool needsUniv = startLoopSeq(merger, codegen, rewriter, op, topSort, exp, at,
1645c8d5dcb0SAart Bik                                 idx, ldx, lts);
1646c8d5dcb0SAart Bik 
1647c8d5dcb0SAart Bik   // Emit a loop for every lattice point L0 >= Li in this loop sequence.
1648c8d5dcb0SAart Bik   unsigned lsize = merger.set(lts).size();
1649a2c9d4bbSAart Bik   for (unsigned i = 0; i < lsize; i++) {
1650c8d5dcb0SAart Bik     // Start a loop.
1651a2c9d4bbSAart Bik     unsigned li = merger.set(lts)[i];
1652a2c9d4bbSAart Bik     Operation *loop =
1653c8d5dcb0SAart Bik         startLoop(merger, codegen, rewriter, op, topSort, at, li, needsUniv);
1654a2c9d4bbSAart Bik 
1655a2c9d4bbSAart Bik     // Visit all lattices points with Li >= Lj to generate the
1656a2c9d4bbSAart Bik     // loop-body, possibly with if statements for coiteration.
16574f2ec7f9SAart Bik     Value redInput = codegen.redVal;
16584f2ec7f9SAart Bik     Value cntInput = codegen.expCount;
1659a2c9d4bbSAart Bik     bool isWhile = dyn_cast<scf::WhileOp>(loop) != nullptr;
1660a2c9d4bbSAart Bik     for (unsigned j = 0; j < lsize; j++) {
1661a2c9d4bbSAart Bik       unsigned lj = merger.set(lts)[j];
1662a2c9d4bbSAart Bik       unsigned ej = merger.lat(lj).exp;
1663a2c9d4bbSAart Bik       if (li == lj || merger.latGT(li, lj)) {
1664a2c9d4bbSAart Bik         // Recurse into body of each branch.
1665a2c9d4bbSAart Bik         if (isWhile) {
1666a2c9d4bbSAart Bik           scf::IfOp ifOp =
1667a2c9d4bbSAart Bik               genIf(merger, codegen, rewriter, op, idx, merger.lat(lj).simple);
1668a2c9d4bbSAart Bik           genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1);
16694f2ec7f9SAart Bik           endIf(merger, codegen, rewriter, op, ifOp, loop, redInput, cntInput);
1670a2c9d4bbSAart Bik         } else {
1671a2c9d4bbSAart Bik           genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1);
1672a2c9d4bbSAart Bik         }
1673a2c9d4bbSAart Bik       }
1674a2c9d4bbSAart Bik     }
1675a2c9d4bbSAart Bik 
1676c8d5dcb0SAart Bik     // End a loop.
1677c8d5dcb0SAart Bik     needsUniv =
1678c8d5dcb0SAart Bik         endLoop(merger, codegen, rewriter, op, loop, idx, li, needsUniv);
1679a2c9d4bbSAart Bik   }
1680a2c9d4bbSAart Bik 
1681c8d5dcb0SAart Bik   // End a loop sequence.
16824f2ec7f9SAart Bik   endLoopSeq(merger, codegen, rewriter, op, exp, at, idx, ldx);
1683a2c9d4bbSAart Bik }
1684a2c9d4bbSAart Bik 
1685727a63e0SAart Bik /// Converts the result computed by the sparse kernel into the required form.
genResult(Merger & merger,CodeGen & codegen,RewriterBase & rewriter,linalg::GenericOp op)1686e9fa5590SMatthias Springer static void genResult(Merger &merger, CodeGen &codegen, RewriterBase &rewriter,
1687e9fa5590SMatthias Springer                       linalg::GenericOp op) {
168836b66ab9SAart Bik   OpOperand *lhs = op.getOutputOperand(0);
168936b66ab9SAart Bik   Type resType = lhs->get().getType();
1690f66e5769SAart Bik   if (getSparseTensorEncoding(resType)) {
1691f66e5769SAart Bik     // The sparse tensor rematerializes from the original sparse tensor's
1692f66e5769SAart Bik     // underlying sparse storage format.
1693f66e5769SAart Bik     rewriter.replaceOpWithNewOp<LoadOp>(op, resType, lhs->get(),
1694f66e5769SAart Bik                                         codegen.sparseOut == lhs);
169536b66ab9SAart Bik   } else {
1696f66e5769SAart Bik     // To rematerialize an non-annotated tensor, simply load it
169736b66ab9SAart Bik     // from the bufferized value.
1698f66e5769SAart Bik     Value val = codegen.buffers.back(); // value array
169957470abcSAlexander Belyaev     rewriter.replaceOpWithNewOp<bufferization::ToTensorOp>(op, resType, val);
170036b66ab9SAart Bik   }
1701727a63e0SAart Bik }
1702727a63e0SAart Bik 
17035da21338SAart Bik //===----------------------------------------------------------------------===//
17045da21338SAart Bik // Sparse compiler rewriting methods.
17055da21338SAart Bik //===----------------------------------------------------------------------===//
17065da21338SAart Bik 
1707a2c9d4bbSAart Bik namespace {
1708a2c9d4bbSAart Bik 
1709a2c9d4bbSAart Bik /// Sparse rewriting rule for generic Lingalg operation.
1710a2c9d4bbSAart Bik struct GenericOpSparsifier : public OpRewritePattern<linalg::GenericOp> {
1711a2c9d4bbSAart Bik public:
GenericOpSparsifier__anon3f2435730211::GenericOpSparsifier1712a2c9d4bbSAart Bik   GenericOpSparsifier(MLIRContext *context, SparsificationOptions o)
1713a2c9d4bbSAart Bik       : OpRewritePattern<linalg::GenericOp>(context), options(o) {}
1714a2c9d4bbSAart Bik 
matchAndRewrite__anon3f2435730211::GenericOpSparsifier1715a2c9d4bbSAart Bik   LogicalResult matchAndRewrite(linalg::GenericOp op,
1716a2c9d4bbSAart Bik                                 PatternRewriter &rewriter) const override {
1717a2c9d4bbSAart Bik     // Detects sparse annotations and translate the per-dimension sparsity
1718a2c9d4bbSAart Bik     // information for all tensors to loop indices in the kernel.
1719a2c9d4bbSAart Bik     assert(op.getNumOutputs() == 1);
17202f2b5b7dSTobias Gysi     unsigned numTensors = op.getNumInputsAndOutputs();
1721a2c9d4bbSAart Bik     unsigned numLoops = op.iterator_types().getValue().size();
1722a2c9d4bbSAart Bik     Merger merger(numTensors, numLoops);
1723bf9ef3efSAart Bik     if (!findSparseAnnotations(merger, op))
1724bf9ef3efSAart Bik       return failure();
1725a2c9d4bbSAart Bik 
1726e057f25dSAart Bik     // Computes a topologically sorted iteration graph to ensure tensors
1727e057f25dSAart Bik     // are visited in natural index order. Gradually relaxes the considered
1728e057f25dSAart Bik     // constraints until an acyclic iteration graph results, such that sparse
1729e057f25dSAart Bik     // code generation can proceed. As a last resort, an attempt is made
1730e057f25dSAart Bik     // to resolve cycles by inserting a conversion.
1731a2c9d4bbSAart Bik     std::vector<unsigned> topSort;
1732e057f25dSAart Bik     if (!computeIterationGraph(merger, op, topSort, SortMask::kIncludeAll) &&
1733b6d1a31cSAart Bik         !computeIterationGraph(merger, op, topSort, SortMask::kIncludeUndef) &&
1734b6d1a31cSAart Bik         !computeIterationGraph(merger, op, topSort, SortMask::kIncludeDense) &&
1735e057f25dSAart Bik         !computeIterationGraph(merger, op, topSort, SortMask::kSparseOnly)) {
1736e057f25dSAart Bik       return resolveCycle(merger, rewriter, op);
1737e057f25dSAart Bik     }
1738a2c9d4bbSAart Bik 
1739266a7414SAart Bik     // Builds the tensor expression for the Linalg operation in SSA form.
17407373cabcSAart Bik     Optional<unsigned> optExp = merger.buildTensorExpFromLinalg(op);
1741491d2701SKazu Hirata     if (!optExp.has_value())
1742266a7414SAart Bik       return failure();
1743c27d8152SKazu Hirata     unsigned exp = optExp.value();
1744a2c9d4bbSAart Bik 
1745266a7414SAart Bik     // Rejects an inadmissable tensor expression.
1746f66e5769SAart Bik     OpOperand *sparseOut = nullptr;
17477d4da4e1SAart Bik     unsigned outerParNest = 0;
17487d4da4e1SAart Bik     if (!isAdmissableTensorExp(merger, op, topSort, exp, &sparseOut,
17497d4da4e1SAart Bik                                outerParNest))
175036b66ab9SAart Bik       return failure();
175136b66ab9SAart Bik 
1752a2c9d4bbSAart Bik     // Recursively generates code.
17537d4da4e1SAart Bik     merger.setHasSparseOut(sparseOut != nullptr);
17547d4da4e1SAart Bik     CodeGen codegen(options, numTensors, numLoops, sparseOut, outerParNest);
1755c8d5dcb0SAart Bik     genBuffers(merger, codegen, rewriter, op);
17567373cabcSAart Bik     genStmt(merger, codegen, rewriter, op, topSort, exp, 0);
175736b66ab9SAart Bik     genResult(merger, codegen, rewriter, op);
1758a2c9d4bbSAart Bik     return success();
1759a2c9d4bbSAart Bik   }
1760a2c9d4bbSAart Bik 
1761a2c9d4bbSAart Bik private:
1762e057f25dSAart Bik   // Last resort cycle resolution.
resolveCycle__anon3f2435730211::GenericOpSparsifier1763e057f25dSAart Bik   LogicalResult resolveCycle(Merger &merger, PatternRewriter &rewriter,
1764e057f25dSAart Bik                              linalg::GenericOp op) const {
1765e057f25dSAart Bik     // Compute topological sort while leaving out every
1766e057f25dSAart Bik     // sparse input tensor in succession until an acylic
1767e057f25dSAart Bik     // iteration graph results.
1768e057f25dSAart Bik     std::vector<unsigned> topSort;
1769e057f25dSAart Bik     for (OpOperand *t : op.getInputOperands()) {
1770e057f25dSAart Bik       unsigned tensor = t->getOperandNumber();
1771e057f25dSAart Bik       Value tval = t->get();
1772e057f25dSAart Bik       auto srcEnc = getSparseTensorEncoding(tval.getType());
1773e057f25dSAart Bik       if (!srcEnc ||
1774e057f25dSAart Bik           !computeIterationGraph(merger, op, topSort, SortMask::kSparseOnly, t))
1775e057f25dSAart Bik         continue;
1776e057f25dSAart Bik       // Found an input tensor that resolves the cycle by inserting a
1777e057f25dSAart Bik       // conversion into a sparse tensor that adheres to the iteration
1778e057f25dSAart Bik       // graph order. Also releases the temporary sparse tensor.
1779e057f25dSAart Bik       //
1780e057f25dSAart Bik       // TODO: investigate fusing the conversion with computation,
1781e057f25dSAart Bik       //       especially if it is a direct yield!
1782e057f25dSAart Bik       //
1783e057f25dSAart Bik       auto srcTp = tval.getType().cast<RankedTensorType>();
1784e057f25dSAart Bik       auto dstEnc = SparseTensorEncodingAttr::get(
1785e057f25dSAart Bik           op->getContext(), srcEnc.getDimLevelType(),
1786e057f25dSAart Bik           permute(getContext(), op.getTiedIndexingMap(t), topSort), // new order
1787e057f25dSAart Bik           srcEnc.getPointerBitWidth(), srcEnc.getIndexBitWidth());
1788e057f25dSAart Bik       auto dstTp = RankedTensorType::get(srcTp.getShape(),
1789e057f25dSAart Bik                                          srcTp.getElementType(), dstEnc);
1790e057f25dSAart Bik       auto convert = rewriter.create<ConvertOp>(tval.getLoc(), dstTp, tval);
1791e057f25dSAart Bik       op->setOperand(tensor, convert);
1792e057f25dSAart Bik       rewriter.setInsertionPointAfter(op);
1793*27a431f5SMatthias Springer       rewriter.create<bufferization::DeallocTensorOp>(tval.getLoc(), convert);
1794e057f25dSAart Bik       return success();
1795e057f25dSAart Bik     }
1796e057f25dSAart Bik     // Cannot be resolved with a single conversion.
1797e057f25dSAart Bik     // TODO: convert more than one?
1798e057f25dSAart Bik     return failure();
1799e057f25dSAart Bik   }
1800e057f25dSAart Bik 
1801a2c9d4bbSAart Bik   /// Options to control sparse code generation.
1802a2c9d4bbSAart Bik   SparsificationOptions options;
1803a2c9d4bbSAart Bik };
1804a2c9d4bbSAart Bik 
1805a2c9d4bbSAart Bik } // namespace
1806a2c9d4bbSAart Bik 
1807a2c9d4bbSAart Bik /// Populates the given patterns list with rewriting rules required for
1808a2c9d4bbSAart Bik /// the sparsification of linear algebra operations.
populateSparsificationPatterns(RewritePatternSet & patterns,const SparsificationOptions & options)1809a2c9d4bbSAart Bik void mlir::populateSparsificationPatterns(
1810a2c9d4bbSAart Bik     RewritePatternSet &patterns, const SparsificationOptions &options) {
1811a2c9d4bbSAart Bik   patterns.add<GenericOpSparsifier>(patterns.getContext(), options);
1812a2c9d4bbSAart Bik }
1813