1 //===- AffineCanonicalizationUtils.cpp - Affine Canonicalization in SCF ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Utility functions to canonicalize affine ops within SCF op regions.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "mlir/Dialect/SCF/Utils/AffineCanonicalizationUtils.h"
14 #include "mlir/Dialect/Affine/Analysis/AffineStructures.h"
15 #include "mlir/Dialect/Affine/IR/AffineOps.h"
16 #include "mlir/Dialect/SCF/IR/SCF.h"
17 #include "mlir/Dialect/Utils/StaticValueUtils.h"
18 #include "mlir/IR/AffineMap.h"
19 #include "mlir/IR/Matchers.h"
20 #include "mlir/IR/PatternMatch.h"
21 #include "llvm/Support/Debug.h"
22
23 #define DEBUG_TYPE "mlir-scf-affine-utils"
24
25 using namespace mlir;
26 using namespace presburger;
27
unpackOptionalValues(ArrayRef<Optional<Value>> source,SmallVector<Value> & target)28 static void unpackOptionalValues(ArrayRef<Optional<Value>> source,
29 SmallVector<Value> &target) {
30 target = llvm::to_vector<4>(llvm::map_range(source, [](Optional<Value> val) {
31 return val.has_value() ? *val : Value();
32 }));
33 }
34
35 /// Bound an identifier `pos` in a given FlatAffineValueConstraints with
36 /// constraints drawn from an affine map. Before adding the constraint, the
37 /// dimensions/symbols of the affine map are aligned with `constraints`.
38 /// `operands` are the SSA Value operands used with the affine map.
39 /// Note: This function adds a new symbol column to the `constraints` for each
40 /// dimension/symbol that exists in the affine map but not in `constraints`.
alignAndAddBound(FlatAffineValueConstraints & constraints,IntegerPolyhedron::BoundType type,unsigned pos,AffineMap map,ValueRange operands)41 static LogicalResult alignAndAddBound(FlatAffineValueConstraints &constraints,
42 IntegerPolyhedron::BoundType type,
43 unsigned pos, AffineMap map,
44 ValueRange operands) {
45 SmallVector<Value> dims, syms, newSyms;
46 unpackOptionalValues(constraints.getMaybeValues(VarKind::SetDim), dims);
47 unpackOptionalValues(constraints.getMaybeValues(VarKind::Symbol), syms);
48
49 AffineMap alignedMap =
50 alignAffineMapWithValues(map, operands, dims, syms, &newSyms);
51 for (unsigned i = syms.size(); i < newSyms.size(); ++i)
52 constraints.appendSymbolVar(newSyms[i]);
53 return constraints.addBound(type, pos, alignedMap);
54 }
55
56 /// Add `val` to each result of `map`.
addConstToResults(AffineMap map,int64_t val)57 static AffineMap addConstToResults(AffineMap map, int64_t val) {
58 SmallVector<AffineExpr> newResults;
59 for (AffineExpr r : map.getResults())
60 newResults.push_back(r + val);
61 return AffineMap::get(map.getNumDims(), map.getNumSymbols(), newResults,
62 map.getContext());
63 }
64
65 /// This function tries to canonicalize min/max operations by proving that their
66 /// value is bounded by the same lower and upper bound. In that case, the
67 /// operation can be folded away.
68 ///
69 /// Bounds are computed by FlatAffineValueConstraints. Invariants required for
70 /// finding/proving bounds should be supplied via `constraints`.
71 ///
72 /// 1. Add dimensions for `op` and `opBound` (lower or upper bound of `op`).
73 /// 2. Compute an upper bound of `op` (in case of `isMin`) or a lower bound (in
74 /// case of `!isMin`) and bind it to `opBound`. SSA values that are used in
75 /// `op` but are not part of `constraints`, are added as extra symbols.
76 /// 3. For each result of `op`: Add result as a dimension `r_i`. Prove that:
77 /// * If `isMin`: r_i >= opBound
78 /// * If `isMax`: r_i <= opBound
79 /// If this is the case, ub(op) == lb(op).
80 /// 4. Replace `op` with `opBound`.
81 ///
82 /// In summary, the following constraints are added throughout this function.
83 /// Note: `invar` are dimensions added by the caller to express the invariants.
84 /// (Showing only the case where `isMin`.)
85 ///
86 /// invar | op | opBound | r_i | extra syms... | const | eq/ineq
87 /// ------+-------+---------+-----+---------------+-------+-------------------
88 /// (various eq./ineq. constraining `invar`, added by the caller)
89 /// ... | 0 | 0 | 0 | 0 | ... | ...
90 /// ------+-------+---------+-----+---------------+-------+-------------------
91 /// (various ineq. constraining `op` in terms of `op` operands (`invar` and
92 /// extra `op` operands "extra syms" that are not in `invar`)).
93 /// ... | -1 | 0 | 0 | ... | ... | >= 0
94 /// ------+-------+---------+-----+---------------+-------+-------------------
95 /// (set `opBound` to `op` upper bound in terms of `invar` and "extra syms")
96 /// ... | 0 | -1 | 0 | ... | ... | = 0
97 /// ------+-------+---------+-----+---------------+-------+-------------------
98 /// (for each `op` map result r_i: set r_i to corresponding map result,
99 /// prove that r_i >= minOpUb via contradiction)
100 /// ... | 0 | 0 | -1 | ... | ... | = 0
101 /// 0 | 0 | 1 | -1 | 0 | -1 | >= 0
102 ///
103 static LogicalResult
canonicalizeMinMaxOp(RewriterBase & rewriter,Operation * op,AffineMap map,ValueRange operands,bool isMin,FlatAffineValueConstraints constraints)104 canonicalizeMinMaxOp(RewriterBase &rewriter, Operation *op, AffineMap map,
105 ValueRange operands, bool isMin,
106 FlatAffineValueConstraints constraints) {
107 RewriterBase::InsertionGuard guard(rewriter);
108 unsigned numResults = map.getNumResults();
109
110 // Add a few extra dimensions.
111 unsigned dimOp = constraints.appendDimVar(); // `op`
112 unsigned dimOpBound = constraints.appendDimVar(); // `op` lower/upper bound
113 unsigned resultDimStart = constraints.appendDimVar(/*num=*/numResults);
114
115 // Add an inequality for each result expr_i of map:
116 // isMin: op <= expr_i, !isMin: op >= expr_i
117 auto boundType = isMin ? IntegerPolyhedron::UB : IntegerPolyhedron::LB;
118 // Upper bounds are exclusive, so add 1. (`affine.min` ops are inclusive.)
119 AffineMap mapLbUb = isMin ? addConstToResults(map, 1) : map;
120 if (failed(
121 alignAndAddBound(constraints, boundType, dimOp, mapLbUb, operands)))
122 return failure();
123
124 // Try to compute a lower/upper bound for op, expressed in terms of the other
125 // `dims` and extra symbols.
126 SmallVector<AffineMap> opLb(1), opUb(1);
127 constraints.getSliceBounds(dimOp, 1, rewriter.getContext(), &opLb, &opUb);
128 AffineMap sliceBound = isMin ? opUb[0] : opLb[0];
129 // TODO: `getSliceBounds` may return multiple bounds at the moment. This is
130 // a TODO of `getSliceBounds` and not handled here.
131 if (!sliceBound || sliceBound.getNumResults() != 1)
132 return failure(); // No or multiple bounds found.
133 // Recover the inclusive UB in the case of an `affine.min`.
134 AffineMap boundMap = isMin ? addConstToResults(sliceBound, -1) : sliceBound;
135
136 // Add an equality: Set dimOpBound to computed bound.
137 // Add back dimension for op. (Was removed by `getSliceBounds`.)
138 AffineMap alignedBoundMap = boundMap.shiftDims(/*shift=*/1, /*offset=*/dimOp);
139 if (failed(constraints.addBound(IntegerPolyhedron::EQ, dimOpBound,
140 alignedBoundMap)))
141 return failure();
142
143 // If the constraint system is empty, there is an inconsistency. (E.g., this
144 // can happen if loop lb > ub.)
145 if (constraints.isEmpty())
146 return failure();
147
148 // In the case of `isMin` (`!isMin` is inversed):
149 // Prove that each result of `map` has a lower bound that is equal to (or
150 // greater than) the upper bound of `op` (`dimOpBound`). In that case, `op`
151 // can be replaced with the bound. I.e., prove that for each result
152 // expr_i (represented by dimension r_i):
153 //
154 // r_i >= opBound
155 //
156 // To prove this inequality, add its negation to the constraint set and prove
157 // that the constraint set is empty.
158 for (unsigned i = resultDimStart; i < resultDimStart + numResults; ++i) {
159 FlatAffineValueConstraints newConstr(constraints);
160
161 // Add an equality: r_i = expr_i
162 // Note: These equalities could have been added earlier and used to express
163 // minOp <= expr_i. However, then we run the risk that `getSliceBounds`
164 // computes minOpUb in terms of r_i dims, which is not desired.
165 if (failed(alignAndAddBound(newConstr, IntegerPolyhedron::EQ, i,
166 map.getSubMap({i - resultDimStart}), operands)))
167 return failure();
168
169 // If `isMin`: Add inequality: r_i < opBound
170 // equiv.: opBound - r_i - 1 >= 0
171 // If `!isMin`: Add inequality: r_i > opBound
172 // equiv.: -opBound + r_i - 1 >= 0
173 SmallVector<int64_t> ineq(newConstr.getNumCols(), 0);
174 ineq[dimOpBound] = isMin ? 1 : -1;
175 ineq[i] = isMin ? -1 : 1;
176 ineq[newConstr.getNumCols() - 1] = -1;
177 newConstr.addInequality(ineq);
178 if (!newConstr.isEmpty())
179 return failure();
180 }
181
182 // Lower and upper bound of `op` are equal. Replace `minOp` with its bound.
183 AffineMap newMap = alignedBoundMap;
184 SmallVector<Value> newOperands;
185 unpackOptionalValues(constraints.getMaybeValues(), newOperands);
186 // If dims/symbols have known constant values, use those in order to simplify
187 // the affine map further.
188 for (int64_t i = 0, e = constraints.getNumVars(); i < e; ++i) {
189 // Skip unused operands and operands that are already constants.
190 if (!newOperands[i] || getConstantIntValue(newOperands[i]))
191 continue;
192 if (auto bound = constraints.getConstantBound(IntegerPolyhedron::EQ, i))
193 newOperands[i] =
194 rewriter.create<arith::ConstantIndexOp>(op->getLoc(), *bound);
195 }
196 mlir::canonicalizeMapAndOperands(&newMap, &newOperands);
197 rewriter.setInsertionPoint(op);
198 rewriter.replaceOpWithNewOp<AffineApplyOp>(op, newMap, newOperands);
199 return success();
200 }
201
202 static LogicalResult
addLoopRangeConstraints(FlatAffineValueConstraints & constraints,Value iv,OpFoldResult lb,OpFoldResult ub,OpFoldResult step,RewriterBase & rewriter)203 addLoopRangeConstraints(FlatAffineValueConstraints &constraints, Value iv,
204 OpFoldResult lb, OpFoldResult ub, OpFoldResult step,
205 RewriterBase &rewriter) {
206 // IntegerPolyhedron does not support semi-affine expressions.
207 // Therefore, only constant step values are supported.
208 auto stepInt = getConstantIntValue(step);
209 if (!stepInt)
210 return failure();
211
212 unsigned dimIv = constraints.appendDimVar(iv);
213 auto lbv = lb.dyn_cast<Value>();
214 unsigned dimLb =
215 lbv ? constraints.appendDimVar(lbv) : constraints.appendDimVar(/*num=*/1);
216 auto ubv = ub.dyn_cast<Value>();
217 unsigned dimUb =
218 ubv ? constraints.appendDimVar(ubv) : constraints.appendDimVar(/*num=*/1);
219
220 // If loop lower/upper bounds are constant: Add EQ constraint.
221 Optional<int64_t> lbInt = getConstantIntValue(lb);
222 Optional<int64_t> ubInt = getConstantIntValue(ub);
223 if (lbInt)
224 constraints.addBound(IntegerPolyhedron::EQ, dimLb, *lbInt);
225 if (ubInt)
226 constraints.addBound(IntegerPolyhedron::EQ, dimUb, *ubInt);
227
228 // Lower bound: iv >= lb (equiv.: iv - lb >= 0)
229 SmallVector<int64_t> ineqLb(constraints.getNumCols(), 0);
230 ineqLb[dimIv] = 1;
231 ineqLb[dimLb] = -1;
232 constraints.addInequality(ineqLb);
233
234 // Upper bound
235 AffineExpr ivUb;
236 if (lbInt && ubInt && (*lbInt + *stepInt >= *ubInt)) {
237 // The loop has at most one iteration.
238 // iv < lb + 1
239 // TODO: Try to derive this constraint by simplifying the expression in
240 // the else-branch.
241 ivUb = rewriter.getAffineDimExpr(dimLb) + 1;
242 } else {
243 // The loop may have more than one iteration.
244 // iv < lb + step * ((ub - lb - 1) floorDiv step) + 1
245 AffineExpr exprLb = lbInt ? rewriter.getAffineConstantExpr(*lbInt)
246 : rewriter.getAffineDimExpr(dimLb);
247 AffineExpr exprUb = ubInt ? rewriter.getAffineConstantExpr(*ubInt)
248 : rewriter.getAffineDimExpr(dimUb);
249 ivUb = exprLb + 1 + (*stepInt * ((exprUb - exprLb - 1).floorDiv(*stepInt)));
250 }
251 auto map = AffineMap::get(
252 /*dimCount=*/constraints.getNumDimVars(),
253 /*symbolCount=*/constraints.getNumSymbolVars(), /*result=*/ivUb);
254
255 return constraints.addBound(IntegerPolyhedron::UB, dimIv, map);
256 }
257
258 /// Canonicalize min/max operations in the context of for loops with a known
259 /// range. Call `canonicalizeMinMaxOp` and add the following constraints to
260 /// the constraint system (along with the missing dimensions):
261 ///
262 /// * iv >= lb
263 /// * iv < lb + step * ((ub - lb - 1) floorDiv step) + 1
264 ///
265 /// Note: Due to limitations of IntegerPolyhedron, only constant step sizes
266 /// are currently supported.
canonicalizeMinMaxOpInLoop(RewriterBase & rewriter,Operation * op,AffineMap map,ValueRange operands,bool isMin,LoopMatcherFn loopMatcher)267 LogicalResult scf::canonicalizeMinMaxOpInLoop(RewriterBase &rewriter,
268 Operation *op, AffineMap map,
269 ValueRange operands, bool isMin,
270 LoopMatcherFn loopMatcher) {
271 FlatAffineValueConstraints constraints;
272 DenseSet<Value> allIvs;
273
274 // Find all iteration variables among `minOp`'s operands add constrain them.
275 for (Value operand : operands) {
276 // Skip duplicate ivs.
277 if (llvm::is_contained(allIvs, operand))
278 continue;
279
280 // If `operand` is an iteration variable: Find corresponding loop
281 // bounds and step.
282 Value iv = operand;
283 OpFoldResult lb, ub, step;
284 if (failed(loopMatcher(operand, lb, ub, step)))
285 continue;
286 allIvs.insert(iv);
287
288 if (failed(
289 addLoopRangeConstraints(constraints, iv, lb, ub, step, rewriter)))
290 return failure();
291 }
292
293 return canonicalizeMinMaxOp(rewriter, op, map, operands, isMin, constraints);
294 }
295
296 /// Try to simplify a min/max operation `op` after loop peeling. This function
297 /// can simplify min/max operations such as (ub is the previous upper bound of
298 /// the unpeeled loop):
299 /// ```
300 /// #map = affine_map<(d0)[s0, s1] -> (s0, -d0 + s1)>
301 /// %r = affine.min #affine.min #map(%iv)[%step, %ub]
302 /// ```
303 /// and rewrites them into (in the case the peeled loop):
304 /// ```
305 /// %r = %step
306 /// ```
307 /// min/max operations inside the partial iteration are rewritten in a similar
308 /// way.
309 ///
310 /// This function builds up a set of constraints, capable of proving that:
311 /// * Inside the peeled loop: min(step, ub - iv) == step
312 /// * Inside the partial iteration: min(step, ub - iv) == ub - iv
313 ///
314 /// Returns `success` if the given operation was replaced by a new operation;
315 /// `failure` otherwise.
316 ///
317 /// Note: `ub` is the previous upper bound of the loop (before peeling).
318 /// `insideLoop` must be true for min/max ops inside the loop and false for
319 /// affine.min ops inside the partial iteration. For an explanation of the other
320 /// parameters, see comment of `canonicalizeMinMaxOpInLoop`.
rewritePeeledMinMaxOp(RewriterBase & rewriter,Operation * op,AffineMap map,ValueRange operands,bool isMin,Value iv,Value ub,Value step,bool insideLoop)321 LogicalResult scf::rewritePeeledMinMaxOp(RewriterBase &rewriter, Operation *op,
322 AffineMap map, ValueRange operands,
323 bool isMin, Value iv, Value ub,
324 Value step, bool insideLoop) {
325 FlatAffineValueConstraints constraints;
326 constraints.appendDimVar({iv, ub, step});
327 if (auto constUb = getConstantIntValue(ub))
328 constraints.addBound(IntegerPolyhedron::EQ, 1, *constUb);
329 if (auto constStep = getConstantIntValue(step))
330 constraints.addBound(IntegerPolyhedron::EQ, 2, *constStep);
331
332 // Add loop peeling invariant. This is the main piece of knowledge that
333 // enables AffineMinOp simplification.
334 if (insideLoop) {
335 // ub - iv >= step (equiv.: -iv + ub - step + 0 >= 0)
336 // Intuitively: Inside the peeled loop, every iteration is a "full"
337 // iteration, i.e., step divides the iteration space `ub - lb` evenly.
338 constraints.addInequality({-1, 1, -1, 0});
339 } else {
340 // ub - iv < step (equiv.: iv + -ub + step - 1 >= 0)
341 // Intuitively: `iv` is the split bound here, i.e., the iteration variable
342 // value of the very last iteration (in the unpeeled loop). At that point,
343 // there are less than `step` elements remaining. (Otherwise, the peeled
344 // loop would run for at least one more iteration.)
345 constraints.addInequality({1, -1, 1, -1});
346 }
347
348 return canonicalizeMinMaxOp(rewriter, op, map, operands, isMin, constraints);
349 }
350