1 //===- PolynomialApproximation.cpp - Approximate math operations ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements expansion of math operations to fast approximations 10 // that do not rely on any of the library functions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 15 #include "mlir/Dialect/Math/IR/Math.h" 16 #include "mlir/Dialect/Math/Transforms/Passes.h" 17 #include "mlir/Dialect/Vector/VectorOps.h" 18 #include "mlir/IR/Builders.h" 19 #include "mlir/IR/ImplicitLocOpBuilder.h" 20 #include "mlir/Transforms/Bufferize.h" 21 #include "mlir/Transforms/DialectConversion.h" 22 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 23 #include <climits> 24 25 using namespace mlir; 26 using namespace mlir::vector; 27 28 using TypePredicate = llvm::function_ref<bool(Type)>; 29 30 // Returns vector width if the element type is matching the predicate (scalars 31 // that do match the predicate have width equal to `1`). 32 static Optional<int> vectorWidth(Type type, TypePredicate pred) { 33 // If the type matches the predicate then its width is `1`. 34 if (pred(type)) 35 return 1; 36 37 // Otherwise check if the type is a vector type. 38 auto vectorType = type.dyn_cast<VectorType>(); 39 if (vectorType && pred(vectorType.getElementType())) { 40 assert(vectorType.getRank() == 1 && "only 1d vectors are supported"); 41 return vectorType.getDimSize(0); 42 } 43 44 return llvm::None; 45 } 46 47 // Returns vector width of the type. If the type is a scalar returns `1`. 48 static int vectorWidth(Type type) { 49 auto vectorType = type.dyn_cast<VectorType>(); 50 return vectorType ? vectorType.getDimSize(0) : 1; 51 } 52 53 // Returns vector element type. If the type is a scalar returns the argument. 54 LLVM_ATTRIBUTE_UNUSED static Type elementType(Type type) { 55 auto vectorType = type.dyn_cast<VectorType>(); 56 return vectorType ? vectorType.getElementType() : type; 57 } 58 59 LLVM_ATTRIBUTE_UNUSED static bool isF32(Type type) { return type.isF32(); } 60 61 LLVM_ATTRIBUTE_UNUSED static bool isI32(Type type) { 62 return type.isInteger(32); 63 } 64 65 //----------------------------------------------------------------------------// 66 // Broadcast scalar types and values into vector types and values. 67 //----------------------------------------------------------------------------// 68 69 // Broadcasts scalar type into vector type (iff width is greater then 1). 70 static Type broadcast(Type type, int width) { 71 assert(!type.isa<VectorType>() && "must be scalar type"); 72 return width > 1 ? VectorType::get({width}, type) : type; 73 } 74 75 // Broadcasts scalar value into vector (iff width is greater then 1). 76 static Value broadcast(ImplicitLocOpBuilder &builder, Value value, int width) { 77 assert(!value.getType().isa<VectorType>() && "must be scalar value"); 78 auto type = broadcast(value.getType(), width); 79 return width > 1 ? builder.create<BroadcastOp>(type, value) : value; 80 } 81 82 //----------------------------------------------------------------------------// 83 // Helper functions to create constants. 84 //----------------------------------------------------------------------------// 85 86 static Value f32Cst(ImplicitLocOpBuilder &builder, float value) { 87 return builder.create<arith::ConstantOp>(builder.getF32FloatAttr(value)); 88 } 89 90 static Value i32Cst(ImplicitLocOpBuilder &builder, int32_t value) { 91 return builder.create<arith::ConstantOp>(builder.getI32IntegerAttr(value)); 92 } 93 94 static Value f32FromBits(ImplicitLocOpBuilder &builder, uint32_t bits) { 95 Value i32Value = i32Cst(builder, static_cast<int32_t>(bits)); 96 return builder.create<arith::BitcastOp>(builder.getF32Type(), i32Value); 97 } 98 99 //----------------------------------------------------------------------------// 100 // Helper functions to build math functions approximations. 101 //----------------------------------------------------------------------------// 102 103 static Value min(ImplicitLocOpBuilder &builder, Value a, Value b) { 104 return builder.create<SelectOp>( 105 builder.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, a, b), a, b); 106 } 107 108 static Value max(ImplicitLocOpBuilder &builder, Value a, Value b) { 109 return builder.create<SelectOp>( 110 builder.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, a, b), a, b); 111 } 112 113 static Value clamp(ImplicitLocOpBuilder &builder, Value value, Value lowerBound, 114 Value upperBound) { 115 return max(builder, min(builder, value, upperBound), lowerBound); 116 } 117 118 // Decomposes given floating point value `arg` into a normalized fraction and 119 // an integral power of two (see std::frexp). Returned values have float type. 120 static std::pair<Value, Value> frexp(ImplicitLocOpBuilder &builder, Value arg, 121 bool is_positive = false) { 122 assert(isF32(elementType(arg.getType())) && "argument must be f32 type"); 123 124 int width = vectorWidth(arg.getType()); 125 126 auto bcast = [&](Value value) -> Value { 127 return broadcast(builder, value, width); 128 }; 129 130 auto i32 = builder.getIntegerType(32); 131 auto i32Vec = broadcast(i32, width); 132 auto f32Vec = broadcast(builder.getF32Type(), width); 133 134 Value cst126f = f32Cst(builder, 126.0f); 135 Value cstHalf = f32Cst(builder, 0.5f); 136 Value cstInvMantMask = f32FromBits(builder, ~0x7f800000u); 137 138 // Bitcast to i32 for bitwise operations. 139 Value i32Half = builder.create<arith::BitcastOp>(i32, cstHalf); 140 Value i32InvMantMask = builder.create<arith::BitcastOp>(i32, cstInvMantMask); 141 Value i32Arg = builder.create<arith::BitcastOp>(i32Vec, arg); 142 143 // Compute normalized fraction. 144 Value tmp0 = builder.create<arith::AndIOp>(i32Arg, bcast(i32InvMantMask)); 145 Value tmp1 = builder.create<arith::OrIOp>(tmp0, bcast(i32Half)); 146 Value normalizedFraction = builder.create<arith::BitcastOp>(f32Vec, tmp1); 147 148 // Compute exponent. 149 Value arg0 = is_positive ? arg : builder.create<math::AbsOp>(arg); 150 Value biasedExponentBits = builder.create<arith::ShRUIOp>( 151 builder.create<arith::BitcastOp>(i32Vec, arg0), 152 bcast(i32Cst(builder, 23))); 153 Value biasedExponent = 154 builder.create<arith::SIToFPOp>(f32Vec, biasedExponentBits); 155 Value exponent = 156 builder.create<arith::SubFOp>(biasedExponent, bcast(cst126f)); 157 158 return {normalizedFraction, exponent}; 159 } 160 161 // Computes exp2 for an i32 argument. 162 static Value exp2I32(ImplicitLocOpBuilder &builder, Value arg) { 163 assert(isI32(elementType(arg.getType())) && "argument must be i32 type"); 164 165 int width = vectorWidth(arg.getType()); 166 167 auto bcast = [&](Value value) -> Value { 168 return broadcast(builder, value, width); 169 }; 170 171 auto f32Vec = broadcast(builder.getF32Type(), width); 172 // The exponent of f32 located at 23-bit. 173 auto exponetBitLocation = bcast(i32Cst(builder, 23)); 174 // Set the exponent bias to zero. 175 auto bias = bcast(i32Cst(builder, 127)); 176 177 Value biasedArg = builder.create<arith::AddIOp>(arg, bias); 178 Value exp2ValueInt = 179 builder.create<arith::ShLIOp>(biasedArg, exponetBitLocation); 180 Value exp2ValueF32 = builder.create<arith::BitcastOp>(f32Vec, exp2ValueInt); 181 182 return exp2ValueF32; 183 } 184 185 //----------------------------------------------------------------------------// 186 // TanhOp approximation. 187 //----------------------------------------------------------------------------// 188 189 namespace { 190 struct TanhApproximation : public OpRewritePattern<math::TanhOp> { 191 public: 192 using OpRewritePattern::OpRewritePattern; 193 194 LogicalResult matchAndRewrite(math::TanhOp op, 195 PatternRewriter &rewriter) const final; 196 }; 197 } // namespace 198 199 LogicalResult 200 TanhApproximation::matchAndRewrite(math::TanhOp op, 201 PatternRewriter &rewriter) const { 202 auto width = vectorWidth(op.operand().getType(), isF32); 203 if (!width.hasValue()) 204 return rewriter.notifyMatchFailure(op, "unsupported operand type"); 205 206 ImplicitLocOpBuilder builder(op->getLoc(), rewriter); 207 auto bcast = [&](Value value) -> Value { 208 return broadcast(builder, value, *width); 209 }; 210 211 // Clamp operand into [plusClamp, minusClamp] range. 212 Value minusClamp = bcast(f32Cst(builder, -7.9053111076354980f)); 213 Value plusClamp = bcast(f32Cst(builder, 7.90531110763549805f)); 214 Value x = clamp(builder, op.operand(), minusClamp, plusClamp); 215 216 // Mask for tiny values that are approximated with `operand`. 217 Value tiny = bcast(f32Cst(builder, 0.0004f)); 218 Value tinyMask = builder.create<arith::CmpFOp>( 219 arith::CmpFPredicate::OLT, builder.create<math::AbsOp>(op.operand()), 220 tiny); 221 222 // The monomial coefficients of the numerator polynomial (odd). 223 Value alpha1 = bcast(f32Cst(builder, 4.89352455891786e-03f)); 224 Value alpha3 = bcast(f32Cst(builder, 6.37261928875436e-04f)); 225 Value alpha5 = bcast(f32Cst(builder, 1.48572235717979e-05f)); 226 Value alpha7 = bcast(f32Cst(builder, 5.12229709037114e-08f)); 227 Value alpha9 = bcast(f32Cst(builder, -8.60467152213735e-11f)); 228 Value alpha11 = bcast(f32Cst(builder, 2.00018790482477e-13f)); 229 Value alpha13 = bcast(f32Cst(builder, -2.76076847742355e-16f)); 230 231 // The monomial coefficients of the denominator polynomial (even). 232 Value beta0 = bcast(f32Cst(builder, 4.89352518554385e-03f)); 233 Value beta2 = bcast(f32Cst(builder, 2.26843463243900e-03f)); 234 Value beta4 = bcast(f32Cst(builder, 1.18534705686654e-04f)); 235 Value beta6 = bcast(f32Cst(builder, 1.19825839466702e-06f)); 236 237 // Since the polynomials are odd/even, we need x^2. 238 Value x2 = builder.create<arith::MulFOp>(x, x); 239 240 // Evaluate the numerator polynomial p. 241 Value p = builder.create<math::FmaOp>(x2, alpha13, alpha11); 242 p = builder.create<math::FmaOp>(x2, p, alpha9); 243 p = builder.create<math::FmaOp>(x2, p, alpha7); 244 p = builder.create<math::FmaOp>(x2, p, alpha5); 245 p = builder.create<math::FmaOp>(x2, p, alpha3); 246 p = builder.create<math::FmaOp>(x2, p, alpha1); 247 p = builder.create<arith::MulFOp>(x, p); 248 249 // Evaluate the denominator polynomial q. 250 Value q = builder.create<math::FmaOp>(x2, beta6, beta4); 251 q = builder.create<math::FmaOp>(x2, q, beta2); 252 q = builder.create<math::FmaOp>(x2, q, beta0); 253 254 // Divide the numerator by the denominator. 255 Value res = builder.create<SelectOp>(tinyMask, x, 256 builder.create<arith::DivFOp>(p, q)); 257 258 rewriter.replaceOp(op, res); 259 260 return success(); 261 } 262 263 #define LN2_VALUE \ 264 0.693147180559945309417232121458176568075500134360255254120680009493393621L 265 #define LOG2E_VALUE \ 266 1.442695040888963407359924681001892137426645954152985934135449406931109219L 267 268 //----------------------------------------------------------------------------// 269 // LogOp and Log2Op approximation. 270 //----------------------------------------------------------------------------// 271 272 namespace { 273 template <typename Op> 274 struct LogApproximationBase : public OpRewritePattern<Op> { 275 using OpRewritePattern<Op>::OpRewritePattern; 276 277 /// Base 2 if 'base2' is set; natural logarithm (base e) otherwise. 278 LogicalResult logMatchAndRewrite(Op op, PatternRewriter &rewriter, 279 bool base2) const; 280 }; 281 } // namespace 282 283 // This approximation comes from Julien Pommier's SSE math library. 284 // Link: http://gruntthepeon.free.fr/ssemath 285 template <typename Op> 286 LogicalResult 287 LogApproximationBase<Op>::logMatchAndRewrite(Op op, PatternRewriter &rewriter, 288 bool base2) const { 289 auto width = vectorWidth(op.operand().getType(), isF32); 290 if (!width.hasValue()) 291 return rewriter.notifyMatchFailure(op, "unsupported operand type"); 292 293 ImplicitLocOpBuilder builder(op->getLoc(), rewriter); 294 auto bcast = [&](Value value) -> Value { 295 return broadcast(builder, value, *width); 296 }; 297 298 Value cstZero = bcast(f32Cst(builder, 0.0f)); 299 Value cstOne = bcast(f32Cst(builder, 1.0f)); 300 Value cstNegHalf = bcast(f32Cst(builder, -0.5f)); 301 302 // The smallest non denormalized float number. 303 Value cstMinNormPos = bcast(f32FromBits(builder, 0x00800000u)); 304 Value cstMinusInf = bcast(f32FromBits(builder, 0xff800000u)); 305 Value cstPosInf = bcast(f32FromBits(builder, 0x7f800000u)); 306 Value cstNan = bcast(f32FromBits(builder, 0x7fc00000)); 307 308 // Polynomial coefficients. 309 Value cstCephesSQRTHF = bcast(f32Cst(builder, 0.707106781186547524f)); 310 Value cstCephesLogP0 = bcast(f32Cst(builder, 7.0376836292E-2f)); 311 Value cstCephesLogP1 = bcast(f32Cst(builder, -1.1514610310E-1f)); 312 Value cstCephesLogP2 = bcast(f32Cst(builder, 1.1676998740E-1f)); 313 Value cstCephesLogP3 = bcast(f32Cst(builder, -1.2420140846E-1f)); 314 Value cstCephesLogP4 = bcast(f32Cst(builder, +1.4249322787E-1f)); 315 Value cstCephesLogP5 = bcast(f32Cst(builder, -1.6668057665E-1f)); 316 Value cstCephesLogP6 = bcast(f32Cst(builder, +2.0000714765E-1f)); 317 Value cstCephesLogP7 = bcast(f32Cst(builder, -2.4999993993E-1f)); 318 Value cstCephesLogP8 = bcast(f32Cst(builder, +3.3333331174E-1f)); 319 320 Value x = op.operand(); 321 322 // Truncate input values to the minimum positive normal. 323 x = max(builder, x, cstMinNormPos); 324 325 // Extract significant in the range [0.5,1) and exponent. 326 std::pair<Value, Value> pair = frexp(builder, x, /*is_positive=*/true); 327 x = pair.first; 328 Value e = pair.second; 329 330 // Shift the inputs from the range [0.5,1) to [sqrt(1/2), sqrt(2)) and shift 331 // by -1.0. The values are then centered around 0, which improves the 332 // stability of the polynomial evaluation: 333 // 334 // if( x < SQRTHF ) { 335 // e -= 1; 336 // x = x + x - 1.0; 337 // } else { x = x - 1.0; } 338 Value mask = builder.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, x, 339 cstCephesSQRTHF); 340 Value tmp = builder.create<SelectOp>(mask, x, cstZero); 341 342 x = builder.create<arith::SubFOp>(x, cstOne); 343 e = builder.create<arith::SubFOp>( 344 e, builder.create<SelectOp>(mask, cstOne, cstZero)); 345 x = builder.create<arith::AddFOp>(x, tmp); 346 347 Value x2 = builder.create<arith::MulFOp>(x, x); 348 Value x3 = builder.create<arith::MulFOp>(x2, x); 349 350 // Evaluate the polynomial approximant of degree 8 in three parts. 351 Value y0, y1, y2; 352 y0 = builder.create<math::FmaOp>(cstCephesLogP0, x, cstCephesLogP1); 353 y1 = builder.create<math::FmaOp>(cstCephesLogP3, x, cstCephesLogP4); 354 y2 = builder.create<math::FmaOp>(cstCephesLogP6, x, cstCephesLogP7); 355 y0 = builder.create<math::FmaOp>(y0, x, cstCephesLogP2); 356 y1 = builder.create<math::FmaOp>(y1, x, cstCephesLogP5); 357 y2 = builder.create<math::FmaOp>(y2, x, cstCephesLogP8); 358 y0 = builder.create<math::FmaOp>(y0, x3, y1); 359 y0 = builder.create<math::FmaOp>(y0, x3, y2); 360 y0 = builder.create<arith::MulFOp>(y0, x3); 361 362 y0 = builder.create<math::FmaOp>(cstNegHalf, x2, y0); 363 x = builder.create<arith::AddFOp>(x, y0); 364 365 if (base2) { 366 Value cstLog2e = bcast(f32Cst(builder, static_cast<float>(LOG2E_VALUE))); 367 x = builder.create<math::FmaOp>(x, cstLog2e, e); 368 } else { 369 Value cstLn2 = bcast(f32Cst(builder, static_cast<float>(LN2_VALUE))); 370 x = builder.create<math::FmaOp>(e, cstLn2, x); 371 } 372 373 Value invalidMask = builder.create<arith::CmpFOp>(arith::CmpFPredicate::ULT, 374 op.operand(), cstZero); 375 Value zeroMask = builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, 376 op.operand(), cstZero); 377 Value posInfMask = builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, 378 op.operand(), cstPosInf); 379 380 // Filter out invalid values: 381 // • x == 0 -> -INF 382 // • x < 0 -> NAN 383 // • x == +INF -> +INF 384 Value aproximation = builder.create<SelectOp>( 385 zeroMask, cstMinusInf, 386 builder.create<SelectOp>( 387 invalidMask, cstNan, 388 builder.create<SelectOp>(posInfMask, cstPosInf, x))); 389 390 rewriter.replaceOp(op, aproximation); 391 392 return success(); 393 } 394 395 namespace { 396 struct LogApproximation : public LogApproximationBase<math::LogOp> { 397 using LogApproximationBase::LogApproximationBase; 398 399 LogicalResult matchAndRewrite(math::LogOp op, 400 PatternRewriter &rewriter) const final { 401 return logMatchAndRewrite(op, rewriter, /*base2=*/false); 402 } 403 }; 404 } // namespace 405 406 namespace { 407 struct Log2Approximation : public LogApproximationBase<math::Log2Op> { 408 using LogApproximationBase::LogApproximationBase; 409 410 LogicalResult matchAndRewrite(math::Log2Op op, 411 PatternRewriter &rewriter) const final { 412 return logMatchAndRewrite(op, rewriter, /*base2=*/true); 413 } 414 }; 415 } // namespace 416 417 //----------------------------------------------------------------------------// 418 // Log1p approximation. 419 //----------------------------------------------------------------------------// 420 421 namespace { 422 struct Log1pApproximation : public OpRewritePattern<math::Log1pOp> { 423 public: 424 using OpRewritePattern::OpRewritePattern; 425 426 LogicalResult matchAndRewrite(math::Log1pOp op, 427 PatternRewriter &rewriter) const final; 428 }; 429 } // namespace 430 431 // Approximate log(1+x). 432 LogicalResult 433 Log1pApproximation::matchAndRewrite(math::Log1pOp op, 434 PatternRewriter &rewriter) const { 435 auto width = vectorWidth(op.operand().getType(), isF32); 436 if (!width.hasValue()) 437 return rewriter.notifyMatchFailure(op, "unsupported operand type"); 438 439 ImplicitLocOpBuilder builder(op->getLoc(), rewriter); 440 auto bcast = [&](Value value) -> Value { 441 return broadcast(builder, value, *width); 442 }; 443 444 // Approximate log(1+x) using the following, due to W. Kahan: 445 // u = x + 1.0; 446 // if (u == 1.0 || u == inf) return x; 447 // return x * log(u) / (u - 1.0); 448 // ^^^^^^^^^^^^^^^^^^^^^^ 449 // "logLarge" below. 450 Value cstOne = bcast(f32Cst(builder, 1.0f)); 451 Value x = op.operand(); 452 Value u = builder.create<arith::AddFOp>(x, cstOne); 453 Value uSmall = 454 builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, u, cstOne); 455 Value logU = builder.create<math::LogOp>(u); 456 Value uInf = 457 builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, u, logU); 458 Value logLarge = builder.create<arith::MulFOp>( 459 x, builder.create<arith::DivFOp>( 460 logU, builder.create<arith::SubFOp>(u, cstOne))); 461 Value approximation = builder.create<SelectOp>( 462 builder.create<arith::OrIOp>(uSmall, uInf), x, logLarge); 463 rewriter.replaceOp(op, approximation); 464 return success(); 465 } 466 467 //----------------------------------------------------------------------------// 468 // Exp approximation. 469 //----------------------------------------------------------------------------// 470 471 namespace { 472 473 struct ExpApproximation : public OpRewritePattern<math::ExpOp> { 474 public: 475 using OpRewritePattern::OpRewritePattern; 476 477 LogicalResult matchAndRewrite(math::ExpOp op, 478 PatternRewriter &rewriter) const final; 479 }; 480 } // namespace 481 482 // Approximate exp(x) using its reduced range exp(y) where y is in the range 483 // [0, ln(2)], let y = x - floor(x / ln(2)) * ln(2) = x - k * ln(2), exp(x) 484 // = exp(y) * 2^k. exp(y). 485 LogicalResult 486 ExpApproximation::matchAndRewrite(math::ExpOp op, 487 PatternRewriter &rewriter) const { 488 auto width = vectorWidth(op.operand().getType(), isF32); 489 if (!width.hasValue()) 490 return rewriter.notifyMatchFailure(op, "unsupported operand type"); 491 ImplicitLocOpBuilder builder(op->getLoc(), rewriter); 492 493 // TODO: Consider a common pattern rewriter with all methods below to 494 // write the approximations. 495 auto bcast = [&](Value value) -> Value { 496 return broadcast(builder, value, *width); 497 }; 498 auto fmla = [&](Value a, Value b, Value c) { 499 return builder.create<math::FmaOp>(a, b, c); 500 }; 501 auto mul = [&](Value a, Value b) -> Value { 502 return builder.create<arith::MulFOp>(a, b); 503 }; 504 auto sub = [&](Value a, Value b) -> Value { 505 return builder.create<arith::SubFOp>(a, b); 506 }; 507 auto floor = [&](Value a) { return builder.create<math::FloorOp>(a); }; 508 509 Value cstLn2 = bcast(f32Cst(builder, static_cast<float>(LN2_VALUE))); 510 Value cstLog2E = bcast(f32Cst(builder, static_cast<float>(LOG2E_VALUE))); 511 512 // Polynomial coefficients. 513 Value cstCephesExpP0 = bcast(f32Cst(builder, 1.0)); 514 Value cstCephesExpP1 = bcast(f32Cst(builder, 1.0)); 515 Value cstCephesExpP2 = bcast(f32Cst(builder, 0.49970514590562437052f)); 516 Value cstCephesExpP3 = bcast(f32Cst(builder, 0.16873890085469545053f)); 517 Value cstCephesExpP4 = bcast(f32Cst(builder, 0.03668965196652099192f)); 518 Value cstCephesExpP5 = bcast(f32Cst(builder, 0.01314350012789660196f)); 519 520 Value x = op.operand(); 521 522 // Reduced y = x - floor(x / ln(2)) * ln(2) = x - k * ln(2) 523 Value xL2Inv = mul(x, cstLog2E); 524 Value kF32 = floor(xL2Inv); 525 Value kLn2 = mul(kF32, cstLn2); 526 Value y = sub(x, kLn2); 527 528 // Use Estrin's evaluation scheme with 3 independent parts: 529 // P(y)^y : (c0 + c1 y) + (c2 + c3 y) y^2 + (c4 + c5 y) y^4 530 Value y2 = mul(y, y); 531 Value y4 = mul(y2, y2); 532 533 Value q0 = fmla(cstCephesExpP1, y, cstCephesExpP0); 534 Value q1 = fmla(cstCephesExpP3, y, cstCephesExpP2); 535 Value q2 = fmla(cstCephesExpP5, y, cstCephesExpP4); 536 Value expY = fmla(q1, y2, q0); 537 expY = fmla(q2, y4, expY); 538 539 auto i32Vec = broadcast(builder.getI32Type(), *width); 540 541 // exp2(k) 542 Value k = builder.create<arith::FPToSIOp>(kF32, i32Vec); 543 Value exp2KValue = exp2I32(builder, k); 544 545 // exp(x) = exp(y) * exp2(k) 546 expY = mul(expY, exp2KValue); 547 548 // Handle overflow, inf and underflow of exp(x). exp(x) range is [0, inf], its 549 // partitioned as the following: 550 // exp(x) = 0, x <= -inf 551 // exp(x) = underflow (min_float), x <= -88 552 // exp(x) = inf (min_float), x >= 88 553 // Note: |k| = 127 is the value where the 8-bits exponent saturates. 554 Value zerof32Const = bcast(f32Cst(builder, 0)); 555 auto constPosInfinity = 556 bcast(f32Cst(builder, std::numeric_limits<float>::infinity())); 557 auto constNegIfinity = 558 bcast(f32Cst(builder, -std::numeric_limits<float>::infinity())); 559 auto underflow = bcast(f32Cst(builder, std::numeric_limits<float>::min())); 560 561 Value kMaxConst = bcast(i32Cst(builder, 127)); 562 Value kMaxNegConst = bcast(i32Cst(builder, -127)); 563 Value rightBound = 564 builder.create<arith::CmpIOp>(arith::CmpIPredicate::sle, k, kMaxConst); 565 Value leftBound = 566 builder.create<arith::CmpIOp>(arith::CmpIPredicate::sge, k, kMaxNegConst); 567 568 Value isNegInfinityX = builder.create<arith::CmpFOp>( 569 arith::CmpFPredicate::OEQ, x, constNegIfinity); 570 Value isPostiveX = 571 builder.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, x, zerof32Const); 572 Value isComputable = builder.create<arith::AndIOp>(rightBound, leftBound); 573 574 expY = builder.create<SelectOp>( 575 isComputable, expY, 576 builder.create<SelectOp>( 577 isPostiveX, constPosInfinity, 578 builder.create<SelectOp>(isNegInfinityX, zerof32Const, underflow))); 579 580 rewriter.replaceOp(op, expY); 581 582 return success(); 583 } 584 585 //----------------------------------------------------------------------------// 586 // ExpM1 approximation. 587 //----------------------------------------------------------------------------// 588 589 namespace { 590 591 struct ExpM1Approximation : public OpRewritePattern<math::ExpM1Op> { 592 public: 593 using OpRewritePattern::OpRewritePattern; 594 595 LogicalResult matchAndRewrite(math::ExpM1Op op, 596 PatternRewriter &rewriter) const final; 597 }; 598 } // namespace 599 600 LogicalResult 601 ExpM1Approximation::matchAndRewrite(math::ExpM1Op op, 602 PatternRewriter &rewriter) const { 603 auto width = vectorWidth(op.operand().getType(), isF32); 604 if (!width.hasValue()) 605 return rewriter.notifyMatchFailure(op, "unsupported operand type"); 606 607 ImplicitLocOpBuilder builder(op->getLoc(), rewriter); 608 auto bcast = [&](Value value) -> Value { 609 return broadcast(builder, value, *width); 610 }; 611 612 // expm1(x) = exp(x) - 1 = u - 1. 613 // We have to handle it carefully when x is near 0, i.e. u ~= 1, 614 // and when the input is ~= -inf, i.e. u - 1 ~= -1. 615 Value cstOne = bcast(f32Cst(builder, 1.0f)); 616 Value cstNegOne = bcast(f32Cst(builder, -1.0f)); 617 Value x = op.operand(); 618 Value u = builder.create<math::ExpOp>(x); 619 Value uEqOne = 620 builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, u, cstOne); 621 Value uMinusOne = builder.create<arith::SubFOp>(u, cstOne); 622 Value uMinusOneEqNegOne = builder.create<arith::CmpFOp>( 623 arith::CmpFPredicate::OEQ, uMinusOne, cstNegOne); 624 // logU = log(u) ~= x 625 Value logU = builder.create<math::LogOp>(u); 626 627 // Detect exp(x) = +inf; written this way to avoid having to form +inf. 628 Value isInf = 629 builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, logU, u); 630 631 // (u - 1) * (x / ~x) 632 Value expm1 = builder.create<arith::MulFOp>( 633 uMinusOne, builder.create<arith::DivFOp>(x, logU)); 634 expm1 = builder.create<SelectOp>(isInf, u, expm1); 635 Value approximation = builder.create<SelectOp>( 636 uEqOne, x, builder.create<SelectOp>(uMinusOneEqNegOne, cstNegOne, expm1)); 637 rewriter.replaceOp(op, approximation); 638 return success(); 639 } 640 641 //----------------------------------------------------------------------------// 642 // Sin and Cos approximation. 643 //----------------------------------------------------------------------------// 644 645 namespace { 646 647 template <bool isSine, typename OpTy> 648 struct SinAndCosApproximation : public OpRewritePattern<OpTy> { 649 public: 650 using OpRewritePattern<OpTy>::OpRewritePattern; 651 652 LogicalResult matchAndRewrite(OpTy op, PatternRewriter &rewriter) const final; 653 }; 654 } // namespace 655 656 #define TWO_OVER_PI \ 657 0.6366197723675813430755350534900574481378385829618257949906693762L 658 #define PI_OVER_2 \ 659 1.5707963267948966192313216916397514420985846996875529104874722961L 660 661 // Approximates sin(x) or cos(x) by finding the best approximation polynomial in 662 // the reduced range [0, pi/2] for both sin(x) and cos(x). Then given y in the 663 // reduced range sin(x) will be computed as sin(y), -sin(y), cos(y) or -cos(y). 664 template <bool isSine, typename OpTy> 665 LogicalResult SinAndCosApproximation<isSine, OpTy>::matchAndRewrite( 666 OpTy op, PatternRewriter &rewriter) const { 667 static_assert( 668 llvm::is_one_of<OpTy, math::SinOp, math::CosOp>::value, 669 "SinAndCosApproximation pattern expects math::SinOp or math::CosOp"); 670 auto width = vectorWidth(op.operand().getType(), isF32); 671 if (!width.hasValue()) 672 return rewriter.notifyMatchFailure(op, "unsupported operand type"); 673 674 ImplicitLocOpBuilder builder(op->getLoc(), rewriter); 675 auto bcast = [&](Value value) -> Value { 676 return broadcast(builder, value, *width); 677 }; 678 auto mul = [&](Value a, Value b) -> Value { 679 return builder.create<arith::MulFOp>(a, b); 680 }; 681 auto sub = [&](Value a, Value b) -> Value { 682 return builder.create<arith::SubFOp>(a, b); 683 }; 684 auto floor = [&](Value a) { return builder.create<math::FloorOp>(a); }; 685 686 auto i32Vec = broadcast(builder.getI32Type(), *width); 687 auto fPToSingedInteger = [&](Value a) -> Value { 688 return builder.create<arith::FPToSIOp>(a, i32Vec); 689 }; 690 691 auto modulo4 = [&](Value a) -> Value { 692 return builder.create<arith::AndIOp>(a, bcast(i32Cst(builder, 3))); 693 }; 694 695 auto isEqualTo = [&](Value a, Value b) -> Value { 696 return builder.create<arith::CmpIOp>(arith::CmpIPredicate::eq, a, b); 697 }; 698 699 auto isGreaterThan = [&](Value a, Value b) -> Value { 700 return builder.create<arith::CmpIOp>(arith::CmpIPredicate::sgt, a, b); 701 }; 702 703 auto select = [&](Value cond, Value t, Value f) -> Value { 704 return builder.create<SelectOp>(cond, t, f); 705 }; 706 707 auto fmla = [&](Value a, Value b, Value c) { 708 return builder.create<math::FmaOp>(a, b, c); 709 }; 710 711 auto bitwiseOr = [&](Value a, Value b) { 712 return builder.create<arith::OrIOp>(a, b); 713 }; 714 715 Value twoOverPi = bcast(f32Cst(builder, TWO_OVER_PI)); 716 Value piOverTwo = bcast(f32Cst(builder, PI_OVER_2)); 717 718 Value x = op.operand(); 719 720 Value k = floor(mul(x, twoOverPi)); 721 722 Value y = sub(x, mul(k, piOverTwo)); 723 724 Value cstOne = bcast(f32Cst(builder, 1.0)); 725 Value cstNegativeOne = bcast(f32Cst(builder, -1.0)); 726 727 Value cstSC2 = bcast(f32Cst(builder, -0.16666667163372039794921875f)); 728 Value cstSC4 = bcast(f32Cst(builder, 8.333347737789154052734375e-3f)); 729 Value cstSC6 = bcast(f32Cst(builder, -1.9842604524455964565277099609375e-4f)); 730 Value cstSC8 = 731 bcast(f32Cst(builder, 2.760012648650445044040679931640625e-6f)); 732 Value cstSC10 = 733 bcast(f32Cst(builder, -2.50293279435709337121807038784027099609375e-8f)); 734 735 Value cstCC2 = bcast(f32Cst(builder, -0.5f)); 736 Value cstCC4 = bcast(f32Cst(builder, 4.166664183139801025390625e-2f)); 737 Value cstCC6 = bcast(f32Cst(builder, -1.388833043165504932403564453125e-3f)); 738 Value cstCC8 = bcast(f32Cst(builder, 2.47562347794882953166961669921875e-5f)); 739 Value cstCC10 = 740 bcast(f32Cst(builder, -2.59630184018533327616751194000244140625e-7f)); 741 742 Value kMod4 = modulo4(fPToSingedInteger(k)); 743 744 Value kR0 = isEqualTo(kMod4, bcast(i32Cst(builder, 0))); 745 Value kR1 = isEqualTo(kMod4, bcast(i32Cst(builder, 1))); 746 Value kR2 = isEqualTo(kMod4, bcast(i32Cst(builder, 2))); 747 Value kR3 = isEqualTo(kMod4, bcast(i32Cst(builder, 3))); 748 749 Value sinuseCos = isSine ? bitwiseOr(kR1, kR3) : bitwiseOr(kR0, kR2); 750 Value negativeRange = isSine ? isGreaterThan(kMod4, bcast(i32Cst(builder, 1))) 751 : bitwiseOr(kR1, kR2); 752 753 Value y2 = mul(y, y); 754 755 Value base = select(sinuseCos, cstOne, y); 756 Value cstC2 = select(sinuseCos, cstCC2, cstSC2); 757 Value cstC4 = select(sinuseCos, cstCC4, cstSC4); 758 Value cstC6 = select(sinuseCos, cstCC6, cstSC6); 759 Value cstC8 = select(sinuseCos, cstCC8, cstSC8); 760 Value cstC10 = select(sinuseCos, cstCC10, cstSC10); 761 762 Value v1 = fmla(y2, cstC10, cstC8); 763 Value v2 = fmla(y2, v1, cstC6); 764 Value v3 = fmla(y2, v2, cstC4); 765 Value v4 = fmla(y2, v3, cstC2); 766 Value v5 = fmla(y2, v4, cstOne); 767 Value v6 = mul(base, v5); 768 769 Value approximation = select(negativeRange, mul(cstNegativeOne, v6), v6); 770 771 rewriter.replaceOp(op, approximation); 772 773 return success(); 774 } 775 776 //----------------------------------------------------------------------------// 777 778 void mlir::populateMathPolynomialApproximationPatterns( 779 RewritePatternSet &patterns) { 780 patterns.add<TanhApproximation, LogApproximation, Log2Approximation, 781 Log1pApproximation, ExpApproximation, ExpM1Approximation, 782 SinAndCosApproximation<true, math::SinOp>, 783 SinAndCosApproximation<false, math::CosOp>>( 784 patterns.getContext()); 785 } 786