//===- PolynomialApproximation.cpp - Approximate math operations ----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements expansion of math operations to fast approximations // that do not rely on any of the library functions. // //===----------------------------------------------------------------------===// #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" #include "mlir/Dialect/Math/IR/Math.h" #include "mlir/Dialect/Math/Transforms/Passes.h" #include "mlir/Dialect/Vector/VectorOps.h" #include "mlir/IR/Builders.h" #include "mlir/IR/ImplicitLocOpBuilder.h" #include "mlir/Transforms/Bufferize.h" #include "mlir/Transforms/DialectConversion.h" #include "mlir/Transforms/GreedyPatternRewriteDriver.h" #include using namespace mlir; using namespace mlir::vector; using TypePredicate = llvm::function_ref; // Returns vector width if the element type is matching the predicate (scalars // that do match the predicate have width equal to `1`). static Optional vectorWidth(Type type, TypePredicate pred) { // If the type matches the predicate then its width is `1`. if (pred(type)) return 1; // Otherwise check if the type is a vector type. auto vectorType = type.dyn_cast(); if (vectorType && pred(vectorType.getElementType())) { assert(vectorType.getRank() == 1 && "only 1d vectors are supported"); return vectorType.getDimSize(0); } return llvm::None; } // Returns vector width of the type. If the type is a scalar returns `1`. static int vectorWidth(Type type) { auto vectorType = type.dyn_cast(); return vectorType ? vectorType.getDimSize(0) : 1; } // Returns vector element type. If the type is a scalar returns the argument. LLVM_ATTRIBUTE_UNUSED static Type elementType(Type type) { auto vectorType = type.dyn_cast(); return vectorType ? vectorType.getElementType() : type; } LLVM_ATTRIBUTE_UNUSED static bool isF32(Type type) { return type.isF32(); } LLVM_ATTRIBUTE_UNUSED static bool isI32(Type type) { return type.isInteger(32); } //----------------------------------------------------------------------------// // Broadcast scalar types and values into vector types and values. //----------------------------------------------------------------------------// // Broadcasts scalar type into vector type (iff width is greater then 1). static Type broadcast(Type type, int width) { assert(!type.isa() && "must be scalar type"); return width > 1 ? VectorType::get({width}, type) : type; } // Broadcasts scalar value into vector (iff width is greater then 1). static Value broadcast(ImplicitLocOpBuilder &builder, Value value, int width) { assert(!value.getType().isa() && "must be scalar value"); auto type = broadcast(value.getType(), width); return width > 1 ? builder.create(type, value) : value; } //----------------------------------------------------------------------------// // Helper functions to create constants. //----------------------------------------------------------------------------// static Value f32Cst(ImplicitLocOpBuilder &builder, float value) { return builder.create(builder.getF32FloatAttr(value)); } static Value i32Cst(ImplicitLocOpBuilder &builder, int32_t value) { return builder.create(builder.getI32IntegerAttr(value)); } static Value f32FromBits(ImplicitLocOpBuilder &builder, uint32_t bits) { Value i32Value = i32Cst(builder, static_cast(bits)); return builder.create(builder.getF32Type(), i32Value); } //----------------------------------------------------------------------------// // Helper functions to build math functions approximations. //----------------------------------------------------------------------------// static Value min(ImplicitLocOpBuilder &builder, Value a, Value b) { return builder.create( builder.create(arith::CmpFPredicate::OLT, a, b), a, b); } static Value max(ImplicitLocOpBuilder &builder, Value a, Value b) { return builder.create( builder.create(arith::CmpFPredicate::OGT, a, b), a, b); } static Value clamp(ImplicitLocOpBuilder &builder, Value value, Value lowerBound, Value upperBound) { return max(builder, min(builder, value, upperBound), lowerBound); } // Decomposes given floating point value `arg` into a normalized fraction and // an integral power of two (see std::frexp). Returned values have float type. static std::pair frexp(ImplicitLocOpBuilder &builder, Value arg, bool is_positive = false) { assert(isF32(elementType(arg.getType())) && "argument must be f32 type"); int width = vectorWidth(arg.getType()); auto bcast = [&](Value value) -> Value { return broadcast(builder, value, width); }; auto i32 = builder.getIntegerType(32); auto i32Vec = broadcast(i32, width); auto f32Vec = broadcast(builder.getF32Type(), width); Value cst126f = f32Cst(builder, 126.0f); Value cstHalf = f32Cst(builder, 0.5f); Value cstInvMantMask = f32FromBits(builder, ~0x7f800000u); // Bitcast to i32 for bitwise operations. Value i32Half = builder.create(i32, cstHalf); Value i32InvMantMask = builder.create(i32, cstInvMantMask); Value i32Arg = builder.create(i32Vec, arg); // Compute normalized fraction. Value tmp0 = builder.create(i32Arg, bcast(i32InvMantMask)); Value tmp1 = builder.create(tmp0, bcast(i32Half)); Value normalizedFraction = builder.create(f32Vec, tmp1); // Compute exponent. Value arg0 = is_positive ? arg : builder.create(arg); Value biasedExponentBits = builder.create( builder.create(i32Vec, arg0), bcast(i32Cst(builder, 23))); Value biasedExponent = builder.create(f32Vec, biasedExponentBits); Value exponent = builder.create(biasedExponent, bcast(cst126f)); return {normalizedFraction, exponent}; } // Computes exp2 for an i32 argument. static Value exp2I32(ImplicitLocOpBuilder &builder, Value arg) { assert(isI32(elementType(arg.getType())) && "argument must be i32 type"); int width = vectorWidth(arg.getType()); auto bcast = [&](Value value) -> Value { return broadcast(builder, value, width); }; auto f32Vec = broadcast(builder.getF32Type(), width); // The exponent of f32 located at 23-bit. auto exponetBitLocation = bcast(i32Cst(builder, 23)); // Set the exponent bias to zero. auto bias = bcast(i32Cst(builder, 127)); Value biasedArg = builder.create(arg, bias); Value exp2ValueInt = builder.create(biasedArg, exponetBitLocation); Value exp2ValueF32 = builder.create(f32Vec, exp2ValueInt); return exp2ValueF32; } //----------------------------------------------------------------------------// // TanhOp approximation. //----------------------------------------------------------------------------// namespace { struct TanhApproximation : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(math::TanhOp op, PatternRewriter &rewriter) const final; }; } // namespace LogicalResult TanhApproximation::matchAndRewrite(math::TanhOp op, PatternRewriter &rewriter) const { auto width = vectorWidth(op.operand().getType(), isF32); if (!width.hasValue()) return rewriter.notifyMatchFailure(op, "unsupported operand type"); ImplicitLocOpBuilder builder(op->getLoc(), rewriter); auto bcast = [&](Value value) -> Value { return broadcast(builder, value, *width); }; // Clamp operand into [plusClamp, minusClamp] range. Value minusClamp = bcast(f32Cst(builder, -7.9053111076354980f)); Value plusClamp = bcast(f32Cst(builder, 7.90531110763549805f)); Value x = clamp(builder, op.operand(), minusClamp, plusClamp); // Mask for tiny values that are approximated with `operand`. Value tiny = bcast(f32Cst(builder, 0.0004f)); Value tinyMask = builder.create( arith::CmpFPredicate::OLT, builder.create(op.operand()), tiny); // The monomial coefficients of the numerator polynomial (odd). Value alpha1 = bcast(f32Cst(builder, 4.89352455891786e-03f)); Value alpha3 = bcast(f32Cst(builder, 6.37261928875436e-04f)); Value alpha5 = bcast(f32Cst(builder, 1.48572235717979e-05f)); Value alpha7 = bcast(f32Cst(builder, 5.12229709037114e-08f)); Value alpha9 = bcast(f32Cst(builder, -8.60467152213735e-11f)); Value alpha11 = bcast(f32Cst(builder, 2.00018790482477e-13f)); Value alpha13 = bcast(f32Cst(builder, -2.76076847742355e-16f)); // The monomial coefficients of the denominator polynomial (even). Value beta0 = bcast(f32Cst(builder, 4.89352518554385e-03f)); Value beta2 = bcast(f32Cst(builder, 2.26843463243900e-03f)); Value beta4 = bcast(f32Cst(builder, 1.18534705686654e-04f)); Value beta6 = bcast(f32Cst(builder, 1.19825839466702e-06f)); // Since the polynomials are odd/even, we need x^2. Value x2 = builder.create(x, x); // Evaluate the numerator polynomial p. Value p = builder.create(x2, alpha13, alpha11); p = builder.create(x2, p, alpha9); p = builder.create(x2, p, alpha7); p = builder.create(x2, p, alpha5); p = builder.create(x2, p, alpha3); p = builder.create(x2, p, alpha1); p = builder.create(x, p); // Evaluate the denominator polynomial q. Value q = builder.create(x2, beta6, beta4); q = builder.create(x2, q, beta2); q = builder.create(x2, q, beta0); // Divide the numerator by the denominator. Value res = builder.create(tinyMask, x, builder.create(p, q)); rewriter.replaceOp(op, res); return success(); } #define LN2_VALUE \ 0.693147180559945309417232121458176568075500134360255254120680009493393621L #define LOG2E_VALUE \ 1.442695040888963407359924681001892137426645954152985934135449406931109219L //----------------------------------------------------------------------------// // LogOp and Log2Op approximation. //----------------------------------------------------------------------------// namespace { template struct LogApproximationBase : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; /// Base 2 if 'base2' is set; natural logarithm (base e) otherwise. LogicalResult logMatchAndRewrite(Op op, PatternRewriter &rewriter, bool base2) const; }; } // namespace // This approximation comes from Julien Pommier's SSE math library. // Link: http://gruntthepeon.free.fr/ssemath template LogicalResult LogApproximationBase::logMatchAndRewrite(Op op, PatternRewriter &rewriter, bool base2) const { auto width = vectorWidth(op.operand().getType(), isF32); if (!width.hasValue()) return rewriter.notifyMatchFailure(op, "unsupported operand type"); ImplicitLocOpBuilder builder(op->getLoc(), rewriter); auto bcast = [&](Value value) -> Value { return broadcast(builder, value, *width); }; Value cstZero = bcast(f32Cst(builder, 0.0f)); Value cstOne = bcast(f32Cst(builder, 1.0f)); Value cstNegHalf = bcast(f32Cst(builder, -0.5f)); // The smallest non denormalized float number. Value cstMinNormPos = bcast(f32FromBits(builder, 0x00800000u)); Value cstMinusInf = bcast(f32FromBits(builder, 0xff800000u)); Value cstPosInf = bcast(f32FromBits(builder, 0x7f800000u)); Value cstNan = bcast(f32FromBits(builder, 0x7fc00000)); // Polynomial coefficients. Value cstCephesSQRTHF = bcast(f32Cst(builder, 0.707106781186547524f)); Value cstCephesLogP0 = bcast(f32Cst(builder, 7.0376836292E-2f)); Value cstCephesLogP1 = bcast(f32Cst(builder, -1.1514610310E-1f)); Value cstCephesLogP2 = bcast(f32Cst(builder, 1.1676998740E-1f)); Value cstCephesLogP3 = bcast(f32Cst(builder, -1.2420140846E-1f)); Value cstCephesLogP4 = bcast(f32Cst(builder, +1.4249322787E-1f)); Value cstCephesLogP5 = bcast(f32Cst(builder, -1.6668057665E-1f)); Value cstCephesLogP6 = bcast(f32Cst(builder, +2.0000714765E-1f)); Value cstCephesLogP7 = bcast(f32Cst(builder, -2.4999993993E-1f)); Value cstCephesLogP8 = bcast(f32Cst(builder, +3.3333331174E-1f)); Value x = op.operand(); // Truncate input values to the minimum positive normal. x = max(builder, x, cstMinNormPos); // Extract significant in the range [0.5,1) and exponent. std::pair pair = frexp(builder, x, /*is_positive=*/true); x = pair.first; Value e = pair.second; // Shift the inputs from the range [0.5,1) to [sqrt(1/2), sqrt(2)) and shift // by -1.0. The values are then centered around 0, which improves the // stability of the polynomial evaluation: // // if( x < SQRTHF ) { // e -= 1; // x = x + x - 1.0; // } else { x = x - 1.0; } Value mask = builder.create(arith::CmpFPredicate::OLT, x, cstCephesSQRTHF); Value tmp = builder.create(mask, x, cstZero); x = builder.create(x, cstOne); e = builder.create( e, builder.create(mask, cstOne, cstZero)); x = builder.create(x, tmp); Value x2 = builder.create(x, x); Value x3 = builder.create(x2, x); // Evaluate the polynomial approximant of degree 8 in three parts. Value y0, y1, y2; y0 = builder.create(cstCephesLogP0, x, cstCephesLogP1); y1 = builder.create(cstCephesLogP3, x, cstCephesLogP4); y2 = builder.create(cstCephesLogP6, x, cstCephesLogP7); y0 = builder.create(y0, x, cstCephesLogP2); y1 = builder.create(y1, x, cstCephesLogP5); y2 = builder.create(y2, x, cstCephesLogP8); y0 = builder.create(y0, x3, y1); y0 = builder.create(y0, x3, y2); y0 = builder.create(y0, x3); y0 = builder.create(cstNegHalf, x2, y0); x = builder.create(x, y0); if (base2) { Value cstLog2e = bcast(f32Cst(builder, static_cast(LOG2E_VALUE))); x = builder.create(x, cstLog2e, e); } else { Value cstLn2 = bcast(f32Cst(builder, static_cast(LN2_VALUE))); x = builder.create(e, cstLn2, x); } Value invalidMask = builder.create(arith::CmpFPredicate::ULT, op.operand(), cstZero); Value zeroMask = builder.create(arith::CmpFPredicate::OEQ, op.operand(), cstZero); Value posInfMask = builder.create(arith::CmpFPredicate::OEQ, op.operand(), cstPosInf); // Filter out invalid values: // • x == 0 -> -INF // • x < 0 -> NAN // • x == +INF -> +INF Value aproximation = builder.create( zeroMask, cstMinusInf, builder.create( invalidMask, cstNan, builder.create(posInfMask, cstPosInf, x))); rewriter.replaceOp(op, aproximation); return success(); } namespace { struct LogApproximation : public LogApproximationBase { using LogApproximationBase::LogApproximationBase; LogicalResult matchAndRewrite(math::LogOp op, PatternRewriter &rewriter) const final { return logMatchAndRewrite(op, rewriter, /*base2=*/false); } }; } // namespace namespace { struct Log2Approximation : public LogApproximationBase { using LogApproximationBase::LogApproximationBase; LogicalResult matchAndRewrite(math::Log2Op op, PatternRewriter &rewriter) const final { return logMatchAndRewrite(op, rewriter, /*base2=*/true); } }; } // namespace //----------------------------------------------------------------------------// // Log1p approximation. //----------------------------------------------------------------------------// namespace { struct Log1pApproximation : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(math::Log1pOp op, PatternRewriter &rewriter) const final; }; } // namespace // Approximate log(1+x). LogicalResult Log1pApproximation::matchAndRewrite(math::Log1pOp op, PatternRewriter &rewriter) const { auto width = vectorWidth(op.operand().getType(), isF32); if (!width.hasValue()) return rewriter.notifyMatchFailure(op, "unsupported operand type"); ImplicitLocOpBuilder builder(op->getLoc(), rewriter); auto bcast = [&](Value value) -> Value { return broadcast(builder, value, *width); }; // Approximate log(1+x) using the following, due to W. Kahan: // u = x + 1.0; // if (u == 1.0 || u == inf) return x; // return x * log(u) / (u - 1.0); // ^^^^^^^^^^^^^^^^^^^^^^ // "logLarge" below. Value cstOne = bcast(f32Cst(builder, 1.0f)); Value x = op.operand(); Value u = builder.create(x, cstOne); Value uSmall = builder.create(arith::CmpFPredicate::OEQ, u, cstOne); Value logU = builder.create(u); Value uInf = builder.create(arith::CmpFPredicate::OEQ, u, logU); Value logLarge = builder.create( x, builder.create( logU, builder.create(u, cstOne))); Value approximation = builder.create( builder.create(uSmall, uInf), x, logLarge); rewriter.replaceOp(op, approximation); return success(); } //----------------------------------------------------------------------------// // Exp approximation. //----------------------------------------------------------------------------// namespace { struct ExpApproximation : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(math::ExpOp op, PatternRewriter &rewriter) const final; }; } // namespace // Approximate exp(x) using its reduced range exp(y) where y is in the range // [0, ln(2)], let y = x - floor(x / ln(2)) * ln(2) = x - k * ln(2), exp(x) // = exp(y) * 2^k. exp(y). LogicalResult ExpApproximation::matchAndRewrite(math::ExpOp op, PatternRewriter &rewriter) const { auto width = vectorWidth(op.operand().getType(), isF32); if (!width.hasValue()) return rewriter.notifyMatchFailure(op, "unsupported operand type"); ImplicitLocOpBuilder builder(op->getLoc(), rewriter); // TODO: Consider a common pattern rewriter with all methods below to // write the approximations. auto bcast = [&](Value value) -> Value { return broadcast(builder, value, *width); }; auto fmla = [&](Value a, Value b, Value c) { return builder.create(a, b, c); }; auto mul = [&](Value a, Value b) -> Value { return builder.create(a, b); }; auto sub = [&](Value a, Value b) -> Value { return builder.create(a, b); }; auto floor = [&](Value a) { return builder.create(a); }; Value cstLn2 = bcast(f32Cst(builder, static_cast(LN2_VALUE))); Value cstLog2E = bcast(f32Cst(builder, static_cast(LOG2E_VALUE))); // Polynomial coefficients. Value cstCephesExpP0 = bcast(f32Cst(builder, 1.0)); Value cstCephesExpP1 = bcast(f32Cst(builder, 1.0)); Value cstCephesExpP2 = bcast(f32Cst(builder, 0.49970514590562437052f)); Value cstCephesExpP3 = bcast(f32Cst(builder, 0.16873890085469545053f)); Value cstCephesExpP4 = bcast(f32Cst(builder, 0.03668965196652099192f)); Value cstCephesExpP5 = bcast(f32Cst(builder, 0.01314350012789660196f)); Value x = op.operand(); // Reduced y = x - floor(x / ln(2)) * ln(2) = x - k * ln(2) Value xL2Inv = mul(x, cstLog2E); Value kF32 = floor(xL2Inv); Value kLn2 = mul(kF32, cstLn2); Value y = sub(x, kLn2); // Use Estrin's evaluation scheme with 3 independent parts: // P(y)^y : (c0 + c1 y) + (c2 + c3 y) y^2 + (c4 + c5 y) y^4 Value y2 = mul(y, y); Value y4 = mul(y2, y2); Value q0 = fmla(cstCephesExpP1, y, cstCephesExpP0); Value q1 = fmla(cstCephesExpP3, y, cstCephesExpP2); Value q2 = fmla(cstCephesExpP5, y, cstCephesExpP4); Value expY = fmla(q1, y2, q0); expY = fmla(q2, y4, expY); auto i32Vec = broadcast(builder.getI32Type(), *width); // exp2(k) Value k = builder.create(kF32, i32Vec); Value exp2KValue = exp2I32(builder, k); // exp(x) = exp(y) * exp2(k) expY = mul(expY, exp2KValue); // Handle overflow, inf and underflow of exp(x). exp(x) range is [0, inf], its // partitioned as the following: // exp(x) = 0, x <= -inf // exp(x) = underflow (min_float), x <= -88 // exp(x) = inf (min_float), x >= 88 // Note: |k| = 127 is the value where the 8-bits exponent saturates. Value zerof32Const = bcast(f32Cst(builder, 0)); auto constPosInfinity = bcast(f32Cst(builder, std::numeric_limits::infinity())); auto constNegIfinity = bcast(f32Cst(builder, -std::numeric_limits::infinity())); auto underflow = bcast(f32Cst(builder, std::numeric_limits::min())); Value kMaxConst = bcast(i32Cst(builder, 127)); Value kMaxNegConst = bcast(i32Cst(builder, -127)); Value rightBound = builder.create(arith::CmpIPredicate::sle, k, kMaxConst); Value leftBound = builder.create(arith::CmpIPredicate::sge, k, kMaxNegConst); Value isNegInfinityX = builder.create( arith::CmpFPredicate::OEQ, x, constNegIfinity); Value isPostiveX = builder.create(arith::CmpFPredicate::OGT, x, zerof32Const); Value isComputable = builder.create(rightBound, leftBound); expY = builder.create( isComputable, expY, builder.create( isPostiveX, constPosInfinity, builder.create(isNegInfinityX, zerof32Const, underflow))); rewriter.replaceOp(op, expY); return success(); } //----------------------------------------------------------------------------// // ExpM1 approximation. //----------------------------------------------------------------------------// namespace { struct ExpM1Approximation : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(math::ExpM1Op op, PatternRewriter &rewriter) const final; }; } // namespace LogicalResult ExpM1Approximation::matchAndRewrite(math::ExpM1Op op, PatternRewriter &rewriter) const { auto width = vectorWidth(op.operand().getType(), isF32); if (!width.hasValue()) return rewriter.notifyMatchFailure(op, "unsupported operand type"); ImplicitLocOpBuilder builder(op->getLoc(), rewriter); auto bcast = [&](Value value) -> Value { return broadcast(builder, value, *width); }; // expm1(x) = exp(x) - 1 = u - 1. // We have to handle it carefully when x is near 0, i.e. u ~= 1, // and when the input is ~= -inf, i.e. u - 1 ~= -1. Value cstOne = bcast(f32Cst(builder, 1.0f)); Value cstNegOne = bcast(f32Cst(builder, -1.0f)); Value x = op.operand(); Value u = builder.create(x); Value uEqOne = builder.create(arith::CmpFPredicate::OEQ, u, cstOne); Value uMinusOne = builder.create(u, cstOne); Value uMinusOneEqNegOne = builder.create( arith::CmpFPredicate::OEQ, uMinusOne, cstNegOne); // logU = log(u) ~= x Value logU = builder.create(u); // Detect exp(x) = +inf; written this way to avoid having to form +inf. Value isInf = builder.create(arith::CmpFPredicate::OEQ, logU, u); // (u - 1) * (x / ~x) Value expm1 = builder.create( uMinusOne, builder.create(x, logU)); expm1 = builder.create(isInf, u, expm1); Value approximation = builder.create( uEqOne, x, builder.create(uMinusOneEqNegOne, cstNegOne, expm1)); rewriter.replaceOp(op, approximation); return success(); } //----------------------------------------------------------------------------// // Sin and Cos approximation. //----------------------------------------------------------------------------// namespace { template struct SinAndCosApproximation : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(OpTy op, PatternRewriter &rewriter) const final; }; } // namespace #define TWO_OVER_PI \ 0.6366197723675813430755350534900574481378385829618257949906693762L #define PI_OVER_2 \ 1.5707963267948966192313216916397514420985846996875529104874722961L // Approximates sin(x) or cos(x) by finding the best approximation polynomial in // the reduced range [0, pi/2] for both sin(x) and cos(x). Then given y in the // reduced range sin(x) will be computed as sin(y), -sin(y), cos(y) or -cos(y). template LogicalResult SinAndCosApproximation::matchAndRewrite( OpTy op, PatternRewriter &rewriter) const { static_assert( llvm::is_one_of::value, "SinAndCosApproximation pattern expects math::SinOp or math::CosOp"); auto width = vectorWidth(op.operand().getType(), isF32); if (!width.hasValue()) return rewriter.notifyMatchFailure(op, "unsupported operand type"); ImplicitLocOpBuilder builder(op->getLoc(), rewriter); auto bcast = [&](Value value) -> Value { return broadcast(builder, value, *width); }; auto mul = [&](Value a, Value b) -> Value { return builder.create(a, b); }; auto sub = [&](Value a, Value b) -> Value { return builder.create(a, b); }; auto floor = [&](Value a) { return builder.create(a); }; auto i32Vec = broadcast(builder.getI32Type(), *width); auto fPToSingedInteger = [&](Value a) -> Value { return builder.create(a, i32Vec); }; auto modulo4 = [&](Value a) -> Value { return builder.create(a, bcast(i32Cst(builder, 3))); }; auto isEqualTo = [&](Value a, Value b) -> Value { return builder.create(arith::CmpIPredicate::eq, a, b); }; auto isGreaterThan = [&](Value a, Value b) -> Value { return builder.create(arith::CmpIPredicate::sgt, a, b); }; auto select = [&](Value cond, Value t, Value f) -> Value { return builder.create(cond, t, f); }; auto fmla = [&](Value a, Value b, Value c) { return builder.create(a, b, c); }; auto bitwiseOr = [&](Value a, Value b) { return builder.create(a, b); }; Value twoOverPi = bcast(f32Cst(builder, TWO_OVER_PI)); Value piOverTwo = bcast(f32Cst(builder, PI_OVER_2)); Value x = op.operand(); Value k = floor(mul(x, twoOverPi)); Value y = sub(x, mul(k, piOverTwo)); Value cstOne = bcast(f32Cst(builder, 1.0)); Value cstNegativeOne = bcast(f32Cst(builder, -1.0)); Value cstSC2 = bcast(f32Cst(builder, -0.16666667163372039794921875f)); Value cstSC4 = bcast(f32Cst(builder, 8.333347737789154052734375e-3f)); Value cstSC6 = bcast(f32Cst(builder, -1.9842604524455964565277099609375e-4f)); Value cstSC8 = bcast(f32Cst(builder, 2.760012648650445044040679931640625e-6f)); Value cstSC10 = bcast(f32Cst(builder, -2.50293279435709337121807038784027099609375e-8f)); Value cstCC2 = bcast(f32Cst(builder, -0.5f)); Value cstCC4 = bcast(f32Cst(builder, 4.166664183139801025390625e-2f)); Value cstCC6 = bcast(f32Cst(builder, -1.388833043165504932403564453125e-3f)); Value cstCC8 = bcast(f32Cst(builder, 2.47562347794882953166961669921875e-5f)); Value cstCC10 = bcast(f32Cst(builder, -2.59630184018533327616751194000244140625e-7f)); Value kMod4 = modulo4(fPToSingedInteger(k)); Value kR0 = isEqualTo(kMod4, bcast(i32Cst(builder, 0))); Value kR1 = isEqualTo(kMod4, bcast(i32Cst(builder, 1))); Value kR2 = isEqualTo(kMod4, bcast(i32Cst(builder, 2))); Value kR3 = isEqualTo(kMod4, bcast(i32Cst(builder, 3))); Value sinuseCos = isSine ? bitwiseOr(kR1, kR3) : bitwiseOr(kR0, kR2); Value negativeRange = isSine ? isGreaterThan(kMod4, bcast(i32Cst(builder, 1))) : bitwiseOr(kR1, kR2); Value y2 = mul(y, y); Value base = select(sinuseCos, cstOne, y); Value cstC2 = select(sinuseCos, cstCC2, cstSC2); Value cstC4 = select(sinuseCos, cstCC4, cstSC4); Value cstC6 = select(sinuseCos, cstCC6, cstSC6); Value cstC8 = select(sinuseCos, cstCC8, cstSC8); Value cstC10 = select(sinuseCos, cstCC10, cstSC10); Value v1 = fmla(y2, cstC10, cstC8); Value v2 = fmla(y2, v1, cstC6); Value v3 = fmla(y2, v2, cstC4); Value v4 = fmla(y2, v3, cstC2); Value v5 = fmla(y2, v4, cstOne); Value v6 = mul(base, v5); Value approximation = select(negativeRange, mul(cstNegativeOne, v6), v6); rewriter.replaceOp(op, approximation); return success(); } //----------------------------------------------------------------------------// void mlir::populateMathPolynomialApproximationPatterns( RewritePatternSet &patterns) { patterns.add, SinAndCosApproximation>( patterns.getContext()); }