1 //===- Vectorization.cpp - Implementation of linalg Vectorization ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the linalg dialect Vectorization transformations.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "mlir/Analysis/SliceAnalysis.h"
14 #include "mlir/Dialect/Affine/Analysis/LoopAnalysis.h"
15 #include "mlir/Dialect/Affine/IR/AffineOps.h"
16 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
17 #include "mlir/Dialect/Func/IR/FuncOps.h"
18 #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h"
19 #include "mlir/Dialect/Linalg/IR/Linalg.h"
20 #include "mlir/Dialect/Linalg/Transforms/Transforms.h"
21 #include "mlir/Dialect/Linalg/Utils/Utils.h"
22 #include "mlir/Dialect/Tensor/IR/Tensor.h"
23 #include "mlir/Dialect/Utils/StructuredOpsUtils.h"
24 #include "mlir/Dialect/Vector/IR/VectorOps.h"
25 #include "mlir/Dialect/Vector/Transforms/VectorTransforms.h"
26 #include "mlir/IR/AffineExpr.h"
27 #include "mlir/IR/Matchers.h"
28 #include "mlir/IR/PatternMatch.h"
29 #include "mlir/Pass/Pass.h"
30 #include "mlir/Support/LLVM.h"
31 #include "mlir/Transforms/RegionUtils.h"
32 #include "llvm/ADT/ScopeExit.h"
33 #include "llvm/ADT/Sequence.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/TypeSwitch.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <type_traits>
39 
40 using namespace mlir;
41 using namespace mlir::linalg;
42 
43 #define DEBUG_TYPE "linalg-vectorization"
44 
45 #define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ")
46 #define LDBG(X) LLVM_DEBUG(DBGS() << X)
47 
48 /// Try to vectorize `convOp` as a convolution.
49 static FailureOr<Operation *> vectorizeConvolution(OpBuilder &b,
50                                                    LinalgOp convOp);
51 
52 /// Return the unique instance of OpType in `block` if it is indeed unique.
53 /// Return null if none or more than 1 instances exist.
54 template <typename OpType>
55 static OpType getSingleOpOfType(Block &block) {
56   OpType res;
57   block.walk([&](OpType op) {
58     if (res) {
59       res = nullptr;
60       return WalkResult::interrupt();
61     }
62     res = op;
63     return WalkResult::advance();
64   });
65   return res;
66 }
67 
68 /// Given an indexing `map` coming from a LinalgOp indexing, restricted to a
69 /// projectedPermutation, compress the unused dimensions to serve as a
70 /// permutation_map for a vector transfer operation.
71 /// For example, given a linalg op such as:
72 ///
73 /// ```
74 ///   %0 = linalg.generic {
75 ///        indexing_maps = affine_map<(d0, d1, d2, d3, d4) -> (d4, d0, d2)>,
76 ///        indexing_maps = affine_map<(d0, d1, d2, d3, d4) -> (d1, d3)>
77 ///      }
78 ///     ins(%0 : tensor<2x3x4xf32>)
79 ///    outs(%1 : tensor<5x6xf32>)
80 /// ```
81 ///
82 /// the iteration domain size of the linalg op is 3x5x4x6x2. The first affine
83 /// map is reindexed to `affine_map<(d0, d1, d2) -> (d2, d0, d1)>`, the second
84 /// affine map is reindexed to `affine_map<(d0, d1) -> (d0, d1)>`.
85 static AffineMap reindexIndexingMap(AffineMap map) {
86   assert(map.isProjectedPermutation(/*allowZeroInResults=*/true) &&
87          "expected projected permutation");
88   auto res = compressUnusedDims(map);
89   assert(res.getNumDims() == res.getNumResults() &&
90          "expected reindexed map with same number of dims and results");
91   return res;
92 }
93 
94 /// Helper data structure to represent the result of vectorization.
95 /// In certain specific cases, like terminators, we do not want to propagate/
96 enum VectorizationStatus {
97   /// Op failed to vectorize.
98   Failure = 0,
99   /// Op vectorized and custom function took care of replacement logic
100   NoReplace,
101   /// Op vectorized into a new Op whose results will replace original Op's
102   /// results.
103   NewOp
104   // TODO: support values if Op vectorized to Many-Ops whose results we need to
105   // aggregate for replacement.
106 };
107 struct VectorizationResult {
108   /// Return status from vectorizing the current op.
109   enum VectorizationStatus status = VectorizationStatus::Failure;
110   /// New vectorized operation to replace the current op.
111   /// Replacement behavior is specified by `status`.
112   Operation *newOp;
113 };
114 
115 llvm::Optional<vector::CombiningKind>
116 mlir::linalg::getCombinerOpKind(Operation *combinerOp) {
117   using ::mlir::vector::CombiningKind;
118 
119   if (!combinerOp)
120     return llvm::None;
121   return llvm::TypeSwitch<Operation *, llvm::Optional<CombiningKind>>(
122              combinerOp)
123       .Case<arith::AddIOp, arith::AddFOp>(
124           [&](auto op) { return CombiningKind::ADD; })
125       .Case<arith::AndIOp>([&](auto op) { return CombiningKind::AND; })
126       .Case<arith::MaxSIOp>([&](auto op) { return CombiningKind::MAXSI; })
127       .Case<arith::MaxFOp>([&](auto op) { return CombiningKind::MAXF; })
128       .Case<arith::MinSIOp>([&](auto op) { return CombiningKind::MINSI; })
129       .Case<arith::MinFOp>([&](auto op) { return CombiningKind::MINF; })
130       .Case<arith::MulIOp, arith::MulFOp>(
131           [&](auto op) { return CombiningKind::MUL; })
132       .Case<arith::OrIOp>([&](auto op) { return CombiningKind::OR; })
133       .Case<arith::XOrIOp>([&](auto op) { return CombiningKind::XOR; })
134       .Default([&](auto op) { return llvm::None; });
135 }
136 
137 /// Check whether `outputOperand` is a reduction with a single combiner
138 /// operation. Return the combiner operation of the reduction. Return
139 /// nullptr otherwise. Multiple reduction operations would impose an
140 /// ordering between reduction dimensions and is currently unsupported in
141 /// Linalg. This limitation is motivated by the fact that e.g. min(max(X)) !=
142 /// max(min(X))
143 // TODO: use in LinalgOp verification, there is a circular dependency atm.
144 static Operation *matchLinalgReduction(OpOperand *outputOperand) {
145   auto linalgOp = cast<LinalgOp>(outputOperand->getOwner());
146   unsigned outputPos =
147       outputOperand->getOperandNumber() - linalgOp.getNumInputs();
148   // Only single combiner operations are supported for now.
149   SmallVector<Operation *, 4> combinerOps;
150   if (!matchReduction(linalgOp.getRegionOutputArgs(), outputPos, combinerOps) ||
151       combinerOps.size() != 1)
152     return nullptr;
153 
154   // Return the combiner operation.
155   return combinerOps[0];
156 }
157 
158 /// Broadcast `value` to a vector of `shape` if possible. Return value
159 /// otherwise.
160 static Value broadcastIfNeeded(OpBuilder &b, Value value,
161                                ArrayRef<int64_t> shape) {
162   // If no shape to broadcast to, just return `value`.
163   if (shape.empty())
164     return value;
165   VectorType targetVectorType =
166       VectorType::get(shape, getElementTypeOrSelf(value));
167   if (vector::isBroadcastableTo(value.getType(), targetVectorType) !=
168       vector::BroadcastableToResult::Success)
169     return value;
170   Location loc = b.getInsertionPoint()->getLoc();
171   return b.createOrFold<vector::BroadcastOp>(loc, targetVectorType, value);
172 }
173 
174 /// Create MultiDimReductionOp to compute the reduction for `reductionOp`. This
175 /// assumes that `reductionOp` has two operands and one of them is the reduction
176 /// initial value.
177 static Value buildMultiDimReduce(OpBuilder &b, Operation *reduceOp,
178                                  Value valueToReduce,
179                                  const SmallVector<bool> &reductionMask) {
180   auto maybeKind = getCombinerOpKind(reduceOp);
181   assert(maybeKind && "Failed precondition: could not get reduction kind");
182   return b.create<vector::MultiDimReductionOp>(
183       reduceOp->getLoc(), valueToReduce, reductionMask, *maybeKind);
184 }
185 
186 static SmallVector<bool> getReductionMask(LinalgOp linalgOp) {
187   unsigned idx = 0;
188   SmallVector<bool> reductionMask(linalgOp.iterator_types().size(), false);
189   for (auto attr : linalgOp.iterator_types()) {
190     if (isReductionIterator(attr))
191       reductionMask[idx] = true;
192     ++idx;
193   }
194   return reductionMask;
195 }
196 
197 /// Build a vector.transfer_write of `value` into `outputOperand` at indices set
198 /// to all `0`; where `outputOperand` is an output operand of the LinalgOp
199 /// currently being vectorized. If `dest` has null rank, build an memref.store.
200 /// Return the produced value or null if no value is produced.
201 static Value buildVectorWrite(OpBuilder &b, Value value,
202                               OpOperand *outputOperand) {
203   Operation *write;
204   Location loc = value.getLoc();
205   auto linalgOp = cast<LinalgOp>(outputOperand->getOwner());
206   ArrayRef<int64_t> shape = linalgOp.getShape(outputOperand);
207   auto vectorType = VectorType::get(
208       shape, getElementTypeOrSelf(outputOperand->get().getType()));
209   if (vectorType.getRank() > 0) {
210     // 0-d case is still special: do not invert the reindexing map.
211     AffineMap map =
212         reindexIndexingMap(linalgOp.getTiedIndexingMap(outputOperand));
213     SmallVector<int64_t> transposeShape =
214         applyPermutationMap(inversePermutation(map), vectorType.getShape());
215     assert(!transposeShape.empty() && "unexpected empty transpose shape");
216     vectorType = VectorType::get(transposeShape, vectorType.getElementType());
217     SmallVector<Value> indices(linalgOp.getRank(outputOperand),
218                                b.create<arith::ConstantIndexOp>(loc, 0));
219     value = broadcastIfNeeded(b, value, vectorType.getShape());
220     write = b.create<vector::TransferWriteOp>(loc, value, outputOperand->get(),
221                                               indices, map);
222   } else {
223     if (!value.getType().isa<VectorType>())
224       value = b.create<vector::BroadcastOp>(loc, vectorType, value);
225     assert(value.getType() == vectorType && "incorrect type");
226     write = b.create<vector::TransferWriteOp>(loc, value, outputOperand->get(),
227                                               ValueRange{});
228   }
229   LDBG("vectorized op: " << *write);
230   if (!write->getResults().empty())
231     return write->getResult(0);
232   return Value();
233 }
234 
235 // Custom vectorization function type. Produce a vector form of Operation*
236 // assuming all its vectorized operands are already in the BlockAndValueMapping.
237 // Return nullptr if the Operation cannot be vectorized.
238 using CustomVectorizationHook = std::function<VectorizationResult(
239     Operation *, const BlockAndValueMapping &)>;
240 
241 /// Helper function to vectorize the terminator of a `linalgOp`. New result
242 /// vector values are appended to `newResults`. Return
243 /// VectorizationStatus::NoReplace to signal the vectorization algorithm that it
244 /// should not try to map produced operations and instead return the results
245 /// using the `newResults` vector making them available to the
246 /// vectorization algorithm for RAUW. This function is meant to be used as a
247 /// CustomVectorizationHook.
248 static VectorizationResult
249 vectorizeLinalgYield(OpBuilder &b, Operation *op,
250                      const BlockAndValueMapping &bvm, LinalgOp linalgOp,
251                      SmallVectorImpl<Value> &newResults) {
252   auto yieldOp = dyn_cast<linalg::YieldOp>(op);
253   if (!yieldOp)
254     return VectorizationResult{VectorizationStatus::Failure, nullptr};
255   for (const auto &outputs : llvm::enumerate(yieldOp.values())) {
256     // TODO: Scan for an opportunity for reuse.
257     // TODO: use a map.
258     Value vectorValue = bvm.lookup(outputs.value());
259     Value newResult = buildVectorWrite(
260         b, vectorValue, linalgOp.getOutputOperand(outputs.index()));
261     if (newResult)
262       newResults.push_back(newResult);
263   }
264   return VectorizationResult{VectorizationStatus::NoReplace, nullptr};
265 }
266 
267 /// Helper function to vectorize the index operations of a `linalgOp`. Return
268 /// VectorizationStatus::NewOp to signal the vectorization algorithm that it
269 /// should map the produced operations. This function is meant to be used as a
270 /// CustomVectorizationHook.
271 static VectorizationResult vectorizeLinalgIndex(OpBuilder &b, Operation *op,
272                                                 LinalgOp linalgOp) {
273   IndexOp indexOp = dyn_cast<linalg::IndexOp>(op);
274   if (!indexOp)
275     return VectorizationResult{VectorizationStatus::Failure, nullptr};
276   auto loc = indexOp.getLoc();
277   // Compute the static loop sizes of the index op.
278   auto targetShape = linalgOp.computeStaticLoopSizes();
279   // Compute a one-dimensional index vector for the index op dimension.
280   SmallVector<int64_t> constantSeq =
281       llvm::to_vector<16>(llvm::seq<int64_t>(0, targetShape[indexOp.dim()]));
282   auto constantOp =
283       b.create<arith::ConstantOp>(loc, b.getIndexVectorAttr(constantSeq));
284   // Return the one-dimensional index vector if it lives in the trailing
285   // dimension of the iteration space since the vectorization algorithm in this
286   // case can handle the broadcast.
287   if (indexOp.dim() == targetShape.size() - 1)
288     return VectorizationResult{VectorizationStatus::NewOp, constantOp};
289   // Otherwise permute the targetShape to move the index dimension last,
290   // broadcast the one-dimensional index vector to the permuted shape, and
291   // finally transpose the broadcasted index vector to undo the permutation.
292   std::swap(targetShape[indexOp.dim()], targetShape.back());
293   auto broadCastOp = b.create<vector::BroadcastOp>(
294       loc, VectorType::get(targetShape, b.getIndexType()), constantOp);
295   SmallVector<int64_t> transposition =
296       llvm::to_vector<16>(llvm::seq<int64_t>(0, linalgOp.getNumLoops()));
297   std::swap(transposition.back(), transposition[indexOp.dim()]);
298   auto transposeOp =
299       b.create<vector::TransposeOp>(loc, broadCastOp, transposition);
300   return VectorizationResult{VectorizationStatus::NewOp, transposeOp};
301 }
302 
303 /// Emit reduction operations if the shapes of the value to reduce is different
304 /// that the result shape.
305 static Operation *reduceIfNeeded(OpBuilder &b, LinalgOp linalgOp, Operation *op,
306                                  Value reduceValue, Value initialValue,
307                                  const BlockAndValueMapping &bvm) {
308   Value reduceVec = bvm.lookup(reduceValue);
309   Value outputVec = bvm.lookup(initialValue);
310   auto reduceType = reduceVec.getType().dyn_cast<VectorType>();
311   auto outputType = outputVec.getType().dyn_cast<VectorType>();
312   // Reduce only if needed as the value may already have been reduce for
313   // contraction vectorization.
314   if (!reduceType ||
315       (outputType && reduceType.getShape() == outputType.getShape()))
316     return nullptr;
317   SmallVector<bool> reductionMask = getReductionMask(linalgOp);
318   Value reduce = buildMultiDimReduce(b, op, reduceVec, reductionMask);
319   return b.create(op->getLoc(), op->getName().getIdentifier(),
320                   /*operands=*/{reduce, outputVec}, reduce.getType(),
321                   op->getAttrs());
322 }
323 
324 /// Generic vectorization for a single operation `op`, given already vectorized
325 /// operands carried by `bvm`. Vectorization occurs as follows:
326 ///   1. Try to apply any of the `customVectorizationHooks` and return its
327 ///   result on success.
328 ///   2. Clone any constant in the current scope without vectorization: each
329 ///   consumer of the constant will later determine the shape to which the
330 ///   constant needs to be broadcast to.
331 ///   3. Fail on any remaining non `ElementwiseMappable` op. It is the purpose
332 ///   of the `customVectorizationHooks` to cover such cases.
333 ///   4. Clone `op` in vector form to a vector of shape prescribed by the first
334 ///   operand of maximal rank. Other operands have smaller rank and are
335 ///   broadcast accordingly. It is assumed this broadcast is always legal,
336 ///   otherwise, it means one of the `customVectorizationHooks` is incorrect.
337 ///
338 /// This function assumes all operands of `op` have been vectorized and are in
339 /// the `bvm` mapping. As a consequence, this function is meant to be called on
340 /// a topologically-sorted list of ops.
341 /// This function does not update `bvm` but returns a VectorizationStatus that
342 /// instructs the caller what `bvm` update needs to occur.
343 static VectorizationResult
344 vectorizeOneOp(OpBuilder &b, LinalgOp linalgOp, Operation *op,
345                const BlockAndValueMapping &bvm,
346                ArrayRef<CustomVectorizationHook> customVectorizationHooks) {
347   LDBG("vectorize op " << *op);
348 
349   // 1. Try to apply any CustomVectorizationHook.
350   if (!customVectorizationHooks.empty()) {
351     for (auto &customFunc : customVectorizationHooks) {
352       VectorizationResult result = customFunc(op, bvm);
353       if (result.status == VectorizationStatus::Failure)
354         continue;
355       return result;
356     }
357   }
358 
359   // 2. Constant ops don't get vectorized but rather broadcasted at their users.
360   // Clone so that the constant is not confined to the linalgOp block .
361   if (isa<arith::ConstantOp, func::ConstantOp>(op))
362     return VectorizationResult{VectorizationStatus::NewOp, b.clone(*op)};
363 
364   // 3. Only ElementwiseMappable are allowed in the generic vectorization.
365   if (!OpTrait::hasElementwiseMappableTraits(op))
366     return VectorizationResult{VectorizationStatus::Failure, nullptr};
367 
368   // 4 . Check if the operation is a reduction.
369   SmallVector<std::pair<Value, Value>> reductionOperands;
370   for (Value operand : op->getOperands()) {
371     auto arg = operand.dyn_cast<BlockArgument>();
372     if (!arg || arg.getArgNumber() < linalgOp.getNumInputs())
373       continue;
374     SmallVector<Operation *> reductionOps;
375     Value reduceValue = matchReduction(
376         linalgOp.getRegionOutputArgs(),
377         arg.getArgNumber() - linalgOp.getNumInputs(), reductionOps);
378     if (!reduceValue)
379       continue;
380     reductionOperands.push_back(std::make_pair(reduceValue, operand));
381   }
382   if (!reductionOperands.empty()) {
383     assert(reductionOperands.size() == 1);
384     Operation *reduceOp =
385         reduceIfNeeded(b, linalgOp, op, reductionOperands[0].first,
386                        reductionOperands[0].second, bvm);
387     if (reduceOp)
388       return VectorizationResult{VectorizationStatus::NewOp, reduceOp};
389   }
390 
391   // 5. Generic vectorization path for ElementwiseMappable ops.
392   //   a. first get the first max ranked shape.
393   SmallVector<int64_t, 4> firstMaxRankedShape;
394   for (Value operand : op->getOperands()) {
395     auto vt = bvm.lookup(operand).getType().dyn_cast<VectorType>();
396     if (vt && firstMaxRankedShape.size() < vt.getShape().size())
397       firstMaxRankedShape.assign(vt.getShape().begin(), vt.getShape().end());
398   }
399   //   b. broadcast each op if needed.
400   auto vectorizedOperands = llvm::map_range(op->getOperands(), [&](Value v) {
401     return firstMaxRankedShape.empty()
402                ? bvm.lookup(v)
403                : broadcastIfNeeded(b, bvm.lookup(v), firstMaxRankedShape);
404   });
405   //   c. for elementwise, the result is the vector with the firstMaxRankedShape
406   auto returnTypes = llvm::map_range(op->getResultTypes(), [&](Type t) {
407     return firstMaxRankedShape.empty()
408                ? t
409                : VectorType::get(firstMaxRankedShape, t);
410   });
411 
412   // Build and return the new op.
413   return VectorizationResult{
414       VectorizationStatus::NewOp,
415       b.create(op->getLoc(), op->getName().getIdentifier(),
416                llvm::to_vector<4>(vectorizedOperands),
417                llvm::to_vector<4>(returnTypes), op->getAttrs())};
418 }
419 
420 /// Detect whether `r` has only ConstantOp, ElementwiseMappable and YieldOp.
421 static bool hasOnlyScalarElementwiseOp(Region &r) {
422   if (!llvm::hasSingleElement(r))
423     return false;
424   for (Operation &op : r.front()) {
425     if (!(isa<arith::ConstantOp, func::ConstantOp, linalg::YieldOp,
426               linalg::IndexOp>(op) ||
427           OpTrait::hasElementwiseMappableTraits(&op)) ||
428         llvm::any_of(op.getResultTypes(),
429                      [](Type type) { return !type.isIntOrIndexOrFloat(); }))
430       return false;
431   }
432   return true;
433 }
434 
435 /// Returns `true` if all indexing maps of the linalg op are projected
436 /// permutations.
437 static bool allIndexingsAreProjectedPermutation(LinalgOp op) {
438   return llvm::all_of(op.getIndexingMaps(), [](AffineMap m) {
439     return m.isProjectedPermutation(/*allowZeroInResults=*/true);
440   });
441 }
442 
443 // Return true if the op is an element-wise linalg op.
444 static bool isElementwise(Operation *op) {
445   auto linalgOp = dyn_cast<linalg::LinalgOp>(op);
446   if (!linalgOp)
447     return false;
448   if (linalgOp.getNumLoops() != linalgOp.getNumParallelLoops())
449     return false;
450 
451   if (!allIndexingsAreProjectedPermutation(linalgOp))
452     return false;
453 
454   // TODO: relax the restrictions on indexing map.
455   for (OpOperand *opOperand : linalgOp.getOutputOperands()) {
456     if (!linalgOp.getTiedIndexingMap(opOperand).isPermutation())
457       return false;
458   }
459   return hasOnlyScalarElementwiseOp(linalgOp->getRegion(0));
460 }
461 
462 /// Generic vectorization function that rewrites the body of a `linalgOp` into
463 /// vector form. Generic vectorization proceeds as follows:
464 ///   1. Verify the `linalgOp` has one non-empty region.
465 ///   2. Values defined above the region are mapped to themselves and will be
466 ///   broadcasted on a per-need basis by their consumers.
467 ///   3. Each region argument is vectorized into a vector.transfer_read (or 0-d
468 ///   load).
469 ///   TODO: Reuse opportunities for RAR dependencies.
470 ///   4a. Register CustomVectorizationHook for YieldOp to capture the results.
471 ///   4b. Register CustomVectorizationHook for IndexOp to access the iteration
472 ///   indices.
473 ///   5. Iteratively call vectorizeOneOp on the region operations.
474 ///
475 /// When `broadcastToMaximalCommonShape` is set to true, eager broadcasting is
476 /// performed to the maximal common vector size implied by the `linalgOp`
477 /// iteration space. This eager broadcasting is introduced in the
478 /// permutation_map of the vector.transfer_read operations. The eager
479 /// broadcasting makes it trivial to detrmine where broadcast, transposes and
480 /// reductions should occur, without any bookkeeping. The tradeoff is that, in
481 /// the absence of good canonicalizations, the amount of work increases.
482 /// This is not deemed a problem as we expect canonicalizations and foldings to
483 /// aggressively clean up the useless work.
484 static LogicalResult
485 vectorizeAsLinalgGeneric(OpBuilder &b, LinalgOp linalgOp,
486                          SmallVectorImpl<Value> &newResults) {
487   Block *block = linalgOp.getBlock();
488 
489   // 2. Values defined above the region can only be broadcast for now. Make them
490   // map to themselves.
491   BlockAndValueMapping bvm;
492   SetVector<Value> valuesSet;
493   mlir::getUsedValuesDefinedAbove(linalgOp->getRegion(0), valuesSet);
494   bvm.map(valuesSet.getArrayRef(), valuesSet.getArrayRef());
495 
496   if (linalgOp.getNumOutputs() == 0)
497     return failure();
498 
499   // TODO: the common vector shape is equal to the static loop sizes only when
500   // all indexing maps are projected permutations. For convs and stencils the
501   // logic will need to evolve.
502   SmallVector<int64_t> commonVectorShape = linalgOp.computeStaticLoopSizes();
503 
504   // 3. Turn all BBArgs into vector.transfer_read / load.
505   Location loc = linalgOp.getLoc();
506   Value zero = b.create<arith::ConstantIndexOp>(loc, 0);
507   for (OpOperand *opOperand : linalgOp.getInputAndOutputOperands()) {
508     BlockArgument bbarg = block->getArgument(opOperand->getOperandNumber());
509     if (linalgOp.isScalar(opOperand)) {
510       bvm.map(bbarg, opOperand->get());
511       continue;
512     }
513     VectorType readType;
514     AffineMap map;
515     // TODO: can we keep this simplification?
516     // if (linalgOp.getShape(opOperand).empty()) {
517     //   readType = VectorType::get({}, bbarg.getType());
518     // } else {
519     if (opOperand->getOperandNumber() < linalgOp.getNumInputs()) {
520       map = inverseAndBroadcastProjectedPermutation(
521           linalgOp.getTiedIndexingMap(opOperand));
522       readType = VectorType::get(commonVectorShape,
523                                  getElementTypeOrSelf(opOperand->get()));
524     } else {
525       map = inversePermutation(
526           reindexIndexingMap(linalgOp.getTiedIndexingMap(opOperand)));
527       readType = VectorType::get(map.compose(linalgOp.getShape(opOperand)),
528                                  getElementTypeOrSelf(opOperand->get()));
529     }
530     // }
531 
532     auto shape = linalgOp.getShape(opOperand);
533     SmallVector<Value> indices(shape.size(), zero);
534     Value readValue = b.create<vector::TransferReadOp>(
535         loc, readType, opOperand->get(), indices, map);
536     // Not all ops support 0-d vectors, extract the scalar for now.
537     // TODO: remove this.
538     if (readValue.getType().cast<VectorType>().getRank() == 0)
539       readValue = b.create<vector::ExtractElementOp>(loc, readValue);
540 
541     LDBG("new vectorized bbarg(" << bbarg.getArgNumber() << "): " << readValue);
542     bvm.map(bbarg, readValue);
543     bvm.map(opOperand->get(), readValue);
544   }
545 
546   SmallVector<CustomVectorizationHook> hooks;
547   // 4a. Register CustomVectorizationHook for yieldOp.
548   CustomVectorizationHook vectorizeYield =
549       [&](Operation *op,
550           const BlockAndValueMapping &bvm) -> VectorizationResult {
551     return vectorizeLinalgYield(b, op, bvm, linalgOp, newResults);
552   };
553   hooks.push_back(vectorizeYield);
554 
555   // 4b. Register CustomVectorizationHook for indexOp.
556   CustomVectorizationHook vectorizeIndex =
557       [&](Operation *op,
558           const BlockAndValueMapping &bvm) -> VectorizationResult {
559     return vectorizeLinalgIndex(b, op, linalgOp);
560   };
561   hooks.push_back(vectorizeIndex);
562 
563   // 5. Iteratively call `vectorizeOneOp` to each op in the slice.
564   for (Operation &op : block->getOperations()) {
565     VectorizationResult result = vectorizeOneOp(b, linalgOp, &op, bvm, hooks);
566     if (result.status == VectorizationStatus::Failure) {
567       LDBG("failed to vectorize: " << op);
568       return failure();
569     }
570     if (result.status == VectorizationStatus::NewOp) {
571       LDBG("new vector op: " << *result.newOp;);
572       bvm.map(op.getResults(), result.newOp->getResults());
573     }
574   }
575 
576   return success();
577 }
578 
579 // TODO: probably need some extra checks for reduction followed by consumer
580 // ops that may not commute (e.g. linear reduction + non-linear instructions).
581 static LogicalResult reductionPreconditions(LinalgOp op) {
582   if (llvm::none_of(op.iterator_types(), isReductionIterator)) {
583     LDBG("reduction precondition failed: no reduction iterator");
584     return failure();
585   }
586   for (OpOperand *opOperand : op.getOutputOperands()) {
587     Operation *reduceOp = matchLinalgReduction(opOperand);
588     if (!reduceOp || !getCombinerOpKind(reduceOp)) {
589       LDBG("reduction precondition failed: reduction detection failed");
590       return failure();
591     }
592   }
593   return success();
594 }
595 
596 static LogicalResult vectorizeStaticLinalgOpPrecondition(linalg::LinalgOp op) {
597   if (isElementwise(op))
598     return success();
599   // TODO: isaConvolutionOpInterface that can also infer from generic features.
600   // But we will still need stride/dilation attributes that will be annoying to
601   // reverse-engineer...
602   if (isa<ConvolutionOpInterface>(op.getOperation()))
603     return success();
604   // TODO: the common vector shape is equal to the static loop sizes only when
605   // all indexing maps are projected permutations. For convs and stencils the
606   // logic will need to evolve.
607   if (!allIndexingsAreProjectedPermutation(op)) {
608     LDBG("precondition failed: not projected permutations");
609     return failure();
610   }
611   if (failed(reductionPreconditions(op))) {
612     LDBG("precondition failed: reduction preconditions");
613     return failure();
614   }
615   return success();
616 }
617 
618 static LogicalResult vectorizeLinalgOpPrecondition(LinalgOp linalgOp) {
619   // All types must be static shape to go to vector.
620   if (linalgOp.hasDynamicShape()) {
621     LDBG("precondition failed: dynamic shape");
622     return failure();
623   }
624   return vectorizeStaticLinalgOpPrecondition(linalgOp);
625 }
626 
627 LogicalResult mlir::linalg::vectorize(RewriterBase &rewriter,
628                                       LinalgOp linalgOp) {
629   if (failed(vectorizeLinalgOpPrecondition(linalgOp)))
630     return failure();
631 
632   SmallVector<Value> results;
633   // TODO: isaConvolutionOpInterface that can also infer from generic
634   // features. Will require stride/dilation attributes inference.
635   FailureOr<Operation *> convOr = vectorizeConvolution(rewriter, linalgOp);
636   if (succeeded(convOr)) {
637     llvm::append_range(results, (*convOr)->getResults());
638   } else {
639     if (failed(vectorizeLinalgOpPrecondition(linalgOp)))
640       return failure();
641     LDBG("Vectorize generic by broadcasting to a common shape: " << linalgOp);
642     if (failed(vectorizeAsLinalgGeneric(rewriter, linalgOp, results)))
643       return failure();
644   }
645 
646   if (!results.empty())
647     rewriter.replaceOp(linalgOp, results);
648   else
649     rewriter.eraseOp(linalgOp);
650 
651   return success();
652 }
653 
654 LogicalResult mlir::linalg::vectorizeCopy(RewriterBase &rewriter,
655                                           memref::CopyOp copyOp) {
656 
657   auto srcType = copyOp.source().getType().cast<MemRefType>();
658   auto dstType = copyOp.target().getType().cast<MemRefType>();
659   if (!srcType.hasStaticShape() || !dstType.hasStaticShape())
660     return failure();
661 
662   auto readType =
663       VectorType::get(srcType.getShape(), getElementTypeOrSelf(srcType));
664   auto writeType =
665       VectorType::get(dstType.getShape(), getElementTypeOrSelf(dstType));
666 
667   Location loc = copyOp->getLoc();
668   Value zero = rewriter.create<arith::ConstantIndexOp>(loc, 0);
669   SmallVector<Value> indices(srcType.getRank(), zero);
670 
671   Value readValue = rewriter.create<vector::TransferReadOp>(
672       loc, readType, copyOp.source(), indices,
673       rewriter.getMultiDimIdentityMap(srcType.getRank()));
674   if (readValue.getType().cast<VectorType>().getRank() == 0) {
675     readValue = rewriter.create<vector::ExtractElementOp>(loc, readValue);
676     readValue = rewriter.create<vector::BroadcastOp>(loc, writeType, readValue);
677   }
678   Operation *writeValue = rewriter.create<vector::TransferWriteOp>(
679       loc, readValue, copyOp.target(), indices,
680       rewriter.getMultiDimIdentityMap(srcType.getRank()));
681   rewriter.replaceOp(copyOp, writeValue->getResults());
682   return success();
683 }
684 
685 //----------------------------------------------------------------------------//
686 // Misc. vectorization patterns.
687 //----------------------------------------------------------------------------//
688 
689 /// Helper function that retrieves the value of an IntegerAttr.
690 static int64_t getIntFromAttr(Attribute attr) {
691   return attr.cast<IntegerAttr>().getInt();
692 }
693 
694 /// Given an ArrayRef of OpFoldResults, return a vector of Values.
695 /// IntegerAttrs are converted to ConstantIndexOps. Other attribute types are
696 /// not supported.
697 static SmallVector<Value> ofrToIndexValues(OpBuilder &builder, Location loc,
698                                            ArrayRef<OpFoldResult> ofrs) {
699   SmallVector<Value> result;
700   llvm::for_each(ofrs, [&](auto o) {
701     if (auto val = o.template dyn_cast<Value>()) {
702       result.push_back(val);
703     } else {
704       result.push_back(builder.create<arith::ConstantIndexOp>(
705           loc, getIntFromAttr(o.template get<Attribute>())));
706     }
707   });
708   return result;
709 }
710 
711 /// Rewrite a tensor::PadOp into a sequence of InitTensorOp, FillOp and
712 /// InsertSliceOp. For now, only constant padding values are supported.
713 /// If there is enough static type information, TransferReadOps and
714 /// TransferWriteOps may be generated instead of InsertSliceOps.
715 struct GenericPadOpVectorizationPattern : public GeneralizePadOpPattern {
716   GenericPadOpVectorizationPattern(MLIRContext *context,
717                                    PatternBenefit benefit = 1)
718       : GeneralizePadOpPattern(context, tryVectorizeCopy, benefit) {}
719   /// Vectorize the copying of a tensor::PadOp's source. This is possible if
720   /// each dimension size is statically know in the source type or the result
721   /// type (or both).
722   static LogicalResult tryVectorizeCopy(PatternRewriter &rewriter,
723                                         tensor::PadOp padOp, Value dest) {
724     auto sourceType = padOp.getSourceType();
725     auto resultType = padOp.getResultType();
726 
727     // Copy cannot be vectorized if pad value is non-constant and source shape
728     // is dynamic. In case of a dynamic source shape, padding must be appended
729     // by TransferReadOp, but TransferReadOp supports only constant padding.
730     auto padValue = padOp.getConstantPaddingValue();
731     if (!padValue) {
732       if (!sourceType.hasStaticShape())
733         return failure();
734       // Create dummy padding value.
735       auto elemType = sourceType.getElementType();
736       padValue = rewriter.create<arith::ConstantOp>(
737           padOp.getLoc(), elemType, rewriter.getZeroAttr(elemType));
738     }
739 
740     SmallVector<int64_t> vecShape;
741     SmallVector<bool> readInBounds;
742     SmallVector<bool> writeInBounds;
743     for (unsigned i = 0; i < sourceType.getRank(); ++i) {
744       if (!sourceType.isDynamicDim(i)) {
745         vecShape.push_back(sourceType.getDimSize(i));
746         // Source shape is statically known: Neither read nor write are
747         // out-of- bounds.
748         readInBounds.push_back(true);
749         writeInBounds.push_back(true);
750       } else if (!resultType.isDynamicDim(i)) {
751         // Source shape is not statically known, but result shape is.
752         // Vectorize with size of result shape. This may be larger than the
753         // source size.
754         vecShape.push_back(resultType.getDimSize(i));
755         // Read may be out-of-bounds because the result size could be larger
756         // than the source size.
757         readInBounds.push_back(false);
758         // Write is out-of-bounds if low padding > 0.
759         writeInBounds.push_back(
760             getConstantIntValue(padOp.getMixedLowPad()[i]) ==
761             static_cast<int64_t>(0));
762       } else {
763         // Neither source nor result dim of padOp is static. Cannot vectorize
764         // the copy.
765         return failure();
766       }
767     }
768     auto vecType = VectorType::get(vecShape, sourceType.getElementType());
769 
770     // Generate TransferReadOp.
771     SmallVector<Value> readIndices(
772         vecType.getRank(),
773         rewriter.create<arith::ConstantIndexOp>(padOp.getLoc(), 0));
774     auto read = rewriter.create<vector::TransferReadOp>(
775         padOp.getLoc(), vecType, padOp.source(), readIndices, padValue,
776         ArrayRef<bool>{readInBounds});
777 
778     // If `dest` is a FillOp and the TransferWriteOp would overwrite the
779     // entire tensor, write directly to the FillOp's operand.
780     if (llvm::equal(vecShape, resultType.getShape()) &&
781         llvm::all_of(writeInBounds, [](bool b) { return b; }))
782       if (auto fill = dest.getDefiningOp<FillOp>())
783         dest = fill.output();
784 
785     // Generate TransferWriteOp.
786     auto writeIndices =
787         ofrToIndexValues(rewriter, padOp.getLoc(), padOp.getMixedLowPad());
788     rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(
789         padOp, read, dest, writeIndices, ArrayRef<bool>{writeInBounds});
790 
791     return success();
792   }
793 };
794 
795 /// Base pattern for rewriting tensor::PadOps whose result is consumed by a
796 /// given operation type OpTy.
797 template <typename OpTy>
798 struct VectorizePadOpUserPattern : public OpRewritePattern<tensor::PadOp> {
799   using OpRewritePattern<tensor::PadOp>::OpRewritePattern;
800 
801   LogicalResult matchAndRewrite(tensor::PadOp padOp,
802                                 PatternRewriter &rewriter) const final {
803     bool changed = false;
804     // Insert users in vector, because some users may be replaced/removed.
805     for (auto *user : llvm::to_vector<4>(padOp->getUsers()))
806       if (auto op = dyn_cast<OpTy>(user))
807         changed |= rewriteUser(rewriter, padOp, op).succeeded();
808     return success(changed);
809   }
810 
811 protected:
812   virtual LogicalResult rewriteUser(PatternRewriter &rewriter,
813                                     tensor::PadOp padOp, OpTy op) const = 0;
814 };
815 
816 /// Rewrite use of tensor::PadOp result in TransferReadOp. E.g.:
817 /// ```
818 /// %0 = tensor.pad %src ... : tensor<?x?xf32> to tensor<17x5xf32>
819 /// %r = vector.transfer_read %0[%c0, %c0], %cst
820 ///     {in_bounds = [true, true]} : tensor<17x5xf32>, vector<17x5xf32>
821 /// ```
822 /// is rewritten to:
823 /// ```
824 /// %r = vector.transfer_read %src[%c0, %c0], %padding
825 ///     {in_bounds = [true, true]}
826 ///     : tensor<?x?xf32>, vector<17x5xf32>
827 /// ```
828 /// Note: By restricting this pattern to in-bounds TransferReadOps, we can be
829 /// sure that the original padding value %cst was never used.
830 ///
831 /// This rewrite is possible if:
832 /// - `xferOp` has no out-of-bounds dims or mask.
833 /// - Low padding is static 0.
834 /// - Single, scalar padding value.
835 struct PadOpVectorizationWithTransferReadPattern
836     : public VectorizePadOpUserPattern<vector::TransferReadOp> {
837   using VectorizePadOpUserPattern<
838       vector::TransferReadOp>::VectorizePadOpUserPattern;
839 
840   LogicalResult rewriteUser(PatternRewriter &rewriter, tensor::PadOp padOp,
841                             vector::TransferReadOp xferOp) const override {
842     // Low padding must be static 0.
843     if (!padOp.hasZeroLowPad())
844       return failure();
845     // Pad value must be a constant.
846     auto padValue = padOp.getConstantPaddingValue();
847     if (!padValue)
848       return failure();
849     // Padding value of existing `xferOp` is unused.
850     if (xferOp.hasOutOfBoundsDim() || xferOp.getMask())
851       return failure();
852 
853     rewriter.updateRootInPlace(xferOp, [&]() {
854       SmallVector<bool> inBounds(xferOp.getVectorType().getRank(), false);
855       xferOp->setAttr(xferOp.getInBoundsAttrName(),
856                       rewriter.getBoolArrayAttr(inBounds));
857       xferOp.getSourceMutable().assign(padOp.source());
858       xferOp.getPaddingMutable().assign(padValue);
859     });
860 
861     return success();
862   }
863 };
864 
865 /// Rewrite use of tensor::PadOp result in TransferWriteOp.
866 /// This pattern rewrites TransferWriteOps that write to a padded tensor
867 /// value, where the same amount of padding is immediately removed again after
868 /// the write. In such cases, the TransferWriteOp can write to the non-padded
869 /// tensor value and apply out-of-bounds masking. E.g.:
870 /// ```
871 /// %0 = tensor.extract_slice ...[...] [%s0, %s1] [1, 1]
872 ///     : tensor<...> to tensor<?x?xf32>
873 /// %1 = tensor.pad %0 ... : tensor<?x?xf32> to tensor<17x5xf32>
874 /// %2 = vector.transfer_write %vec, %1[...]
875 ///     : vector<17x5xf32>, tensor<17x5xf32>
876 /// %r = tensor.extract_slice %2[0, 0] [%s0, %s1] [1, 1]
877 ///     : tensor<17x5xf32> to tensor<?x?xf32>
878 /// ```
879 /// is rewritten to:
880 /// ```
881 /// %0 = tensor.extract_slice ...[...] [%s0, %s1] [1, 1]
882 ///     : tensor<...> to tensor<?x?xf32>
883 /// %r = vector.transfer_write %vec, %0[...] : vector<17x5xf32>,
884 /// tensor<?x?xf32>
885 /// ```
886 /// Note: It is important that the ExtractSliceOp %r resizes the result of the
887 /// TransferWriteOp to the same size as the input of the TensorPadOp (or an
888 /// even smaller size). Otherwise, %r's new (dynamic) dimensions would differ
889 /// from %r's old dimensions.
890 ///
891 /// This rewrite is possible if:
892 /// - Low padding is static 0.
893 /// - `xferOp` has exactly one use, which is an ExtractSliceOp. This
894 ///   ExtractSliceOp trims the same amount of padding that was added
895 ///   beforehand.
896 /// - Single, scalar padding value.
897 struct PadOpVectorizationWithTransferWritePattern
898     : public VectorizePadOpUserPattern<vector::TransferWriteOp> {
899   using VectorizePadOpUserPattern<
900       vector::TransferWriteOp>::VectorizePadOpUserPattern;
901 
902   LogicalResult rewriteUser(PatternRewriter &rewriter, tensor::PadOp padOp,
903                             vector::TransferWriteOp xferOp) const override {
904     // TODO: support 0-d corner case.
905     if (xferOp.getTransferRank() == 0)
906       return failure();
907 
908     // Low padding must be static 0.
909     if (!padOp.hasZeroLowPad())
910       return failure();
911     // Pad value must be a constant.
912     auto padValue = padOp.getConstantPaddingValue();
913     if (!padValue)
914       return failure();
915     // TransferWriteOp result must be directly consumed by an ExtractSliceOp.
916     if (!xferOp->hasOneUse())
917       return failure();
918     auto trimPadding = dyn_cast<tensor::ExtractSliceOp>(*xferOp->user_begin());
919     if (!trimPadding)
920       return failure();
921     // Only static zero offsets supported when trimming padding.
922     if (!trimPadding.hasZeroOffset())
923       return failure();
924     // trimPadding must remove the amount of padding that was added earlier.
925     if (!hasSameTensorSize(padOp.source(), trimPadding))
926       return failure();
927 
928     // Insert the new TransferWriteOp at position of the old TransferWriteOp.
929     rewriter.setInsertionPoint(xferOp);
930 
931     SmallVector<bool> inBounds(xferOp.getVectorType().getRank(), false);
932     auto newXferOp = rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(
933         xferOp, padOp.source().getType(), xferOp.getVector(), padOp.source(),
934         xferOp.getIndices(), xferOp.getPermutationMapAttr(), xferOp.getMask(),
935         rewriter.getBoolArrayAttr(inBounds));
936     rewriter.replaceOp(trimPadding, newXferOp->getResult(0));
937 
938     return success();
939   }
940 
941   /// Check if `beforePadding` and `afterTrimming` have the same tensor size,
942   /// i.e., same dimensions.
943   ///
944   /// Dimensions may be static, dynamic or mix of both. In case of dynamic
945   /// dimensions, this function tries to infer the (static) tensor size by
946   /// looking at the defining op and utilizing op-specific knowledge.
947   ///
948   /// This is a conservative analysis. In case equal tensor sizes cannot be
949   /// proven statically, this analysis returns `false` even though the tensor
950   /// sizes may turn out to be equal at runtime.
951   bool hasSameTensorSize(Value beforePadding,
952                          tensor::ExtractSliceOp afterTrimming) const {
953     // If the input to tensor::PadOp is a CastOp, try with with both CastOp
954     // result and CastOp operand.
955     if (auto castOp = beforePadding.getDefiningOp<tensor::CastOp>())
956       if (hasSameTensorSize(castOp.source(), afterTrimming))
957         return true;
958 
959     auto t1 = beforePadding.getType().dyn_cast<RankedTensorType>();
960     auto t2 = afterTrimming.getType().dyn_cast<RankedTensorType>();
961     // Only RankedTensorType supported.
962     if (!t1 || !t2)
963       return false;
964     // Rank of both values must be the same.
965     if (t1.getRank() != t2.getRank())
966       return false;
967 
968     // All static dimensions must be the same. Mixed cases (e.g., dimension
969     // static in `t1` but dynamic in `t2`) are not supported.
970     for (unsigned i = 0; i < t1.getRank(); ++i) {
971       if (t1.isDynamicDim(i) != t2.isDynamicDim(i))
972         return false;
973       if (!t1.isDynamicDim(i) && t1.getDimSize(i) != t2.getDimSize(i))
974         return false;
975     }
976 
977     // Nothing more to check if all dimensions are static.
978     if (t1.getNumDynamicDims() == 0)
979       return true;
980 
981     // All dynamic sizes must be the same. The only supported case at the
982     // moment is when `beforePadding` is an ExtractSliceOp (or a cast
983     // thereof).
984 
985     // Apart from CastOp, only ExtractSliceOp is supported.
986     auto beforeSlice = beforePadding.getDefiningOp<tensor::ExtractSliceOp>();
987     if (!beforeSlice)
988       return false;
989 
990     assert(static_cast<size_t>(t1.getRank()) ==
991            beforeSlice.getMixedSizes().size());
992     assert(static_cast<size_t>(t2.getRank()) ==
993            afterTrimming.getMixedSizes().size());
994 
995     for (unsigned i = 0; i < t1.getRank(); ++i) {
996       // Skip static dimensions.
997       if (!t1.isDynamicDim(i))
998         continue;
999       auto size1 = beforeSlice.getMixedSizes()[i];
1000       auto size2 = afterTrimming.getMixedSizes()[i];
1001 
1002       // Case 1: Same value or same constant int.
1003       if (isEqualConstantIntOrValue(size1, size2))
1004         continue;
1005 
1006       // Other cases: Take a deeper look at defining ops of values.
1007       auto v1 = size1.dyn_cast<Value>();
1008       auto v2 = size2.dyn_cast<Value>();
1009       if (!v1 || !v2)
1010         return false;
1011 
1012       // Case 2: Both values are identical AffineMinOps. (Should not happen if
1013       // CSE is run.)
1014       auto minOp1 = v1.getDefiningOp<AffineMinOp>();
1015       auto minOp2 = v2.getDefiningOp<AffineMinOp>();
1016       if (minOp1 && minOp2 && minOp1.getAffineMap() == minOp2.getAffineMap() &&
1017           minOp1.operands() == minOp2.operands())
1018         continue;
1019 
1020       // Add additional cases as needed.
1021     }
1022 
1023     // All tests passed.
1024     return true;
1025   }
1026 };
1027 
1028 /// Rewrite use of tensor::PadOp result in InsertSliceOp. E.g.:
1029 /// ```
1030 /// %0 = tensor.pad %src ... : tensor<?x?xf32> to tensor<17x5xf32>
1031 /// %r = tensor.insert_slice %0
1032 ///     into %dest[%a, %b, 0, 0] [1, 1, 17, 5] [1, 1, 1, 1]
1033 ///     : tensor<17x5xf32> into tensor<?x?x17x5xf32>
1034 /// ```
1035 /// is rewritten to:
1036 /// ```
1037 /// %0 = vector.transfer_read %src[%c0, %c0], %padding
1038 ///     : tensor<?x?xf32>, vector<17x5xf32>
1039 /// %r = vector.transfer_write %0, %dest[%a, %b, %c0, %c0]
1040 ///     {in_bounds = [true, true]} : vector<17x5xf32>, tensor<?x?x17x5xf32>
1041 /// ```
1042 ///
1043 /// This rewrite is possible if:
1044 /// - Low padding is static 0.
1045 /// - `padOp` result shape is static.
1046 /// - The entire padded tensor is inserted.
1047 ///   (Implies that sizes of `insertOp` are all static.)
1048 /// - Only unit strides in `insertOp`.
1049 /// - Single, scalar padding value.
1050 /// - `padOp` result not used as destination.
1051 struct PadOpVectorizationWithInsertSlicePattern
1052     : public VectorizePadOpUserPattern<tensor::InsertSliceOp> {
1053   using VectorizePadOpUserPattern<
1054       tensor::InsertSliceOp>::VectorizePadOpUserPattern;
1055 
1056   LogicalResult rewriteUser(PatternRewriter &rewriter, tensor::PadOp padOp,
1057                             tensor::InsertSliceOp insertOp) const override {
1058     // Low padding must be static 0.
1059     if (!padOp.hasZeroLowPad())
1060       return failure();
1061     // Only unit stride supported.
1062     if (!insertOp.hasUnitStride())
1063       return failure();
1064     // Pad value must be a constant.
1065     auto padValue = padOp.getConstantPaddingValue();
1066     if (!padValue)
1067       return failure();
1068     // Dynamic shapes not supported.
1069     if (!padOp.result().getType().cast<ShapedType>().hasStaticShape())
1070       return failure();
1071     // Pad result not used as destination.
1072     if (insertOp.dest() == padOp.result())
1073       return failure();
1074 
1075     auto vecType = VectorType::get(padOp.getType().getShape(),
1076                                    padOp.getType().getElementType());
1077     unsigned vecRank = vecType.getRank();
1078     unsigned tensorRank = insertOp.getType().getRank();
1079 
1080     // Check if sizes match: Insert the entire tensor into most minor dims.
1081     // (No permutations allowed.)
1082     SmallVector<int64_t> expectedSizes(tensorRank - vecRank, 1);
1083     expectedSizes.append(vecType.getShape().begin(), vecType.getShape().end());
1084     if (!llvm::all_of(
1085             llvm::zip(insertOp.getMixedSizes(), expectedSizes), [](auto it) {
1086               return getConstantIntValue(std::get<0>(it)) == std::get<1>(it);
1087             }))
1088       return failure();
1089 
1090     // Insert the TransferReadOp and TransferWriteOp at the position of the
1091     // InsertSliceOp.
1092     rewriter.setInsertionPoint(insertOp);
1093 
1094     // Generate TransferReadOp: Read entire source tensor and add high
1095     // padding.
1096     SmallVector<Value> readIndices(
1097         vecRank, rewriter.create<arith::ConstantIndexOp>(padOp.getLoc(), 0));
1098     auto read = rewriter.create<vector::TransferReadOp>(
1099         padOp.getLoc(), vecType, padOp.source(), readIndices, padValue);
1100 
1101     // Generate TransferWriteOp: Write to InsertSliceOp's dest tensor at
1102     // specified offsets. Write is fully in-bounds because a InsertSliceOp's
1103     // source must fit into the destination at the specified offsets.
1104     auto writeIndices =
1105         ofrToIndexValues(rewriter, padOp.getLoc(), insertOp.getMixedOffsets());
1106     SmallVector<bool> inBounds(vecRank, true);
1107     rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(
1108         insertOp, read, insertOp.dest(), writeIndices,
1109         ArrayRef<bool>{inBounds});
1110 
1111     return success();
1112   }
1113 };
1114 
1115 void mlir::linalg::populatePadOpVectorizationPatterns(
1116     RewritePatternSet &patterns, PatternBenefit baseBenefit) {
1117   patterns.add<GenericPadOpVectorizationPattern>(patterns.getContext(),
1118                                                  baseBenefit);
1119   // Try these specialized patterns first before resorting to the generic one.
1120   patterns.add<PadOpVectorizationWithTransferReadPattern,
1121                PadOpVectorizationWithTransferWritePattern,
1122                PadOpVectorizationWithInsertSlicePattern>(
1123       patterns.getContext(), baseBenefit.getBenefit() + 1);
1124 }
1125 
1126 //----------------------------------------------------------------------------//
1127 // Forwarding patterns
1128 //----------------------------------------------------------------------------//
1129 
1130 /// Check whether there is any interleaved use of any `values` between
1131 /// `firstOp` and `secondOp`. Conservatively return `true` if any op or value
1132 /// is in a different block.
1133 static bool mayExistInterleavedUses(Operation *firstOp, Operation *secondOp,
1134                                     ValueRange values) {
1135   if (firstOp->getBlock() != secondOp->getBlock() ||
1136       !firstOp->isBeforeInBlock(secondOp)) {
1137     LDBG("interleavedUses precondition failed, firstOp: "
1138          << *firstOp << ", second op: " << *secondOp);
1139     return true;
1140   }
1141   for (auto v : values) {
1142     for (auto &u : v.getUses()) {
1143       Operation *owner = u.getOwner();
1144       if (owner == firstOp || owner == secondOp)
1145         continue;
1146       // TODO: this is too conservative, use dominance info in the future.
1147       if (owner->getBlock() == firstOp->getBlock() &&
1148           (owner->isBeforeInBlock(firstOp) || secondOp->isBeforeInBlock(owner)))
1149         continue;
1150       LDBG(" found interleaved op " << *owner << ", firstOp: " << *firstOp
1151                                     << ", second op: " << *secondOp);
1152       return true;
1153     }
1154   }
1155   return false;
1156 }
1157 
1158 /// Return the unique subview use of `v` if it is indeed unique, null
1159 /// otherwise.
1160 static memref::SubViewOp getSubViewUseIfUnique(Value v) {
1161   memref::SubViewOp subViewOp;
1162   for (auto &u : v.getUses()) {
1163     if (auto newSubViewOp = dyn_cast<memref::SubViewOp>(u.getOwner())) {
1164       if (subViewOp)
1165         return memref::SubViewOp();
1166       subViewOp = newSubViewOp;
1167     }
1168   }
1169   return subViewOp;
1170 }
1171 
1172 /// TODO: use interfaces, side-effects and aliasing analysis as appropriate,
1173 /// when available.
1174 LogicalResult LinalgCopyVTRForwardingPattern::matchAndRewrite(
1175     vector::TransferReadOp xferOp, PatternRewriter &rewriter) const {
1176 
1177   // TODO: support mask.
1178   if (xferOp.getMask())
1179     return failure();
1180 
1181   // Transfer into `view`.
1182   Value viewOrAlloc = xferOp.getSource();
1183   if (!viewOrAlloc.getDefiningOp<memref::ViewOp>() &&
1184       !viewOrAlloc.getDefiningOp<memref::AllocOp>())
1185     return failure();
1186 
1187   LDBG(viewOrAlloc);
1188 
1189   // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`.
1190   memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc);
1191   if (!subViewOp)
1192     return failure();
1193   Value subView = subViewOp.getResult();
1194   LDBG("with subView " << subView);
1195 
1196   // Find the copy into `subView` without interleaved uses.
1197   memref::CopyOp copyOp;
1198   for (auto &u : subView.getUses()) {
1199     if (auto newCopyOp = dyn_cast<memref::CopyOp>(u.getOwner())) {
1200       assert(newCopyOp.target().getType().isa<MemRefType>());
1201       if (newCopyOp.target() != subView)
1202         continue;
1203       LDBG("copy candidate " << *newCopyOp);
1204       if (mayExistInterleavedUses(newCopyOp, xferOp, {viewOrAlloc, subView}))
1205         continue;
1206       copyOp = newCopyOp;
1207       break;
1208     }
1209   }
1210   if (!copyOp)
1211     return failure();
1212   LDBG("with copy " << *copyOp);
1213 
1214   // Find the fill into `viewOrAlloc` without interleaved uses before the
1215   // copy.
1216   FillOp maybeFillOp;
1217   for (auto &u : viewOrAlloc.getUses()) {
1218     if (auto newFillOp = dyn_cast<FillOp>(u.getOwner())) {
1219       assert(newFillOp.output().getType().isa<MemRefType>());
1220       if (newFillOp.output() != viewOrAlloc)
1221         continue;
1222       LDBG("fill candidate " << *newFillOp);
1223       if (mayExistInterleavedUses(newFillOp, copyOp, {viewOrAlloc, subView}))
1224         continue;
1225       maybeFillOp = newFillOp;
1226       break;
1227     }
1228   }
1229   // Ensure padding matches.
1230   if (maybeFillOp && xferOp.getPadding() != maybeFillOp.value())
1231     return failure();
1232   if (maybeFillOp)
1233     LDBG("with maybeFillOp " << *maybeFillOp);
1234 
1235   // `in` is the subview that memref.copy reads. Replace it.
1236   Value in = copyOp.source();
1237 
1238   // memref.copy + linalg.fill can be used to create a padded local buffer.
1239   // The `masked` attribute is only valid on this padded buffer.
1240   // When forwarding to vector.transfer_read, the attribute must be reset
1241   // conservatively.
1242   Value res = rewriter.create<vector::TransferReadOp>(
1243       xferOp.getLoc(), xferOp.getVectorType(), in, xferOp.getIndices(),
1244       xferOp.getPermutationMapAttr(), xferOp.getPadding(), xferOp.getMask(),
1245       // in_bounds is explicitly reset
1246       /*inBoundsAttr=*/ArrayAttr());
1247 
1248   if (maybeFillOp)
1249     rewriter.eraseOp(maybeFillOp);
1250   rewriter.eraseOp(copyOp);
1251   rewriter.replaceOp(xferOp, res);
1252 
1253   return success();
1254 }
1255 
1256 /// TODO: use interfaces, side-effects and aliasing analysis as appropriate,
1257 /// when available.
1258 LogicalResult LinalgCopyVTWForwardingPattern::matchAndRewrite(
1259     vector::TransferWriteOp xferOp, PatternRewriter &rewriter) const {
1260   // TODO: support mask.
1261   if (xferOp.getMask())
1262     return failure();
1263 
1264   // Transfer into `viewOrAlloc`.
1265   Value viewOrAlloc = xferOp.getSource();
1266   if (!viewOrAlloc.getDefiningOp<memref::ViewOp>() &&
1267       !viewOrAlloc.getDefiningOp<memref::AllocOp>())
1268     return failure();
1269 
1270   // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`.
1271   memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc);
1272   if (!subViewOp)
1273     return failure();
1274   Value subView = subViewOp.getResult();
1275 
1276   // Find the copy from `subView` without interleaved uses.
1277   memref::CopyOp copyOp;
1278   for (auto &u : subViewOp.getResult().getUses()) {
1279     if (auto newCopyOp = dyn_cast<memref::CopyOp>(u.getOwner())) {
1280       if (newCopyOp.source() != subView)
1281         continue;
1282       if (mayExistInterleavedUses(xferOp, newCopyOp, {viewOrAlloc, subView}))
1283         continue;
1284       copyOp = newCopyOp;
1285       break;
1286     }
1287   }
1288   if (!copyOp)
1289     return failure();
1290 
1291   // `out` is the subview copied into that we replace.
1292   assert(copyOp.target().getType().isa<MemRefType>());
1293   Value out = copyOp.target();
1294 
1295   // Forward vector.transfer into copy.
1296   // memref.copy + linalg.fill can be used to create a padded local buffer.
1297   // The `masked` attribute is only valid on this padded buffer.
1298   // When forwarding to vector.transfer_write, the attribute must be reset
1299   // conservatively.
1300   rewriter.create<vector::TransferWriteOp>(
1301       xferOp.getLoc(), xferOp.getVector(), out, xferOp.getIndices(),
1302       xferOp.getPermutationMapAttr(), xferOp.getMask(),
1303       // in_bounds is explicitly reset
1304       /*inBoundsAttr=*/ArrayAttr());
1305 
1306   rewriter.eraseOp(copyOp);
1307   rewriter.eraseOp(xferOp);
1308 
1309   return success();
1310 }
1311 
1312 //===----------------------------------------------------------------------===//
1313 // Convolution vectorization patterns
1314 //===----------------------------------------------------------------------===//
1315 
1316 template <int N>
1317 static void bindShapeDims(ShapedType shapedType) {}
1318 
1319 template <int N, typename IntTy, typename... IntTy2>
1320 static void bindShapeDims(ShapedType shapedType, IntTy &val, IntTy2 &...vals) {
1321   val = shapedType.getShape()[N];
1322   bindShapeDims<N + 1, IntTy2 &...>(shapedType, vals...);
1323 }
1324 
1325 /// Bind a pack of int& to the leading dimensions of shapedType.getShape().
1326 template <typename... IntTy>
1327 static void bindShapeDims(ShapedType shapedType, IntTy &...vals) {
1328   bindShapeDims<0>(shapedType, vals...);
1329 }
1330 
1331 namespace {
1332 /// Generate a vector implementation for either:
1333 /// ```
1334 ///   Op def: (     n,     w,     c,    kw,    f  )
1335 ///    Iters: ({Par(), Par(), Par(), Red(), Red()})
1336 ///   Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c, f}, {n, w, f}}
1337 /// ```
1338 /// kw is unrolled, w is unrolled iff dilationW > 1.
1339 ///
1340 /// or
1341 ///
1342 /// ```
1343 ///   Op def: (     n,     w,     c,    kw )
1344 ///    Iters: ({Par(), Par(), Par(), Red()})
1345 ///   Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c}, {n, w, c}}
1346 /// ```
1347 /// kw is unrolled, w is unrolled iff dilationW > 1.
1348 struct Conv1DNwcGenerator : public StructuredGenerator<LinalgOp> {
1349   Conv1DNwcGenerator(OpBuilder &builder, LinalgOp linalgOp, int strideW,
1350                      int dilationW)
1351       : StructuredGenerator<LinalgOp>(builder, linalgOp), strideW(strideW),
1352         dilationW(dilationW) {
1353     // Determine whether `linalgOp` can be generated with this generator
1354     if (linalgOp.getNumInputs() != 2 || linalgOp.getNumOutputs() != 1)
1355       return;
1356     lhsShaped = linalgOp.inputs()[0];
1357     rhsShaped = linalgOp.inputs()[1];
1358     resShaped = linalgOp.outputs()[0];
1359     lhsShapedType = lhsShaped.getType().dyn_cast<ShapedType>();
1360     rhsShapedType = rhsShaped.getType().dyn_cast<ShapedType>();
1361     resShapedType = resShaped.getType().dyn_cast<ShapedType>();
1362     if (!lhsShapedType || !rhsShapedType || !resShapedType)
1363       return;
1364     if (lhsShapedType.getRank() != 3 ||
1365         (rhsShapedType.getRank() != 2 && rhsShapedType.getRank() != 3) ||
1366         resShapedType.getRank() != 3)
1367       return;
1368 
1369     // Check for reduction `add` preceded by `mul`.
1370     Operation *reduceOp = matchLinalgReduction(linalgOp.getOutputOperand(0));
1371     if (!reduceOp)
1372       return;
1373     llvm::Optional<vector::CombiningKind> maybeKind;
1374     maybeKind = getCombinerOpKind(reduceOp);
1375     if (!maybeKind || *maybeKind != vector::CombiningKind::ADD)
1376       return;
1377     maybeKind = getCombinerOpKind(&(linalgOp->getRegion(0).front().front()));
1378     if (!maybeKind || *maybeKind != vector::CombiningKind::MUL)
1379       return;
1380 
1381     // The op is now known to be valid.
1382     valid = true;
1383   }
1384 
1385   /// Generate a vector implementation for:
1386   /// ```
1387   ///   Op def: (     n,     w,     c,    kw,    f  )
1388   ///    Iters: ({Par(), Par(), Par(), Red(), Red()})
1389   ///   Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c, f}, {n, w, f}}
1390   /// ```
1391   /// kw is always unrolled.
1392   /// TODO: w (resp. kw) is unrolled when the strideW ( resp. dilationW) is
1393   /// > 1.
1394   FailureOr<Operation *> conv() {
1395     if (!valid)
1396       return failure();
1397 
1398     int64_t nSize, wSize, cSize, kwSize, fSize;
1399     // kernel{kw, c, f}
1400     bindShapeDims(rhsShapedType, kwSize, cSize, fSize);
1401     // out{n, w, f}
1402     bindShapeDims(resShapedType, nSize, wSize);
1403 
1404     vector::TransferWriteOp write;
1405     Value zero = builder.create<arith::ConstantIndexOp>(loc, 0);
1406 
1407     // w is unrolled (i.e. wSizeStep == 1) iff strideW > 1.
1408     // When strideW == 1, we can batch the contiguous loads and avoid
1409     // unrolling
1410     int64_t wSizeStep = strideW == 1 ? wSize : 1;
1411 
1412     Type lhsEltType = lhsShapedType.getElementType();
1413     Type rhsEltType = rhsShapedType.getElementType();
1414     Type resEltType = resShapedType.getElementType();
1415     VectorType lhsType = VectorType::get(
1416         {nSize,
1417          // iw = ow * sw + kw *  dw - 1
1418          //   (i.e. 16 convolved with 3 (@stride 1 dilation 1) -> 14)
1419          // Perform the proper inclusive -> exclusive -> inclusive.
1420          ((wSize - 1) * strideW + 1) + ((kwSize - 1) * dilationW + 1) - 1,
1421          cSize},
1422         lhsEltType);
1423     VectorType rhsType = VectorType::get({kwSize, cSize, fSize}, rhsEltType);
1424     VectorType resType = VectorType::get({nSize, wSize, fSize}, resEltType);
1425 
1426     // Read lhs slice of size {w * strideW + kw * dilationW, c, f} @ [0, 0,
1427     // 0].
1428     Value lhs = builder.create<vector::TransferReadOp>(
1429         loc, lhsType, lhsShaped, ValueRange{zero, zero, zero});
1430     // Read rhs slice of size {kw, c, f} @ [0, 0, 0].
1431     Value rhs = builder.create<vector::TransferReadOp>(
1432         loc, rhsType, rhsShaped, ValueRange{zero, zero, zero});
1433     // Read res slice of size {n, w, f} @ [0, 0, 0].
1434     Value res = builder.create<vector::TransferReadOp>(
1435         loc, resType, resShaped, ValueRange{zero, zero, zero});
1436 
1437     //===------------------------------------------------------------------===//
1438     // Begin vector-only rewrite part
1439     //===------------------------------------------------------------------===//
1440     // Unroll along kw and read slices of lhs and rhs.
1441     SmallVector<Value> lhsVals, rhsVals, resVals;
1442     // Extract lhs slice of size {n, wSizeStep, c} @ [0, sw * w + dw * kw, 0].
1443     for (int64_t kw = 0; kw < kwSize; ++kw) {
1444       for (int64_t w = 0; w < wSize; w += wSizeStep) {
1445         lhsVals.push_back(builder.create<vector::ExtractStridedSliceOp>(
1446             loc, lhs,
1447             /*offsets=*/ArrayRef<int64_t>{0, w * strideW + kw * dilationW, 0},
1448             /*sizes=*/ArrayRef<int64_t>{nSize, wSizeStep, cSize},
1449             /*strides=*/ArrayRef<int64_t>{1, 1, 1}));
1450       }
1451     }
1452     // Extract rhs slice of size {c, f} @ [kw].
1453     for (int64_t kw = 0; kw < kwSize; ++kw) {
1454       rhsVals.push_back(builder.create<vector::ExtractOp>(
1455           loc, rhs, /*offsets=*/ArrayRef<int64_t>{kw}));
1456     }
1457     // Extract res slice: {n, wSizeStep, f} @ [0, w, 0].
1458     for (int64_t w = 0; w < wSize; w += wSizeStep) {
1459       resVals.push_back(builder.create<vector::ExtractStridedSliceOp>(
1460           loc, res,
1461           /*offsets=*/ArrayRef<int64_t>{0, w, 0},
1462           /*sizes=*/ArrayRef<int64_t>{nSize, wSizeStep, fSize},
1463           /*strides=*/ArrayRef<int64_t>{1, 1, 1}));
1464     }
1465 
1466     auto linearIndex = [&](int64_t kw, int64_t w) {
1467       return kw * (wSize / wSizeStep) + w;
1468     };
1469 
1470     // Compute contraction: O{n, w, f} += I{n, sw * w + dw * kw, c} * F{c, f}
1471     for (int64_t kw = 0; kw < kwSize; ++kw) {
1472       for (int64_t w = 0; w < wSize; w += wSizeStep) {
1473         resVals[w] = conv1dSliceAsContraction(
1474             builder, loc, lhsVals[linearIndex(kw, w)], rhsVals[kw], resVals[w]);
1475       }
1476     }
1477 
1478     // Write back res slice: {n, wSizeStep, f} @ [0, w, 0].
1479     // This does not depend on kw.
1480     for (int64_t w = 0; w < wSize; w += wSizeStep) {
1481       res = builder.create<vector::InsertStridedSliceOp>(
1482           loc, resVals[w], res,
1483           /*offsets=*/ArrayRef<int64_t>{0, w, 0},
1484           /*strides=*/ArrayRef<int64_t>{1, 1, 1});
1485     }
1486     //===------------------------------------------------------------------===//
1487     // End vector-only rewrite part
1488     //===------------------------------------------------------------------===//
1489 
1490     // Write back res slice of size {n, w, f} @ [0, 0, 0].
1491     return builder
1492         .create<vector::TransferWriteOp>(loc, res, resShaped,
1493                                          ValueRange{zero, zero, zero})
1494         .getOperation();
1495   }
1496 
1497   // Create a contraction: lhs{n, w, c} * rhs{c, f} -> res{n, w, f}
1498   Value conv1dSliceAsContraction(OpBuilder &b, Location loc, Value lhs,
1499                                  Value rhs, Value res) {
1500     StringRef par = Par().strRef, red = Red().strRef;
1501     AffineExpr n, w, f, c;
1502     bindDims(ctx, n, w, f, c);
1503     return builder.create<vector::ContractionOp>(
1504         loc, lhs, rhs, res,
1505         /*indexingMaps=*/MapList{{n, w, c}, {c, f}, {n, w, f}},
1506         /*iteratorTypes=*/ArrayRef<StringRef>{par, par, par, red});
1507   }
1508 
1509   /// Generate a vector implementation for:
1510   /// ```
1511   ///   Op def: (     n,     w,     c,    kw)
1512   ///    Iters: ({Par(), Par(), Par(), Red()})
1513   ///   Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c}, {n, w, c}}
1514   /// ```
1515   /// kw is always unrolled.
1516   /// TODO: w (resp. kw) is unrolled when the strideW ( resp. dilationW) is
1517   /// > 1.
1518   FailureOr<Operation *> depthwiseConv() {
1519     if (!valid)
1520       return failure();
1521 
1522     int64_t nSize, wSize, cSize, kwSize;
1523     // kernel{kw, c}
1524     bindShapeDims(rhsShapedType, kwSize, cSize);
1525     // out{n, w, c}
1526     bindShapeDims(resShapedType, nSize, wSize);
1527 
1528     vector::TransferWriteOp write;
1529     Value zero = builder.create<arith::ConstantIndexOp>(loc, 0);
1530 
1531     // w is unrolled (i.e. wSizeStep == 1) iff strideW > 1.
1532     // When strideW == 1, we can batch the contiguous loads and avoid
1533     // unrolling
1534     int64_t wSizeStep = strideW == 1 ? wSize : 1;
1535 
1536     Type lhsEltType = lhsShapedType.getElementType();
1537     Type rhsEltType = rhsShapedType.getElementType();
1538     Type resEltType = resShapedType.getElementType();
1539     VectorType lhsType = VectorType::get(
1540         {nSize,
1541          // iw = ow * sw + kw *  dw - 1
1542          //   (i.e. 16 convolved with 3 (@stride 1 dilation 1) -> 14)
1543          ((wSize - 1) * strideW + 1) + ((kwSize - 1) * dilationW + 1) - 1,
1544          cSize},
1545         lhsEltType);
1546     VectorType rhsType = VectorType::get({kwSize, cSize}, rhsEltType);
1547     VectorType resType = VectorType::get({nSize, wSize, cSize}, resEltType);
1548 
1549     // Read lhs slice of size {n, w * strideW + kw * dilationW, c} @ [0, 0,
1550     // 0].
1551     Value lhs = builder.create<vector::TransferReadOp>(
1552         loc, lhsType, lhsShaped, ValueRange{zero, zero, zero});
1553     // Read rhs slice of size {kw, c} @ [0, 0].
1554     Value rhs = builder.create<vector::TransferReadOp>(loc, rhsType, rhsShaped,
1555                                                        ValueRange{zero, zero});
1556     // Read res slice of size {n, w, c} @ [0, 0, 0].
1557     Value res = builder.create<vector::TransferReadOp>(
1558         loc, resType, resShaped, ValueRange{zero, zero, zero});
1559 
1560     //===------------------------------------------------------------------===//
1561     // Begin vector-only rewrite part
1562     //===------------------------------------------------------------------===//
1563     // Unroll along kw and read slices of lhs and rhs.
1564     SmallVector<Value> lhsVals, rhsVals, resVals;
1565     // Extract lhs slice of size {n, wSizeStep, c}
1566     //   @ [0, sw * w + dw * kw, 0].
1567     for (int64_t kw = 0; kw < kwSize; ++kw) {
1568       for (int64_t w = 0; w < wSize; w += wSizeStep) {
1569         lhsVals.push_back(builder.create<vector::ExtractStridedSliceOp>(
1570             loc, lhs,
1571             /*offsets=*/ArrayRef<int64_t>{0, w * strideW + kw * dilationW, 0},
1572             /*sizes=*/ArrayRef<int64_t>{nSize, wSizeStep, cSize},
1573             /*strides=*/ArrayRef<int64_t>{1, 1, 1}));
1574       }
1575     }
1576     // Extract rhs slice of size {c} @ [kw].
1577     for (int64_t kw = 0; kw < kwSize; ++kw) {
1578       rhsVals.push_back(builder.create<vector::ExtractOp>(
1579           loc, rhs, /*offsets=*/ArrayRef<int64_t>{kw}));
1580     }
1581     // Extract res slice: {n, wSizeStep, c} @ [0, w, 0].
1582     for (int64_t w = 0; w < wSize; w += wSizeStep) {
1583       resVals.push_back(builder.create<vector::ExtractStridedSliceOp>(
1584           loc, res,
1585           /*offsets=*/ArrayRef<int64_t>{0, w, 0},
1586           /*sizes=*/ArrayRef<int64_t>{nSize, wSizeStep, cSize},
1587           /*strides=*/ArrayRef<int64_t>{1, 1, 1}));
1588     }
1589 
1590     auto linearIndex = [&](int64_t kw, int64_t w) {
1591       return kw * (wSize / wSizeStep) + w;
1592     };
1593 
1594     // Compute contraction: O{n, w, c} += I{n, sw * w + dw * kw, c} * F{c}
1595     for (int64_t kw = 0; kw < kwSize; ++kw) {
1596       for (int64_t w = 0; w < wSize; w += wSizeStep) {
1597         resVals[w] = depthwiseConv1dSliceAsFma(
1598             builder, loc, lhsVals[linearIndex(kw, w)], rhsVals[kw], resVals[w]);
1599       }
1600     }
1601 
1602     // Write back res slice: {n, wSizeStep, c} @ [0, w, 0].
1603     // This does not depend on kw.
1604     for (int64_t w = 0; w < wSize; w += wSizeStep) {
1605       res = builder.create<vector::InsertStridedSliceOp>(
1606           loc, resVals[w], res,
1607           /*offsets=*/ArrayRef<int64_t>{0, w, 0},
1608           /*strides=*/ArrayRef<int64_t>{1, 1, 1});
1609     }
1610     //===------------------------------------------------------------------===//
1611     // End vector-only rewrite part
1612     //===------------------------------------------------------------------===//
1613 
1614     // Write back res slice of size {n, w, c} @ [0, 0, 0].
1615     return builder
1616         .create<vector::TransferWriteOp>(loc, res, resShaped,
1617                                          ValueRange{zero, zero, zero})
1618         .getOperation();
1619   }
1620 
1621   /// Lower lhs{n, w, c} * rhs{c} -> res{n, w, c} to fma.
1622   Value depthwiseConv1dSliceAsFma(OpBuilder &b, Location loc, Value lhs,
1623                                   Value rhs, Value res) {
1624     Value bcast = builder.create<vector::BroadcastOp>(loc, res.getType(), rhs);
1625     return b.create<vector::FMAOp>(loc, lhs, bcast, res);
1626   }
1627 
1628   /// Entry point that transposes into the common form:
1629   ///   {{n, strideW * w + dilationW * kw, c}, {kw, c, f}, {n, w, f}}
1630   FailureOr<Operation *> generateConv() {
1631     AffineExpr n, w, f, kw, c;
1632     bindDims(ctx, n, w, f, kw, c);
1633     if (!iters({Par(), Par(), Par(), Red(), Red()}))
1634       return failure();
1635 
1636     // No transposition needed.
1637     if (layout({/*lhsIndex*/ {n, strideW * w + dilationW * kw, c},
1638                 /*rhsIndex*/ {kw, c, f},
1639                 /*resIndex*/ {n, w, f}}))
1640       return conv();
1641     return failure();
1642   }
1643 
1644   /// Entry point that transposes into the common form:
1645   ///   {{n, strideW * w + dilationW * kw, c}, {kw, c}, {n, w, c}}
1646   FailureOr<Operation *> generateDilatedConv() {
1647     AffineExpr n, w, c, kw;
1648     bindDims(ctx, n, w, c, kw);
1649     if (!iters({Par(), Par(), Par(), Red()}))
1650       return failure();
1651 
1652     // No transposition needed.
1653     if (layout({/*lhsIndex*/ {n, strideW * w + dilationW * kw, c},
1654                 /*rhsIndex*/ {kw, c},
1655                 /*resIndex*/ {n, w, c}}))
1656       return depthwiseConv();
1657     return failure();
1658   }
1659 
1660 private:
1661   bool valid = false;
1662   int strideW, dilationW;
1663   Value lhsShaped, rhsShaped, resShaped;
1664   ShapedType lhsShapedType, rhsShapedType, resShapedType;
1665 };
1666 } // namespace
1667 
1668 /// Helper function to vectorize a LinalgOp with convolution semantics.
1669 // TODO: extend the generic vectorization to support windows and drop this.
1670 static FailureOr<Operation *> vectorizeConvolution(OpBuilder &b, LinalgOp op) {
1671   // The ConvolutionOpInterface gives us guarantees of existence for
1672   // strides/dilations. However, we do not need to rely on those, we can simply
1673   // use them if present, otherwise use the default and let the generic conv.
1674   // matcher in the ConvGenerator succeed or fail.
1675   auto strides = op->getAttrOfType<DenseIntElementsAttr>("strides");
1676   auto dilations = op->getAttrOfType<DenseIntElementsAttr>("dilations");
1677   auto stride = strides ? *strides.getValues<uint64_t>().begin() : 1;
1678   auto dilation = dilations ? *dilations.getValues<uint64_t>().begin() : 1;
1679   Conv1DNwcGenerator e(b, op, stride, dilation);
1680   auto res = e.generateConv();
1681   if (succeeded(res))
1682     return res;
1683   return e.generateDilatedConv();
1684 }
1685 
1686 struct VectorizeConvolution : public OpInterfaceRewritePattern<LinalgOp> {
1687   using OpInterfaceRewritePattern::OpInterfaceRewritePattern;
1688 
1689   LogicalResult matchAndRewrite(LinalgOp op,
1690                                 PatternRewriter &rewriter) const override {
1691     FailureOr<Operation *> resultOrFail = vectorizeConvolution(rewriter, op);
1692     if (failed(resultOrFail))
1693       return failure();
1694     Operation *newOp = *resultOrFail;
1695     if (newOp->getNumResults() == 0) {
1696       rewriter.eraseOp(op.getOperation());
1697       return success();
1698     }
1699     assert(newOp->getNumResults() == 1 && "expected single result");
1700     rewriter.replaceOp(op.getOperation(), newOp->getResult(0));
1701     return success();
1702   }
1703 };
1704 
1705 void mlir::linalg::populateConvolutionVectorizationPatterns(
1706     RewritePatternSet &patterns, PatternBenefit benefit) {
1707   patterns.add<VectorizeConvolution>(patterns.getContext(), benefit);
1708 }
1709