1 //===- Vectorization.cpp - Implementation of linalg Vectorization ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the linalg dialect Vectorization transformations.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "mlir/Analysis/SliceAnalysis.h"
14 #include "mlir/Dialect/Affine/Analysis/LoopAnalysis.h"
15 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
16 #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h"
17 #include "mlir/Dialect/Linalg/IR/Linalg.h"
18 #include "mlir/Dialect/Linalg/Transforms/Transforms.h"
19 #include "mlir/Dialect/Linalg/Utils/Utils.h"
20 #include "mlir/Dialect/Tensor/IR/Tensor.h"
21 #include "mlir/Dialect/Utils/StructuredOpsUtils.h"
22 #include "mlir/Dialect/Vector/VectorOps.h"
23 #include "mlir/Dialect/Vector/VectorTransforms.h"
24 #include "mlir/IR/AffineExpr.h"
25 #include "mlir/IR/Matchers.h"
26 #include "mlir/IR/PatternMatch.h"
27 #include "mlir/Pass/Pass.h"
28 #include "mlir/Support/LLVM.h"
29 #include "mlir/Transforms/RegionUtils.h"
30 #include "llvm/ADT/ScopeExit.h"
31 #include "llvm/ADT/Sequence.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/TypeSwitch.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include <type_traits>
37 
38 using namespace mlir;
39 using namespace mlir::linalg;
40 
41 #define DEBUG_TYPE "linalg-vectorization"
42 
43 #define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ")
44 #define LDBG(X) LLVM_DEBUG(DBGS() << X)
45 
46 /// Try to vectorize `convOp` as a convolution.
47 static FailureOr<Operation *> vectorizeConvolution(OpBuilder &b,
48                                                    LinalgOp convOp);
49 
50 /// Return the unique instance of OpType in `block` if it is indeed unique.
51 /// Return null if none or more than 1 instances exist.
52 template <typename OpType>
53 static OpType getSingleOpOfType(Block &block) {
54   OpType res;
55   block.walk([&](OpType op) {
56     if (res) {
57       res = nullptr;
58       return WalkResult::interrupt();
59     }
60     res = op;
61     return WalkResult::advance();
62   });
63   return res;
64 }
65 
66 /// Given an indexing `map` coming from a LinalgOp indexing, restricted to a
67 /// projectedPermutation, compress the unused dimensions to serve as a
68 /// permutation_map for a vector transfer operation.
69 /// For example, given a linalg op such as:
70 ///
71 /// ```
72 ///   %0 = linalg.generic {
73 ///        indexing_maps = affine_map<(d0, d1, d2, d3, d4) -> (d4, d0, d2)>,
74 ///        indexing_maps = affine_map<(d0, d1, d2, d3, d4) -> (d1, d3)>
75 ///      }
76 ///     ins(%0 : tensor<2x3x4xf32>)
77 ///    outs(%1 : tensor<5x6xf32>)
78 /// ```
79 ///
80 /// the iteration domain size of the linalg op is 3x5x4x6x2. The first affine
81 /// map is reindexed to `affine_map<(d0, d1, d2) -> (d2, d0, d1)>`, the second
82 /// affine map is reindexed to `affine_map<(d0, d1) -> (d0, d1)>`.
83 static AffineMap reindexIndexingMap(AffineMap map) {
84   assert(map.isProjectedPermutation(/*allowZeroInResults=*/true) &&
85          "expected projected permutation");
86   auto res = compressUnusedDims(map);
87   assert(res.getNumDims() == res.getNumResults() &&
88          "expected reindexed map with same number of dims and results");
89   return res;
90 }
91 
92 /// Helper data structure to represent the result of vectorization.
93 /// In certain specific cases, like terminators, we do not want to propagate/
94 enum VectorizationStatus {
95   /// Op failed to vectorize.
96   Failure = 0,
97   /// Op vectorized and custom function took care of replacement logic
98   NoReplace,
99   /// Op vectorized into a new Op whose results will replace original Op's
100   /// results.
101   NewOp
102   // TODO: support values if Op vectorized to Many-Ops whose results we need to
103   // aggregate for replacement.
104 };
105 struct VectorizationResult {
106   /// Return status from vectorizing the current op.
107   enum VectorizationStatus status = VectorizationStatus::Failure;
108   /// New vectorized operation to replace the current op.
109   /// Replacement behavior is specified by `status`.
110   Operation *newOp;
111 };
112 
113 llvm::Optional<vector::CombiningKind>
114 mlir::linalg::getCombinerOpKind(Operation *combinerOp) {
115   using ::mlir::vector::CombiningKind;
116 
117   if (!combinerOp)
118     return llvm::None;
119   return llvm::TypeSwitch<Operation *, llvm::Optional<CombiningKind>>(
120              combinerOp)
121       .Case<arith::AddIOp, arith::AddFOp>(
122           [&](auto op) { return CombiningKind::ADD; })
123       .Case<arith::AndIOp>([&](auto op) { return CombiningKind::AND; })
124       .Case<arith::MaxSIOp>([&](auto op) { return CombiningKind::MAXSI; })
125       .Case<arith::MaxFOp>([&](auto op) { return CombiningKind::MAXF; })
126       .Case<arith::MinSIOp>([&](auto op) { return CombiningKind::MINSI; })
127       .Case<arith::MinFOp>([&](auto op) { return CombiningKind::MINF; })
128       .Case<arith::MulIOp, arith::MulFOp>(
129           [&](auto op) { return CombiningKind::MUL; })
130       .Case<arith::OrIOp>([&](auto op) { return CombiningKind::OR; })
131       .Case<arith::XOrIOp>([&](auto op) { return CombiningKind::XOR; })
132       .Default([&](auto op) { return llvm::None; });
133 }
134 
135 /// Check whether `outputOperand` is a reduction with a single combiner
136 /// operation. Return the combiner operation of the reduction. Return
137 /// nullptr otherwise. Multiple reduction operations would impose an
138 /// ordering between reduction dimensions and is currently unsupported in
139 /// Linalg. This limitation is motivated by the fact that e.g. min(max(X)) !=
140 /// max(min(X))
141 // TODO: use in LinalgOp verification, there is a circular dependency atm.
142 static Operation *matchLinalgReduction(OpOperand *outputOperand) {
143   auto linalgOp = cast<LinalgOp>(outputOperand->getOwner());
144   unsigned outputPos =
145       outputOperand->getOperandNumber() - linalgOp.getNumInputs();
146   // Only single combiner operations are supported for now.
147   SmallVector<Operation *, 4> combinerOps;
148   if (!matchReduction(linalgOp.getRegionOutputArgs(), outputPos, combinerOps) ||
149       combinerOps.size() != 1)
150     return nullptr;
151 
152   // Return the combiner operation.
153   return combinerOps[0];
154 }
155 
156 /// Broadcast `value` to a vector of `shape` if possible. Return value
157 /// otherwise.
158 static Value broadcastIfNeeded(OpBuilder &b, Value value,
159                                ArrayRef<int64_t> shape) {
160   // If no shape to broadcast to, just return `value`.
161   if (shape.empty())
162     return value;
163   VectorType targetVectorType =
164       VectorType::get(shape, getElementTypeOrSelf(value));
165   if (vector::isBroadcastableTo(value.getType(), targetVectorType) !=
166       vector::BroadcastableToResult::Success)
167     return value;
168   Location loc = b.getInsertionPoint()->getLoc();
169   return b.createOrFold<vector::BroadcastOp>(loc, targetVectorType, value);
170 }
171 
172 /// Create MultiDimReductionOp to compute the reduction for `reductionOp`. This
173 /// assumes that `reductionOp` has two operands and one of them is the reduction
174 /// initial value.
175 static Value buildMultiDimReduce(OpBuilder &b, Operation *reduceOp,
176                                  Value valueToReduce,
177                                  const SmallVector<bool> &reductionMask) {
178   auto maybeKind = getCombinerOpKind(reduceOp);
179   assert(maybeKind && "Failed precondition: could not get reduction kind");
180   return b.create<vector::MultiDimReductionOp>(
181       reduceOp->getLoc(), valueToReduce, reductionMask, *maybeKind);
182 }
183 
184 static SmallVector<bool> getReductionMask(LinalgOp linalgOp) {
185   unsigned idx = 0;
186   SmallVector<bool> reductionMask(linalgOp.iterator_types().size(), false);
187   for (auto attr : linalgOp.iterator_types()) {
188     if (isReductionIterator(attr))
189       reductionMask[idx] = true;
190     ++idx;
191   }
192   return reductionMask;
193 }
194 
195 /// Build a vector.transfer_write of `value` into `outputOperand` at indices set
196 /// to all `0`; where `outputOperand` is an output operand of the LinalgOp
197 /// currently being vectorized. If `dest` has null rank, build an memref.store.
198 /// Return the produced value or null if no value is produced.
199 static Value buildVectorWrite(OpBuilder &b, Value value,
200                               OpOperand *outputOperand) {
201   Operation *write;
202   Location loc = value.getLoc();
203   auto linalgOp = cast<LinalgOp>(outputOperand->getOwner());
204   ArrayRef<int64_t> shape = linalgOp.getShape(outputOperand);
205   auto vectorType = VectorType::get(
206       shape, getElementTypeOrSelf(outputOperand->get().getType()));
207   if (vectorType.getRank() > 0) {
208     // 0-d case is still special: do not invert the reindexing map.
209     AffineMap map =
210         reindexIndexingMap(linalgOp.getTiedIndexingMap(outputOperand));
211     SmallVector<int64_t> transposeShape =
212         applyPermutationMap(inversePermutation(map), vectorType.getShape());
213     assert(!transposeShape.empty() && "unexpected empty transpose shape");
214     vectorType = VectorType::get(transposeShape, vectorType.getElementType());
215     SmallVector<Value> indices(linalgOp.getRank(outputOperand),
216                                b.create<arith::ConstantIndexOp>(loc, 0));
217     value = broadcastIfNeeded(b, value, vectorType.getShape());
218     write = b.create<vector::TransferWriteOp>(loc, value, outputOperand->get(),
219                                               indices, map);
220   } else {
221     if (!value.getType().isa<VectorType>())
222       value = b.create<vector::BroadcastOp>(loc, vectorType, value);
223     assert(value.getType() == vectorType && "incorrect type");
224     write = b.create<vector::TransferWriteOp>(loc, value, outputOperand->get(),
225                                               ValueRange{});
226   }
227   LDBG("vectorized op: " << *write);
228   if (!write->getResults().empty())
229     return write->getResult(0);
230   return Value();
231 }
232 
233 // Custom vectorization function type. Produce a vector form of Operation*
234 // assuming all its vectorized operands are already in the BlockAndValueMapping.
235 // Return nullptr if the Operation cannot be vectorized.
236 using CustomVectorizationHook = std::function<VectorizationResult(
237     Operation *, const BlockAndValueMapping &)>;
238 
239 /// Helper function to vectorize the terminator of a `linalgOp`. New result
240 /// vector values are appended to `newResults`. Return
241 /// VectorizationStatus::NoReplace to signal the vectorization algorithm that it
242 /// should not try to map produced operations and instead return the results
243 /// using the `newResults` vector making them available to the
244 /// vectorization algorithm for RAUW. This function is meant to be used as a
245 /// CustomVectorizationHook.
246 static VectorizationResult
247 vectorizeLinalgYield(OpBuilder &b, Operation *op,
248                      const BlockAndValueMapping &bvm, LinalgOp linalgOp,
249                      SmallVectorImpl<Value> &newResults) {
250   auto yieldOp = dyn_cast<linalg::YieldOp>(op);
251   if (!yieldOp)
252     return VectorizationResult{VectorizationStatus::Failure, nullptr};
253   for (const auto &outputs : llvm::enumerate(yieldOp.values())) {
254     // TODO: Scan for an opportunity for reuse.
255     // TODO: use a map.
256     Value vectorValue = bvm.lookup(outputs.value());
257     Value newResult = buildVectorWrite(
258         b, vectorValue, linalgOp.getOutputOperand(outputs.index()));
259     if (newResult)
260       newResults.push_back(newResult);
261   }
262   return VectorizationResult{VectorizationStatus::NoReplace, nullptr};
263 }
264 
265 /// Helper function to vectorize the index operations of a `linalgOp`. Return
266 /// VectorizationStatus::NewOp to signal the vectorization algorithm that it
267 /// should map the produced operations. This function is meant to be used as a
268 /// CustomVectorizationHook.
269 static VectorizationResult vectorizeLinalgIndex(OpBuilder &b, Operation *op,
270                                                 LinalgOp linalgOp) {
271   IndexOp indexOp = dyn_cast<linalg::IndexOp>(op);
272   if (!indexOp)
273     return VectorizationResult{VectorizationStatus::Failure, nullptr};
274   auto loc = indexOp.getLoc();
275   // Compute the static loop sizes of the index op.
276   auto targetShape = linalgOp.computeStaticLoopSizes();
277   // Compute a one-dimensional index vector for the index op dimension.
278   SmallVector<int64_t> constantSeq =
279       llvm::to_vector<16>(llvm::seq<int64_t>(0, targetShape[indexOp.dim()]));
280   auto constantOp =
281       b.create<arith::ConstantOp>(loc, b.getIndexVectorAttr(constantSeq));
282   // Return the one-dimensional index vector if it lives in the trailing
283   // dimension of the iteration space since the vectorization algorithm in this
284   // case can handle the broadcast.
285   if (indexOp.dim() == targetShape.size() - 1)
286     return VectorizationResult{VectorizationStatus::NewOp, constantOp};
287   // Otherwise permute the targetShape to move the index dimension last,
288   // broadcast the one-dimensional index vector to the permuted shape, and
289   // finally transpose the broadcasted index vector to undo the permutation.
290   std::swap(targetShape[indexOp.dim()], targetShape.back());
291   auto broadCastOp = b.create<vector::BroadcastOp>(
292       loc, VectorType::get(targetShape, b.getIndexType()), constantOp);
293   SmallVector<int64_t> transposition =
294       llvm::to_vector<16>(llvm::seq<int64_t>(0, linalgOp.getNumLoops()));
295   std::swap(transposition.back(), transposition[indexOp.dim()]);
296   auto transposeOp =
297       b.create<vector::TransposeOp>(loc, broadCastOp, transposition);
298   return VectorizationResult{VectorizationStatus::NewOp, transposeOp};
299 }
300 
301 /// Create a new vectorized verstion of `op` with the given operands and types.
302 static Operation *createVectorizedOp(OpBuilder &b, Operation *op,
303                                      ValueRange newOperands,
304                                      ArrayRef<Type> types) {
305   OperationState state(op->getLoc(), op->getName());
306   state.addAttributes(op->getAttrs());
307   state.addOperands(newOperands);
308   state.addTypes(types);
309   return b.createOperation(state);
310 }
311 
312 /// Emit reduction operations if the shapes of the value to reduce is different
313 /// that the result shape.
314 static Operation *reduceIfNeeded(OpBuilder &b, LinalgOp linalgOp, Operation *op,
315                                  Value reduceValue, Value initialValue,
316                                  const BlockAndValueMapping &bvm) {
317   Value reduceVec = bvm.lookup(reduceValue);
318   Value outputVec = bvm.lookup(initialValue);
319   auto reduceType = reduceVec.getType().dyn_cast<VectorType>();
320   auto outputType = outputVec.getType().dyn_cast<VectorType>();
321   // Reduce only if needed as the value may already have been reduce for
322   // contraction vectorization.
323   if (!reduceType ||
324       (outputType && reduceType.getShape() == outputType.getShape()))
325     return nullptr;
326   SmallVector<bool> reductionMask = getReductionMask(linalgOp);
327   Value reduce = buildMultiDimReduce(b, op, reduceVec, reductionMask);
328   return createVectorizedOp(b, op, {reduce, outputVec}, reduce.getType());
329 }
330 
331 /// Generic vectorization for a single operation `op`, given already vectorized
332 /// operands carried by `bvm`. Vectorization occurs as follows:
333 ///   1. Try to apply any of the `customVectorizationHooks` and return its
334 ///   result on success.
335 ///   2. Clone any constant in the current scope without vectorization: each
336 ///   consumer of the constant will later determine the shape to which the
337 ///   constant needs to be broadcast to.
338 ///   3. Fail on any remaining non `ElementwiseMappable` op. It is the purpose
339 ///   of the `customVectorizationHooks` to cover such cases.
340 ///   4. Clone `op` in vector form to a vector of shape prescribed by the first
341 ///   operand of maximal rank. Other operands have smaller rank and are
342 ///   broadcast accordingly. It is assumed this broadcast is always legal,
343 ///   otherwise, it means one of the `customVectorizationHooks` is incorrect.
344 ///
345 /// This function assumes all operands of `op` have been vectorized and are in
346 /// the `bvm` mapping. As a consequence, this function is meant to be called on
347 /// a topologically-sorted list of ops.
348 /// This function does not update `bvm` but returns a VectorizationStatus that
349 /// instructs the caller what `bvm` update needs to occur.
350 static VectorizationResult
351 vectorizeOneOp(OpBuilder &b, LinalgOp linalgOp, Operation *op,
352                const BlockAndValueMapping &bvm,
353                ArrayRef<CustomVectorizationHook> customVectorizationHooks) {
354   LDBG("vectorize op " << *op);
355 
356   // 1. Try to apply any CustomVectorizationHook.
357   if (!customVectorizationHooks.empty()) {
358     for (auto &customFunc : customVectorizationHooks) {
359       VectorizationResult result = customFunc(op, bvm);
360       if (result.status == VectorizationStatus::Failure)
361         continue;
362       return result;
363     }
364   }
365 
366   // 2. Constant ops don't get vectorized but rather broadcasted at their users.
367   // Clone so that the constant is not confined to the linalgOp block .
368   if (isa<arith::ConstantOp, ConstantOp>(op))
369     return VectorizationResult{VectorizationStatus::NewOp, b.clone(*op)};
370 
371   // 3. Only ElementwiseMappable are allowed in the generic vectorization.
372   if (!OpTrait::hasElementwiseMappableTraits(op))
373     return VectorizationResult{VectorizationStatus::Failure, nullptr};
374 
375   // 4 . Check if the operation is a reduction.
376   SmallVector<std::pair<Value, Value>> reductionOperands;
377   for (Value operand : op->getOperands()) {
378     auto arg = operand.dyn_cast<BlockArgument>();
379     if (!arg || arg.getArgNumber() < linalgOp.getNumInputs())
380       continue;
381     SmallVector<Operation *> reductionOps;
382     Value reduceValue = matchReduction(
383         linalgOp.getRegionOutputArgs(),
384         arg.getArgNumber() - linalgOp.getNumInputs(), reductionOps);
385     if (!reduceValue)
386       continue;
387     reductionOperands.push_back(std::make_pair(reduceValue, operand));
388   }
389   if (!reductionOperands.empty()) {
390     assert(reductionOperands.size() == 1);
391     Operation *reduceOp =
392         reduceIfNeeded(b, linalgOp, op, reductionOperands[0].first,
393                        reductionOperands[0].second, bvm);
394     if (reduceOp)
395       return VectorizationResult{VectorizationStatus::NewOp, reduceOp};
396   }
397 
398   // 5. Generic vectorization path for ElementwiseMappable ops.
399   //   a. first get the first max ranked shape.
400   SmallVector<int64_t, 4> firstMaxRankedShape;
401   for (Value operand : op->getOperands()) {
402     auto vt = bvm.lookup(operand).getType().dyn_cast<VectorType>();
403     if (vt && firstMaxRankedShape.size() < vt.getShape().size())
404       firstMaxRankedShape.assign(vt.getShape().begin(), vt.getShape().end());
405   }
406   //   b. broadcast each op if needed.
407   auto vectorizedOperands = llvm::map_range(op->getOperands(), [&](Value v) {
408     return firstMaxRankedShape.empty()
409                ? bvm.lookup(v)
410                : broadcastIfNeeded(b, bvm.lookup(v), firstMaxRankedShape);
411   });
412   //   c. for elementwise, the result is the vector with the firstMaxRankedShape
413   auto returnTypes = llvm::map_range(op->getResultTypes(), [&](Type t) {
414     return firstMaxRankedShape.empty()
415                ? t
416                : VectorType::get(firstMaxRankedShape, t);
417   });
418 
419   // Build and return the new op.
420   return VectorizationResult{
421       VectorizationStatus::NewOp,
422       createVectorizedOp(b, op, llvm::to_vector<4>(vectorizedOperands),
423                          llvm::to_vector<4>(returnTypes))};
424 }
425 
426 /// Detect whether `r` has only ConstantOp, ElementwiseMappable and YieldOp.
427 static bool hasOnlyScalarElementwiseOp(Region &r) {
428   if (!llvm::hasSingleElement(r))
429     return false;
430   for (Operation &op : r.front()) {
431     if (!(isa<arith::ConstantOp, ConstantOp, linalg::YieldOp, linalg::IndexOp>(
432               op) ||
433           OpTrait::hasElementwiseMappableTraits(&op)) ||
434         llvm::any_of(op.getResultTypes(),
435                      [](Type type) { return !type.isIntOrIndexOrFloat(); }))
436       return false;
437   }
438   return true;
439 }
440 
441 // Return true if the op is an element-wise linalg op.
442 static bool isElementwise(Operation *op) {
443   auto linalgOp = dyn_cast<linalg::LinalgOp>(op);
444   if (!linalgOp)
445     return false;
446   if (linalgOp.getNumLoops() != linalgOp.getNumParallelLoops())
447     return false;
448   // TODO: relax the restrictions on indexing map.
449   for (OpOperand *opOperand : linalgOp.getOutputOperands()) {
450     if (!linalgOp.getTiedIndexingMap(opOperand).isIdentity())
451       return false;
452   }
453   return hasOnlyScalarElementwiseOp(linalgOp->getRegion(0));
454 }
455 
456 /// Generic vectorization function that rewrites the body of a `linalgOp` into
457 /// vector form. Generic vectorization proceeds as follows:
458 ///   1. Verify the `linalgOp` has one non-empty region.
459 ///   2. Values defined above the region are mapped to themselves and will be
460 ///   broadcasted on a per-need basis by their consumers.
461 ///   3. Each region argument is vectorized into a vector.transfer_read (or 0-d
462 ///   load).
463 ///   TODO: Reuse opportunities for RAR dependencies.
464 ///   4a. Register CustomVectorizationHook for YieldOp to capture the results.
465 ///   4b. Register CustomVectorizationHook for IndexOp to access the iteration
466 ///   indices.
467 ///   5. Iteratively call vectorizeOneOp on the region operations.
468 ///
469 /// When `broadcastToMaximalCommonShape` is set to true, eager broadcasting is
470 /// performed to the maximal common vector size implied by the `linalgOp`
471 /// iteration space. This eager broadcasting is introduced in the
472 /// permutation_map of the vector.transfer_read operations. The eager
473 /// broadcasting makes it trivial to detrmine where broadcast, transposes and
474 /// reductions should occur, without any bookkeeping. The tradeoff is that, in
475 /// the absence of good canonicalizations, the amount of work increases.
476 /// This is not deemed a problem as we expect canonicalizations and foldings to
477 /// aggressively clean up the useless work.
478 static LogicalResult
479 vectorizeAsLinalgGeneric(OpBuilder &b, LinalgOp linalgOp,
480                          SmallVectorImpl<Value> &newResults) {
481   Block *block = linalgOp.getBlock();
482 
483   // 2. Values defined above the region can only be broadcast for now. Make them
484   // map to themselves.
485   BlockAndValueMapping bvm;
486   SetVector<Value> valuesSet;
487   mlir::getUsedValuesDefinedAbove(linalgOp->getRegion(0), valuesSet);
488   bvm.map(valuesSet.getArrayRef(), valuesSet.getArrayRef());
489 
490   if (linalgOp.getNumOutputs() == 0)
491     return failure();
492 
493   // TODO: the common vector shape is equal to the static loop sizes only when
494   // all indexing maps are projected permutations. For convs and stencils the
495   // logic will need to evolve.
496   SmallVector<int64_t> commonVectorShape = linalgOp.computeStaticLoopSizes();
497 
498   // 3. Turn all BBArgs into vector.transfer_read / load.
499   Location loc = linalgOp.getLoc();
500   Value zero = b.create<arith::ConstantIndexOp>(loc, 0);
501   for (OpOperand *opOperand : linalgOp.getInputAndOutputOperands()) {
502     BlockArgument bbarg = block->getArgument(opOperand->getOperandNumber());
503     if (linalgOp.isScalar(opOperand)) {
504       bvm.map(bbarg, opOperand->get());
505       continue;
506     }
507     VectorType readType;
508     AffineMap map;
509     // TODO: can we keep this simplification?
510     // if (linalgOp.getShape(opOperand).empty()) {
511     //   readType = VectorType::get({}, bbarg.getType());
512     // } else {
513     if (opOperand->getOperandNumber() < linalgOp.getNumInputs()) {
514       map = inverseAndBroadcastProjectedPermuation(
515           linalgOp.getTiedIndexingMap(opOperand));
516       readType = VectorType::get(commonVectorShape,
517                                  getElementTypeOrSelf(opOperand->get()));
518     } else {
519       map = inversePermutation(
520           reindexIndexingMap(linalgOp.getTiedIndexingMap(opOperand)));
521       readType = VectorType::get(map.compose(linalgOp.getShape(opOperand)),
522                                  getElementTypeOrSelf(opOperand->get()));
523     }
524     // }
525 
526     auto shape = linalgOp.getShape(opOperand);
527     SmallVector<Value> indices(shape.size(), zero);
528     Value readValue = b.create<vector::TransferReadOp>(
529         loc, readType, opOperand->get(), indices, map);
530     // Not all ops support 0-d vectors, extract the scalar for now.
531     // TODO: remove this.
532     if (readValue.getType().cast<VectorType>().getRank() == 0)
533       readValue = b.create<vector::ExtractElementOp>(loc, readValue);
534 
535     LDBG("new vectorized bbarg(" << bbarg.getArgNumber() << "): " << readValue);
536     bvm.map(bbarg, readValue);
537     bvm.map(opOperand->get(), readValue);
538   }
539 
540   SmallVector<CustomVectorizationHook> hooks;
541   // 4a. Register CustomVectorizationHook for yieldOp.
542   CustomVectorizationHook vectorizeYield =
543       [&](Operation *op,
544           const BlockAndValueMapping &bvm) -> VectorizationResult {
545     return vectorizeLinalgYield(b, op, bvm, linalgOp, newResults);
546   };
547   hooks.push_back(vectorizeYield);
548 
549   // 4b. Register CustomVectorizationHook for indexOp.
550   CustomVectorizationHook vectorizeIndex =
551       [&](Operation *op,
552           const BlockAndValueMapping &bvm) -> VectorizationResult {
553     return vectorizeLinalgIndex(b, op, linalgOp);
554   };
555   hooks.push_back(vectorizeIndex);
556 
557   // 5. Iteratively call `vectorizeOneOp` to each op in the slice.
558   for (Operation &op : block->getOperations()) {
559     VectorizationResult result = vectorizeOneOp(b, linalgOp, &op, bvm, hooks);
560     if (result.status == VectorizationStatus::Failure) {
561       LDBG("failed to vectorize: " << op);
562       return failure();
563     }
564     if (result.status == VectorizationStatus::NewOp) {
565       LDBG("new vector op: " << *result.newOp;);
566       bvm.map(op.getResults(), result.newOp->getResults());
567     }
568   }
569 
570   return success();
571 }
572 
573 /// Helper function to vectorize a `linalgOp` with contraction semantics in a
574 /// generic fashion.
575 /// This helper is needed atm because the truly generic implementation requires
576 /// good vector.multi_reduce folding patterns that are currently NYI.
577 // TODO: drop reliance on a specific pattern.
578 static bool allIndexingsAreProjectedPermutation(LinalgOp op) {
579   return llvm::all_of(op.getIndexingMaps(), [](AffineMap m) {
580     return m.isProjectedPermutation(/*allowZeroInResults=*/true);
581   });
582 }
583 
584 // TODO: probably need some extra checks for reduction followed by consumer
585 // ops that may not commute (e.g. linear reduction + non-linear instructions).
586 static LogicalResult reductionPreconditions(LinalgOp op) {
587   if (llvm::none_of(op.iterator_types(), isReductionIterator)) {
588     LDBG("reduction precondition failed: no reduction iterator");
589     return failure();
590   }
591   for (OpOperand *opOperand : op.getOutputOperands()) {
592     Operation *reduceOp = matchLinalgReduction(opOperand);
593     if (!reduceOp || !getCombinerOpKind(reduceOp)) {
594       LDBG("reduction precondition failed: reduction detection failed");
595       return failure();
596     }
597   }
598   return success();
599 }
600 
601 static LogicalResult vectorizeStaticLinalgOpPrecondition(linalg::LinalgOp op) {
602   if (isElementwise(op))
603     return success();
604   // TODO: isaConvolutionOpInterface that can also infer from generic features.
605   // But we will still need stride/dilation attributes that will be annoying to
606   // reverse-engineer...
607   if (isa<ConvolutionOpInterface>(op.getOperation()))
608     return success();
609   // TODO: the common vector shape is equal to the static loop sizes only when
610   // all indexing maps are projected permutations. For convs and stencils the
611   // logic will need to evolve.
612   if (!allIndexingsAreProjectedPermutation(op)) {
613     LDBG("precondition failed: not projected permutations");
614     return failure();
615   }
616   if (failed(reductionPreconditions(op))) {
617     LDBG("precondition failed: reduction preconditions");
618     return failure();
619   }
620   return success();
621 }
622 
623 static LogicalResult vectorizeLinalgOpPrecondition(LinalgOp linalgOp) {
624   // All types must be static shape to go to vector.
625   if (linalgOp.hasDynamicShape()) {
626     LDBG("precondition failed: dynamic shape");
627     return failure();
628   }
629   return vectorizeStaticLinalgOpPrecondition(linalgOp);
630 }
631 
632 LogicalResult mlir::linalg::vectorize(RewriterBase &rewriter,
633                                       LinalgOp linalgOp) {
634   if (failed(vectorizeLinalgOpPrecondition(linalgOp)))
635     return failure();
636 
637   SmallVector<Value> results;
638   // TODO: isaConvolutionOpInterface that can also infer from generic
639   // features. Will require stride/dilation attributes inference.
640   FailureOr<Operation *> convOr = vectorizeConvolution(rewriter, linalgOp);
641   if (succeeded(convOr)) {
642     llvm::append_range(results, (*convOr)->getResults());
643   } else {
644     if (failed(vectorizeLinalgOpPrecondition(linalgOp)))
645       return failure();
646     LDBG("Vectorize generic by broadcasting to a common shape: " << linalgOp);
647     if (failed(vectorizeAsLinalgGeneric(rewriter, linalgOp, results)))
648       return failure();
649   }
650 
651   if (!results.empty())
652     rewriter.replaceOp(linalgOp, results);
653   else
654     rewriter.eraseOp(linalgOp);
655 
656   return success();
657 }
658 
659 //----------------------------------------------------------------------------//
660 // Misc. vectorization patterns.
661 //----------------------------------------------------------------------------//
662 
663 /// Helper function that retrieves the value of an IntegerAttr.
664 static int64_t getIntFromAttr(Attribute attr) {
665   return attr.cast<IntegerAttr>().getInt();
666 }
667 
668 /// Given an ArrayRef of OpFoldResults, return a vector of Values.
669 /// IntegerAttrs are converted to ConstantIndexOps. Other attribute types are
670 /// not supported.
671 static SmallVector<Value> ofrToIndexValues(OpBuilder &builder, Location loc,
672                                            ArrayRef<OpFoldResult> ofrs) {
673   SmallVector<Value> result;
674   llvm::for_each(ofrs, [&](auto o) {
675     if (auto val = o.template dyn_cast<Value>()) {
676       result.push_back(val);
677     } else {
678       result.push_back(builder.create<arith::ConstantIndexOp>(
679           loc, getIntFromAttr(o.template get<Attribute>())));
680     }
681   });
682   return result;
683 }
684 
685 /// Rewrite a tensor::PadOp into a sequence of InitTensorOp, FillOp and
686 /// InsertSliceOp. For now, only constant padding values are supported.
687 /// If there is enough static type information, TransferReadOps and
688 /// TransferWriteOps may be generated instead of InsertSliceOps.
689 struct GenericPadOpVectorizationPattern : public GeneralizePadOpPattern {
690   GenericPadOpVectorizationPattern(MLIRContext *context,
691                                    PatternBenefit benefit = 1)
692       : GeneralizePadOpPattern(context, tryVectorizeCopy, benefit) {}
693   /// Vectorize the copying of a tensor::PadOp's source. This is possible if
694   /// each dimension size is statically know in the source type or the result
695   /// type (or both).
696   static LogicalResult tryVectorizeCopy(PatternRewriter &rewriter,
697                                         tensor::PadOp padOp, Value dest) {
698     auto sourceType = padOp.getSourceType();
699     auto resultType = padOp.getResultType();
700 
701     // Copy cannot be vectorized if pad value is non-constant and source shape
702     // is dynamic. In case of a dynamic source shape, padding must be appended
703     // by TransferReadOp, but TransferReadOp supports only constant padding.
704     auto padValue = padOp.getConstantPaddingValue();
705     if (!padValue) {
706       if (!sourceType.hasStaticShape())
707         return failure();
708       // Create dummy padding value.
709       auto elemType = sourceType.getElementType();
710       padValue = rewriter.create<arith::ConstantOp>(
711           padOp.getLoc(), elemType, rewriter.getZeroAttr(elemType));
712     }
713 
714     SmallVector<int64_t> vecShape;
715     SmallVector<bool> readInBounds;
716     SmallVector<bool> writeInBounds;
717     for (unsigned i = 0; i < sourceType.getRank(); ++i) {
718       if (!sourceType.isDynamicDim(i)) {
719         vecShape.push_back(sourceType.getDimSize(i));
720         // Source shape is statically known: Neither read nor write are
721         // out-of- bounds.
722         readInBounds.push_back(true);
723         writeInBounds.push_back(true);
724       } else if (!resultType.isDynamicDim(i)) {
725         // Source shape is not statically known, but result shape is.
726         // Vectorize with size of result shape. This may be larger than the
727         // source size.
728         vecShape.push_back(resultType.getDimSize(i));
729         // Read may be out-of-bounds because the result size could be larger
730         // than the source size.
731         readInBounds.push_back(false);
732         // Write is out-of-bounds if low padding > 0.
733         writeInBounds.push_back(
734             getConstantIntValue(padOp.getMixedLowPad()[i]) ==
735             static_cast<int64_t>(0));
736       } else {
737         // Neither source nor result dim of padOp is static. Cannot vectorize
738         // the copy.
739         return failure();
740       }
741     }
742     auto vecType = VectorType::get(vecShape, sourceType.getElementType());
743 
744     // Generate TransferReadOp.
745     SmallVector<Value> readIndices(
746         vecType.getRank(),
747         rewriter.create<arith::ConstantIndexOp>(padOp.getLoc(), 0));
748     auto read = rewriter.create<vector::TransferReadOp>(
749         padOp.getLoc(), vecType, padOp.source(), readIndices, padValue,
750         ArrayRef<bool>{readInBounds});
751 
752     // If `dest` is a FillOp and the TransferWriteOp would overwrite the
753     // entire tensor, write directly to the FillOp's operand.
754     if (llvm::equal(vecShape, resultType.getShape()) &&
755         llvm::all_of(writeInBounds, [](bool b) { return b; }))
756       if (auto fill = dest.getDefiningOp<FillOp>())
757         dest = fill.output();
758 
759     // Generate TransferWriteOp.
760     auto writeIndices =
761         ofrToIndexValues(rewriter, padOp.getLoc(), padOp.getMixedLowPad());
762     rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(
763         padOp, read, dest, writeIndices, ArrayRef<bool>{writeInBounds});
764 
765     return success();
766   }
767 };
768 
769 /// Base pattern for rewriting tensor::PadOps whose result is consumed by a
770 /// given operation type OpTy.
771 template <typename OpTy>
772 struct VectorizePadOpUserPattern : public OpRewritePattern<tensor::PadOp> {
773   using OpRewritePattern<tensor::PadOp>::OpRewritePattern;
774 
775   LogicalResult matchAndRewrite(tensor::PadOp padOp,
776                                 PatternRewriter &rewriter) const final {
777     bool changed = false;
778     // Insert users in vector, because some users may be replaced/removed.
779     for (auto *user : llvm::to_vector<4>(padOp->getUsers()))
780       if (auto op = dyn_cast<OpTy>(user))
781         changed |= rewriteUser(rewriter, padOp, op).succeeded();
782     return success(changed);
783   }
784 
785 protected:
786   virtual LogicalResult rewriteUser(PatternRewriter &rewriter,
787                                     tensor::PadOp padOp, OpTy op) const = 0;
788 };
789 
790 /// Rewrite use of tensor::PadOp result in TransferReadOp. E.g.:
791 /// ```
792 /// %0 = linalg.pad_tensor %src ... : tensor<?x?xf32> to tensor<17x5xf32>
793 /// %r = vector.transfer_read %0[%c0, %c0], %cst
794 ///     {in_bounds = [true, true]} : tensor<17x5xf32>, vector<17x5xf32>
795 /// ```
796 /// is rewritten to:
797 /// ```
798 /// %r = vector.transfer_read %src[%c0, %c0], %padding
799 ///     {in_bounds = [true, true]}
800 ///     : tensor<?x?xf32>, vector<17x5xf32>
801 /// ```
802 /// Note: By restricting this pattern to in-bounds TransferReadOps, we can be
803 /// sure that the original padding value %cst was never used.
804 ///
805 /// This rewrite is possible if:
806 /// - `xferOp` has no out-of-bounds dims or mask.
807 /// - Low padding is static 0.
808 /// - Single, scalar padding value.
809 struct PadOpVectorizationWithTransferReadPattern
810     : public VectorizePadOpUserPattern<vector::TransferReadOp> {
811   using VectorizePadOpUserPattern<
812       vector::TransferReadOp>::VectorizePadOpUserPattern;
813 
814   LogicalResult rewriteUser(PatternRewriter &rewriter, tensor::PadOp padOp,
815                             vector::TransferReadOp xferOp) const override {
816     // Low padding must be static 0.
817     if (!padOp.hasZeroLowPad())
818       return failure();
819     // Pad value must be a constant.
820     auto padValue = padOp.getConstantPaddingValue();
821     if (!padValue)
822       return failure();
823     // Padding value of existing `xferOp` is unused.
824     if (xferOp.hasOutOfBoundsDim() || xferOp.mask())
825       return failure();
826 
827     rewriter.updateRootInPlace(xferOp, [&]() {
828       SmallVector<bool> inBounds(xferOp.getVectorType().getRank(), false);
829       xferOp->setAttr(xferOp.getInBoundsAttrName(),
830                       rewriter.getBoolArrayAttr(inBounds));
831       xferOp.sourceMutable().assign(padOp.source());
832       xferOp.paddingMutable().assign(padValue);
833     });
834 
835     return success();
836   }
837 };
838 
839 /// Rewrite use of tensor::PadOp result in TransferWriteOp.
840 /// This pattern rewrites TransferWriteOps that write to a padded tensor
841 /// value, where the same amount of padding is immediately removed again after
842 /// the write. In such cases, the TransferWriteOp can write to the non-padded
843 /// tensor value and apply out-of-bounds masking. E.g.:
844 /// ```
845 /// %0 = tensor.extract_slice ...[...] [%s0, %s1] [1, 1]
846 ///     : tensor<...> to tensor<?x?xf32>
847 /// %1 = linalg.pad_tensor %0 ... : tensor<?x?xf32> to tensor<17x5xf32>
848 /// %2 = vector.transfer_write %vec, %1[...]
849 ///     : vector<17x5xf32>, tensor<17x5xf32>
850 /// %r = tensor.extract_slice %2[0, 0] [%s0, %s1] [1, 1]
851 ///     : tensor<17x5xf32> to tensor<?x?xf32>
852 /// ```
853 /// is rewritten to:
854 /// ```
855 /// %0 = tensor.extract_slice ...[...] [%s0, %s1] [1, 1]
856 ///     : tensor<...> to tensor<?x?xf32>
857 /// %r = vector.transfer_write %vec, %0[...] : vector<17x5xf32>,
858 /// tensor<?x?xf32>
859 /// ```
860 /// Note: It is important that the ExtractSliceOp %r resizes the result of the
861 /// TransferWriteOp to the same size as the input of the TensorPadOp (or an
862 /// even smaller size). Otherwise, %r's new (dynamic) dimensions would differ
863 /// from %r's old dimensions.
864 ///
865 /// This rewrite is possible if:
866 /// - Low padding is static 0.
867 /// - `xferOp` has exactly one use, which is an ExtractSliceOp. This
868 ///   ExtractSliceOp trims the same amount of padding that was added
869 ///   beforehand.
870 /// - Single, scalar padding value.
871 struct PadOpVectorizationWithTransferWritePattern
872     : public VectorizePadOpUserPattern<vector::TransferWriteOp> {
873   using VectorizePadOpUserPattern<
874       vector::TransferWriteOp>::VectorizePadOpUserPattern;
875 
876   LogicalResult rewriteUser(PatternRewriter &rewriter, tensor::PadOp padOp,
877                             vector::TransferWriteOp xferOp) const override {
878     // TODO: support 0-d corner case.
879     if (xferOp.getTransferRank() == 0)
880       return failure();
881 
882     // Low padding must be static 0.
883     if (!padOp.hasZeroLowPad())
884       return failure();
885     // Pad value must be a constant.
886     auto padValue = padOp.getConstantPaddingValue();
887     if (!padValue)
888       return failure();
889     // TransferWriteOp result must be directly consumed by an ExtractSliceOp.
890     if (!xferOp->hasOneUse())
891       return failure();
892     auto trimPadding = dyn_cast<tensor::ExtractSliceOp>(*xferOp->user_begin());
893     if (!trimPadding)
894       return failure();
895     // Only static zero offsets supported when trimming padding.
896     if (!trimPadding.hasZeroOffset())
897       return failure();
898     // trimPadding must remove the amount of padding that was added earlier.
899     if (!hasSameTensorSize(padOp.source(), trimPadding))
900       return failure();
901 
902     // Insert the new TransferWriteOp at position of the old TransferWriteOp.
903     rewriter.setInsertionPoint(xferOp);
904 
905     SmallVector<bool> inBounds(xferOp.getVectorType().getRank(), false);
906     auto newXferOp = rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(
907         xferOp, padOp.source().getType(), xferOp.vector(), padOp.source(),
908         xferOp.indices(), xferOp.permutation_mapAttr(), xferOp.mask(),
909         rewriter.getBoolArrayAttr(inBounds));
910     rewriter.replaceOp(trimPadding, newXferOp->getResult(0));
911 
912     return success();
913   }
914 
915   /// Check if `beforePadding` and `afterTrimming` have the same tensor size,
916   /// i.e., same dimensions.
917   ///
918   /// Dimensions may be static, dynamic or mix of both. In case of dynamic
919   /// dimensions, this function tries to infer the (static) tensor size by
920   /// looking at the defining op and utilizing op-specific knowledge.
921   ///
922   /// This is a conservative analysis. In case equal tensor sizes cannot be
923   /// proven statically, this analysis returns `false` even though the tensor
924   /// sizes may turn out to be equal at runtime.
925   bool hasSameTensorSize(Value beforePadding,
926                          tensor::ExtractSliceOp afterTrimming) const {
927     // If the input to tensor::PadOp is a CastOp, try with with both CastOp
928     // result and CastOp operand.
929     if (auto castOp = beforePadding.getDefiningOp<tensor::CastOp>())
930       if (hasSameTensorSize(castOp.source(), afterTrimming))
931         return true;
932 
933     auto t1 = beforePadding.getType().dyn_cast<RankedTensorType>();
934     auto t2 = afterTrimming.getType().dyn_cast<RankedTensorType>();
935     // Only RankedTensorType supported.
936     if (!t1 || !t2)
937       return false;
938     // Rank of both values must be the same.
939     if (t1.getRank() != t2.getRank())
940       return false;
941 
942     // All static dimensions must be the same. Mixed cases (e.g., dimension
943     // static in `t1` but dynamic in `t2`) are not supported.
944     for (unsigned i = 0; i < t1.getRank(); ++i) {
945       if (t1.isDynamicDim(i) != t2.isDynamicDim(i))
946         return false;
947       if (!t1.isDynamicDim(i) && t1.getDimSize(i) != t2.getDimSize(i))
948         return false;
949     }
950 
951     // Nothing more to check if all dimensions are static.
952     if (t1.getNumDynamicDims() == 0)
953       return true;
954 
955     // All dynamic sizes must be the same. The only supported case at the
956     // moment is when `beforePadding` is an ExtractSliceOp (or a cast
957     // thereof).
958 
959     // Apart from CastOp, only ExtractSliceOp is supported.
960     auto beforeSlice = beforePadding.getDefiningOp<tensor::ExtractSliceOp>();
961     if (!beforeSlice)
962       return false;
963 
964     assert(static_cast<size_t>(t1.getRank()) ==
965            beforeSlice.getMixedSizes().size());
966     assert(static_cast<size_t>(t2.getRank()) ==
967            afterTrimming.getMixedSizes().size());
968 
969     for (unsigned i = 0; i < t1.getRank(); ++i) {
970       // Skip static dimensions.
971       if (!t1.isDynamicDim(i))
972         continue;
973       auto size1 = beforeSlice.getMixedSizes()[i];
974       auto size2 = afterTrimming.getMixedSizes()[i];
975 
976       // Case 1: Same value or same constant int.
977       if (isEqualConstantIntOrValue(size1, size2))
978         continue;
979 
980       // Other cases: Take a deeper look at defining ops of values.
981       auto v1 = size1.dyn_cast<Value>();
982       auto v2 = size2.dyn_cast<Value>();
983       if (!v1 || !v2)
984         return false;
985 
986       // Case 2: Both values are identical AffineMinOps. (Should not happen if
987       // CSE is run.)
988       auto minOp1 = v1.getDefiningOp<AffineMinOp>();
989       auto minOp2 = v2.getDefiningOp<AffineMinOp>();
990       if (minOp1 && minOp2 && minOp1.getAffineMap() == minOp2.getAffineMap() &&
991           minOp1.operands() == minOp2.operands())
992         continue;
993 
994       // Add additional cases as needed.
995     }
996 
997     // All tests passed.
998     return true;
999   }
1000 };
1001 
1002 /// Rewrite use of tensor::PadOp result in InsertSliceOp. E.g.:
1003 /// ```
1004 /// %0 = linalg.pad_tensor %src ... : tensor<?x?xf32> to tensor<17x5xf32>
1005 /// %r = tensor.insert_slice %0
1006 ///     into %dest[%a, %b, 0, 0] [1, 1, 17, 5] [1, 1, 1, 1]
1007 ///     : tensor<17x5xf32> into tensor<?x?x17x5xf32>
1008 /// ```
1009 /// is rewritten to:
1010 /// ```
1011 /// %0 = vector.transfer_read %src[%c0, %c0], %padding
1012 ///     : tensor<?x?xf32>, vector<17x5xf32>
1013 /// %r = vector.transfer_write %0, %dest[%a, %b, %c0, %c0]
1014 ///     {in_bounds = [true, true]} : vector<17x5xf32>, tensor<?x?x17x5xf32>
1015 /// ```
1016 ///
1017 /// This rewrite is possible if:
1018 /// - Low padding is static 0.
1019 /// - `padOp` result shape is static.
1020 /// - The entire padded tensor is inserted.
1021 ///   (Implies that sizes of `insertOp` are all static.)
1022 /// - Only unit strides in `insertOp`.
1023 /// - Single, scalar padding value.
1024 /// - `padOp` result not used as destination.
1025 struct PadOpVectorizationWithInsertSlicePattern
1026     : public VectorizePadOpUserPattern<tensor::InsertSliceOp> {
1027   using VectorizePadOpUserPattern<
1028       tensor::InsertSliceOp>::VectorizePadOpUserPattern;
1029 
1030   LogicalResult rewriteUser(PatternRewriter &rewriter, tensor::PadOp padOp,
1031                             tensor::InsertSliceOp insertOp) const override {
1032     // Low padding must be static 0.
1033     if (!padOp.hasZeroLowPad())
1034       return failure();
1035     // Only unit stride supported.
1036     if (!insertOp.hasUnitStride())
1037       return failure();
1038     // Pad value must be a constant.
1039     auto padValue = padOp.getConstantPaddingValue();
1040     if (!padValue)
1041       return failure();
1042     // Dynamic shapes not supported.
1043     if (!padOp.result().getType().cast<ShapedType>().hasStaticShape())
1044       return failure();
1045     // Pad result not used as destination.
1046     if (insertOp.dest() == padOp.result())
1047       return failure();
1048 
1049     auto vecType = VectorType::get(padOp.getType().getShape(),
1050                                    padOp.getType().getElementType());
1051     unsigned vecRank = vecType.getRank();
1052     unsigned tensorRank = insertOp.getType().getRank();
1053 
1054     // Check if sizes match: Insert the entire tensor into most minor dims.
1055     // (No permutations allowed.)
1056     SmallVector<int64_t> expectedSizes(tensorRank - vecRank, 1);
1057     expectedSizes.append(vecType.getShape().begin(), vecType.getShape().end());
1058     if (!llvm::all_of(
1059             llvm::zip(insertOp.getMixedSizes(), expectedSizes), [](auto it) {
1060               return getConstantIntValue(std::get<0>(it)) == std::get<1>(it);
1061             }))
1062       return failure();
1063 
1064     // Insert the TransferReadOp and TransferWriteOp at the position of the
1065     // InsertSliceOp.
1066     rewriter.setInsertionPoint(insertOp);
1067 
1068     // Generate TransferReadOp: Read entire source tensor and add high
1069     // padding.
1070     SmallVector<Value> readIndices(
1071         vecRank, rewriter.create<arith::ConstantIndexOp>(padOp.getLoc(), 0));
1072     auto read = rewriter.create<vector::TransferReadOp>(
1073         padOp.getLoc(), vecType, padOp.source(), readIndices, padValue);
1074 
1075     // Generate TransferWriteOp: Write to InsertSliceOp's dest tensor at
1076     // specified offsets. Write is fully in-bounds because a InsertSliceOp's
1077     // source must fit into the destination at the specified offsets.
1078     auto writeIndices =
1079         ofrToIndexValues(rewriter, padOp.getLoc(), insertOp.getMixedOffsets());
1080     SmallVector<bool> inBounds(vecRank, true);
1081     rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(
1082         insertOp, read, insertOp.dest(), writeIndices,
1083         ArrayRef<bool>{inBounds});
1084 
1085     return success();
1086   }
1087 };
1088 
1089 void mlir::linalg::populatePadOpVectorizationPatterns(
1090     RewritePatternSet &patterns, PatternBenefit baseBenefit) {
1091   patterns.add<GenericPadOpVectorizationPattern>(patterns.getContext(),
1092                                                  baseBenefit);
1093   // Try these specialized patterns first before resorting to the generic one.
1094   patterns.add<PadOpVectorizationWithTransferReadPattern,
1095                PadOpVectorizationWithTransferWritePattern,
1096                PadOpVectorizationWithInsertSlicePattern>(
1097       patterns.getContext(), baseBenefit.getBenefit() + 1);
1098 }
1099 
1100 //----------------------------------------------------------------------------//
1101 // Forwarding patterns
1102 //----------------------------------------------------------------------------//
1103 
1104 /// Check whether there is any interleaved use of any `values` between
1105 /// `firstOp` and `secondOp`. Conservatively return `true` if any op or value
1106 /// is in a different block.
1107 static bool mayExistInterleavedUses(Operation *firstOp, Operation *secondOp,
1108                                     ValueRange values) {
1109   if (firstOp->getBlock() != secondOp->getBlock() ||
1110       !firstOp->isBeforeInBlock(secondOp)) {
1111     LDBG("interleavedUses precondition failed, firstOp: "
1112          << *firstOp << ", second op: " << *secondOp);
1113     return true;
1114   }
1115   for (auto v : values) {
1116     for (auto &u : v.getUses()) {
1117       Operation *owner = u.getOwner();
1118       if (owner == firstOp || owner == secondOp)
1119         continue;
1120       // TODO: this is too conservative, use dominance info in the future.
1121       if (owner->getBlock() == firstOp->getBlock() &&
1122           (owner->isBeforeInBlock(firstOp) || secondOp->isBeforeInBlock(owner)))
1123         continue;
1124       LDBG(" found interleaved op " << *owner << ", firstOp: " << *firstOp
1125                                     << ", second op: " << *secondOp);
1126       return true;
1127     }
1128   }
1129   return false;
1130 }
1131 
1132 /// Return the unique subview use of `v` if it is indeed unique, null
1133 /// otherwise.
1134 static memref::SubViewOp getSubViewUseIfUnique(Value v) {
1135   memref::SubViewOp subViewOp;
1136   for (auto &u : v.getUses()) {
1137     if (auto newSubViewOp = dyn_cast<memref::SubViewOp>(u.getOwner())) {
1138       if (subViewOp)
1139         return memref::SubViewOp();
1140       subViewOp = newSubViewOp;
1141     }
1142   }
1143   return subViewOp;
1144 }
1145 
1146 /// TODO: use interfaces, side-effects and aliasing analysis as appropriate,
1147 /// when available.
1148 LogicalResult LinalgCopyVTRForwardingPattern::matchAndRewrite(
1149     vector::TransferReadOp xferOp, PatternRewriter &rewriter) const {
1150 
1151   // TODO: support mask.
1152   if (xferOp.mask())
1153     return failure();
1154 
1155   // Transfer into `view`.
1156   Value viewOrAlloc = xferOp.source();
1157   if (!viewOrAlloc.getDefiningOp<memref::ViewOp>() &&
1158       !viewOrAlloc.getDefiningOp<memref::AllocOp>())
1159     return failure();
1160 
1161   LDBG(viewOrAlloc);
1162 
1163   // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`.
1164   memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc);
1165   if (!subViewOp)
1166     return failure();
1167   Value subView = subViewOp.getResult();
1168   LDBG("with subView " << subView);
1169 
1170   // Find the copy into `subView` without interleaved uses.
1171   CopyOp copyOp;
1172   for (auto &u : subView.getUses()) {
1173     if (auto newCopyOp = dyn_cast<CopyOp>(u.getOwner())) {
1174       assert(newCopyOp.output().getType().isa<MemRefType>());
1175       if (newCopyOp.output() != subView)
1176         continue;
1177       LDBG("copy candidate " << *newCopyOp);
1178       if (mayExistInterleavedUses(newCopyOp, xferOp, {viewOrAlloc, subView}))
1179         continue;
1180       copyOp = newCopyOp;
1181       break;
1182     }
1183   }
1184   if (!copyOp)
1185     return failure();
1186   LDBG("with copy " << *copyOp);
1187 
1188   // Find the fill into `viewOrAlloc` without interleaved uses before the
1189   // copy.
1190   FillOp maybeFillOp;
1191   for (auto &u : viewOrAlloc.getUses()) {
1192     if (auto newFillOp = dyn_cast<FillOp>(u.getOwner())) {
1193       assert(newFillOp.output().getType().isa<MemRefType>());
1194       if (newFillOp.output() != viewOrAlloc)
1195         continue;
1196       LDBG("fill candidate " << *newFillOp);
1197       if (mayExistInterleavedUses(newFillOp, copyOp, {viewOrAlloc, subView}))
1198         continue;
1199       maybeFillOp = newFillOp;
1200       break;
1201     }
1202   }
1203   // Ensure padding matches.
1204   if (maybeFillOp && xferOp.padding() != maybeFillOp.value())
1205     return failure();
1206   if (maybeFillOp)
1207     LDBG("with maybeFillOp " << *maybeFillOp);
1208 
1209   // `in` is the subview that linalg.copy reads. Replace it.
1210   Value in = copyOp.input();
1211 
1212   // linalg.copy + linalg.fill can be used to create a padded local buffer.
1213   // The `masked` attribute is only valid on this padded buffer.
1214   // When forwarding to vector.transfer_read, the attribute must be reset
1215   // conservatively.
1216   Value res = rewriter.create<vector::TransferReadOp>(
1217       xferOp.getLoc(), xferOp.getVectorType(), in, xferOp.indices(),
1218       xferOp.permutation_mapAttr(), xferOp.padding(), xferOp.mask(),
1219       // in_bounds is explicitly reset
1220       /*inBoundsAttr=*/ArrayAttr());
1221 
1222   if (maybeFillOp)
1223     rewriter.eraseOp(maybeFillOp);
1224   rewriter.eraseOp(copyOp);
1225   rewriter.replaceOp(xferOp, res);
1226 
1227   return success();
1228 }
1229 
1230 /// TODO: use interfaces, side-effects and aliasing analysis as appropriate,
1231 /// when available.
1232 LogicalResult LinalgCopyVTWForwardingPattern::matchAndRewrite(
1233     vector::TransferWriteOp xferOp, PatternRewriter &rewriter) const {
1234   // TODO: support mask.
1235   if (xferOp.mask())
1236     return failure();
1237 
1238   // Transfer into `viewOrAlloc`.
1239   Value viewOrAlloc = xferOp.source();
1240   if (!viewOrAlloc.getDefiningOp<memref::ViewOp>() &&
1241       !viewOrAlloc.getDefiningOp<memref::AllocOp>())
1242     return failure();
1243 
1244   // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`.
1245   memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc);
1246   if (!subViewOp)
1247     return failure();
1248   Value subView = subViewOp.getResult();
1249 
1250   // Find the copy from `subView` without interleaved uses.
1251   CopyOp copyOp;
1252   for (auto &u : subViewOp.getResult().getUses()) {
1253     if (auto newCopyOp = dyn_cast<CopyOp>(u.getOwner())) {
1254       if (newCopyOp.getInputOperand(0)->get() != subView)
1255         continue;
1256       if (mayExistInterleavedUses(xferOp, newCopyOp, {viewOrAlloc, subView}))
1257         continue;
1258       copyOp = newCopyOp;
1259       break;
1260     }
1261   }
1262   if (!copyOp)
1263     return failure();
1264 
1265   // `out` is the subview copied into that we replace.
1266   assert(copyOp.output().getType().isa<MemRefType>());
1267   Value out = copyOp.output();
1268 
1269   // Forward vector.transfer into copy.
1270   // linalg.copy + linalg.fill can be used to create a padded local buffer.
1271   // The `masked` attribute is only valid on this padded buffer.
1272   // When forwarding to vector.transfer_write, the attribute must be reset
1273   // conservatively.
1274   rewriter.create<vector::TransferWriteOp>(
1275       xferOp.getLoc(), xferOp.vector(), out, xferOp.indices(),
1276       xferOp.permutation_mapAttr(), xferOp.mask(),
1277       // in_bounds is explicitly reset
1278       /*inBoundsAttr=*/ArrayAttr());
1279 
1280   rewriter.eraseOp(copyOp);
1281   rewriter.eraseOp(xferOp);
1282 
1283   return success();
1284 }
1285 
1286 //===----------------------------------------------------------------------===//
1287 // Convolution vectorization patterns
1288 //===----------------------------------------------------------------------===//
1289 
1290 template <int N>
1291 static void bindShapeDims(ShapedType shapedType) {}
1292 
1293 template <int N, typename IntTy, typename... IntTy2>
1294 static void bindShapeDims(ShapedType shapedType, IntTy &val, IntTy2 &...vals) {
1295   val = shapedType.getShape()[N];
1296   bindShapeDims<N + 1, IntTy2 &...>(shapedType, vals...);
1297 }
1298 
1299 /// Bind a pack of int& to the leading dimensions of shapedType.getShape().
1300 template <typename... IntTy>
1301 static void bindShapeDims(ShapedType shapedType, IntTy &...vals) {
1302   bindShapeDims<0>(shapedType, vals...);
1303 }
1304 
1305 namespace {
1306 /// Generate a vector implementation for either:
1307 /// ```
1308 ///   Op def: (     n,     w,     c,    kw,    f  )
1309 ///    Iters: ({Par(), Par(), Par(), Red(), Red()})
1310 ///   Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c, f}, {n, w, f}}
1311 /// ```
1312 /// kw is unrolled, w is unrolled iff dilationW > 1.
1313 ///
1314 /// or
1315 ///
1316 /// ```
1317 ///   Op def: (     n,     w,     c,    kw )
1318 ///    Iters: ({Par(), Par(), Par(), Red()})
1319 ///   Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c}, {n, w, c}}
1320 /// ```
1321 /// kw is unrolled, w is unrolled iff dilationW > 1.
1322 struct Conv1DNwcGenerator : public StructuredGenerator<LinalgOp> {
1323   Conv1DNwcGenerator(OpBuilder &builder, LinalgOp linalgOp, int strideW,
1324                      int dilationW)
1325       : StructuredGenerator<LinalgOp>(builder, linalgOp), valid(false),
1326         strideW(strideW), dilationW(dilationW) {
1327     // Determine whether `linalgOp` can be generated with this generator
1328     if (linalgOp.getNumInputs() != 2 || linalgOp.getNumOutputs() != 1)
1329       return;
1330     lhsShaped = linalgOp.inputs()[0];
1331     rhsShaped = linalgOp.inputs()[1];
1332     resShaped = linalgOp.outputs()[0];
1333     lhsShapedType = lhsShaped.getType().dyn_cast<ShapedType>();
1334     rhsShapedType = rhsShaped.getType().dyn_cast<ShapedType>();
1335     resShapedType = resShaped.getType().dyn_cast<ShapedType>();
1336     if (!lhsShapedType || !rhsShapedType || !resShapedType)
1337       return;
1338     if (lhsShapedType.getRank() != 3 ||
1339         (rhsShapedType.getRank() != 2 && rhsShapedType.getRank() != 3) ||
1340         resShapedType.getRank() != 3)
1341       return;
1342 
1343     // Check for reduction `add` preceded by `mul`.
1344     Operation *reduceOp = matchLinalgReduction(linalgOp.getOutputOperand(0));
1345     if (!reduceOp)
1346       return;
1347     llvm::Optional<vector::CombiningKind> maybeKind;
1348     maybeKind = getCombinerOpKind(reduceOp);
1349     if (!maybeKind || *maybeKind != vector::CombiningKind::ADD)
1350       return;
1351     maybeKind = getCombinerOpKind(&(linalgOp->getRegion(0).front().front()));
1352     if (!maybeKind || *maybeKind != vector::CombiningKind::MUL)
1353       return;
1354 
1355     // The op is now known to be valid.
1356     valid = true;
1357   }
1358 
1359   /// Generate a vector implementation for:
1360   /// ```
1361   ///   Op def: (     n,     w,     c,    kw,    f  )
1362   ///    Iters: ({Par(), Par(), Par(), Red(), Red()})
1363   ///   Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c, f}, {n, w, f}}
1364   /// ```
1365   /// kw is always unrolled.
1366   /// TODO: w (resp. kw) is unrolled when the strideW ( resp. dilationW) is
1367   /// > 1.
1368   FailureOr<Operation *> conv() {
1369     if (!valid)
1370       return failure();
1371 
1372     int64_t nSize, wSize, cSize, kwSize, fSize;
1373     // kernel{kw, c, f}
1374     bindShapeDims(rhsShapedType, kwSize, cSize, fSize);
1375     // out{n, w, f}
1376     bindShapeDims(resShapedType, nSize, wSize);
1377 
1378     vector::TransferWriteOp write;
1379     Value zero = builder.create<arith::ConstantIndexOp>(loc, 0);
1380 
1381     // w is unrolled (i.e. wSizeStep == 1) iff strideW > 1.
1382     // When strideW == 1, we can batch the contiguous loads and avoid
1383     // unrolling
1384     int64_t wSizeStep = strideW == 1 ? wSize : 1;
1385 
1386     Type lhsEltType = lhsShapedType.getElementType();
1387     Type rhsEltType = rhsShapedType.getElementType();
1388     Type resEltType = resShapedType.getElementType();
1389     VectorType lhsType = VectorType::get(
1390         {nSize,
1391          // iw = ow * sw + kw *  dw - 1
1392          //   (i.e. 16 convolved with 3 (@stride 1 dilation 1) -> 14)
1393          // Perform the proper inclusive -> exclusive -> inclusive.
1394          ((wSize - 1) * strideW + 1) + ((kwSize - 1) * dilationW + 1) - 1,
1395          cSize},
1396         lhsEltType);
1397     VectorType rhsType = VectorType::get({kwSize, cSize, fSize}, rhsEltType);
1398     VectorType resType = VectorType::get({nSize, wSize, fSize}, resEltType);
1399 
1400     // Read lhs slice of size {w * strideW + kw * dilationW, c, f} @ [0, 0,
1401     // 0].
1402     Value lhs = builder.create<vector::TransferReadOp>(
1403         loc, lhsType, lhsShaped, ValueRange{zero, zero, zero});
1404     // Read rhs slice of size {kw, c, f} @ [0, 0, 0].
1405     Value rhs = builder.create<vector::TransferReadOp>(
1406         loc, rhsType, rhsShaped, ValueRange{zero, zero, zero});
1407     // Read res slice of size {n, w, f} @ [0, 0, 0].
1408     Value res = builder.create<vector::TransferReadOp>(
1409         loc, resType, resShaped, ValueRange{zero, zero, zero});
1410 
1411     //===------------------------------------------------------------------===//
1412     // Begin vector-only rewrite part
1413     //===------------------------------------------------------------------===//
1414     // Unroll along kw and read slices of lhs and rhs.
1415     SmallVector<Value> lhsVals, rhsVals, resVals;
1416     // Extract lhs slice of size {n, wSizeStep, c} @ [0, sw * w + dw * kw, 0].
1417     for (int64_t kw = 0; kw < kwSize; ++kw) {
1418       for (int64_t w = 0; w < wSize; w += wSizeStep) {
1419         lhsVals.push_back(builder.create<vector::ExtractStridedSliceOp>(
1420             loc, lhs,
1421             /*offsets=*/ArrayRef<int64_t>{0, w * strideW + kw * dilationW, 0},
1422             /*sizes=*/ArrayRef<int64_t>{nSize, wSizeStep, cSize},
1423             /*strides=*/ArrayRef<int64_t>{1, 1, 1}));
1424       }
1425     }
1426     // Extract rhs slice of size {c, f} @ [kw].
1427     for (int64_t kw = 0; kw < kwSize; ++kw) {
1428       rhsVals.push_back(builder.create<vector::ExtractOp>(
1429           loc, rhs, /*offsets=*/ArrayRef<int64_t>{kw}));
1430     }
1431     // Extract res slice: {n, wSizeStep, f} @ [0, w, 0].
1432     for (int64_t w = 0; w < wSize; w += wSizeStep) {
1433       resVals.push_back(builder.create<vector::ExtractStridedSliceOp>(
1434           loc, res,
1435           /*offsets=*/ArrayRef<int64_t>{0, w, 0},
1436           /*sizes=*/ArrayRef<int64_t>{nSize, wSizeStep, fSize},
1437           /*strides=*/ArrayRef<int64_t>{1, 1, 1}));
1438     }
1439 
1440     auto linearIndex = [&](int64_t kw, int64_t w) {
1441       return kw * (wSize / wSizeStep) + w;
1442     };
1443 
1444     // Compute contraction: O{n, w, f} += I{n, sw * w + dw * kw, c} * F{c, f}
1445     for (int64_t kw = 0; kw < kwSize; ++kw) {
1446       for (int64_t w = 0; w < wSize; w += wSizeStep) {
1447         resVals[w] = conv1dSliceAsContraction(
1448             builder, loc, lhsVals[linearIndex(kw, w)], rhsVals[kw], resVals[w]);
1449       }
1450     }
1451 
1452     // Write back res slice: {n, wSizeStep, f} @ [0, w, 0].
1453     // This does not depend on kw.
1454     for (int64_t w = 0; w < wSize; w += wSizeStep) {
1455       res = builder.create<vector::InsertStridedSliceOp>(
1456           loc, resVals[w], res,
1457           /*offsets=*/ArrayRef<int64_t>{0, w, 0},
1458           /*strides=*/ArrayRef<int64_t>{1, 1, 1});
1459     }
1460     //===------------------------------------------------------------------===//
1461     // End vector-only rewrite part
1462     //===------------------------------------------------------------------===//
1463 
1464     // Write back res slice of size {n, w, f} @ [0, 0, 0].
1465     return builder
1466         .create<vector::TransferWriteOp>(loc, res, resShaped,
1467                                          ValueRange{zero, zero, zero})
1468         .getOperation();
1469   }
1470 
1471   // Create a contraction: lhs{n, w, c} * rhs{c, f} -> res{n, w, f}
1472   Value conv1dSliceAsContraction(OpBuilder &b, Location loc, Value lhs,
1473                                  Value rhs, Value res) {
1474     StringRef par = Par().strRef, red = Red().strRef;
1475     AffineExpr n, w, f, c;
1476     bindDims(ctx, n, w, f, c);
1477     return builder.create<vector::ContractionOp>(
1478         loc, lhs, rhs, res,
1479         /*indexingMaps=*/MapList{{n, w, c}, {c, f}, {n, w, f}},
1480         /*iteratorTypes=*/ArrayRef<StringRef>{par, par, par, red});
1481   }
1482 
1483   /// Generate a vector implementation for:
1484   /// ```
1485   ///   Op def: (     n,     w,     c,    kw)
1486   ///    Iters: ({Par(), Par(), Par(), Red()})
1487   ///   Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c}, {n, w, c}}
1488   /// ```
1489   /// kw is always unrolled.
1490   /// TODO: w (resp. kw) is unrolled when the strideW ( resp. dilationW) is
1491   /// > 1.
1492   FailureOr<Operation *> depthwiseConv() {
1493     if (!valid)
1494       return failure();
1495 
1496     int64_t nSize, wSize, cSize, kwSize;
1497     // kernel{kw, c}
1498     bindShapeDims(rhsShapedType, kwSize, cSize);
1499     // out{n, w, c}
1500     bindShapeDims(resShapedType, nSize, wSize);
1501 
1502     vector::TransferWriteOp write;
1503     Value zero = builder.create<arith::ConstantIndexOp>(loc, 0);
1504 
1505     // w is unrolled (i.e. wSizeStep == 1) iff strideW > 1.
1506     // When strideW == 1, we can batch the contiguous loads and avoid
1507     // unrolling
1508     int64_t wSizeStep = strideW == 1 ? wSize : 1;
1509 
1510     Type lhsEltType = lhsShapedType.getElementType();
1511     Type rhsEltType = rhsShapedType.getElementType();
1512     Type resEltType = resShapedType.getElementType();
1513     VectorType lhsType = VectorType::get(
1514         {nSize,
1515          // iw = ow * sw + kw *  dw - 1
1516          //   (i.e. 16 convolved with 3 (@stride 1 dilation 1) -> 14)
1517          ((wSize - 1) * strideW + 1) + ((kwSize - 1) * dilationW + 1) - 1,
1518          cSize},
1519         lhsEltType);
1520     VectorType rhsType = VectorType::get({kwSize, cSize}, rhsEltType);
1521     VectorType resType = VectorType::get({nSize, wSize, cSize}, resEltType);
1522 
1523     // Read lhs slice of size {n, w * strideW + kw * dilationW, c} @ [0, 0,
1524     // 0].
1525     Value lhs = builder.create<vector::TransferReadOp>(
1526         loc, lhsType, lhsShaped, ValueRange{zero, zero, zero});
1527     // Read rhs slice of size {kw, c} @ [0, 0].
1528     Value rhs = builder.create<vector::TransferReadOp>(loc, rhsType, rhsShaped,
1529                                                        ValueRange{zero, zero});
1530     // Read res slice of size {n, w, c} @ [0, 0, 0].
1531     Value res = builder.create<vector::TransferReadOp>(
1532         loc, resType, resShaped, ValueRange{zero, zero, zero});
1533 
1534     //===------------------------------------------------------------------===//
1535     // Begin vector-only rewrite part
1536     //===------------------------------------------------------------------===//
1537     // Unroll along kw and read slices of lhs and rhs.
1538     SmallVector<Value> lhsVals, rhsVals, resVals;
1539     // Extract lhs slice of size {n, wSizeStep, c}
1540     //   @ [0, sw * w + dw * kw, 0].
1541     for (int64_t kw = 0; kw < kwSize; ++kw) {
1542       for (int64_t w = 0; w < wSize; w += wSizeStep) {
1543         lhsVals.push_back(builder.create<vector::ExtractStridedSliceOp>(
1544             loc, lhs,
1545             /*offsets=*/ArrayRef<int64_t>{0, w * strideW + kw * dilationW, 0},
1546             /*sizes=*/ArrayRef<int64_t>{nSize, wSizeStep, cSize},
1547             /*strides=*/ArrayRef<int64_t>{1, 1, 1}));
1548       }
1549     }
1550     // Extract rhs slice of size {c} @ [kw].
1551     for (int64_t kw = 0; kw < kwSize; ++kw) {
1552       rhsVals.push_back(builder.create<vector::ExtractOp>(
1553           loc, rhs, /*offsets=*/ArrayRef<int64_t>{kw}));
1554     }
1555     // Extract res slice: {n, wSizeStep, c} @ [0, w, 0].
1556     for (int64_t w = 0; w < wSize; w += wSizeStep) {
1557       resVals.push_back(builder.create<vector::ExtractStridedSliceOp>(
1558           loc, res,
1559           /*offsets=*/ArrayRef<int64_t>{0, w, 0},
1560           /*sizes=*/ArrayRef<int64_t>{nSize, wSizeStep, cSize},
1561           /*strides=*/ArrayRef<int64_t>{1, 1, 1}));
1562     }
1563 
1564     auto linearIndex = [&](int64_t kw, int64_t w) {
1565       return kw * (wSize / wSizeStep) + w;
1566     };
1567 
1568     // Compute contraction: O{n, w, c} += I{n, sw * w + dw * kw, c} * F{c}
1569     for (int64_t kw = 0; kw < kwSize; ++kw) {
1570       for (int64_t w = 0; w < wSize; w += wSizeStep) {
1571         resVals[w] = depthwiseConv1dSliceAsFma(
1572             builder, loc, lhsVals[linearIndex(kw, w)], rhsVals[kw], resVals[w]);
1573       }
1574     }
1575 
1576     // Write back res slice: {n, wSizeStep, c} @ [0, w, 0].
1577     // This does not depend on kw.
1578     for (int64_t w = 0; w < wSize; w += wSizeStep) {
1579       res = builder.create<vector::InsertStridedSliceOp>(
1580           loc, resVals[w], res,
1581           /*offsets=*/ArrayRef<int64_t>{0, w, 0},
1582           /*strides=*/ArrayRef<int64_t>{1, 1, 1});
1583     }
1584     //===------------------------------------------------------------------===//
1585     // End vector-only rewrite part
1586     //===------------------------------------------------------------------===//
1587 
1588     // Write back res slice of size {n, w, c} @ [0, 0, 0].
1589     return builder
1590         .create<vector::TransferWriteOp>(loc, res, resShaped,
1591                                          ValueRange{zero, zero, zero})
1592         .getOperation();
1593   }
1594 
1595   /// Lower lhs{n, w, c} * rhs{c} -> res{n, w, c} to fma.
1596   Value depthwiseConv1dSliceAsFma(OpBuilder &b, Location loc, Value lhs,
1597                                   Value rhs, Value res) {
1598     Value bcast = builder.create<vector::BroadcastOp>(loc, res.getType(), rhs);
1599     return b.create<vector::FMAOp>(loc, lhs, bcast, res);
1600   }
1601 
1602   /// Entry point that transposes into the common form:
1603   ///   {{n, strideW * w + dilationW * kw, c}, {kw, c, f}, {n, w, f}}
1604   FailureOr<Operation *> generateConv() {
1605     AffineExpr n, w, f, kw, c;
1606     bindDims(ctx, n, w, f, kw, c);
1607     if (!iters({Par(), Par(), Par(), Red(), Red()}))
1608       return failure();
1609 
1610     // No transposition needed.
1611     if (layout({/*lhsIndex*/ {n, strideW * w + dilationW * kw, c},
1612                 /*rhsIndex*/ {kw, c, f},
1613                 /*resIndex*/ {n, w, f}}))
1614       return conv();
1615     return failure();
1616   }
1617 
1618   /// Entry point that transposes into the common form:
1619   ///   {{n, strideW * w + dilationW * kw, c}, {kw, c}, {n, w, c}}
1620   FailureOr<Operation *> generateDilatedConv() {
1621     AffineExpr n, w, c, kw;
1622     bindDims(ctx, n, w, c, kw);
1623     if (!iters({Par(), Par(), Par(), Red()}))
1624       return failure();
1625 
1626     // No transposition needed.
1627     if (layout({/*lhsIndex*/ {n, strideW * w + dilationW * kw, c},
1628                 /*rhsIndex*/ {kw, c},
1629                 /*resIndex*/ {n, w, c}}))
1630       return depthwiseConv();
1631     return failure();
1632   }
1633 
1634 private:
1635   bool valid;
1636   int strideW, dilationW;
1637   Value lhsShaped, rhsShaped, resShaped;
1638   ShapedType lhsShapedType, rhsShapedType, resShapedType;
1639 };
1640 } // namespace
1641 
1642 /// Helper function to vectorize a LinalgOp with convolution semantics.
1643 // TODO: extend the generic vectorization to support windows and drop this.
1644 static FailureOr<Operation *> vectorizeConvolution(OpBuilder &b, LinalgOp op) {
1645   // The ConvolutionOpInterface gives us guarantees of existence for
1646   // strides/dilations. However, we do not need to rely on those, we can simply
1647   // use them if present, otherwise use the default and let the generic conv.
1648   // matcher in the ConvGenerator succeed or fail.
1649   auto strides = op->getAttrOfType<DenseIntElementsAttr>("strides");
1650   auto dilations = op->getAttrOfType<DenseIntElementsAttr>("dilations");
1651   auto stride = strides ? *strides.getValues<uint64_t>().begin() : 1;
1652   auto dilation = dilations ? *dilations.getValues<uint64_t>().begin() : 1;
1653   Conv1DNwcGenerator e(b, op, stride, dilation);
1654   auto res = e.generateConv();
1655   if (succeeded(res))
1656     return res;
1657   return e.generateDilatedConv();
1658 }
1659 
1660 struct VectorizeConvolution : public OpInterfaceRewritePattern<LinalgOp> {
1661   using OpInterfaceRewritePattern::OpInterfaceRewritePattern;
1662 
1663   LogicalResult matchAndRewrite(LinalgOp op,
1664                                 PatternRewriter &rewriter) const override {
1665     FailureOr<Operation *> resultOrFail = vectorizeConvolution(rewriter, op);
1666     if (failed(resultOrFail))
1667       return failure();
1668     Operation *newOp = *resultOrFail;
1669     if (newOp->getNumResults() == 0) {
1670       rewriter.eraseOp(op.getOperation());
1671       return success();
1672     }
1673     assert(newOp->getNumResults() == 1 && "expected single result");
1674     rewriter.replaceOp(op.getOperation(), newOp->getResult(0));
1675     return success();
1676   }
1677 };
1678 
1679 void mlir::linalg::populateConvolutionVectorizationPatterns(
1680     RewritePatternSet &patterns, PatternBenefit benefit) {
1681   patterns.add<VectorizeConvolution>(patterns.getContext(), benefit);
1682 }
1683