1 //===- Vectorization.cpp - Implementation of linalg Vectorization ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the linalg dialect Vectorization transformations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "mlir/Analysis/SliceAnalysis.h" 14 #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h" 15 #include "mlir/Dialect/Linalg/IR/LinalgOps.h" 16 #include "mlir/Dialect/Linalg/Transforms/Transforms.h" 17 #include "mlir/Dialect/Linalg/Utils/Utils.h" 18 #include "mlir/Dialect/Tensor/IR/Tensor.h" 19 #include "mlir/Dialect/Utils/StructuredOpsUtils.h" 20 #include "mlir/Dialect/Vector/VectorOps.h" 21 #include "mlir/IR/AffineExpr.h" 22 #include "mlir/IR/Matchers.h" 23 #include "mlir/IR/PatternMatch.h" 24 #include "mlir/Pass/Pass.h" 25 #include "mlir/Support/LLVM.h" 26 #include "mlir/Transforms/RegionUtils.h" 27 #include "llvm/ADT/ScopeExit.h" 28 #include "llvm/ADT/Sequence.h" 29 #include "llvm/ADT/SmallVector.h" 30 #include "llvm/ADT/TypeSwitch.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include <type_traits> 34 35 using namespace mlir; 36 using namespace mlir::linalg; 37 38 using llvm::dbgs; 39 40 #define DEBUG_TYPE "linalg-vectorization" 41 42 /// Return the unique instance of OpType in `block` if it is indeed unique. 43 /// Return null if none or more than 1 instances exist. 44 template <typename OpType> 45 static OpType getSingleOpOfType(Block &block) { 46 OpType res; 47 block.walk([&](OpType op) { 48 if (res) { 49 res = nullptr; 50 return WalkResult::interrupt(); 51 } 52 res = op; 53 return WalkResult::advance(); 54 }); 55 return res; 56 } 57 58 /// Given an indexing `map` coming from a LinalgOp indexing, restricted to a 59 /// projectedPermutation, compress the unused dimensions to serve as a 60 /// permutation_map for a vector transfer operation. 61 /// For example, given a linalg op such as: 62 /// 63 /// ``` 64 /// %0 = linalg.generic { 65 /// indexing_maps = affine_map<(d0, d1, d2, d3, d4) -> (d4, d0, d2)>, 66 /// indexing_maps = affine_map<(d0, d1, d2, d3, d4) -> (d1, d3)> 67 /// } 68 /// ins(%0 : tensor<2x3x4xf32>) 69 /// outs(%1 : tensor<5x6xf32>) 70 /// ``` 71 /// 72 /// the iteration domain size of the linalg op is 3x5x4x6x2. The first affine 73 /// map is reindexed to `affine_map<(d0, d1, d2) -> (d2, d0, d1)>`, the second 74 /// affine map is reindexed to `affine_map<(d0, d1) -> (d0, d1)>`. 75 static AffineMap reindexIndexingMap(AffineMap map) { 76 assert(map.isProjectedPermutation() && "expected projected permutation"); 77 auto res = compressUnusedDims(map); 78 assert(res.getNumDims() == res.getNumResults() && 79 "expected reindexed map with same number of dims and results"); 80 return res; 81 } 82 83 /// Helper data structure to represent the result of vectorization. 84 /// In certain specific cases, like terminators, we do not want to propagate/ 85 enum VectorizationStatus { 86 /// Op failed to vectorize. 87 Failure = 0, 88 /// Op vectorized and custom function took care of replacement logic 89 NoReplace, 90 /// Op vectorized into a new Op whose results will replace original Op's 91 /// results. 92 NewOp 93 // TODO: support values if Op vectorized to Many-Ops whose results we need to 94 // aggregate for replacement. 95 }; 96 struct VectorizationResult { 97 /// Return status from vectorizing the current op. 98 enum VectorizationStatus status = VectorizationStatus::Failure; 99 /// New vectorized operation to replace the current op. 100 /// Replacement behavior is specified by `status`. 101 Operation *newOp; 102 }; 103 104 /// Return a vector type of the same shape and element type as the (assumed) 105 /// ShapedType of `v`. 106 static VectorType extractVectorTypeFromShapedValue(Value v) { 107 auto st = v.getType().cast<ShapedType>(); 108 if (st.isa<MemRefType>() && st.getShape().empty()) 109 return VectorType(); 110 return VectorType::get(st.getShape(), st.getElementType()); 111 } 112 113 /// Given an `outputOperand` of a LinalgOp, compute the intersection of the 114 /// forward slice starting from `outputOperand` and the backward slice 115 /// starting from the corresponding linalg.yield operand. 116 /// This intersection is assumed to have a single binary operation that is 117 /// the reduction operation. Multiple reduction operations would impose an 118 /// ordering between reduction dimensions and is currently unsupported in 119 /// Linalg. This limitation is motivated by the fact that e.g. 120 /// min(max(X)) != max(min(X)) 121 // TODO: use in LinalgOp verification, there is a circular dependency atm. 122 static Operation *getSingleBinaryOpAssumedReduction(OpOperand *outputOperand) { 123 auto linalgOp = cast<LinalgOp>(outputOperand->getOwner()); 124 auto yieldOp = cast<YieldOp>(linalgOp->getRegion(0).front().getTerminator()); 125 unsigned yieldNum = 126 outputOperand->getOperandNumber() - linalgOp.getNumInputs(); 127 llvm::SetVector<Operation *> backwardSlice, forwardSlice; 128 BlockArgument bbArg = linalgOp->getRegion(0).front().getArgument( 129 outputOperand->getOperandNumber()); 130 Value yieldVal = yieldOp->getOperand(yieldNum); 131 getBackwardSlice(yieldVal, &backwardSlice, [&](Operation *op) { 132 return op->getParentOp() == linalgOp; 133 }); 134 backwardSlice.insert(yieldVal.getDefiningOp()); 135 getForwardSlice(bbArg, &forwardSlice, 136 [&](Operation *op) { return op->getParentOp() == linalgOp; }); 137 // Search for the (assumed unique) elementwiseMappable op at the intersection 138 // of forward and backward slices. 139 Operation *reductionOp = nullptr; 140 for (Operation *op : llvm::reverse(backwardSlice)) { 141 if (!forwardSlice.contains(op)) 142 continue; 143 if (OpTrait::hasElementwiseMappableTraits(op)) { 144 if (reductionOp) { 145 // Reduction detection fails: found more than 1 elementwise-mappable op. 146 return nullptr; 147 } 148 reductionOp = op; 149 } 150 } 151 // TODO: also assert no other subsequent ops break the reduction. 152 return reductionOp; 153 } 154 155 /// If `value` of assumed VectorType has a shape different than `shape`, try to 156 /// build and return a new vector.broadcast to `shape`. 157 /// Otherwise, just return `value`. 158 // TODO: this is best effort atm and there is currently no guarantee of 159 // correctness for the broadcast semantics. 160 static Value broadcastIfNeeded(OpBuilder &b, Value value, 161 ArrayRef<int64_t> shape) { 162 unsigned numDimsGtOne = std::count_if(shape.begin(), shape.end(), 163 [](int64_t val) { return val > 1; }); 164 auto vecType = value.getType().dyn_cast<VectorType>(); 165 if (shape.empty() || 166 (vecType != nullptr && 167 (vecType.getShape() == shape || vecType.getRank() > numDimsGtOne))) 168 return value; 169 auto newVecType = VectorType::get(shape, vecType ? vecType.getElementType() 170 : value.getType()); 171 return b.create<vector::BroadcastOp>(b.getInsertionPoint()->getLoc(), 172 newVecType, value); 173 } 174 175 static llvm::Optional<vector::CombiningKind> 176 getKindForOp(Operation *reductionOp) { 177 if (!reductionOp) 178 return llvm::None; 179 return llvm::TypeSwitch<Operation *, llvm::Optional<vector::CombiningKind>>( 180 reductionOp) 181 .Case<AddIOp, AddFOp>([&](auto op) { 182 return llvm::Optional<vector::CombiningKind>{ 183 vector::CombiningKind::ADD}; 184 }) 185 .Default([&](auto op) { return llvm::None; }); 186 } 187 188 /// If value of assumed VectorType has a shape different than `shape`, build and 189 /// return a new vector.broadcast to `shape`. 190 /// Otherwise, just return value. 191 static Value reduceIfNeeded(OpBuilder &b, VectorType targetVectorType, 192 Value value, OpOperand *outputOperand) { 193 auto linalgOp = cast<LinalgOp>(outputOperand->getOwner()); 194 auto vecType = value.getType().dyn_cast<VectorType>(); 195 if (!vecType || vecType.getShape() == targetVectorType.getShape()) 196 return value; 197 // At this point, we know we need to reduce. Detect the reduction operator. 198 // TODO: Use the generic reduction detection util. 199 Operation *reductionOp = getSingleBinaryOpAssumedReduction(outputOperand); 200 unsigned pos = 0; 201 MLIRContext *ctx = b.getContext(); 202 SmallVector<AffineExpr> exprs; 203 for (auto s : linalgOp.iterator_types()) 204 if (isParallelIterator(s)) 205 exprs.push_back(getAffineDimExpr(pos++, ctx)); 206 auto loc = value.getLoc(); 207 // TODO: reuse common CombiningKing logic and support more than add. 208 auto maybeKind = getKindForOp(reductionOp); 209 assert(maybeKind && "Failed precondition: could not get reduction kind"); 210 unsigned idx = 0; 211 SmallVector<bool> reductionMask(linalgOp.iterator_types().size(), false); 212 for (auto attr : linalgOp.iterator_types()) { 213 if (isReductionIterator(attr)) 214 reductionMask[idx] = true; 215 ++idx; 216 } 217 return b.create<vector::MultiDimReductionOp>(loc, value, reductionMask, 218 *maybeKind); 219 } 220 221 /// Build a vector.transfer_read from `source` at indices set to all `0`. 222 /// If source has rank zero, build an memref.load. 223 /// Return the produced value. 224 static Value buildVectorRead(OpBuilder &b, Value source, VectorType vectorType, 225 AffineMap map) { 226 Location loc = source.getLoc(); 227 auto shapedType = source.getType().cast<ShapedType>(); 228 SmallVector<Value> indices(shapedType.getRank(), 229 b.create<ConstantIndexOp>(loc, 0)); 230 return b.create<vector::TransferReadOp>(loc, vectorType, source, indices, 231 map); 232 } 233 234 /// Build a vector.transfer_write of `value` into `outputOperand` at indices set 235 /// to all `0`; where `outputOperand` is an output operand of the LinalgOp 236 /// currently being vectorized. If `dest` has null rank, build an memref.store. 237 /// Return the produced value or null if no value is produced. 238 static Value buildVectorWrite(OpBuilder &b, Value value, 239 OpOperand *outputOperand) { 240 Operation *write; 241 Location loc = value.getLoc(); 242 if (VectorType vectorType = 243 extractVectorTypeFromShapedValue(outputOperand->get())) { 244 auto linalgOp = cast<LinalgOp>(outputOperand->getOwner()); 245 AffineMap map = 246 reindexIndexingMap(linalgOp.getTiedIndexingMap(outputOperand)); 247 SmallVector<int64_t> transposeShape = 248 applyPermutationMap(inversePermutation(map), vectorType.getShape()); 249 vectorType = VectorType::get(transposeShape, vectorType.getElementType()); 250 SmallVector<Value> indices(linalgOp.getRank(outputOperand), 251 b.create<ConstantIndexOp>(loc, 0)); 252 value = broadcastIfNeeded(b, value, vectorType.getShape()); 253 value = reduceIfNeeded(b, vectorType, value, outputOperand); 254 write = b.create<vector::TransferWriteOp>(loc, value, outputOperand->get(), 255 indices, map); 256 } else { 257 write = b.create<memref::StoreOp>(loc, value, outputOperand->get()); 258 } 259 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: vectorized op: " << *write); 260 if (!write->getResults().empty()) 261 return write->getResult(0); 262 return Value(); 263 } 264 265 // Custom vectorization function type. Produce a vector form of Operation* 266 // assuming all its vectorized operands are already in the BlockAndValueMapping. 267 // Return nullptr if the Operation cannot be vectorized. 268 using CustomVectorizationHook = std::function<VectorizationResult( 269 Operation *, const BlockAndValueMapping &)>; 270 271 /// Helper function to vectorize the terminator of a `linalgOp`. New result 272 /// vector values are appended to `newResults`. Return 273 /// VectorizationStatus::NoReplace to signal the vectorization algorithm that it 274 /// should not try to map produced operations and instead return the results 275 /// using the `newResults` vector making them available to the 276 /// vectorization algorithm for RAUW. This function is meant to be used as a 277 /// CustomVectorizationHook. 278 static VectorizationResult 279 vectorizeLinalgYield(OpBuilder &b, Operation *op, 280 const BlockAndValueMapping &bvm, LinalgOp linalgOp, 281 SmallVectorImpl<Value> &newResults) { 282 auto yieldOp = dyn_cast<linalg::YieldOp>(op); 283 if (!yieldOp) 284 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 285 for (auto outputs : llvm::enumerate(yieldOp.values())) { 286 // TODO: Scan for an opportunity for reuse. 287 // TODO: use a map. 288 Value vectorValue = bvm.lookup(outputs.value()); 289 Value newResult = buildVectorWrite( 290 b, vectorValue, linalgOp.getOutputOperand(outputs.index())); 291 if (newResult) 292 newResults.push_back(newResult); 293 } 294 return VectorizationResult{VectorizationStatus::NoReplace, nullptr}; 295 } 296 297 /// Helper function to vectorize the index operations of a `linalgOp`. Return 298 /// VectorizationStatus::NewOp to signal the vectorization algorithm that it 299 /// should map the produced operations. This function is meant to be used as a 300 /// CustomVectorizationHook. 301 static VectorizationResult vectorizeLinalgIndex(OpBuilder &b, Operation *op, 302 LinalgOp linalgOp) { 303 IndexOp indexOp = dyn_cast<linalg::IndexOp>(op); 304 if (!indexOp) 305 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 306 auto loc = indexOp.getLoc(); 307 // Compute the static loop sizes of the index op. 308 auto targetShape = linalgOp.computeStaticLoopSizes(); 309 // Compute a one-dimensional index vector for the index op dimension. 310 SmallVector<int64_t> constantSeq = 311 llvm::to_vector<16>(llvm::seq<int64_t>(0, targetShape[indexOp.dim()])); 312 ConstantOp constantOp = 313 b.create<ConstantOp>(loc, b.getIndexVectorAttr(constantSeq)); 314 // Return the one-dimensional index vector if it lives in the trailing 315 // dimension of the iteration space since the vectorization algorithm in this 316 // case can handle the broadcast. 317 if (indexOp.dim() == targetShape.size() - 1) 318 return VectorizationResult{VectorizationStatus::NewOp, constantOp}; 319 // Otherwise permute the targetShape to move the index dimension last, 320 // broadcast the one-dimensional index vector to the permuted shape, and 321 // finally transpose the broadcasted index vector to undo the permutation. 322 std::swap(targetShape[indexOp.dim()], targetShape.back()); 323 auto broadCastOp = b.create<vector::BroadcastOp>( 324 loc, VectorType::get(targetShape, b.getIndexType()), constantOp); 325 SmallVector<int64_t> transposition = 326 llvm::to_vector<16>(llvm::seq<int64_t>(0, linalgOp.getNumLoops())); 327 std::swap(transposition.back(), transposition[indexOp.dim()]); 328 auto transposeOp = 329 b.create<vector::TransposeOp>(loc, broadCastOp, transposition); 330 return VectorizationResult{VectorizationStatus::NewOp, transposeOp}; 331 } 332 333 /// Generic vectorization for a single operation `op`, given already vectorized 334 /// operands carried by `bvm`. Vectorization occurs as follows: 335 /// 1. Try to apply any of the `customVectorizationHooks` and return its 336 /// result on success. 337 /// 2. Clone any constant in the current scope without vectorization: each 338 /// consumer of the constant will later determine the shape to which the 339 /// constant needs to be broadcast to. 340 /// 3. Fail on any remaining non `ElementwiseMappable` op. It is the purpose 341 /// of the `customVectorizationHooks` to cover such cases. 342 /// 4. Clone `op` in vector form to a vector of shape prescribed by the first 343 /// operand of maximal rank. Other operands have smaller rank and are 344 /// broadcast accordingly. It is assumed this broadcast is always legal, 345 /// otherwise, it means one of the `customVectorizationHooks` is incorrect. 346 /// 347 /// This function assumes all operands of `op` have been vectorized and are in 348 /// the `bvm` mapping. As a consequence, this function is meant to be called on 349 /// a topologically-sorted list of ops. 350 /// This function does not update `bvm` but returns a VectorizationStatus that 351 /// instructs the caller what `bvm` update needs to occur. 352 static VectorizationResult 353 vectorizeOneOp(OpBuilder &b, Operation *op, const BlockAndValueMapping &bvm, 354 ArrayRef<CustomVectorizationHook> customVectorizationHooks) { 355 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: vectorize op " << *op); 356 357 // 1. Try to apply any CustomVectorizationHook. 358 if (!customVectorizationHooks.empty()) { 359 for (auto &customFunc : customVectorizationHooks) { 360 VectorizationResult result = customFunc(op, bvm); 361 if (result.status == VectorizationStatus::Failure) 362 continue; 363 return result; 364 } 365 } 366 367 // 2. Constant ops don't get vectorized but rather broadcasted at their users. 368 // Clone so that the constant is not confined to the linalgOp block . 369 if (isa<ConstantOp>(op)) 370 return VectorizationResult{VectorizationStatus::NewOp, b.clone(*op)}; 371 372 // 3. Only ElementwiseMappable are allowed in the generic vectorization. 373 if (!OpTrait::hasElementwiseMappableTraits(op)) 374 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 375 376 // 4. Generic vectorization path for ElementwiseMappable ops. 377 // a. first get the first max ranked shape. 378 SmallVector<int64_t, 4> firstMaxRankedShape; 379 for (Value operand : op->getOperands()) { 380 auto vt = bvm.lookup(operand).getType().dyn_cast<VectorType>(); 381 if (vt && firstMaxRankedShape.size() < vt.getShape().size()) 382 firstMaxRankedShape.assign(vt.getShape().begin(), vt.getShape().end()); 383 } 384 // b. broadcast each op if needed. 385 auto vectorizedOperands = llvm::map_range(op->getOperands(), [&](Value v) { 386 return firstMaxRankedShape.empty() 387 ? bvm.lookup(v) 388 : broadcastIfNeeded(b, bvm.lookup(v), firstMaxRankedShape); 389 }); 390 // c. for elementwise, the result is the vector with the firstMaxRankedShape 391 auto returnTypes = llvm::map_range(op->getResultTypes(), [&](Type t) { 392 return firstMaxRankedShape.empty() 393 ? t 394 : VectorType::get(firstMaxRankedShape, t); 395 }); 396 397 // Build and return the new op. 398 OperationState state(op->getLoc(), op->getName()); 399 state.addAttributes(op->getAttrs()); 400 state.addOperands(llvm::to_vector<4>(vectorizedOperands)); 401 state.addTypes(llvm::to_vector<4>(returnTypes)); 402 return VectorizationResult{VectorizationStatus::NewOp, 403 b.createOperation(state)}; 404 } 405 406 /// Detect whether `r` has only ConstantOp, ElementwiseMappable and YieldOp. 407 static bool hasOnlyScalarElementwiseOp(Region &r) { 408 if (!llvm::hasSingleElement(r)) 409 return false; 410 for (Operation &op : r.front()) { 411 if (!(isa<ConstantOp, linalg::YieldOp, linalg::IndexOp>(op) || 412 OpTrait::hasElementwiseMappableTraits(&op)) || 413 llvm::any_of(op.getResultTypes(), 414 [](Type type) { return !type.isIntOrIndexOrFloat(); })) 415 return false; 416 } 417 return true; 418 } 419 420 // Return true if the op is an element-wise linalg op. 421 static bool isElementwise(Operation *op) { 422 auto linalgOp = dyn_cast<linalg::LinalgOp>(op); 423 if (!linalgOp) 424 return false; 425 if (linalgOp.getNumLoops() != linalgOp.getNumParallelLoops()) 426 return false; 427 // TODO: relax the restrictions on indexing map. 428 for (OpOperand *opOperand : linalgOp.getOutputOperands()) { 429 if (!linalgOp.getTiedIndexingMap(opOperand).isIdentity()) 430 return false; 431 } 432 if (linalgOp->getNumRegions() != 1) 433 return false; 434 return hasOnlyScalarElementwiseOp(linalgOp->getRegion(0)); 435 } 436 437 /// Generic vectorization function that rewrites the body of a `linalgOp` into 438 /// vector form. Generic vectorization proceeds as follows: 439 /// 1. Verify the `linalgOp` has one non-empty region. 440 /// 2. Values defined above the region are mapped to themselves and will be 441 /// broadcasted on a per-need basis by their consumers. 442 /// 3. Each region argument is vectorized into a vector.transfer_read (or 0-d 443 /// load). 444 /// TODO: Reuse opportunities for RAR dependencies. 445 /// 4a. Register CustomVectorizationHook for YieldOp to capture the results. 446 /// 4b. Register CustomVectorizationHook for IndexOp to access the iteration 447 /// indices. 448 /// 5. Iteratively call vectorizeOneOp on the region operations. 449 /// 450 /// When `broadcastToMaximalCommonShape` is set to true, eager broadcasting is 451 /// performed to the maximal common vector size implied by the `linalgOp` 452 /// iteration space. This eager broadcasting is introduced in the 453 /// permutation_map of the vector.transfer_read operations. The eager 454 /// broadcasting makes it trivial to detrmine where broadcast, transposes and 455 /// reductions should occur, without any bookkeeping. The tradeoff is that, in 456 /// the absence of good canonicalizations, the amount of work increases. 457 /// This is not deemed a problem as we expect canonicalizations and foldings to 458 /// aggressively clean up the useless work. 459 LogicalResult vectorizeAsLinalgGeneric( 460 OpBuilder &b, LinalgOp linalgOp, SmallVectorImpl<Value> &newResults, 461 bool broadcastToMaximalCommonShape = false, 462 ArrayRef<CustomVectorizationHook> customVectorizationHooks = {}) { 463 // 1. Fail to vectorize if the operation does not have one non-empty region. 464 if (linalgOp->getNumRegions() != 1 || linalgOp->getRegion(0).empty()) 465 return failure(); 466 auto &block = linalgOp->getRegion(0).front(); 467 468 // 2. Values defined above the region can only be broadcast for now. Make them 469 // map to themselves. 470 BlockAndValueMapping bvm; 471 SetVector<Value> valuesSet; 472 mlir::getUsedValuesDefinedAbove(linalgOp->getRegion(0), valuesSet); 473 bvm.map(valuesSet.getArrayRef(), valuesSet.getArrayRef()); 474 475 if (linalgOp.getNumOutputs() == 0) 476 return failure(); 477 478 // TODO: the common vector shape is equal to the static loop sizes only when 479 // all indexing maps are projected permutations. For convs and stencils the 480 // logic will need to evolve. 481 SmallVector<int64_t> commonVectorShape = linalgOp.computeStaticLoopSizes(); 482 483 // 3. Turn all BBArgs into vector.transfer_read / load. 484 SmallVector<AffineMap> indexings; 485 for (OpOperand *opOperand : linalgOp.getInputAndOutputOperands()) { 486 BlockArgument bbarg = block.getArgument(opOperand->getOperandNumber()); 487 if (linalgOp.isScalar(opOperand)) { 488 bvm.map(bbarg, opOperand->get()); 489 continue; 490 } 491 // TODO: 0-d vectors. 492 if (linalgOp.getShape(opOperand).empty()) { 493 Value loaded = 494 b.create<memref::LoadOp>(linalgOp.getLoc(), opOperand->get()); 495 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: new vectorized bbarg(" 496 << bbarg.getArgNumber() << "): " << loaded); 497 bvm.map(bbarg, loaded); 498 bvm.map(opOperand->get(), loaded); 499 continue; 500 } 501 AffineMap map; 502 VectorType vectorType; 503 if (broadcastToMaximalCommonShape) { 504 map = inverseAndBroadcastProjectedPermuation( 505 linalgOp.getTiedIndexingMap(opOperand)); 506 vectorType = VectorType::get(commonVectorShape, 507 getElementTypeOrSelf(opOperand->get())); 508 } else { 509 map = inversePermutation( 510 reindexIndexingMap(linalgOp.getTiedIndexingMap(opOperand))); 511 vectorType = VectorType::get(map.compose(linalgOp.getShape(opOperand)), 512 getElementTypeOrSelf(opOperand->get())); 513 } 514 Value vectorRead = buildVectorRead(b, opOperand->get(), vectorType, map); 515 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: new vectorized bbarg(" 516 << bbarg.getArgNumber() << "): " << vectorRead); 517 bvm.map(bbarg, vectorRead); 518 bvm.map(opOperand->get(), vectorRead); 519 } 520 521 auto hooks = llvm::to_vector<4>(customVectorizationHooks); 522 // 4a. Register CustomVectorizationHook for yieldOp. 523 CustomVectorizationHook vectorizeYield = 524 [&](Operation *op, 525 const BlockAndValueMapping &bvm) -> VectorizationResult { 526 return vectorizeLinalgYield(b, op, bvm, linalgOp, newResults); 527 }; 528 hooks.push_back(vectorizeYield); 529 530 // 4b. Register CustomVectorizationHook for indexOp. 531 CustomVectorizationHook vectorizeIndex = 532 [&](Operation *op, 533 const BlockAndValueMapping &bvm) -> VectorizationResult { 534 return vectorizeLinalgIndex(b, op, linalgOp); 535 }; 536 hooks.push_back(vectorizeIndex); 537 538 // 5. Iteratively call `vectorizeOneOp` to each op in the slice. 539 for (Operation &op : block.getOperations()) { 540 VectorizationResult result = vectorizeOneOp(b, &op, bvm, hooks); 541 if (result.status == VectorizationStatus::Failure) { 542 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: failed to vectorize: " << op); 543 return failure(); 544 } 545 if (result.status == VectorizationStatus::NewOp) { 546 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: new vector op: " 547 << *result.newOp;); 548 bvm.map(op.getResults(), result.newOp->getResults()); 549 } 550 } 551 552 return success(); 553 } 554 555 static LogicalResult vectorizeContraction(OpBuilder &b, LinalgOp linalgOp, 556 SmallVectorImpl<Value> &newResults) { 557 assert(isaContractionOpInterface(linalgOp) && 558 "expected vectorizeContraction preconditions to be met"); 559 Location loc = linalgOp.getLoc(); 560 // Vectorize other ops as vector contraction. 561 // TODO: interface. 562 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: " 563 << "Rewrite linalg op as vector.contract: "; 564 linalgOp.dump()); 565 // Special function that describes how to vectorize the multiplication op in a 566 // linalg contraction. 567 CustomVectorizationHook vectorizeContraction = 568 [&](Operation *op, 569 const BlockAndValueMapping &bvm) -> VectorizationResult { 570 if (!isa<MulIOp, MulFOp>(op)) 571 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 572 ArrayRef<int64_t> outShape = 573 linalgOp.getShape(linalgOp.getOutputOperand(0)); 574 Type vType; 575 if (outShape.empty()) { 576 vType = op->getResult(0).getType(); 577 } else { 578 SmallVector<int64_t> resultShape = applyPermutationMap( 579 inversePermutation(reindexIndexingMap( 580 linalgOp.getTiedIndexingMap(linalgOp.getOutputOperand(0)))), 581 outShape); 582 vType = VectorType::get(resultShape, op->getResult(0).getType()); 583 } 584 auto zero = b.create<ConstantOp>(loc, vType, b.getZeroAttr(vType)); 585 // Indexing maps at the time of vector.transfer_read are adjusted to order 586 // vector dimensions in the same order as the canonical linalg op iteration 587 // space order. 588 // The indexings for the contraction therefore need to be adjusted. 589 // TODO: consider dropping contraction special casing altogether, this will 590 // require more advanced canonicalizations involving vector.multi_reduction 591 // that are not yet available. 592 SmallVector<AffineMap> indexingMaps; 593 indexingMaps.reserve(linalgOp.getNumInputsAndOutputs()); 594 llvm::transform(linalgOp.getIndexingMaps(), 595 std::back_inserter(indexingMaps), 596 [](AffineMap indexingMap) { 597 return inversePermutation(reindexIndexingMap(indexingMap)) 598 .compose(indexingMap); 599 }); 600 Operation *contract = b.create<vector::ContractionOp>( 601 loc, bvm.lookup(op->getOperand(0)), bvm.lookup(op->getOperand(1)), zero, 602 b.getAffineMapArrayAttr(indexingMaps), linalgOp.iterator_types()); 603 return VectorizationResult{VectorizationStatus::NewOp, contract}; 604 }; 605 return vectorizeAsLinalgGeneric(b, linalgOp, newResults, 606 /*broadcastToMaximalCommonShape=*/false, 607 {vectorizeContraction}); 608 } 609 610 static bool allIndexingsAreProjectedPermutation(LinalgOp op) { 611 return llvm::all_of(op.getIndexingMaps(), 612 [](AffineMap m) { return m.isProjectedPermutation(); }); 613 } 614 615 // TODO: probably need some extra checks for reduction followed by consumer 616 // ops that may not commute (e.g. linear reduction + non-linear instructions). 617 static LogicalResult reductionPreconditions(LinalgOp op) { 618 if (llvm::none_of(op.iterator_types(), isReductionIterator)) 619 return failure(); 620 for (OpOperand *opOperand : op.getOutputOperands()) { 621 Operation *reductionOp = getSingleBinaryOpAssumedReduction(opOperand); 622 if (!getKindForOp(reductionOp)) 623 return failure(); 624 } 625 return success(); 626 } 627 628 LogicalResult mlir::linalg::vectorizeLinalgOpPrecondition(Operation *op) { 629 auto linalgOp = cast<linalg::LinalgOp>(op); 630 // All types must be static shape to go to vector. 631 if (linalgOp.hasDynamicShape()) 632 return failure(); 633 if (isElementwise(op)) 634 return success(); 635 if (isaContractionOpInterface(linalgOp)) 636 return success(); 637 // TODO: the common vector shape is equal to the static loop sizes only when 638 // all indexing maps are projected permutations. For convs and stencils the 639 // logic will need to evolve. 640 if (allIndexingsAreProjectedPermutation(linalgOp) && 641 succeeded(reductionPreconditions(linalgOp))) 642 return success(); 643 return failure(); 644 } 645 646 LogicalResult 647 mlir::linalg::vectorizeLinalgOp(OpBuilder &b, Operation *op, 648 SmallVectorImpl<Value> &newResults) { 649 if (failed(vectorizeLinalgOpPrecondition(op))) 650 return failure(); 651 652 auto linalgOp = cast<LinalgOp>(op); 653 if (isaContractionOpInterface(linalgOp)) 654 return vectorizeContraction(b, linalgOp, newResults); 655 656 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: " 657 << "Vectorize linalg op as a generic by broadcasting to " 658 "maximal common shape: " 659 << *op); 660 return vectorizeAsLinalgGeneric(b, linalgOp, newResults, 661 /*broadcastToMaximalCommonShape=*/true); 662 } 663 664 //----------------------------------------------------------------------------// 665 // Misc. vectorization patterns. 666 //----------------------------------------------------------------------------// 667 668 /// Helper function that retrieves the value of an IntegerAttr. 669 static int64_t getIntFromAttr(Attribute attr) { 670 return attr.cast<IntegerAttr>().getInt(); 671 } 672 673 /// Given an ArrayRef of OpFoldResults, return a vector of Values. IntegerAttrs 674 /// are converted to ConstantIndexOps. Other attribute types are not supported. 675 static SmallVector<Value> ofrToIndexValues(OpBuilder &builder, Location loc, 676 ArrayRef<OpFoldResult> ofrs) { 677 SmallVector<Value> result; 678 llvm::for_each(ofrs, [&](auto o) { 679 if (auto val = o.template dyn_cast<Value>()) { 680 result.push_back(val); 681 } else { 682 result.push_back(builder.create<ConstantIndexOp>( 683 loc, getIntFromAttr(o.template get<Attribute>()))); 684 } 685 }); 686 return result; 687 } 688 689 /// Rewrite a PadTensorOp into a sequence of InitTensorOp, FillOp and 690 /// InsertSliceOp. For now, only constant padding values are supported. 691 /// If there is enough static type information, TransferReadOps and 692 /// TransferWriteOps may be generated instead of InsertSliceOps. 693 struct GenericPadTensorOpVectorizationPattern 694 : public GeneralizePadTensorOpPattern { 695 GenericPadTensorOpVectorizationPattern(MLIRContext *context, 696 PatternBenefit benefit = 1) 697 : GeneralizePadTensorOpPattern(context, tryVectorizeCopy, benefit) {} 698 /// Vectorize the copying of a PadTensorOp's source. This is possible if each 699 /// dimension size is statically know in the source type or the result type 700 /// (or both). 701 static LogicalResult tryVectorizeCopy(PatternRewriter &rewriter, 702 PadTensorOp padOp, Value dest) { 703 auto sourceType = padOp.getSourceType(); 704 auto resultType = padOp.getResultType(); 705 706 // Copy cannot be vectorized if pad value is non-constant and source shape 707 // is dynamic. In case of a dynamic source shape, padding must be appended 708 // by TransferReadOp, but TransferReadOp supports only constant padding. 709 auto padValue = padOp.getConstantPaddingValue(); 710 if (!padValue) { 711 if (!sourceType.hasStaticShape()) return failure(); 712 // Create dummy padding value. 713 auto elemType = sourceType.getElementType(); 714 padValue = rewriter.create<ConstantOp>(padOp.getLoc(), elemType, 715 rewriter.getZeroAttr(elemType)); 716 } 717 718 SmallVector<int64_t> vecShape; 719 SmallVector<bool> readInBounds; 720 SmallVector<bool> writeInBounds; 721 for (unsigned i = 0; i < sourceType.getRank(); ++i) { 722 if (!sourceType.isDynamicDim(i)) { 723 vecShape.push_back(sourceType.getDimSize(i)); 724 // Source shape is statically known: Neither read nor write are out-of- 725 // bounds. 726 readInBounds.push_back(true); 727 writeInBounds.push_back(true); 728 } else if (!resultType.isDynamicDim(i)) { 729 // Source shape is not statically known, but result shape is. Vectorize 730 // with size of result shape. This may be larger than the source size. 731 vecShape.push_back(resultType.getDimSize(i)); 732 // Read may be out-of-bounds because the result size could be larger 733 // than the source size. 734 readInBounds.push_back(false); 735 // Write is out-of-bounds if low padding > 0. 736 writeInBounds.push_back( 737 getConstantIntValue(padOp.getMixedLowPad()[i]) == 738 static_cast<int64_t>(0)); 739 } else { 740 // Neither source nor result dim of padOp is static. Cannot vectorize 741 // the copy. 742 return failure(); 743 } 744 } 745 auto vecType = VectorType::get(vecShape, sourceType.getElementType()); 746 747 // Generate TransferReadOp. 748 SmallVector<Value> readIndices( 749 vecType.getRank(), rewriter.create<ConstantIndexOp>(padOp.getLoc(), 0)); 750 auto read = rewriter.create<vector::TransferReadOp>( 751 padOp.getLoc(), vecType, padOp.source(), readIndices, padValue, 752 readInBounds); 753 754 // Generate TransferWriteOp. 755 auto writeIndices = ofrToIndexValues( 756 rewriter, padOp.getLoc(), padOp.getMixedLowPad()); 757 rewriter.replaceOpWithNewOp<vector::TransferWriteOp>( 758 padOp, read, dest, writeIndices, writeInBounds); 759 760 return success(); 761 } 762 }; 763 764 /// Base pattern for rewriting PadTensorOps whose result is consumed by a given 765 /// operation type OpTy. 766 template <typename OpTy> 767 struct VectorizePadTensorOpUserPattern : public OpRewritePattern<PadTensorOp> { 768 using OpRewritePattern<PadTensorOp>::OpRewritePattern; 769 770 LogicalResult matchAndRewrite(PadTensorOp padOp, 771 PatternRewriter &rewriter) const final { 772 bool changed = false; 773 // Insert users in vector, because some users may be replaced/removed. 774 for (auto *user : llvm::to_vector<4>(padOp->getUsers())) 775 if (auto op = dyn_cast<OpTy>(user)) 776 changed |= rewriteUser(rewriter, padOp, op).succeeded(); 777 return success(changed); 778 } 779 780 protected: 781 virtual LogicalResult rewriteUser( 782 PatternRewriter &rewriter, PadTensorOp padOp, OpTy op) const = 0; 783 }; 784 785 /// Rewrite use of PadTensorOp result in TransferReadOp. E.g.: 786 /// ``` 787 /// %0 = linalg.pad_tensor %src ... : tensor<?x?xf32> to tensor<17x5xf32> 788 /// %r = vector.transfer_read %0[%c0, %c0], %cst 789 /// {in_bounds = [true, true]} : tensor<17x5xf32>, vector<17x5xf32> 790 /// ``` 791 /// is rewritten to: 792 /// ``` 793 /// %r = vector.transfer_read %src[%c0, %c0], %padding 794 /// {in_bounds = [true, true]} 795 /// : tensor<?x?xf32>, vector<17x5xf32> 796 /// ``` 797 /// Note: By restricting this pattern to in-bounds TransferReadOps, we can be 798 /// sure that the original padding value %cst was never used. 799 /// 800 /// This rewrite is possible if: 801 /// - `xferOp` has no out-of-bounds dims or mask. 802 /// - Low padding is static 0. 803 /// - Single, scalar padding value. 804 struct PadTensorOpVectorizationWithTransferReadPattern 805 : public VectorizePadTensorOpUserPattern<vector::TransferReadOp> { 806 using VectorizePadTensorOpUserPattern<vector::TransferReadOp> 807 ::VectorizePadTensorOpUserPattern; 808 809 LogicalResult rewriteUser(PatternRewriter &rewriter, PadTensorOp padOp, 810 vector::TransferReadOp xferOp) const override { 811 // Low padding must be static 0. 812 if (!padOp.hasZeroLowPad()) return failure(); 813 // Pad value must be a constant. 814 auto padValue = padOp.getConstantPaddingValue(); 815 if (!padValue) return failure(); 816 // Padding value of existing `xferOp` is unused. 817 if (xferOp.hasOutOfBoundsDim() || xferOp.mask()) return failure(); 818 819 rewriter.updateRootInPlace(xferOp, [&]() { 820 SmallVector<bool> inBounds(xferOp.getVectorType().getRank(), false); 821 xferOp->setAttr(xferOp.getInBoundsAttrName(), 822 rewriter.getBoolArrayAttr(inBounds)); 823 xferOp.sourceMutable().assign(padOp.source()); 824 xferOp.paddingMutable().assign(padValue); 825 }); 826 827 return success(); 828 } 829 }; 830 831 /// Rewrite use of PadTensorOp result in TransferWriteOp. 832 /// This pattern rewrites TransferWriteOps that write to a padded tensor value, 833 /// where the same amount of padding is immediately removed again after the 834 /// write. In such cases, the TransferWriteOp can write to the non-padded tensor 835 /// value and apply out-of-bounds masking. E.g.: 836 /// ``` 837 /// %0 = tensor.extract_slice ...[...] [%s0, %s1] [1, 1] 838 /// : tensor<...> to tensor<?x?xf32> 839 /// %1 = linalg.pad_tensor %0 ... : tensor<?x?xf32> to tensor<17x5xf32> 840 /// %2 = vector.transfer_write %vec, %1[...] 841 /// : vector<17x5xf32>, tensor<17x5xf32> 842 /// %r = tensor.extract_slice %2[0, 0] [%s0, %s1] [1, 1] 843 /// : tensor<17x5xf32> to tensor<?x?xf32> 844 /// ``` 845 /// is rewritten to: 846 /// ``` 847 /// %0 = tensor.extract_slice ...[...] [%s0, %s1] [1, 1] 848 /// : tensor<...> to tensor<?x?xf32> 849 /// %r = vector.transfer_write %vec, %0[...] : vector<17x5xf32>, tensor<?x?xf32> 850 /// ``` 851 /// Note: It is important that the ExtractSliceOp %r resizes the result of the 852 /// TransferWriteOp to the same size as the input of the TensorPadOp (or an even 853 /// smaller size). Otherwise, %r's new (dynamic) dimensions would differ from 854 /// %r's old dimensions. 855 /// 856 /// This rewrite is possible if: 857 /// - Low padding is static 0. 858 /// - `xferOp` has exactly one use, which is an ExtractSliceOp. This 859 /// ExtractSliceOp trims the same amount of padding that was added beforehand. 860 /// - Single, scalar padding value. 861 struct PadTensorOpVectorizationWithTransferWritePattern 862 : public VectorizePadTensorOpUserPattern<vector::TransferWriteOp> { 863 using VectorizePadTensorOpUserPattern<vector::TransferWriteOp> 864 ::VectorizePadTensorOpUserPattern; 865 866 LogicalResult rewriteUser(PatternRewriter &rewriter, PadTensorOp padOp, 867 vector::TransferWriteOp xferOp) const override { 868 // Low padding must be static 0. 869 if (!padOp.hasZeroLowPad()) return failure(); 870 // Pad value must be a constant. 871 auto padValue = padOp.getConstantPaddingValue(); 872 if (!padValue) return failure(); 873 // TransferWriteOp result must be directly consumed by an ExtractSliceOp. 874 if (!xferOp->hasOneUse()) return failure(); 875 auto trimPadding = dyn_cast<tensor::ExtractSliceOp>(*xferOp->user_begin()); 876 if (!trimPadding) return failure(); 877 // Only static zero offsets supported when trimming padding. 878 if (!trimPadding.hasZeroOffset()) return failure(); 879 // trimPadding must remove the amount of padding that was added earlier. 880 if (!hasSameTensorSize(padOp.source(), trimPadding)) return failure(); 881 882 // Insert the new TransferWriteOp at position of the old TransferWriteOp. 883 rewriter.setInsertionPoint(xferOp); 884 885 SmallVector<bool> inBounds(xferOp.getVectorType().getRank(), false); 886 auto newXferOp = rewriter.replaceOpWithNewOp<vector::TransferWriteOp>( 887 xferOp, padOp.source().getType(), xferOp.vector(), padOp.source(), 888 xferOp.indices(), xferOp.permutation_mapAttr(), xferOp.mask(), 889 rewriter.getBoolArrayAttr(inBounds)); 890 rewriter.replaceOp(trimPadding, newXferOp->getResult(0)); 891 892 return success(); 893 } 894 895 /// Check if `beforePadding` and `afterTrimming` have the same tensor size, 896 /// i.e., same dimensions. 897 /// 898 /// Dimensions may be static, dynamic or mix of both. In case of dynamic 899 /// dimensions, this function tries to infer the (static) tensor size by 900 /// looking at the defining op and utilizing op-specific knowledge. 901 /// 902 /// This is a conservative analysis. In case equal tensor sizes cannot be 903 /// proven statically, this analysis returns `false` even though the tensor 904 /// sizes may turn out to be equal at runtime. 905 bool hasSameTensorSize(Value beforePadding, 906 tensor::ExtractSliceOp afterTrimming) const { 907 // If the input to PadTensorOp is a CastOp, try with with both CastOp result 908 // and CastOp operand. 909 if (auto castOp = beforePadding.getDefiningOp<tensor::CastOp>()) 910 if (hasSameTensorSize(castOp.source(), afterTrimming)) return true; 911 912 auto t1 = beforePadding.getType().dyn_cast<RankedTensorType>(); 913 auto t2 = afterTrimming.getType().dyn_cast<RankedTensorType>(); 914 // Only RankedTensorType supported. 915 if (!t1 || !t2) return false; 916 // Rank of both values must be the same. 917 if (t1.getRank() != t2.getRank()) return false; 918 919 // All static dimensions must be the same. Mixed cases (e.g., dimension 920 // static in `t1` but dynamic in `t2`) are not supported. 921 for (unsigned i = 0; i < t1.getRank(); ++i) { 922 if (t1.isDynamicDim(i) != t2.isDynamicDim(i)) 923 return false; 924 if (!t1.isDynamicDim(i) && t1.getDimSize(i) != t2.getDimSize(i)) 925 return false; 926 } 927 928 // Nothing more to check if all dimensions are static. 929 if (t1.getNumDynamicDims() == 0) return true; 930 931 // All dynamic sizes must be the same. The only supported case at the moment 932 // is when `beforePadding` is an ExtractSliceOp (or a cast thereof). 933 934 // Apart from CastOp, only ExtractSliceOp is supported. 935 auto beforeSlice = beforePadding.getDefiningOp<tensor::ExtractSliceOp>(); 936 if (!beforeSlice) 937 return false; 938 939 assert(static_cast<size_t>(t1.getRank()) == 940 beforeSlice.getMixedSizes().size()); 941 assert(static_cast<size_t>(t2.getRank()) 942 == afterTrimming.getMixedSizes().size()); 943 944 for (unsigned i = 0; i < t1.getRank(); ++i) { 945 // Skip static dimensions. 946 if (!t1.isDynamicDim(i)) continue; 947 auto size1 = beforeSlice.getMixedSizes()[i]; 948 auto size2 = afterTrimming.getMixedSizes()[i]; 949 950 // Case 1: Same value or same constant int. 951 if (isEqualConstantIntOrValue(size1, size2)) continue; 952 953 // Other cases: Take a deeper look at defining ops of values. 954 auto v1 = size1.dyn_cast<Value>(); 955 auto v2 = size2.dyn_cast<Value>(); 956 if (!v1 || !v2) return false; 957 958 // Case 2: Both values are identical AffineMinOps. (Should not happen if 959 // CSE is run.) 960 auto minOp1 = v1.getDefiningOp<AffineMinOp>(); 961 auto minOp2 = v2.getDefiningOp<AffineMinOp>(); 962 if (minOp1 && minOp2 && minOp1.getAffineMap() == minOp2.getAffineMap() 963 && minOp1.operands() == minOp2.operands()) continue; 964 965 // Add additional cases as needed. 966 } 967 968 // All tests passed. 969 return true; 970 } 971 }; 972 973 /// Rewrite use of PadTensorOp result in InsertSliceOp. E.g.: 974 /// ``` 975 /// %0 = linalg.pad_tensor %src ... : tensor<?x?xf32> to tensor<17x5xf32> 976 /// %r = tensor.insert_slice %0 977 /// into %dest[%a, %b, 0, 0] [1, 1, 17, 5] [1, 1, 1, 1] 978 /// : tensor<17x5xf32> into tensor<?x?x17x5xf32> 979 /// ``` 980 /// is rewritten to: 981 /// ``` 982 /// %0 = vector.transfer_read %src[%c0, %c0], %padding 983 /// : tensor<?x?xf32>, vector<17x5xf32> 984 /// %r = vector.transfer_write %0, %dest[%a, %b, %c0, %c0] 985 /// {in_bounds = [true, true]} : vector<17x5xf32>, tensor<?x?x17x5xf32> 986 /// ``` 987 /// 988 /// This rewrite is possible if: 989 /// - Low padding is static 0. 990 /// - `padOp` result shape is static. 991 /// - The entire padded tensor is inserted. 992 /// (Implies that sizes of `insertOp` are all static.) 993 /// - Only unit strides in `insertOp`. 994 /// - Single, scalar padding value. 995 struct PadTensorOpVectorizationWithInsertSlicePattern 996 : public VectorizePadTensorOpUserPattern<tensor::InsertSliceOp> { 997 using VectorizePadTensorOpUserPattern< 998 tensor::InsertSliceOp>::VectorizePadTensorOpUserPattern; 999 1000 LogicalResult rewriteUser(PatternRewriter &rewriter, PadTensorOp padOp, 1001 tensor::InsertSliceOp insertOp) const override { 1002 // Low padding must be static 0. 1003 if (!padOp.hasZeroLowPad()) return failure(); 1004 // Only unit stride supported. 1005 if (!insertOp.hasUnitStride()) return failure(); 1006 // Pad value must be a constant. 1007 auto padValue = padOp.getConstantPaddingValue(); 1008 if (!padValue) 1009 return failure(); 1010 // Dynamic shapes not supported. 1011 if (!padOp.result().getType().cast<ShapedType>().hasStaticShape()) 1012 return failure(); 1013 1014 auto vecType = VectorType::get(padOp.getType().getShape(), 1015 padOp.getType().getElementType()); 1016 unsigned vecRank = vecType.getRank(); 1017 unsigned tensorRank = insertOp.getType().getRank(); 1018 1019 // Check if sizes match: Insert the entire tensor into most minor dims. 1020 // (No permutations allowed.) 1021 SmallVector<int64_t> expectedSizes(tensorRank - vecRank, 1); 1022 expectedSizes.append(vecType.getShape().begin(), vecType.getShape().end()); 1023 if (!llvm::all_of( 1024 llvm::zip(insertOp.getMixedSizes(), expectedSizes), [](auto it) { 1025 return getConstantIntValue(std::get<0>(it)) == std::get<1>(it); 1026 })) 1027 return failure(); 1028 1029 // Insert the TransferReadOp and TransferWriteOp at the position of the 1030 // InsertSliceOp. 1031 rewriter.setInsertionPoint(insertOp); 1032 1033 // Generate TransferReadOp: Read entire source tensor and add high padding. 1034 SmallVector<Value> readIndices( 1035 vecRank, rewriter.create<ConstantIndexOp>(padOp.getLoc(), 0)); 1036 auto read = rewriter.create<vector::TransferReadOp>( 1037 padOp.getLoc(), vecType, padOp.source(), readIndices, padValue); 1038 1039 // Generate TransferWriteOp: Write to InsertSliceOp's dest tensor at 1040 // specified offsets. Write is fully in-bounds because a InsertSliceOp's 1041 // source must fit into the destination at the specified offsets. 1042 auto writeIndices = 1043 ofrToIndexValues(rewriter, padOp.getLoc(), insertOp.getMixedOffsets()); 1044 SmallVector<bool> inBounds(vecRank, true); 1045 rewriter.replaceOpWithNewOp<vector::TransferWriteOp>( 1046 insertOp, read, insertOp.dest(), writeIndices, inBounds); 1047 1048 return success(); 1049 } 1050 }; 1051 1052 void mlir::linalg::populatePadTensorOpVectorizationPatterns( 1053 RewritePatternSet &patterns, PatternBenefit baseBenefit) { 1054 patterns.add<GenericPadTensorOpVectorizationPattern>( 1055 patterns.getContext(), baseBenefit); 1056 // Try these specialized patterns first before resorting to the generic one. 1057 patterns.add<PadTensorOpVectorizationWithTransferReadPattern, 1058 PadTensorOpVectorizationWithTransferWritePattern, 1059 PadTensorOpVectorizationWithInsertSlicePattern>( 1060 patterns.getContext(), baseBenefit.getBenefit() + 1); 1061 } 1062 1063 // TODO: cleanup all the convolution vectorization patterns. 1064 template <class ConvOp, int N> 1065 LogicalResult ConvOpVectorization<ConvOp, N>::matchAndRewrite( 1066 ConvOp op, PatternRewriter &rewriter) const { 1067 Location loc = op.getLoc(); 1068 MLIRContext *context = op.getContext(); 1069 1070 OpOperand *input = op.getInputOperand(0); 1071 OpOperand *kernel = op.getInputOperand(1); 1072 OpOperand *output = op.getOutputOperand(0); 1073 ArrayRef<int64_t> inShape = op.getShape(input); 1074 ArrayRef<int64_t> kShape = op.getShape(kernel); 1075 1076 if (llvm::any_of(inShape, ShapedType::isDynamic) || 1077 llvm::any_of(kShape, ShapedType::isDynamic)) 1078 return failure(); 1079 1080 SmallVector<AffineExpr, 4> mapping; 1081 SmallVector<int64_t, 4> vectorDims; 1082 // Fail to apply when the size of not vectorized dimension is not 1. 1083 for (unsigned i = 0; i < N; i++) { 1084 if (!mask[i] && (inShape[i] != 1 || kShape[i] != 1)) 1085 return failure(); 1086 1087 if (mask[i] && inShape[i] != kShape[i]) 1088 return failure(); 1089 1090 if (mask[i]) { 1091 mapping.push_back(getAffineDimExpr(i, context)); 1092 vectorDims.push_back(inShape[i]); 1093 } 1094 } 1095 1096 int64_t rank = op.getRank(input); 1097 int64_t numDims = mapping.size(); 1098 Type elemType = getElementTypeOrSelf(input->get()); 1099 1100 auto map = AffineMap::get(rank, 0, mapping, context); 1101 SmallVector<Value, 4> zeros(rank, rewriter.create<ConstantIndexOp>(loc, 0)); 1102 auto vecType = VectorType::get(vectorDims, elemType); 1103 1104 auto inputVec = rewriter.create<vector::TransferReadOp>( 1105 loc, vecType, input->get(), zeros, map); 1106 auto kernelVec = rewriter.create<vector::TransferReadOp>( 1107 loc, vecType, kernel->get(), zeros, map); 1108 1109 auto acc = rewriter.create<ConstantOp>(loc, elemType, 1110 rewriter.getZeroAttr(elemType)); 1111 1112 std::array<AffineMap, 3> indexingMaps{ 1113 AffineMap::getMultiDimIdentityMap(numDims, context), 1114 AffineMap::getMultiDimIdentityMap(numDims, context), 1115 AffineMap::get(numDims, 0, {}, context)}; 1116 1117 std::vector<StringRef> iteratorTypes(numDims, "reduction"); 1118 1119 auto result = rewriter.create<vector::ContractionOp>( 1120 loc, inputVec, kernelVec, acc, 1121 rewriter.getAffineMapArrayAttr(indexingMaps), 1122 rewriter.getStrArrayAttr(iteratorTypes)); 1123 1124 rewriter.create<memref::StoreOp>(loc, result, output->get(), 1125 ValueRange(zeros)); 1126 rewriter.eraseOp(op); 1127 return success(); 1128 } 1129 1130 using ConvOpConst = ConvOpVectorization<Conv1DOp, 1>; 1131 1132 /// Inserts tiling, promotion and vectorization pattern for ConvOp 1133 /// conversion into corresponding pattern lists. 1134 template <typename ConvOp, unsigned N> 1135 static void populateVectorizationPatterns( 1136 RewritePatternSet &tilingPatterns, RewritePatternSet &promotionPatterns, 1137 RewritePatternSet &vectorizationPatterns, ArrayRef<int64_t> tileSizes) { 1138 auto *context = tilingPatterns.getContext(); 1139 if (tileSizes.size() < N) 1140 return; 1141 1142 constexpr static StringRef kTiledMarker = "TILED"; 1143 constexpr static StringRef kPromotedMarker = "PROMOTED"; 1144 tilingPatterns.add<LinalgTilingPattern<ConvOp>>( 1145 context, LinalgTilingOptions().setTileSizes(tileSizes), 1146 LinalgTransformationFilter(ArrayRef<Identifier>{}, 1147 Identifier::get(kTiledMarker, context))); 1148 1149 promotionPatterns.add<LinalgPromotionPattern<ConvOp>>( 1150 context, LinalgPromotionOptions().setUseFullTileBuffersByDefault(true), 1151 LinalgTransformationFilter(Identifier::get(kTiledMarker, context), 1152 Identifier::get(kPromotedMarker, context))); 1153 1154 SmallVector<bool, 4> mask(N); 1155 int offset = tileSizes.size() - N; 1156 std::transform(tileSizes.begin() + offset, tileSizes.end(), mask.begin(), 1157 [](int64_t i) -> bool { return i > 1; }); 1158 1159 vectorizationPatterns.add<ConvOpVectorization<ConvOp, N>>(context, mask); 1160 } 1161 1162 void mlir::linalg::populateConvVectorizationPatterns( 1163 MLIRContext *context, SmallVectorImpl<RewritePatternSet> &patterns, 1164 ArrayRef<int64_t> tileSizes) { 1165 RewritePatternSet tiling(context); 1166 RewritePatternSet promotion(context); 1167 RewritePatternSet vectorization(context); 1168 populateVectorizationPatterns<Conv1DOp, 1>(tiling, promotion, vectorization, 1169 tileSizes); 1170 1171 populateVectorizationPatterns<Conv2DOp, 2>(tiling, promotion, vectorization, 1172 tileSizes); 1173 1174 populateVectorizationPatterns<Conv3DOp, 3>(tiling, promotion, vectorization, 1175 tileSizes); 1176 1177 populateVectorizationPatterns<Conv1DNwcWcfOp, 3>(tiling, promotion, 1178 vectorization, tileSizes); 1179 1180 populateVectorizationPatterns<Conv2DNhwcHwcfOp, 4>(tiling, promotion, 1181 vectorization, tileSizes); 1182 1183 populateVectorizationPatterns<Conv3DNdhwcDhwcfOp, 5>( 1184 tiling, promotion, vectorization, tileSizes); 1185 1186 patterns.push_back(std::move(tiling)); 1187 patterns.push_back(std::move(promotion)); 1188 patterns.push_back(std::move(vectorization)); 1189 } 1190 1191 //----------------------------------------------------------------------------// 1192 // Forwarding patterns 1193 //----------------------------------------------------------------------------// 1194 1195 /// Check whether there is any interleaved use of any `values` between `firstOp` 1196 /// and `secondOp`. Conservatively return `true` if any op or value is in a 1197 /// different block. 1198 static bool mayExistInterleavedUses(Operation *firstOp, Operation *secondOp, 1199 ValueRange values) { 1200 if (firstOp->getBlock() != secondOp->getBlock() || 1201 !firstOp->isBeforeInBlock(secondOp)) { 1202 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " 1203 << "interleavedUses precondition failed, firstOp: " 1204 << *firstOp << ", second op: " << *secondOp); 1205 return true; 1206 } 1207 for (auto v : values) { 1208 for (auto &u : v.getUses()) { 1209 Operation *owner = u.getOwner(); 1210 if (owner == firstOp || owner == secondOp) 1211 continue; 1212 // TODO: this is too conservative, use dominance info in the future. 1213 if (owner->getBlock() == firstOp->getBlock() && 1214 (owner->isBeforeInBlock(firstOp) || secondOp->isBeforeInBlock(owner))) 1215 continue; 1216 LLVM_DEBUG(llvm::dbgs() 1217 << "\n[" DEBUG_TYPE "]: " 1218 << " found interleaved op " << *owner 1219 << ", firstOp: " << *firstOp << ", second op: " << *secondOp); 1220 return true; 1221 } 1222 } 1223 return false; 1224 } 1225 1226 /// Return the unique subview use of `v` if it is indeed unique, null otherwise. 1227 static memref::SubViewOp getSubViewUseIfUnique(Value v) { 1228 memref::SubViewOp subViewOp; 1229 for (auto &u : v.getUses()) { 1230 if (auto newSubViewOp = dyn_cast<memref::SubViewOp>(u.getOwner())) { 1231 if (subViewOp) 1232 return memref::SubViewOp(); 1233 subViewOp = newSubViewOp; 1234 } 1235 } 1236 return subViewOp; 1237 } 1238 1239 /// TODO: use interfaces, side-effects and aliasing analysis as appropriate, 1240 /// when available. 1241 LogicalResult LinalgCopyVTRForwardingPattern::matchAndRewrite( 1242 vector::TransferReadOp xferOp, PatternRewriter &rewriter) const { 1243 1244 // Transfer into `view`. 1245 Value viewOrAlloc = xferOp.source(); 1246 if (!viewOrAlloc.getDefiningOp<memref::ViewOp>() && 1247 !viewOrAlloc.getDefiningOp<memref::AllocOp>()) 1248 return failure(); 1249 1250 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " << viewOrAlloc); 1251 1252 // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`. 1253 memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc); 1254 if (!subViewOp) 1255 return failure(); 1256 Value subView = subViewOp.getResult(); 1257 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " 1258 << "with subView " << subView); 1259 1260 // Find the copy into `subView` without interleaved uses. 1261 CopyOp copyOp; 1262 for (auto &u : subView.getUses()) { 1263 if (auto newCopyOp = dyn_cast<CopyOp>(u.getOwner())) { 1264 assert(newCopyOp.output().getType().isa<MemRefType>()); 1265 if (newCopyOp.output() != subView) 1266 continue; 1267 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " 1268 << "copy candidate " << *newCopyOp); 1269 if (mayExistInterleavedUses(newCopyOp, xferOp, {viewOrAlloc, subView})) 1270 continue; 1271 copyOp = newCopyOp; 1272 break; 1273 } 1274 } 1275 if (!copyOp) 1276 return failure(); 1277 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " 1278 << "with copy " << *copyOp); 1279 1280 // Find the fill into `viewOrAlloc` without interleaved uses before the copy. 1281 FillOp maybeFillOp; 1282 for (auto &u : viewOrAlloc.getUses()) { 1283 if (auto newFillOp = dyn_cast<FillOp>(u.getOwner())) { 1284 assert(newFillOp.output().getType().isa<MemRefType>()); 1285 if (newFillOp.output() != viewOrAlloc) 1286 continue; 1287 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " 1288 << "fill candidate " << *newFillOp); 1289 if (mayExistInterleavedUses(newFillOp, copyOp, {viewOrAlloc, subView})) 1290 continue; 1291 maybeFillOp = newFillOp; 1292 break; 1293 } 1294 } 1295 // Ensure padding matches. 1296 if (maybeFillOp && xferOp.padding() != maybeFillOp.value()) 1297 return failure(); 1298 if (maybeFillOp) 1299 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " 1300 << "with maybeFillOp " << *maybeFillOp); 1301 1302 // `in` is the subview that linalg.copy reads. Replace it. 1303 Value in = copyOp.input(); 1304 1305 // linalg.copy + linalg.fill can be used to create a padded local buffer. 1306 // The `masked` attribute is only valid on this padded buffer. 1307 // When forwarding to vector.transfer_read, the attribute must be reset 1308 // conservatively. 1309 Value res = rewriter.create<vector::TransferReadOp>( 1310 xferOp.getLoc(), xferOp.getVectorType(), in, xferOp.indices(), 1311 xferOp.permutation_map(), xferOp.padding(), ArrayAttr()); 1312 1313 if (maybeFillOp) 1314 rewriter.eraseOp(maybeFillOp); 1315 rewriter.eraseOp(copyOp); 1316 rewriter.replaceOp(xferOp, res); 1317 1318 return success(); 1319 } 1320 1321 /// TODO: use interfaces, side-effects and aliasing analysis as appropriate, 1322 /// when available. 1323 LogicalResult LinalgCopyVTWForwardingPattern::matchAndRewrite( 1324 vector::TransferWriteOp xferOp, PatternRewriter &rewriter) const { 1325 // Transfer into `viewOrAlloc`. 1326 Value viewOrAlloc = xferOp.source(); 1327 if (!viewOrAlloc.getDefiningOp<memref::ViewOp>() && 1328 !viewOrAlloc.getDefiningOp<memref::AllocOp>()) 1329 return failure(); 1330 1331 // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`. 1332 memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc); 1333 if (!subViewOp) 1334 return failure(); 1335 Value subView = subViewOp.getResult(); 1336 1337 // Find the copy from `subView` without interleaved uses. 1338 CopyOp copyOp; 1339 for (auto &u : subViewOp.getResult().getUses()) { 1340 if (auto newCopyOp = dyn_cast<CopyOp>(u.getOwner())) { 1341 if (newCopyOp.getInputOperand(0)->get() != subView) 1342 continue; 1343 if (mayExistInterleavedUses(xferOp, newCopyOp, {viewOrAlloc, subView})) 1344 continue; 1345 copyOp = newCopyOp; 1346 break; 1347 } 1348 } 1349 if (!copyOp) 1350 return failure(); 1351 1352 // `out` is the subview copied into that we replace. 1353 assert(copyOp.output().getType().isa<MemRefType>()); 1354 Value out = copyOp.output(); 1355 1356 // Forward vector.transfer into copy. 1357 // linalg.copy + linalg.fill can be used to create a padded local buffer. 1358 // The `masked` attribute is only valid on this padded buffer. 1359 // When forwarding to vector.transfer_write, the attribute must be reset 1360 // conservatively. 1361 rewriter.create<vector::TransferWriteOp>( 1362 xferOp.getLoc(), xferOp.vector(), out, xferOp.indices(), 1363 xferOp.permutation_map(), ArrayAttr()); 1364 1365 rewriter.eraseOp(copyOp); 1366 rewriter.eraseOp(xferOp); 1367 1368 return success(); 1369 } 1370