1 //===- Vectorization.cpp - Implementation of linalg Vectorization ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the linalg dialect Vectorization transformations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h" 14 #include "mlir/Dialect/Linalg/IR/LinalgOps.h" 15 #include "mlir/Dialect/Linalg/Transforms/Transforms.h" 16 #include "mlir/Dialect/Linalg/Utils/Utils.h" 17 #include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h" 18 #include "mlir/Dialect/Utils/StructuredOpsUtils.h" 19 #include "mlir/Dialect/Vector/EDSC/Intrinsics.h" 20 #include "mlir/Dialect/Vector/VectorOps.h" 21 #include "mlir/IR/AffineExpr.h" 22 #include "mlir/IR/Matchers.h" 23 #include "mlir/IR/PatternMatch.h" 24 #include "mlir/Pass/Pass.h" 25 #include "mlir/Support/LLVM.h" 26 #include "mlir/Transforms/RegionUtils.h" 27 #include "llvm/ADT/ScopeExit.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include <type_traits> 31 32 using namespace mlir; 33 using namespace mlir::edsc; 34 using namespace mlir::edsc::intrinsics; 35 using namespace mlir::linalg; 36 37 using llvm::dbgs; 38 39 #define DEBUG_TYPE "linalg-vectorization" 40 41 /// Return the unique instance of OpType in `block` if it is indeed unique. 42 /// Return null if none or more than 1 instances exist. 43 template <typename OpType> static OpType getSingleOpOfType(Block &block) { 44 OpType res; 45 block.walk([&](OpType op) { 46 if (res) { 47 res = nullptr; 48 return WalkResult::interrupt(); 49 } 50 res = op; 51 return WalkResult::advance(); 52 }); 53 return res; 54 } 55 56 /// Helper data structure to represent the result of vectorization. 57 /// In certain specific cases, like terminators, we do not want to propagate/ 58 enum VectorizationStatus { 59 /// Op failed to vectorize. 60 Failure = 0, 61 /// Op vectorized and custom function took care of replacement logic 62 NoReplace, 63 /// Op vectorized into a new Op whose results will replace original Op's 64 /// results. 65 NewOp 66 // TODO: support values if Op vectorized to Many-Ops whose results we need to 67 // aggregate for replacement. 68 }; 69 struct VectorizationResult { 70 /// Return status from vectorizing the current op. 71 enum VectorizationStatus status = VectorizationStatus::Failure; 72 /// New vectorized operation to replace the current op. 73 /// Replacement behavior is specified by `status`. 74 Operation *newOp; 75 }; 76 77 /// Return a vector type of the same shape and element type as the (assumed) 78 /// ShapedType of `v`. 79 static VectorType extractVectorTypeFromShapedValue(Value v) { 80 auto st = v.getType().cast<ShapedType>(); 81 if (st.isa<MemRefType>() && st.getShape().empty()) 82 return VectorType(); 83 return VectorType::get(st.getShape(), st.getElementType()); 84 } 85 86 /// Build a vector.transfer_read from `source` at indices set to all `0`. 87 /// If source has rank zero, build an memref.load. 88 /// Return the produced value. 89 static Value buildVectorRead(OpBuilder &builder, Value source, 90 VectorType vectorType, AffineMap map) { 91 edsc::ScopedContext scope(builder); 92 auto shapedType = source.getType().cast<ShapedType>(); 93 if (vectorType) { 94 SmallVector<Value> indices(shapedType.getRank(), std_constant_index(0)); 95 if (map) 96 return vector_transfer_read(vectorType, source, indices, map); 97 return vector_transfer_read(vectorType, source, indices); 98 } 99 return memref_load(source); 100 } 101 102 /// Build a vector.transfer_write of `value` into `dest` at indices set to all 103 /// `0`. If `dest` has null rank, build an memref.store. 104 /// Return the produced value or null if no value is produced. 105 static Value buildVectorWrite(OpBuilder &builder, Value value, Value dest) { 106 edsc::ScopedContext scope(builder); 107 Operation *write; 108 auto shapedType = dest.getType().cast<ShapedType>(); 109 if (VectorType vectorType = extractVectorTypeFromShapedValue(dest)) { 110 SmallVector<Value> indices(shapedType.getRank(), std_constant_index(0)); 111 if (vectorType != value.getType()) 112 value = vector_broadcast(vectorType, value); 113 write = vector_transfer_write(value, dest, indices); 114 } else { 115 write = memref_store(value, dest); 116 } 117 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: vectorized op: " << *write); 118 if (!write->getResults().empty()) 119 return write->getResult(0); 120 return Value(); 121 } 122 123 /// If value of assumed VectorType has a shape different than `shape`, buil and 124 /// return a new vector.broadcast to `shape`. 125 /// Otherwise, just return value. 126 static Value broadcastIfNeeded(OpBuilder &builder, Value value, 127 ArrayRef<int64_t> shape) { 128 auto vecType = value.getType().dyn_cast<VectorType>(); 129 if (shape.empty() || (vecType != nullptr && vecType.getShape() == shape)) 130 return value; 131 auto newVecType = VectorType::get(shape, vecType ? vecType.getElementType() 132 : value.getType()); 133 return builder.create<vector::BroadcastOp>( 134 builder.getInsertionPoint()->getLoc(), newVecType, value); 135 } 136 137 // Custom vectorization function type. Produce a vector form of Operation* 138 // assuming all its vectorized operands are already in the BlockAndValueMapping. 139 // Return nullptr if the Operation cannot be vectorized. 140 using CustomVectorizationHook = std::function<VectorizationResult( 141 Operation *, const BlockAndValueMapping &)>; 142 143 /// Helper function to vectorize the terminator of a `linalgOp`. New result 144 /// vector values are appended to `newResults`. Return 145 /// VectorizationStatus::NoReplace to signal the vectorization algorithm that it 146 /// should not try to map produced operations and instead return the results 147 /// using the `newResults` vector making them available to the 148 /// vectorization algorithm for RAUW. This function is meant to be used as a 149 /// CustomVectorizationHook. 150 static VectorizationResult 151 vectorizeLinalgYield(OpBuilder &builder, Operation *op, 152 const BlockAndValueMapping &bvm, LinalgOp linalgOp, 153 SmallVectorImpl<Value> &newResults) { 154 auto yieldOp = dyn_cast<linalg::YieldOp>(op); 155 if (!yieldOp) 156 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 157 for (auto outputs : llvm::enumerate(yieldOp.values())) { 158 // TODO: Scan for an opportunity for reuse. 159 // TODO: use a map. 160 Value vectorValue = bvm.lookup(outputs.value()); 161 Value newResult = buildVectorWrite(builder, vectorValue, 162 linalgOp.getOutput(outputs.index())); 163 if (newResult) 164 newResults.push_back(newResult); 165 } 166 return VectorizationResult{VectorizationStatus::NoReplace, nullptr}; 167 } 168 169 /// Helper function to vectorize the index operations of a `linalgOp`. Return 170 /// VectorizationStatus::NewOp to signal the vectorization algorithm that it 171 /// should map the produced operations. This function is meant to be used as a 172 /// CustomVectorizationHook. 173 static VectorizationResult 174 vectorizeLinalgIndex(OpBuilder &builder, Operation *op, LinalgOp linalgOp) { 175 IndexOp indexOp = dyn_cast<linalg::IndexOp>(op); 176 if (!indexOp) 177 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 178 auto loc = indexOp.getLoc(); 179 // Compute the static loop sizes of the index op. 180 auto targetShape = linalgOp.computeStaticLoopSizes(); 181 // Compute a one-dimensional index vector for the index op dimension. 182 SmallVector<int64_t> constantSeq( 183 llvm::seq<int64_t>(0, targetShape[indexOp.dim()])); 184 ConstantOp constantOp = 185 builder.create<ConstantOp>(loc, builder.getIndexVectorAttr(constantSeq)); 186 // Return the one-dimensional index vector if it lives in the trailing 187 // dimension of the iteration space since the vectorization algorithm in this 188 // case can handle the broadcast. 189 if (indexOp.dim() == targetShape.size() - 1) 190 return VectorizationResult{VectorizationStatus::NewOp, constantOp}; 191 // Otherwise permute the targetShape to move the index dimension last, 192 // broadcast the one-dimensional index vector to the permuted shape, and 193 // finally transpose the broadcasted index vector to undo the permutation. 194 std::swap(targetShape[indexOp.dim()], targetShape.back()); 195 auto broadCastOp = builder.create<vector::BroadcastOp>( 196 loc, VectorType::get(targetShape, builder.getIndexType()), constantOp); 197 SmallVector<int64_t> transposition( 198 llvm::seq<int64_t>(0, linalgOp.getNumLoops())); 199 std::swap(transposition.back(), transposition[indexOp.dim()]); 200 auto transposeOp = 201 builder.create<vector::TransposeOp>(loc, broadCastOp, transposition); 202 return VectorizationResult{VectorizationStatus::NewOp, transposeOp}; 203 } 204 205 /// Generic vectorization for a single operation `op`, given already vectorized 206 /// operands carried by `bvm`. Vectorization occurs as follows: 207 /// 1. Try to apply any of the `customVectorizationHooks` and return its 208 /// result on success. 209 /// 2. Clone any constant in the current scope without vectorization: each 210 /// consumer of the constant will later determine the shape to which the 211 /// constant needs to be broadcast to. 212 /// 3. Fail on any remaining non `ElementwiseMappable` op. It is the purpose 213 /// of the `customVectorizationHooks` to cover such cases. 214 /// 4. Clone `op` in vector form to a vector of shape prescribed by the first 215 /// operand of maximal rank. Other operands have smaller rank and are 216 /// broadcast accordingly. It is assumed this broadcast is always legal, 217 /// otherwise, it means one of the `customVectorizationHooks` is incorrect. 218 /// 219 /// This function assumes all operands of `op` have been vectorized and are in 220 /// the `bvm` mapping. As a consequence, this function is meant to be called on 221 /// a topologically-sorted list of ops. 222 /// This function does not update `bvm` but returns a VectorizationStatus that 223 /// instructs the caller what `bvm` update needs to occur. 224 static VectorizationResult 225 vectorizeOneOp(OpBuilder &builder, Operation *op, 226 const BlockAndValueMapping &bvm, 227 ArrayRef<CustomVectorizationHook> customVectorizationHooks) { 228 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: vectorize op " << *op); 229 230 // 1. Try to apply any CustomVectorizationHook. 231 if (!customVectorizationHooks.empty()) { 232 for (auto &customFunc : customVectorizationHooks) { 233 VectorizationResult result = customFunc(op, bvm); 234 if (result.status == VectorizationStatus::Failure) 235 continue; 236 return result; 237 } 238 } 239 240 // 2. Constant ops don't get vectorized but rather broadcasted at their users. 241 // Clone so that the constant is not confined to the linalgOp block . 242 if (isa<ConstantOp>(op)) 243 return VectorizationResult{VectorizationStatus::NewOp, builder.clone(*op)}; 244 245 // 3. Only ElementwiseMappable are allowed in the generic vectorization. 246 if (!OpTrait::hasElementwiseMappableTraits(op)) 247 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 248 249 // 4. Generic vectorization path for ElementwiseMappable ops. 250 // a. first get the first max ranked shape. 251 SmallVector<int64_t, 4> firstMaxRankedShape; 252 for (Value operand : op->getOperands()) { 253 auto vt = bvm.lookup(operand).getType().dyn_cast<VectorType>(); 254 if (vt && firstMaxRankedShape.size() < vt.getShape().size()) 255 firstMaxRankedShape.assign(vt.getShape().begin(), vt.getShape().end()); 256 } 257 // b. broadcast each op if needed. 258 auto vectorizedOperands = llvm::map_range(op->getOperands(), [&](Value v) { 259 return firstMaxRankedShape.empty() 260 ? bvm.lookup(v) 261 : broadcastIfNeeded(builder, bvm.lookup(v), firstMaxRankedShape); 262 }); 263 // c. for elementwise, the result is the vector with the firstMaxRankedShape 264 auto returnTypes = llvm::map_range(op->getResultTypes(), [&](Type t) { 265 return firstMaxRankedShape.empty() 266 ? t 267 : VectorType::get(firstMaxRankedShape, t); 268 }); 269 270 // Build and return the new op. 271 OperationState state(op->getLoc(), op->getName()); 272 state.addAttributes(op->getAttrs()); 273 state.addOperands(llvm::to_vector<4>(vectorizedOperands)); 274 state.addTypes(llvm::to_vector<4>(returnTypes)); 275 return VectorizationResult{VectorizationStatus::NewOp, 276 builder.createOperation(state)}; 277 } 278 279 /// Detect whether `r` has only ConstantOp, ElementwiseMappable and YieldOp. 280 static bool hasOnlyScalarElementwiseOp(Region &r) { 281 if (!llvm::hasSingleElement(r)) 282 return false; 283 for (Operation &op : r.front()) { 284 if (!(isa<ConstantOp, linalg::YieldOp, linalg::IndexOp>(op) || 285 OpTrait::hasElementwiseMappableTraits(&op)) || 286 llvm::any_of(op.getResultTypes(), 287 [](Type type) { return !type.isIntOrIndexOrFloat(); })) 288 return false; 289 } 290 return true; 291 } 292 293 // Return true if the op is an element-wise linalg op. 294 static bool isElementwise(Operation *op) { 295 auto linalgOp = dyn_cast<linalg::LinalgOp>(op); 296 if (!linalgOp) 297 return false; 298 if (linalgOp.getNumLoops() != linalgOp.getNumParallelLoops()) 299 return false; 300 // TODO: relax the restrictions on indexing map. 301 for (unsigned i = 0, e = linalgOp.getNumOutputs(); i < e; i++) { 302 if (!linalgOp.getOutputIndexingMap(i).isIdentity()) 303 return false; 304 } 305 if (linalgOp->getNumRegions() != 1) 306 return false; 307 return hasOnlyScalarElementwiseOp(linalgOp->getRegion(0)); 308 } 309 310 // Calculate the map to apply to transfer_read to convert the input shape into 311 // the output shape. 312 static AffineMap getTransferReadMap(LinalgOp linalgOp, unsigned argIndex) { 313 AffineMap linalgMap = linalgOp.getIndexingMap(argIndex); 314 MLIRContext *context = linalgMap.getContext(); 315 AffineExpr zero = mlir::getAffineConstantExpr(0, context); 316 SmallVector<AffineExpr, 4> exprs(linalgMap.getNumInputs(), zero); 317 for (unsigned i : llvm::seq(unsigned(0), linalgMap.getNumResults())) { 318 exprs[linalgMap.getDimPosition(i)] = getAffineDimExpr(i, context); 319 } 320 return AffineMap::get(linalgMap.getNumResults(), /*symbolCount=*/0, exprs, 321 context); 322 } 323 324 /// Generic vectorization function that rewrites the body of a `linalgOp` into 325 /// vector form. Generic vectorization proceeds as follows: 326 /// 1. Verify the `linalgOp` has one non-empty region. 327 /// 2. Values defined above the region are mapped to themselves and will be 328 /// broadcasted on a per-need basis by their consumers. 329 /// 3. Each region argument is vectorized into a vector.transfer_read (or 0-d 330 /// load). 331 /// TODO: Reuse opportunities for RAR dependencies. 332 /// 4a. Register CustomVectorizationHook for YieldOp to capture the results. 333 /// 4b. Register CustomVectorizationHook for IndexOp to access the iteration 334 /// indices. 335 /// 5. Iteratively call vectorizeOneOp on the region operations. 336 LogicalResult vectorizeAsLinalgGeneric( 337 OpBuilder &builder, LinalgOp linalgOp, SmallVectorImpl<Value> &newResults, 338 ArrayRef<CustomVectorizationHook> customVectorizationHooks = {}) { 339 // 1. Fail to vectorize if the operation does not have one non-empty region. 340 if (linalgOp->getNumRegions() != 1 || linalgOp->getRegion(0).empty()) 341 return failure(); 342 auto &block = linalgOp->getRegion(0).front(); 343 344 BlockAndValueMapping bvm; 345 // 2. Values defined above the region can only be broadcast for now. Make them 346 // map to themselves. 347 SetVector<Value> valuesSet; 348 mlir::getUsedValuesDefinedAbove(linalgOp->getRegion(0), valuesSet); 349 bvm.map(valuesSet.getArrayRef(), valuesSet.getArrayRef()); 350 351 // 3. Turn all BBArgs into vector.transfer_read / load. 352 SmallVector<AffineMap> indexings; 353 for (auto bbarg : block.getArguments()) { 354 Value vectorArg = linalgOp.getShapedOperand(bbarg.getArgNumber()); 355 AffineMap map; 356 VectorType vectorType = extractVectorTypeFromShapedValue(vectorArg); 357 if (isElementwise(linalgOp) && 358 !linalgOp.getIndexingMap(bbarg.getArgNumber()).isMinorIdentity()) { 359 // Currently assume we don't support output permutations. 360 assert(linalgOp.getNumOutputs() > 0 && 361 linalgOp.getOutputIndexingMap(0).isIdentity()); 362 ArrayRef<int64_t> outputShape = 363 linalgOp.getOutputShapedType(0).getShape(); 364 vectorType = VectorType::get(outputShape, vectorType.getElementType()); 365 map = getTransferReadMap(linalgOp, bbarg.getArgNumber()); 366 } 367 Value vectorRead = buildVectorRead(builder, vectorArg, vectorType, map); 368 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: new vectorized bbarg(" 369 << bbarg.getArgNumber() << "): " << vectorRead); 370 bvm.map(bbarg, vectorRead); 371 bvm.map(vectorArg, vectorRead); 372 } 373 374 auto hooks = llvm::to_vector<4>(customVectorizationHooks); 375 // 4a. Register CustomVectorizationHook for yieldOp. 376 CustomVectorizationHook vectorizeYield = 377 [&](Operation *op, 378 const BlockAndValueMapping &bvm) -> VectorizationResult { 379 return vectorizeLinalgYield(builder, op, bvm, linalgOp, newResults); 380 }; 381 hooks.push_back(vectorizeYield); 382 383 // 4b. Register CustomVectorizationHook for indexOp. 384 CustomVectorizationHook vectorizeIndex = 385 [&](Operation *op, 386 const BlockAndValueMapping &bvm) -> VectorizationResult { 387 return vectorizeLinalgIndex(builder, op, linalgOp); 388 }; 389 hooks.push_back(vectorizeIndex); 390 391 // 5. Iteratively call `vectorizeOneOp` to each op in the slice. 392 for (Operation &op : block.getOperations()) { 393 VectorizationResult result = vectorizeOneOp(builder, &op, bvm, hooks); 394 if (result.status == VectorizationStatus::Failure) { 395 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: failed to vectorize: " << op); 396 return failure(); 397 } 398 if (result.status == VectorizationStatus::NewOp) { 399 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: new vector op: " 400 << *result.newOp;); 401 bvm.map(op.getResults(), result.newOp->getResults()); 402 } 403 } 404 405 return success(); 406 } 407 408 static LogicalResult vectorizeContraction(OpBuilder &builder, LinalgOp linalgOp, 409 SmallVectorImpl<Value> &newResults) { 410 assert(isaContractionOpInterface(linalgOp) && 411 "expected vectorizeContraction preconditions to be met"); 412 Location loc = linalgOp.getLoc(); 413 // Vectorize other ops as vector contraction. 414 // TODO: interface. 415 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: " 416 << "Rewrite linalg op as vector.contract: "; 417 linalgOp.dump()); 418 // Special function that describes how to vectorize the multiplication op in a 419 // linalg contraction. 420 CustomVectorizationHook vectorizeContraction = 421 [&](Operation *op, 422 const BlockAndValueMapping &bvm) -> VectorizationResult { 423 if (!isa<MulIOp, MulFOp>(op)) 424 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 425 auto outShape = linalgOp.getOutputShapedType(0).getShape(); 426 auto vType = outShape.empty() 427 ? op->getResult(0).getType() 428 : VectorType::get(outShape, op->getResult(0).getType()); 429 auto zero = 430 builder.create<ConstantOp>(loc, vType, builder.getZeroAttr(vType)); 431 Operation *contract = builder.create<vector::ContractionOp>( 432 loc, bvm.lookup(op->getOperand(0)), bvm.lookup(op->getOperand(1)), zero, 433 linalgOp.indexing_maps(), linalgOp.iterator_types()); 434 return VectorizationResult{VectorizationStatus::NewOp, contract}; 435 }; 436 return vectorizeAsLinalgGeneric(builder, linalgOp, newResults, 437 {vectorizeContraction}); 438 } 439 440 LogicalResult mlir::linalg::vectorizeLinalgOpPrecondition(Operation *op) { 441 auto linalgOp = cast<linalg::LinalgOp>(op); 442 // All types must be static shape to go to vector. 443 for (Value operand : linalgOp.getShapedOperands()) 444 if (!operand.getType().cast<ShapedType>().hasStaticShape()) 445 return failure(); 446 for (Type outputTensorType : linalgOp.getOutputTensorTypes()) 447 if (!outputTensorType.cast<ShapedType>().hasStaticShape()) 448 return failure(); 449 if (isElementwise(op)) 450 return success(); 451 return success(isaContractionOpInterface(linalgOp)); 452 } 453 454 LogicalResult 455 mlir::linalg::vectorizeLinalgOp(OpBuilder &builder, Operation *op, 456 SmallVectorImpl<Value> &newResults) { 457 if (failed(vectorizeLinalgOpPrecondition(op))) 458 return failure(); 459 460 edsc::ScopedContext scope(builder, op->getLoc()); 461 if (isElementwise(op)) { 462 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: " 463 << "Vectorize linalg op as a generic: " << *op); 464 return vectorizeAsLinalgGeneric(builder, cast<LinalgOp>(op), newResults); 465 } 466 467 return vectorizeContraction(builder, cast<LinalgOp>(op), newResults); 468 } 469 470 //----------------------------------------------------------------------------// 471 // Misc. vectorization patterns. 472 //----------------------------------------------------------------------------// 473 474 /// Rewrite a PadTensorOp into a sequence of InitTensorOp, TransferReadOp and 475 /// TransferWriteOp. For now, this only applies when all low and high paddings 476 /// are determined to be zero. 477 LogicalResult PadTensorOpVectorizationPattern::matchAndRewrite( 478 linalg::PadTensorOp padOp, PatternRewriter &rewriter) const { 479 // Helper function to determine whether an OpFoldResult is not a zero Index. 480 auto isNotZeroIndex = [](OpFoldResult ofr) { 481 if (Attribute attr = ofr.dyn_cast<Attribute>()) 482 return attr.cast<IntegerAttr>().getInt() != 0; 483 Value v = ofr.get<Value>(); 484 if (auto constOp = v.getDefiningOp<ConstantOp>()) 485 if (auto intAttr = constOp.getValue().dyn_cast<IntegerAttr>()) 486 return intAttr.getValue().getSExtValue() != 0; 487 return true; 488 }; 489 490 auto resultShapedType = padOp.result().getType().cast<ShapedType>(); 491 // Bail on non-static shapes. 492 if (!resultShapedType.hasStaticShape()) 493 return failure(); 494 495 // If any pad_low is not a static 0, needs a mask. Bail for now. 496 if (llvm::any_of(padOp.getMixedLowPad(), isNotZeroIndex)) 497 return failure(); 498 VectorType vectorType = extractVectorTypeFromShapedValue(padOp.result()); 499 if (!vectorType) 500 return failure(); 501 502 // Only support padding with a constant for now, i.e. either: 503 // 1. A BBarg from a different block. 504 // 2. A value defined outside of the current block. 505 Block &block = padOp.region().front(); 506 auto yieldOp = cast<YieldOp>(block.getTerminator()); 507 assert(yieldOp.getNumOperands() == 1 && "expected single operand yield"); 508 Value padValue = yieldOp.values().front(); 509 Operation *definingOp = padValue.getDefiningOp(); 510 if (definingOp && definingOp->getBlock() == &block) 511 return failure(); 512 if (!definingOp && padValue.cast<BlockArgument>().getOwner() == &block) 513 return failure(); 514 515 // TODO: if any pad_high is not a static 0, needs a mask. For now, just bail. 516 if (llvm::any_of(padOp.getMixedHighPad(), 517 [&](OpFoldResult ofr) { return isNotZeroIndex(ofr); })) 518 return failure(); 519 520 // Now we can rewrite as InitTensorOp + TransferReadOp@[0..0] + 521 // TransferWriteOp@[0..0]. 522 SmallVector<Value> indices( 523 resultShapedType.getRank(), 524 rewriter.create<ConstantIndexOp>(padOp.getLoc(), 0)); 525 Value read = rewriter.create<vector::TransferReadOp>( 526 padOp.getLoc(), vectorType, padOp.source(), indices, padValue); 527 Value init = 528 rewriter.create<InitTensorOp>(padOp.getLoc(), resultShapedType.getShape(), 529 resultShapedType.getElementType()); 530 rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(padOp, read, init, 531 indices); 532 533 return success(); 534 } 535 536 // TODO: cleanup all the convolution vectorization patterns. 537 template <class ConvOp, int N> 538 LogicalResult ConvOpVectorization<ConvOp, N>::matchAndRewrite( 539 ConvOp op, PatternRewriter &rewriter) const { 540 Location loc = op.getLoc(); 541 MLIRContext *context = op.getContext(); 542 edsc::ScopedContext scope(rewriter, loc); 543 544 ShapedType inShapeType = op.getInputShapedType(0); 545 ShapedType kShapeType = op.getInputShapedType(1); 546 547 ArrayRef<int64_t> inShape = inShapeType.getShape(); 548 ArrayRef<int64_t> kShape = kShapeType.getShape(); 549 550 if (!inShapeType.hasStaticShape() || !kShapeType.hasStaticShape()) 551 return failure(); 552 553 SmallVector<AffineExpr, 4> mapping; 554 SmallVector<int64_t, 4> vectorDims; 555 // Fail to apply when the size of not vectorized dimension is not 1. 556 for (unsigned i = 0; i < N; i++) { 557 if (!mask[i] && (inShape[i] != 1 || kShape[i] != 1)) 558 return failure(); 559 560 if (mask[i] && inShape[i] != kShape[i]) 561 return failure(); 562 563 if (mask[i]) { 564 mapping.push_back(getAffineDimExpr(i, context)); 565 vectorDims.push_back(inShape[i]); 566 } 567 } 568 569 Value input = op.getInput(0); 570 Value kernel = op.getInput(1); 571 Value output = op.getOutputBuffer(0); 572 573 unsigned rank = inShapeType.getRank(); 574 unsigned numDims = mapping.size(); 575 Type elemType = inShapeType.getElementType(); 576 577 auto map = AffineMap::get(rank, 0, mapping, context); 578 SmallVector<Value, 4> zeros(rank, std_constant_index(0)); 579 auto vecType = VectorType::get(vectorDims, elemType); 580 581 auto inputVec = vector_transfer_read(vecType, input, zeros, map); 582 auto kernelVec = vector_transfer_read(vecType, kernel, zeros, map); 583 584 auto acc = std_constant(elemType, rewriter.getZeroAttr(elemType)); 585 586 std::array<AffineMap, 3> indexingMaps{ 587 AffineMap::getMultiDimIdentityMap(numDims, context), 588 AffineMap::getMultiDimIdentityMap(numDims, context), 589 AffineMap::get(numDims, 0, {}, context)}; 590 591 std::vector<StringRef> iteratorTypes(numDims, "reduction"); 592 593 auto result = rewriter.create<vector::ContractionOp>( 594 loc, inputVec, kernelVec, acc, 595 rewriter.getAffineMapArrayAttr(indexingMaps), 596 rewriter.getStrArrayAttr(iteratorTypes)); 597 598 rewriter.create<memref::StoreOp>(loc, result, output, ValueRange(zeros)); 599 rewriter.eraseOp(op); 600 return success(); 601 } 602 603 using ConvOpConst = ConvOpVectorization<ConvWOp, 1>; 604 605 /// Inserts tiling, promotion and vectorization pattern for ConvOp 606 /// conversion into corresponding pattern lists. 607 template <typename ConvOp, unsigned N> 608 static void populateVectorizationPatterns( 609 RewritePatternSet &tilingPatterns, RewritePatternSet &promotionPatterns, 610 RewritePatternSet &vectorizationPatterns, ArrayRef<int64_t> tileSizes) { 611 auto *context = tilingPatterns.getContext(); 612 if (tileSizes.size() < N) 613 return; 614 615 constexpr static StringRef kTiledMarker = "TILED"; 616 constexpr static StringRef kPromotedMarker = "PROMOTED"; 617 tilingPatterns.add<LinalgTilingPattern<ConvOp>>( 618 context, LinalgTilingOptions().setTileSizes(tileSizes), 619 LinalgTransformationFilter(ArrayRef<Identifier>{}, 620 Identifier::get(kTiledMarker, context))); 621 622 promotionPatterns.add<LinalgPromotionPattern<ConvOp>>( 623 context, LinalgPromotionOptions().setUseFullTileBuffersByDefault(true), 624 LinalgTransformationFilter(Identifier::get(kTiledMarker, context), 625 Identifier::get(kPromotedMarker, context))); 626 627 SmallVector<bool, 4> mask(N); 628 int offset = tileSizes.size() - N; 629 std::transform(tileSizes.begin() + offset, tileSizes.end(), mask.begin(), 630 [](int64_t i) -> bool { return i > 1; }); 631 632 vectorizationPatterns.add<ConvOpVectorization<ConvOp, N>>(context, mask); 633 } 634 635 void mlir::linalg::populateConvVectorizationPatterns( 636 MLIRContext *context, SmallVectorImpl<RewritePatternSet> &patterns, 637 ArrayRef<int64_t> tileSizes) { 638 RewritePatternSet tiling(context); 639 RewritePatternSet promotion(context); 640 RewritePatternSet vectorization(context); 641 populateVectorizationPatterns<ConvWOp, 1>(tiling, promotion, vectorization, 642 tileSizes); 643 644 populateVectorizationPatterns<ConvNWCOp, 3>(tiling, promotion, vectorization, 645 tileSizes); 646 populateVectorizationPatterns<ConvInputNWCFilterWCFOp, 3>( 647 tiling, promotion, vectorization, tileSizes); 648 649 populateVectorizationPatterns<ConvNCWOp, 3>(tiling, promotion, vectorization, 650 tileSizes); 651 populateVectorizationPatterns<ConvInputNCWFilterWCFOp, 3>( 652 tiling, promotion, vectorization, tileSizes); 653 654 populateVectorizationPatterns<ConvHWOp, 2>(tiling, promotion, vectorization, 655 tileSizes); 656 657 populateVectorizationPatterns<ConvNHWCOp, 4>(tiling, promotion, vectorization, 658 tileSizes); 659 populateVectorizationPatterns<ConvInputNHWCFilterHWCFOp, 4>( 660 tiling, promotion, vectorization, tileSizes); 661 662 populateVectorizationPatterns<ConvNCHWOp, 4>(tiling, promotion, vectorization, 663 tileSizes); 664 populateVectorizationPatterns<ConvInputNCHWFilterHWCFOp, 4>( 665 tiling, promotion, vectorization, tileSizes); 666 667 populateVectorizationPatterns<ConvDHWOp, 3>(tiling, promotion, vectorization, 668 tileSizes); 669 670 populateVectorizationPatterns<ConvNDHWCOp, 5>(tiling, promotion, 671 vectorization, tileSizes); 672 populateVectorizationPatterns<ConvInputNDHWCFilterDHWCFOp, 5>( 673 tiling, promotion, vectorization, tileSizes); 674 675 populateVectorizationPatterns<ConvNCDHWOp, 5>(tiling, promotion, 676 vectorization, tileSizes); 677 populateVectorizationPatterns<ConvInputNCDHWFilterDHWCFOp, 5>( 678 tiling, promotion, vectorization, tileSizes); 679 680 patterns.push_back(std::move(tiling)); 681 patterns.push_back(std::move(promotion)); 682 patterns.push_back(std::move(vectorization)); 683 } 684 685 //----------------------------------------------------------------------------// 686 // Forwarding patterns 687 //----------------------------------------------------------------------------// 688 689 /// Check whether there is any interleaved use of any `values` between `firstOp` 690 /// and `secondOp`. Conservatively return `true` if any op or value is in a 691 /// different block. 692 static bool mayExistInterleavedUses(Operation *firstOp, Operation *secondOp, 693 ValueRange values) { 694 if (firstOp->getBlock() != secondOp->getBlock() || 695 !firstOp->isBeforeInBlock(secondOp)) { 696 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " 697 << "interleavedUses precondition failed, firstOp: " 698 << *firstOp << ", second op: " << *secondOp); 699 return true; 700 } 701 for (auto v : values) { 702 for (auto &u : v.getUses()) { 703 Operation *owner = u.getOwner(); 704 if (owner == firstOp || owner == secondOp) 705 continue; 706 // TODO: this is too conservative, use dominance info in the future. 707 if (owner->getBlock() == firstOp->getBlock() && 708 (owner->isBeforeInBlock(firstOp) || secondOp->isBeforeInBlock(owner))) 709 continue; 710 LLVM_DEBUG(llvm::dbgs() 711 << "\n[" DEBUG_TYPE "]: " 712 << " found interleaved op " << *owner 713 << ", firstOp: " << *firstOp << ", second op: " << *secondOp); 714 return true; 715 } 716 } 717 return false; 718 } 719 720 /// Return the unique subview use of `v` if it is indeed unique, null otherwise. 721 static memref::SubViewOp getSubViewUseIfUnique(Value v) { 722 memref::SubViewOp subViewOp; 723 for (auto &u : v.getUses()) { 724 if (auto newSubViewOp = dyn_cast<memref::SubViewOp>(u.getOwner())) { 725 if (subViewOp) 726 return memref::SubViewOp(); 727 subViewOp = newSubViewOp; 728 } 729 } 730 return subViewOp; 731 } 732 733 /// TODO: use interfaces, side-effects and aliasing analysis as appropriate, 734 /// when available. 735 LogicalResult LinalgCopyVTRForwardingPattern::matchAndRewrite( 736 vector::TransferReadOp xferOp, PatternRewriter &rewriter) const { 737 738 // Transfer into `view`. 739 Value viewOrAlloc = xferOp.source(); 740 if (!viewOrAlloc.getDefiningOp<memref::ViewOp>() && 741 !viewOrAlloc.getDefiningOp<memref::AllocOp>()) 742 return failure(); 743 744 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " << viewOrAlloc); 745 746 // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`. 747 memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc); 748 if (!subViewOp) 749 return failure(); 750 Value subView = subViewOp.getResult(); 751 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " 752 << "with subView " << subView); 753 754 // Find the copy into `subView` without interleaved uses. 755 CopyOp copyOp; 756 for (auto &u : subView.getUses()) { 757 if (auto newCopyOp = dyn_cast<CopyOp>(u.getOwner())) { 758 if (newCopyOp.getOutputBuffer(0) != subView) 759 continue; 760 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " 761 << "copy candidate " << *newCopyOp); 762 if (mayExistInterleavedUses(newCopyOp, xferOp, {viewOrAlloc, subView})) 763 continue; 764 copyOp = newCopyOp; 765 break; 766 } 767 } 768 if (!copyOp) 769 return failure(); 770 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " 771 << "with copy " << *copyOp); 772 773 // Find the fill into `viewOrAlloc` without interleaved uses before the copy. 774 FillOp maybeFillOp; 775 for (auto &u : viewOrAlloc.getUses()) { 776 if (auto newFillOp = dyn_cast<FillOp>(u.getOwner())) { 777 if (newFillOp.getOutputBuffer(0) != viewOrAlloc) 778 continue; 779 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " 780 << "fill candidate " << *newFillOp); 781 if (mayExistInterleavedUses(newFillOp, copyOp, {viewOrAlloc, subView})) 782 continue; 783 maybeFillOp = newFillOp; 784 break; 785 } 786 } 787 // Ensure padding matches. 788 if (maybeFillOp && xferOp.padding() != maybeFillOp.value()) 789 return failure(); 790 if (maybeFillOp) 791 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " 792 << "with maybeFillOp " << *maybeFillOp); 793 794 // `in` is the subview that linalg.copy reads. Replace it. 795 Value in = copyOp.getInput(0); 796 797 // linalg.copy + linalg.fill can be used to create a padded local buffer. 798 // The `masked` attribute is only valid on this padded buffer. 799 // When forwarding to vector.transfer_read, the attribute must be reset 800 // conservatively. 801 Value res = rewriter.create<vector::TransferReadOp>( 802 xferOp.getLoc(), xferOp.getVectorType(), in, xferOp.indices(), 803 xferOp.permutation_map(), xferOp.padding(), ArrayAttr()); 804 805 if (maybeFillOp) 806 rewriter.eraseOp(maybeFillOp); 807 rewriter.eraseOp(copyOp); 808 rewriter.replaceOp(xferOp, res); 809 810 return success(); 811 } 812 813 /// TODO: use interfaces, side-effects and aliasing analysis as appropriate, 814 /// when available. 815 LogicalResult LinalgCopyVTWForwardingPattern::matchAndRewrite( 816 vector::TransferWriteOp xferOp, PatternRewriter &rewriter) const { 817 // Transfer into `viewOrAlloc`. 818 Value viewOrAlloc = xferOp.source(); 819 if (!viewOrAlloc.getDefiningOp<memref::ViewOp>() && 820 !viewOrAlloc.getDefiningOp<memref::AllocOp>()) 821 return failure(); 822 823 // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`. 824 memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc); 825 if (!subViewOp) 826 return failure(); 827 Value subView = subViewOp.getResult(); 828 829 // Find the copy from `subView` without interleaved uses. 830 CopyOp copyOp; 831 for (auto &u : subViewOp.getResult().getUses()) { 832 if (auto newCopyOp = dyn_cast<CopyOp>(u.getOwner())) { 833 if (newCopyOp.getInput(0) != subView) 834 continue; 835 if (mayExistInterleavedUses(xferOp, newCopyOp, {viewOrAlloc, subView})) 836 continue; 837 copyOp = newCopyOp; 838 break; 839 } 840 } 841 if (!copyOp) 842 return failure(); 843 844 // `out` is the subview copied into that we replace. 845 Value out = copyOp.getOutputBuffer(0); 846 847 // Forward vector.transfer into copy. 848 // linalg.copy + linalg.fill can be used to create a padded local buffer. 849 // The `masked` attribute is only valid on this padded buffer. 850 // When forwarding to vector.transfer_write, the attribute must be reset 851 // conservatively. 852 rewriter.create<vector::TransferWriteOp>( 853 xferOp.getLoc(), xferOp.vector(), out, xferOp.indices(), 854 xferOp.permutation_map(), ArrayAttr()); 855 856 rewriter.eraseOp(copyOp); 857 rewriter.eraseOp(xferOp); 858 859 return success(); 860 } 861