1 //===- Vectorization.cpp - Implementation of linalg Vectorization ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the linalg dialect Vectorization transformations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "mlir/Analysis/SliceAnalysis.h" 14 #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h" 15 #include "mlir/Dialect/Linalg/IR/LinalgOps.h" 16 #include "mlir/Dialect/Linalg/Transforms/Transforms.h" 17 #include "mlir/Dialect/Linalg/Utils/Utils.h" 18 #include "mlir/Dialect/Utils/StructuredOpsUtils.h" 19 #include "mlir/Dialect/Vector/VectorOps.h" 20 #include "mlir/IR/AffineExpr.h" 21 #include "mlir/IR/Matchers.h" 22 #include "mlir/IR/PatternMatch.h" 23 #include "mlir/Pass/Pass.h" 24 #include "mlir/Support/LLVM.h" 25 #include "mlir/Transforms/RegionUtils.h" 26 #include "llvm/ADT/ScopeExit.h" 27 #include "llvm/ADT/TypeSwitch.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include <type_traits> 31 32 using namespace mlir; 33 using namespace mlir::linalg; 34 35 using llvm::dbgs; 36 37 #define DEBUG_TYPE "linalg-vectorization" 38 39 /// Return the unique instance of OpType in `block` if it is indeed unique. 40 /// Return null if none or more than 1 instances exist. 41 template <typename OpType> 42 static OpType getSingleOpOfType(Block &block) { 43 OpType res; 44 block.walk([&](OpType op) { 45 if (res) { 46 res = nullptr; 47 return WalkResult::interrupt(); 48 } 49 res = op; 50 return WalkResult::advance(); 51 }); 52 return res; 53 } 54 55 /// Given an indexing `map` coming from a LinalgOp indexing, restricted to a 56 /// projectedPermutation, compress the unused dimensions to serve as a 57 /// permutation_map for a vector transfer operation. 58 /// For example, given a linalg op such as: 59 /// 60 /// ``` 61 /// %0 = linalg.generic { 62 /// indexing_maps = affine_map<(d0, d1, d2, d3, d4) -> (d4, d0, d2)>, 63 /// indexing_maps = affine_map<(d0, d1, d2, d3, d4) -> (d1, d3)> 64 /// } 65 /// ins(%0 : tensor<2x3x4xf32>) 66 /// outs(%1 : tensor<5x6xf32>) 67 /// ``` 68 /// 69 /// the iteration domain size of the linalg op is 3x5x4x6x2. The first affine 70 /// map is reindexed to `affine_map<(d0, d1, d2) -> (d2, d0, d1)>`, the second 71 /// affine map is reindexed to `affine_map<(d0, d1) -> (d0, d1)>`. 72 static AffineMap reindexIndexingMap(AffineMap map) { 73 assert(map.isProjectedPermutation() && "expected projected permutation"); 74 auto res = compressUnusedDims(map); 75 assert(res.getNumDims() == res.getNumResults() && 76 "expected reindexed map with same number of dims and results"); 77 return res; 78 } 79 80 /// Helper data structure to represent the result of vectorization. 81 /// In certain specific cases, like terminators, we do not want to propagate/ 82 enum VectorizationStatus { 83 /// Op failed to vectorize. 84 Failure = 0, 85 /// Op vectorized and custom function took care of replacement logic 86 NoReplace, 87 /// Op vectorized into a new Op whose results will replace original Op's 88 /// results. 89 NewOp 90 // TODO: support values if Op vectorized to Many-Ops whose results we need to 91 // aggregate for replacement. 92 }; 93 struct VectorizationResult { 94 /// Return status from vectorizing the current op. 95 enum VectorizationStatus status = VectorizationStatus::Failure; 96 /// New vectorized operation to replace the current op. 97 /// Replacement behavior is specified by `status`. 98 Operation *newOp; 99 }; 100 101 /// Return a vector type of the same shape and element type as the (assumed) 102 /// ShapedType of `v`. 103 static VectorType extractVectorTypeFromShapedValue(Value v) { 104 auto st = v.getType().cast<ShapedType>(); 105 if (st.isa<MemRefType>() && st.getShape().empty()) 106 return VectorType(); 107 return VectorType::get(st.getShape(), st.getElementType()); 108 } 109 110 /// Given an `outputOperand` of a LinalgOp, compute the intersection of the 111 /// forward slice starting from `outputOperand` and the backward slice 112 /// starting from the corresponding linalg.yield operand. 113 /// This intersection is assumed to have a single binary operation that is 114 /// the reduction operation. Multiple reduction operations would impose an 115 /// ordering between reduction dimensions and is currently unsupported in 116 /// Linalg. This limitation is motivated by the fact that e.g. 117 /// min(max(X)) != max(min(X)) 118 // TODO: use in LinalgOp verification, there is a circular dependency atm. 119 static Operation *getSingleBinaryOpAssumedReduction(OpOperand *outputOperand) { 120 auto linalgOp = cast<LinalgOp>(outputOperand->getOwner()); 121 auto yieldOp = cast<YieldOp>(linalgOp->getRegion(0).front().getTerminator()); 122 unsigned yieldNum = 123 outputOperand->getOperandNumber() - linalgOp.getNumInputs(); 124 llvm::SetVector<Operation *> backwardSlice, forwardSlice; 125 BlockArgument bbArg = linalgOp->getRegion(0).front().getArgument( 126 outputOperand->getOperandNumber()); 127 Value yieldVal = yieldOp->getOperand(yieldNum); 128 getBackwardSlice(yieldVal, &backwardSlice, [&](Operation *op) { 129 return op->getParentOp() == linalgOp; 130 }); 131 backwardSlice.insert(yieldVal.getDefiningOp()); 132 getForwardSlice(bbArg, &forwardSlice, 133 [&](Operation *op) { return op->getParentOp() == linalgOp; }); 134 // Search for the (assumed unique) elementwiseMappable op at the intersection 135 // of forward and backward slices. 136 Operation *reductionOp = nullptr; 137 for (Operation *op : llvm::reverse(backwardSlice)) { 138 if (!forwardSlice.contains(op)) 139 continue; 140 if (OpTrait::hasElementwiseMappableTraits(op)) { 141 if (reductionOp) { 142 // Reduction detection fails: found more than 1 elementwise-mappable op. 143 return nullptr; 144 } 145 reductionOp = op; 146 } 147 } 148 // TODO: also assert no other subsequent ops break the reduction. 149 return reductionOp; 150 } 151 152 /// If `value` of assumed VectorType has a shape different than `shape`, try to 153 /// build and return a new vector.broadcast to `shape`. 154 /// Otherwise, just return `value`. 155 // TODO: this is best effort atm and there is currently no guarantee of 156 // correctness for the broadcast semantics. 157 static Value broadcastIfNeeded(OpBuilder &b, Value value, 158 ArrayRef<int64_t> shape) { 159 unsigned numDimsGtOne = std::count_if(shape.begin(), shape.end(), 160 [](int64_t val) { return val > 1; }); 161 auto vecType = value.getType().dyn_cast<VectorType>(); 162 if (shape.empty() || 163 (vecType != nullptr && 164 (vecType.getShape() == shape || vecType.getRank() > numDimsGtOne))) 165 return value; 166 auto newVecType = VectorType::get(shape, vecType ? vecType.getElementType() 167 : value.getType()); 168 return b.create<vector::BroadcastOp>(b.getInsertionPoint()->getLoc(), 169 newVecType, value); 170 } 171 172 static llvm::Optional<vector::CombiningKind> 173 getKindForOp(Operation *reductionOp) { 174 if (!reductionOp) 175 return llvm::None; 176 return llvm::TypeSwitch<Operation *, llvm::Optional<vector::CombiningKind>>( 177 reductionOp) 178 .Case<AddIOp, AddFOp>([&](auto op) { 179 return llvm::Optional<vector::CombiningKind>{ 180 vector::CombiningKind::ADD}; 181 }) 182 .Default([&](auto op) { return llvm::None; }); 183 } 184 185 /// If value of assumed VectorType has a shape different than `shape`, build and 186 /// return a new vector.broadcast to `shape`. 187 /// Otherwise, just return value. 188 static Value reduceIfNeeded(OpBuilder &b, VectorType targetVectorType, 189 Value value, OpOperand *outputOperand) { 190 auto linalgOp = cast<LinalgOp>(outputOperand->getOwner()); 191 assert(targetVectorType.getShape() == linalgOp.getShape(outputOperand)); 192 auto vecType = value.getType().dyn_cast<VectorType>(); 193 if (!vecType || vecType.getShape() == targetVectorType.getShape()) 194 return value; 195 // At this point, we know we need to reduce. Detect the reduction operator. 196 // TODO: Use the generic reduction detection util. 197 Operation *reductionOp = getSingleBinaryOpAssumedReduction(outputOperand); 198 unsigned pos = 0; 199 MLIRContext *ctx = b.getContext(); 200 SmallVector<AffineExpr> exprs; 201 for (auto s : linalgOp.iterator_types()) 202 if (isParallelIterator(s)) 203 exprs.push_back(getAffineDimExpr(pos++, ctx)); 204 auto loc = value.getLoc(); 205 // TODO: reuse common CombiningKing logic and support more than add. 206 auto maybeKind = getKindForOp(reductionOp); 207 assert(maybeKind && "Failed precondition: could not get reduction kind"); 208 unsigned idx = 0; 209 SmallVector<bool> reductionMask(linalgOp.iterator_types().size(), false); 210 for (auto attr : linalgOp.iterator_types()) { 211 if (isReductionIteratorType(attr)) 212 reductionMask[idx] = true; 213 ++idx; 214 } 215 return b.create<vector::MultiDimReductionOp>(loc, value, reductionMask, 216 *maybeKind); 217 } 218 219 /// Build a vector.transfer_read from `source` at indices set to all `0`. 220 /// If source has rank zero, build an memref.load. 221 /// Return the produced value. 222 static Value buildVectorRead(OpBuilder &b, Value source, VectorType vectorType, 223 AffineMap map) { 224 Location loc = source.getLoc(); 225 auto shapedType = source.getType().cast<ShapedType>(); 226 SmallVector<Value> indices(shapedType.getRank(), 227 b.create<ConstantIndexOp>(loc, 0)); 228 return b.create<vector::TransferReadOp>(loc, vectorType, source, indices, 229 map); 230 } 231 232 /// Build a vector.transfer_write of `value` into `outputOperand` at indices set 233 /// to all `0`; where `outputOperand` is an output operand of the LinalgOp 234 /// currently being vectorized. If `dest` has null rank, build an memref.store. 235 /// Return the produced value or null if no value is produced. 236 static Value buildVectorWrite(OpBuilder &b, Value value, 237 OpOperand *outputOperand) { 238 Operation *write; 239 Location loc = value.getLoc(); 240 if (VectorType vectorType = 241 extractVectorTypeFromShapedValue(outputOperand->get())) { 242 auto linalgOp = cast<LinalgOp>(outputOperand->getOwner()); 243 AffineMap map = 244 reindexIndexingMap(linalgOp.getTiedIndexingMap(outputOperand)); 245 SmallVector<Value> indices(linalgOp.getRank(outputOperand), 246 b.create<ConstantIndexOp>(loc, 0)); 247 value = broadcastIfNeeded(b, value, vectorType.getShape()); 248 value = reduceIfNeeded(b, vectorType, value, outputOperand); 249 write = b.create<vector::TransferWriteOp>(loc, value, outputOperand->get(), 250 indices, map); 251 } else { 252 write = b.create<memref::StoreOp>(loc, value, outputOperand->get()); 253 } 254 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: vectorized op: " << *write); 255 if (!write->getResults().empty()) 256 return write->getResult(0); 257 return Value(); 258 } 259 260 // Custom vectorization function type. Produce a vector form of Operation* 261 // assuming all its vectorized operands are already in the BlockAndValueMapping. 262 // Return nullptr if the Operation cannot be vectorized. 263 using CustomVectorizationHook = std::function<VectorizationResult( 264 Operation *, const BlockAndValueMapping &)>; 265 266 /// Helper function to vectorize the terminator of a `linalgOp`. New result 267 /// vector values are appended to `newResults`. Return 268 /// VectorizationStatus::NoReplace to signal the vectorization algorithm that it 269 /// should not try to map produced operations and instead return the results 270 /// using the `newResults` vector making them available to the 271 /// vectorization algorithm for RAUW. This function is meant to be used as a 272 /// CustomVectorizationHook. 273 static VectorizationResult 274 vectorizeLinalgYield(OpBuilder &b, Operation *op, 275 const BlockAndValueMapping &bvm, LinalgOp linalgOp, 276 SmallVectorImpl<Value> &newResults) { 277 auto yieldOp = dyn_cast<linalg::YieldOp>(op); 278 if (!yieldOp) 279 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 280 for (auto outputs : llvm::enumerate(yieldOp.values())) { 281 // TODO: Scan for an opportunity for reuse. 282 // TODO: use a map. 283 Value vectorValue = bvm.lookup(outputs.value()); 284 Value newResult = buildVectorWrite( 285 b, vectorValue, linalgOp.getOutputOperand(outputs.index())); 286 if (newResult) 287 newResults.push_back(newResult); 288 } 289 return VectorizationResult{VectorizationStatus::NoReplace, nullptr}; 290 } 291 292 /// Helper function to vectorize the index operations of a `linalgOp`. Return 293 /// VectorizationStatus::NewOp to signal the vectorization algorithm that it 294 /// should map the produced operations. This function is meant to be used as a 295 /// CustomVectorizationHook. 296 static VectorizationResult vectorizeLinalgIndex(OpBuilder &b, Operation *op, 297 LinalgOp linalgOp) { 298 IndexOp indexOp = dyn_cast<linalg::IndexOp>(op); 299 if (!indexOp) 300 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 301 auto loc = indexOp.getLoc(); 302 // Compute the static loop sizes of the index op. 303 auto targetShape = linalgOp.computeStaticLoopSizes(); 304 // Compute a one-dimensional index vector for the index op dimension. 305 SmallVector<int64_t> constantSeq = 306 llvm::seq<int64_t>(0, targetShape[indexOp.dim()]).asSmallVector(); 307 ConstantOp constantOp = 308 b.create<ConstantOp>(loc, b.getIndexVectorAttr(constantSeq)); 309 // Return the one-dimensional index vector if it lives in the trailing 310 // dimension of the iteration space since the vectorization algorithm in this 311 // case can handle the broadcast. 312 if (indexOp.dim() == targetShape.size() - 1) 313 return VectorizationResult{VectorizationStatus::NewOp, constantOp}; 314 // Otherwise permute the targetShape to move the index dimension last, 315 // broadcast the one-dimensional index vector to the permuted shape, and 316 // finally transpose the broadcasted index vector to undo the permutation. 317 std::swap(targetShape[indexOp.dim()], targetShape.back()); 318 auto broadCastOp = b.create<vector::BroadcastOp>( 319 loc, VectorType::get(targetShape, b.getIndexType()), constantOp); 320 SmallVector<int64_t> transposition = 321 llvm::seq<int64_t>(0, linalgOp.getNumLoops()).asSmallVector(); 322 std::swap(transposition.back(), transposition[indexOp.dim()]); 323 auto transposeOp = 324 b.create<vector::TransposeOp>(loc, broadCastOp, transposition); 325 return VectorizationResult{VectorizationStatus::NewOp, transposeOp}; 326 } 327 328 /// Generic vectorization for a single operation `op`, given already vectorized 329 /// operands carried by `bvm`. Vectorization occurs as follows: 330 /// 1. Try to apply any of the `customVectorizationHooks` and return its 331 /// result on success. 332 /// 2. Clone any constant in the current scope without vectorization: each 333 /// consumer of the constant will later determine the shape to which the 334 /// constant needs to be broadcast to. 335 /// 3. Fail on any remaining non `ElementwiseMappable` op. It is the purpose 336 /// of the `customVectorizationHooks` to cover such cases. 337 /// 4. Clone `op` in vector form to a vector of shape prescribed by the first 338 /// operand of maximal rank. Other operands have smaller rank and are 339 /// broadcast accordingly. It is assumed this broadcast is always legal, 340 /// otherwise, it means one of the `customVectorizationHooks` is incorrect. 341 /// 342 /// This function assumes all operands of `op` have been vectorized and are in 343 /// the `bvm` mapping. As a consequence, this function is meant to be called on 344 /// a topologically-sorted list of ops. 345 /// This function does not update `bvm` but returns a VectorizationStatus that 346 /// instructs the caller what `bvm` update needs to occur. 347 static VectorizationResult 348 vectorizeOneOp(OpBuilder &b, Operation *op, const BlockAndValueMapping &bvm, 349 ArrayRef<CustomVectorizationHook> customVectorizationHooks) { 350 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: vectorize op " << *op); 351 352 // 1. Try to apply any CustomVectorizationHook. 353 if (!customVectorizationHooks.empty()) { 354 for (auto &customFunc : customVectorizationHooks) { 355 VectorizationResult result = customFunc(op, bvm); 356 if (result.status == VectorizationStatus::Failure) 357 continue; 358 return result; 359 } 360 } 361 362 // 2. Constant ops don't get vectorized but rather broadcasted at their users. 363 // Clone so that the constant is not confined to the linalgOp block . 364 if (isa<ConstantOp>(op)) 365 return VectorizationResult{VectorizationStatus::NewOp, b.clone(*op)}; 366 367 // 3. Only ElementwiseMappable are allowed in the generic vectorization. 368 if (!OpTrait::hasElementwiseMappableTraits(op)) 369 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 370 371 // 4. Generic vectorization path for ElementwiseMappable ops. 372 // a. first get the first max ranked shape. 373 SmallVector<int64_t, 4> firstMaxRankedShape; 374 for (Value operand : op->getOperands()) { 375 auto vt = bvm.lookup(operand).getType().dyn_cast<VectorType>(); 376 if (vt && firstMaxRankedShape.size() < vt.getShape().size()) 377 firstMaxRankedShape.assign(vt.getShape().begin(), vt.getShape().end()); 378 } 379 // b. broadcast each op if needed. 380 auto vectorizedOperands = llvm::map_range(op->getOperands(), [&](Value v) { 381 return firstMaxRankedShape.empty() 382 ? bvm.lookup(v) 383 : broadcastIfNeeded(b, bvm.lookup(v), firstMaxRankedShape); 384 }); 385 // c. for elementwise, the result is the vector with the firstMaxRankedShape 386 auto returnTypes = llvm::map_range(op->getResultTypes(), [&](Type t) { 387 return firstMaxRankedShape.empty() 388 ? t 389 : VectorType::get(firstMaxRankedShape, t); 390 }); 391 392 // Build and return the new op. 393 OperationState state(op->getLoc(), op->getName()); 394 state.addAttributes(op->getAttrs()); 395 state.addOperands(llvm::to_vector<4>(vectorizedOperands)); 396 state.addTypes(llvm::to_vector<4>(returnTypes)); 397 return VectorizationResult{VectorizationStatus::NewOp, 398 b.createOperation(state)}; 399 } 400 401 /// Detect whether `r` has only ConstantOp, ElementwiseMappable and YieldOp. 402 static bool hasOnlyScalarElementwiseOp(Region &r) { 403 if (!llvm::hasSingleElement(r)) 404 return false; 405 for (Operation &op : r.front()) { 406 if (!(isa<ConstantOp, linalg::YieldOp, linalg::IndexOp>(op) || 407 OpTrait::hasElementwiseMappableTraits(&op)) || 408 llvm::any_of(op.getResultTypes(), 409 [](Type type) { return !type.isIntOrIndexOrFloat(); })) 410 return false; 411 } 412 return true; 413 } 414 415 // Return true if the op is an element-wise linalg op. 416 static bool isElementwise(Operation *op) { 417 auto linalgOp = dyn_cast<linalg::LinalgOp>(op); 418 if (!linalgOp) 419 return false; 420 if (linalgOp.getNumLoops() != linalgOp.getNumParallelLoops()) 421 return false; 422 // TODO: relax the restrictions on indexing map. 423 for (OpOperand *opOperand : linalgOp.getOutputOperands()) { 424 if (!linalgOp.getTiedIndexingMap(opOperand).isIdentity()) 425 return false; 426 } 427 if (linalgOp->getNumRegions() != 1) 428 return false; 429 return hasOnlyScalarElementwiseOp(linalgOp->getRegion(0)); 430 } 431 432 /// Generic vectorization function that rewrites the body of a `linalgOp` into 433 /// vector form. Generic vectorization proceeds as follows: 434 /// 1. Verify the `linalgOp` has one non-empty region. 435 /// 2. Values defined above the region are mapped to themselves and will be 436 /// broadcasted on a per-need basis by their consumers. 437 /// 3. Each region argument is vectorized into a vector.transfer_read (or 0-d 438 /// load). 439 /// TODO: Reuse opportunities for RAR dependencies. 440 /// 4a. Register CustomVectorizationHook for YieldOp to capture the results. 441 /// 4b. Register CustomVectorizationHook for IndexOp to access the iteration 442 /// indices. 443 /// 5. Iteratively call vectorizeOneOp on the region operations. 444 /// 445 /// When `broadcastToMaximalCommonShape` is set to true, eager broadcasting is 446 /// performed to the maximal common vector size implied by the `linalgOp` 447 /// iteration space. This eager broadcasting is introduced in the 448 /// permutation_map of the vector.transfer_read operations. The eager 449 /// broadcasting makes it trivial to detrmine where broadcast, transposes and 450 /// reductions should occur, without any bookkeeping. The tradeoff is that, in 451 /// the absence of good canonicalizations, the amount of work increases. 452 /// This is not deemed a problem as we expect canonicalizations and foldings to 453 /// aggressively clean up the useless work. 454 LogicalResult vectorizeAsLinalgGeneric( 455 OpBuilder &b, LinalgOp linalgOp, SmallVectorImpl<Value> &newResults, 456 bool broadcastToMaximalCommonShape = false, 457 ArrayRef<CustomVectorizationHook> customVectorizationHooks = {}) { 458 // 1. Fail to vectorize if the operation does not have one non-empty region. 459 if (linalgOp->getNumRegions() != 1 || linalgOp->getRegion(0).empty()) 460 return failure(); 461 auto &block = linalgOp->getRegion(0).front(); 462 463 // 2. Values defined above the region can only be broadcast for now. Make them 464 // map to themselves. 465 BlockAndValueMapping bvm; 466 SetVector<Value> valuesSet; 467 mlir::getUsedValuesDefinedAbove(linalgOp->getRegion(0), valuesSet); 468 bvm.map(valuesSet.getArrayRef(), valuesSet.getArrayRef()); 469 470 if (linalgOp.getNumOutputs() == 0) 471 return failure(); 472 473 // TODO: the common vector shape is equal to the static loop sizes only when 474 // all indexing maps are projected permutations. For convs and stencils the 475 // logic will need to evolve. 476 SmallVector<int64_t> commonVectorShape = linalgOp.computeStaticLoopSizes(); 477 478 // 3. Turn all BBArgs into vector.transfer_read / load. 479 SmallVector<AffineMap> indexings; 480 for (OpOperand *opOperand : linalgOp.getInputAndOutputOperands()) { 481 BlockArgument bbarg = block.getArgument(opOperand->getOperandNumber()); 482 // TODO: 0-d vectors. 483 if (linalgOp.getShape(opOperand).empty()) { 484 Value loaded = 485 b.create<memref::LoadOp>(linalgOp.getLoc(), opOperand->get()); 486 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: new vectorized bbarg(" 487 << bbarg.getArgNumber() << "): " << loaded); 488 bvm.map(bbarg, loaded); 489 bvm.map(opOperand->get(), loaded); 490 continue; 491 } 492 AffineMap map; 493 VectorType vectorType; 494 if (broadcastToMaximalCommonShape) { 495 map = inverseAndBroadcastProjectedPermuation( 496 linalgOp.getTiedIndexingMap(opOperand)); 497 vectorType = VectorType::get( 498 commonVectorShape, getElementTypeOrSelf(opOperand->get().getType())); 499 } else { 500 map = inversePermutation( 501 reindexIndexingMap(linalgOp.getTiedIndexingMap(opOperand))); 502 vectorType = 503 VectorType::get(map.compose(linalgOp.getShape(opOperand)), 504 getElementTypeOrSelf(opOperand->get().getType())); 505 } 506 Value vectorRead = buildVectorRead(b, opOperand->get(), vectorType, map); 507 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: new vectorized bbarg(" 508 << bbarg.getArgNumber() << "): " << vectorRead); 509 bvm.map(bbarg, vectorRead); 510 bvm.map(opOperand->get(), vectorRead); 511 } 512 513 auto hooks = llvm::to_vector<4>(customVectorizationHooks); 514 // 4a. Register CustomVectorizationHook for yieldOp. 515 CustomVectorizationHook vectorizeYield = 516 [&](Operation *op, 517 const BlockAndValueMapping &bvm) -> VectorizationResult { 518 return vectorizeLinalgYield(b, op, bvm, linalgOp, newResults); 519 }; 520 hooks.push_back(vectorizeYield); 521 522 // 4b. Register CustomVectorizationHook for indexOp. 523 CustomVectorizationHook vectorizeIndex = 524 [&](Operation *op, 525 const BlockAndValueMapping &bvm) -> VectorizationResult { 526 return vectorizeLinalgIndex(b, op, linalgOp); 527 }; 528 hooks.push_back(vectorizeIndex); 529 530 // 5. Iteratively call `vectorizeOneOp` to each op in the slice. 531 for (Operation &op : block.getOperations()) { 532 VectorizationResult result = vectorizeOneOp(b, &op, bvm, hooks); 533 if (result.status == VectorizationStatus::Failure) { 534 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: failed to vectorize: " << op); 535 return failure(); 536 } 537 if (result.status == VectorizationStatus::NewOp) { 538 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: new vector op: " 539 << *result.newOp;); 540 bvm.map(op.getResults(), result.newOp->getResults()); 541 } 542 } 543 544 return success(); 545 } 546 547 static LogicalResult vectorizeContraction(OpBuilder &b, LinalgOp linalgOp, 548 SmallVectorImpl<Value> &newResults) { 549 assert(isaContractionOpInterface(linalgOp) && 550 "expected vectorizeContraction preconditions to be met"); 551 Location loc = linalgOp.getLoc(); 552 // Vectorize other ops as vector contraction. 553 // TODO: interface. 554 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: " 555 << "Rewrite linalg op as vector.contract: "; 556 linalgOp.dump()); 557 // Special function that describes how to vectorize the multiplication op in a 558 // linalg contraction. 559 CustomVectorizationHook vectorizeContraction = 560 [&](Operation *op, 561 const BlockAndValueMapping &bvm) -> VectorizationResult { 562 if (!isa<MulIOp, MulFOp>(op)) 563 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 564 ArrayRef<int64_t> outShape = 565 linalgOp.getShape(linalgOp.getOutputOperand(0)); 566 auto vType = outShape.empty() 567 ? op->getResult(0).getType() 568 : VectorType::get(outShape, op->getResult(0).getType()); 569 auto zero = b.create<ConstantOp>(loc, vType, b.getZeroAttr(vType)); 570 // Indexing maps at the time of vector.transfer_read are adjusted to order 571 // vector dimensions in the same order as the canonical linalg op iteration 572 // space order. 573 // The indexings for the contraction therefore need to be adjusted. 574 // TODO: consider dropping contraction special casing altogether, this will 575 // require more advanced canonicalizations involving vector.multi_reduction 576 // that are not yet available. 577 SmallVector<AffineMap> indexingMaps; 578 indexingMaps.reserve(linalgOp.getNumInputsAndOutputs()); 579 llvm::transform(linalgOp.getIndexingMaps(), 580 std::back_inserter(indexingMaps), 581 [](AffineMap indexingMap) { 582 return inversePermutation(reindexIndexingMap(indexingMap)) 583 .compose(indexingMap); 584 }); 585 Operation *contract = b.create<vector::ContractionOp>( 586 loc, bvm.lookup(op->getOperand(0)), bvm.lookup(op->getOperand(1)), zero, 587 b.getAffineMapArrayAttr(indexingMaps), linalgOp.iterator_types()); 588 return VectorizationResult{VectorizationStatus::NewOp, contract}; 589 }; 590 return vectorizeAsLinalgGeneric(b, linalgOp, newResults, 591 /*broadcastToMaximalCommonShape=*/false, 592 {vectorizeContraction}); 593 } 594 595 static bool allIndexingsAreProjectedPermutation(LinalgOp op) { 596 return llvm::all_of(op.getIndexingMaps(), 597 [](AffineMap m) { return m.isProjectedPermutation(); }); 598 } 599 600 // TODO: probably need some extra checks for reduction followed by consumer 601 // ops that may not commute (e.g. linear reduction + non-linear instructions). 602 static LogicalResult reductionPreconditions(LinalgOp op) { 603 if (llvm::none_of(op.iterator_types(), isReductionIteratorType)) 604 return failure(); 605 for (OpOperand *opOperand : op.getOutputOperands()) { 606 Operation *reductionOp = getSingleBinaryOpAssumedReduction(opOperand); 607 if (!getKindForOp(reductionOp)) 608 return failure(); 609 } 610 return success(); 611 } 612 613 LogicalResult mlir::linalg::vectorizeLinalgOpPrecondition(Operation *op) { 614 auto linalgOp = cast<linalg::LinalgOp>(op); 615 // All types must be static shape to go to vector. 616 if (linalgOp.hasDynamicShape()) 617 return failure(); 618 if (isElementwise(op)) 619 return success(); 620 if (isaContractionOpInterface(linalgOp)) 621 return success(); 622 // TODO: the common vector shape is equal to the static loop sizes only when 623 // all indexing maps are projected permutations. For convs and stencils the 624 // logic will need to evolve. 625 if (allIndexingsAreProjectedPermutation(linalgOp) && 626 succeeded(reductionPreconditions(linalgOp))) 627 return success(); 628 return failure(); 629 } 630 631 LogicalResult 632 mlir::linalg::vectorizeLinalgOp(OpBuilder &b, Operation *op, 633 SmallVectorImpl<Value> &newResults) { 634 if (failed(vectorizeLinalgOpPrecondition(op))) 635 return failure(); 636 637 auto linalgOp = cast<LinalgOp>(op); 638 if (isaContractionOpInterface(linalgOp)) 639 return vectorizeContraction(b, linalgOp, newResults); 640 641 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: " 642 << "Vectorize linalg op as a generic by broadcasting to " 643 "maximal common shape: " 644 << *op); 645 return vectorizeAsLinalgGeneric(b, linalgOp, newResults, 646 /*broadcastToMaximalCommonShape=*/true); 647 } 648 649 //----------------------------------------------------------------------------// 650 // Misc. vectorization patterns. 651 //----------------------------------------------------------------------------// 652 653 /// Given a block, return the Value that the block yields if that Value is 654 /// constant. In this context, "constant" means "defined outside of the block". 655 /// Should not be called on blocks that yield more than one value. 656 /// 657 /// Values are considered constant in two cases: 658 /// - A basic block argument from a different block. 659 /// - A value defined outside of the block. 660 /// 661 /// If the yielded value is not constant, an empty Value is returned. 662 static Value getConstantYieldValueFromBlock(Block &block) { 663 auto yieldOp = cast<YieldOp>(block.getTerminator()); 664 assert(yieldOp.getNumOperands() == 1 && "expected single operand yield"); 665 Value result = yieldOp.values().front(); 666 Operation *definingOp = result.getDefiningOp(); 667 668 // Check if yield value is defined inside the block. 669 if (definingOp && definingOp->getBlock() == &block) 670 return Value(); 671 // Check if the yield value is a BB arg of the block. 672 if (!definingOp && result.cast<BlockArgument>().getOwner() == &block) 673 return Value(); 674 675 return result; 676 } 677 678 /// Rewrite a PadTensorOp into a sequence of InitTensorOp, TransferReadOp and 679 /// TransferWriteOp. For now, this only applies when all low and high paddings 680 /// are determined to be zero. 681 struct GenericPadTensorOpVectorizationPattern 682 : public OpRewritePattern<PadTensorOp> { 683 using OpRewritePattern<PadTensorOp>::OpRewritePattern; 684 685 LogicalResult matchAndRewrite(PadTensorOp padOp, 686 PatternRewriter &rewriter) const override { 687 /// Given an OpFoldResult, return true if its value is guaranteed to be a 688 /// zero integer. 689 auto isZeroInt = [&](OpFoldResult ofr) { 690 return isEqualConstantIntOrValue(ofr, rewriter.getIndexAttr(0)); }; 691 // Low padding must be static 0. 692 if (!llvm::all_of(padOp.getMixedLowPad(), isZeroInt)) return failure(); 693 // High padding must be static 0. 694 if (!llvm::all_of(padOp.getMixedHighPad(), isZeroInt)) return failure(); 695 // Pad value must be a constant. 696 auto padValue = getConstantYieldValueFromBlock(padOp.region().front()); 697 if (!padValue) return failure(); 698 699 // Bail on non-static shapes. 700 auto resultShapedType = padOp.result().getType().cast<ShapedType>(); 701 if (!resultShapedType.hasStaticShape()) 702 return failure(); 703 VectorType vectorType = extractVectorTypeFromShapedValue(padOp.result()); 704 if (!vectorType) 705 return failure(); 706 707 // Now we can rewrite as InitTensorOp + TransferReadOp@[0..0] + 708 // TransferWriteOp@[0..0]. 709 SmallVector<Value> indices( 710 resultShapedType.getRank(), 711 rewriter.create<ConstantIndexOp>(padOp.getLoc(), 0)); 712 Value read = rewriter.create<vector::TransferReadOp>( 713 padOp.getLoc(), vectorType, padOp.source(), indices, padValue); 714 Value init = rewriter.create<InitTensorOp>( 715 padOp.getLoc(), resultShapedType.getShape(), 716 resultShapedType.getElementType()); 717 rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(padOp, read, init, 718 indices); 719 720 return success(); 721 } 722 }; 723 724 void mlir::linalg::populatePadTensorOpVectorizationPatterns( 725 RewritePatternSet &patterns, PatternBenefit baseBenefit) { 726 patterns.add<GenericPadTensorOpVectorizationPattern>( 727 patterns.getContext(), baseBenefit); 728 } 729 730 // TODO: cleanup all the convolution vectorization patterns. 731 template <class ConvOp, int N> 732 LogicalResult ConvOpVectorization<ConvOp, N>::matchAndRewrite( 733 ConvOp op, PatternRewriter &rewriter) const { 734 Location loc = op.getLoc(); 735 MLIRContext *context = op.getContext(); 736 737 OpOperand *input = op.getInputOperand(0); 738 OpOperand *kernel = op.getInputOperand(1); 739 OpOperand *output = op.getOutputOperand(0); 740 ArrayRef<int64_t> inShape = op.getShape(input); 741 ArrayRef<int64_t> kShape = op.getShape(kernel); 742 743 if (llvm::any_of(inShape, ShapedType::isDynamic) || 744 llvm::any_of(kShape, ShapedType::isDynamic)) 745 return failure(); 746 747 SmallVector<AffineExpr, 4> mapping; 748 SmallVector<int64_t, 4> vectorDims; 749 // Fail to apply when the size of not vectorized dimension is not 1. 750 for (unsigned i = 0; i < N; i++) { 751 if (!mask[i] && (inShape[i] != 1 || kShape[i] != 1)) 752 return failure(); 753 754 if (mask[i] && inShape[i] != kShape[i]) 755 return failure(); 756 757 if (mask[i]) { 758 mapping.push_back(getAffineDimExpr(i, context)); 759 vectorDims.push_back(inShape[i]); 760 } 761 } 762 763 int64_t rank = op.getRank(input); 764 int64_t numDims = mapping.size(); 765 Type elemType = getElementTypeOrSelf(input->get().getType()); 766 767 auto map = AffineMap::get(rank, 0, mapping, context); 768 SmallVector<Value, 4> zeros(rank, rewriter.create<ConstantIndexOp>(loc, 0)); 769 auto vecType = VectorType::get(vectorDims, elemType); 770 771 auto inputVec = rewriter.create<vector::TransferReadOp>( 772 loc, vecType, input->get(), zeros, map); 773 auto kernelVec = rewriter.create<vector::TransferReadOp>( 774 loc, vecType, kernel->get(), zeros, map); 775 776 auto acc = rewriter.create<ConstantOp>(loc, elemType, 777 rewriter.getZeroAttr(elemType)); 778 779 std::array<AffineMap, 3> indexingMaps{ 780 AffineMap::getMultiDimIdentityMap(numDims, context), 781 AffineMap::getMultiDimIdentityMap(numDims, context), 782 AffineMap::get(numDims, 0, {}, context)}; 783 784 std::vector<StringRef> iteratorTypes(numDims, "reduction"); 785 786 auto result = rewriter.create<vector::ContractionOp>( 787 loc, inputVec, kernelVec, acc, 788 rewriter.getAffineMapArrayAttr(indexingMaps), 789 rewriter.getStrArrayAttr(iteratorTypes)); 790 791 rewriter.create<memref::StoreOp>(loc, result, output->get(), 792 ValueRange(zeros)); 793 rewriter.eraseOp(op); 794 return success(); 795 } 796 797 using ConvOpConst = ConvOpVectorization<ConvWOp, 1>; 798 799 /// Inserts tiling, promotion and vectorization pattern for ConvOp 800 /// conversion into corresponding pattern lists. 801 template <typename ConvOp, unsigned N> 802 static void populateVectorizationPatterns( 803 RewritePatternSet &tilingPatterns, RewritePatternSet &promotionPatterns, 804 RewritePatternSet &vectorizationPatterns, ArrayRef<int64_t> tileSizes) { 805 auto *context = tilingPatterns.getContext(); 806 if (tileSizes.size() < N) 807 return; 808 809 constexpr static StringRef kTiledMarker = "TILED"; 810 constexpr static StringRef kPromotedMarker = "PROMOTED"; 811 tilingPatterns.add<LinalgTilingPattern<ConvOp>>( 812 context, LinalgTilingOptions().setTileSizes(tileSizes), 813 LinalgTransformationFilter(ArrayRef<Identifier>{}, 814 Identifier::get(kTiledMarker, context))); 815 816 promotionPatterns.add<LinalgPromotionPattern<ConvOp>>( 817 context, LinalgPromotionOptions().setUseFullTileBuffersByDefault(true), 818 LinalgTransformationFilter(Identifier::get(kTiledMarker, context), 819 Identifier::get(kPromotedMarker, context))); 820 821 SmallVector<bool, 4> mask(N); 822 int offset = tileSizes.size() - N; 823 std::transform(tileSizes.begin() + offset, tileSizes.end(), mask.begin(), 824 [](int64_t i) -> bool { return i > 1; }); 825 826 vectorizationPatterns.add<ConvOpVectorization<ConvOp, N>>(context, mask); 827 } 828 829 void mlir::linalg::populateConvVectorizationPatterns( 830 MLIRContext *context, SmallVectorImpl<RewritePatternSet> &patterns, 831 ArrayRef<int64_t> tileSizes) { 832 RewritePatternSet tiling(context); 833 RewritePatternSet promotion(context); 834 RewritePatternSet vectorization(context); 835 populateVectorizationPatterns<ConvWOp, 1>(tiling, promotion, vectorization, 836 tileSizes); 837 838 populateVectorizationPatterns<ConvNWCOp, 3>(tiling, promotion, vectorization, 839 tileSizes); 840 populateVectorizationPatterns<ConvInputNWCFilterWCFOp, 3>( 841 tiling, promotion, vectorization, tileSizes); 842 843 populateVectorizationPatterns<ConvNCWOp, 3>(tiling, promotion, vectorization, 844 tileSizes); 845 populateVectorizationPatterns<ConvInputNCWFilterWCFOp, 3>( 846 tiling, promotion, vectorization, tileSizes); 847 848 populateVectorizationPatterns<ConvHWOp, 2>(tiling, promotion, vectorization, 849 tileSizes); 850 851 populateVectorizationPatterns<ConvNHWCOp, 4>(tiling, promotion, vectorization, 852 tileSizes); 853 populateVectorizationPatterns<ConvInputNHWCFilterHWCFOp, 4>( 854 tiling, promotion, vectorization, tileSizes); 855 856 populateVectorizationPatterns<ConvNCHWOp, 4>(tiling, promotion, vectorization, 857 tileSizes); 858 populateVectorizationPatterns<ConvInputNCHWFilterHWCFOp, 4>( 859 tiling, promotion, vectorization, tileSizes); 860 861 populateVectorizationPatterns<ConvDHWOp, 3>(tiling, promotion, vectorization, 862 tileSizes); 863 864 populateVectorizationPatterns<ConvNDHWCOp, 5>(tiling, promotion, 865 vectorization, tileSizes); 866 populateVectorizationPatterns<ConvInputNDHWCFilterDHWCFOp, 5>( 867 tiling, promotion, vectorization, tileSizes); 868 869 populateVectorizationPatterns<ConvNCDHWOp, 5>(tiling, promotion, 870 vectorization, tileSizes); 871 populateVectorizationPatterns<ConvInputNCDHWFilterDHWCFOp, 5>( 872 tiling, promotion, vectorization, tileSizes); 873 874 patterns.push_back(std::move(tiling)); 875 patterns.push_back(std::move(promotion)); 876 patterns.push_back(std::move(vectorization)); 877 } 878 879 //----------------------------------------------------------------------------// 880 // Forwarding patterns 881 //----------------------------------------------------------------------------// 882 883 /// Check whether there is any interleaved use of any `values` between `firstOp` 884 /// and `secondOp`. Conservatively return `true` if any op or value is in a 885 /// different block. 886 static bool mayExistInterleavedUses(Operation *firstOp, Operation *secondOp, 887 ValueRange values) { 888 if (firstOp->getBlock() != secondOp->getBlock() || 889 !firstOp->isBeforeInBlock(secondOp)) { 890 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " 891 << "interleavedUses precondition failed, firstOp: " 892 << *firstOp << ", second op: " << *secondOp); 893 return true; 894 } 895 for (auto v : values) { 896 for (auto &u : v.getUses()) { 897 Operation *owner = u.getOwner(); 898 if (owner == firstOp || owner == secondOp) 899 continue; 900 // TODO: this is too conservative, use dominance info in the future. 901 if (owner->getBlock() == firstOp->getBlock() && 902 (owner->isBeforeInBlock(firstOp) || secondOp->isBeforeInBlock(owner))) 903 continue; 904 LLVM_DEBUG(llvm::dbgs() 905 << "\n[" DEBUG_TYPE "]: " 906 << " found interleaved op " << *owner 907 << ", firstOp: " << *firstOp << ", second op: " << *secondOp); 908 return true; 909 } 910 } 911 return false; 912 } 913 914 /// Return the unique subview use of `v` if it is indeed unique, null otherwise. 915 static memref::SubViewOp getSubViewUseIfUnique(Value v) { 916 memref::SubViewOp subViewOp; 917 for (auto &u : v.getUses()) { 918 if (auto newSubViewOp = dyn_cast<memref::SubViewOp>(u.getOwner())) { 919 if (subViewOp) 920 return memref::SubViewOp(); 921 subViewOp = newSubViewOp; 922 } 923 } 924 return subViewOp; 925 } 926 927 /// TODO: use interfaces, side-effects and aliasing analysis as appropriate, 928 /// when available. 929 LogicalResult LinalgCopyVTRForwardingPattern::matchAndRewrite( 930 vector::TransferReadOp xferOp, PatternRewriter &rewriter) const { 931 932 // Transfer into `view`. 933 Value viewOrAlloc = xferOp.source(); 934 if (!viewOrAlloc.getDefiningOp<memref::ViewOp>() && 935 !viewOrAlloc.getDefiningOp<memref::AllocOp>()) 936 return failure(); 937 938 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " << viewOrAlloc); 939 940 // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`. 941 memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc); 942 if (!subViewOp) 943 return failure(); 944 Value subView = subViewOp.getResult(); 945 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " 946 << "with subView " << subView); 947 948 // Find the copy into `subView` without interleaved uses. 949 CopyOp copyOp; 950 for (auto &u : subView.getUses()) { 951 if (auto newCopyOp = dyn_cast<CopyOp>(u.getOwner())) { 952 assert(newCopyOp.output().getType().isa<MemRefType>()); 953 if (newCopyOp.output() != subView) 954 continue; 955 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " 956 << "copy candidate " << *newCopyOp); 957 if (mayExistInterleavedUses(newCopyOp, xferOp, {viewOrAlloc, subView})) 958 continue; 959 copyOp = newCopyOp; 960 break; 961 } 962 } 963 if (!copyOp) 964 return failure(); 965 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " 966 << "with copy " << *copyOp); 967 968 // Find the fill into `viewOrAlloc` without interleaved uses before the copy. 969 FillOp maybeFillOp; 970 for (auto &u : viewOrAlloc.getUses()) { 971 if (auto newFillOp = dyn_cast<FillOp>(u.getOwner())) { 972 assert(newFillOp.output().getType().isa<MemRefType>()); 973 if (newFillOp.output() != viewOrAlloc) 974 continue; 975 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " 976 << "fill candidate " << *newFillOp); 977 if (mayExistInterleavedUses(newFillOp, copyOp, {viewOrAlloc, subView})) 978 continue; 979 maybeFillOp = newFillOp; 980 break; 981 } 982 } 983 // Ensure padding matches. 984 if (maybeFillOp && xferOp.padding() != maybeFillOp.value()) 985 return failure(); 986 if (maybeFillOp) 987 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " 988 << "with maybeFillOp " << *maybeFillOp); 989 990 // `in` is the subview that linalg.copy reads. Replace it. 991 Value in = copyOp.input(); 992 993 // linalg.copy + linalg.fill can be used to create a padded local buffer. 994 // The `masked` attribute is only valid on this padded buffer. 995 // When forwarding to vector.transfer_read, the attribute must be reset 996 // conservatively. 997 Value res = rewriter.create<vector::TransferReadOp>( 998 xferOp.getLoc(), xferOp.getVectorType(), in, xferOp.indices(), 999 xferOp.permutation_map(), xferOp.padding(), ArrayAttr()); 1000 1001 if (maybeFillOp) 1002 rewriter.eraseOp(maybeFillOp); 1003 rewriter.eraseOp(copyOp); 1004 rewriter.replaceOp(xferOp, res); 1005 1006 return success(); 1007 } 1008 1009 /// TODO: use interfaces, side-effects and aliasing analysis as appropriate, 1010 /// when available. 1011 LogicalResult LinalgCopyVTWForwardingPattern::matchAndRewrite( 1012 vector::TransferWriteOp xferOp, PatternRewriter &rewriter) const { 1013 // Transfer into `viewOrAlloc`. 1014 Value viewOrAlloc = xferOp.source(); 1015 if (!viewOrAlloc.getDefiningOp<memref::ViewOp>() && 1016 !viewOrAlloc.getDefiningOp<memref::AllocOp>()) 1017 return failure(); 1018 1019 // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`. 1020 memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc); 1021 if (!subViewOp) 1022 return failure(); 1023 Value subView = subViewOp.getResult(); 1024 1025 // Find the copy from `subView` without interleaved uses. 1026 CopyOp copyOp; 1027 for (auto &u : subViewOp.getResult().getUses()) { 1028 if (auto newCopyOp = dyn_cast<CopyOp>(u.getOwner())) { 1029 if (newCopyOp.getInputOperand(0)->get() != subView) 1030 continue; 1031 if (mayExistInterleavedUses(xferOp, newCopyOp, {viewOrAlloc, subView})) 1032 continue; 1033 copyOp = newCopyOp; 1034 break; 1035 } 1036 } 1037 if (!copyOp) 1038 return failure(); 1039 1040 // `out` is the subview copied into that we replace. 1041 assert(copyOp.output().getType().isa<MemRefType>()); 1042 Value out = copyOp.output(); 1043 1044 // Forward vector.transfer into copy. 1045 // linalg.copy + linalg.fill can be used to create a padded local buffer. 1046 // The `masked` attribute is only valid on this padded buffer. 1047 // When forwarding to vector.transfer_write, the attribute must be reset 1048 // conservatively. 1049 rewriter.create<vector::TransferWriteOp>( 1050 xferOp.getLoc(), xferOp.vector(), out, xferOp.indices(), 1051 xferOp.permutation_map(), ArrayAttr()); 1052 1053 rewriter.eraseOp(copyOp); 1054 rewriter.eraseOp(xferOp); 1055 1056 return success(); 1057 } 1058