1 //===- Vectorization.cpp - Implementation of linalg Vectorization ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the linalg dialect Vectorization transformations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h" 14 #include "mlir/Dialect/Linalg/IR/LinalgOps.h" 15 #include "mlir/Dialect/Linalg/Transforms/Transforms.h" 16 #include "mlir/Dialect/Linalg/Utils/Utils.h" 17 #include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h" 18 #include "mlir/Dialect/Utils/StructuredOpsUtils.h" 19 #include "mlir/Dialect/Vector/EDSC/Intrinsics.h" 20 #include "mlir/Dialect/Vector/VectorOps.h" 21 #include "mlir/IR/AffineExpr.h" 22 #include "mlir/IR/Matchers.h" 23 #include "mlir/IR/PatternMatch.h" 24 #include "mlir/Pass/Pass.h" 25 #include "mlir/Support/LLVM.h" 26 #include "mlir/Transforms/RegionUtils.h" 27 #include "llvm/ADT/ScopeExit.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include <type_traits> 31 32 using namespace mlir; 33 using namespace mlir::edsc; 34 using namespace mlir::edsc::intrinsics; 35 using namespace mlir::linalg; 36 37 using llvm::dbgs; 38 39 #define DEBUG_TYPE "linalg-vectorization" 40 41 /// Return the unique instance of OpType in `block` if it is indeed unique. 42 /// Return null if none or more than 1 instances exist. 43 template <typename OpType> 44 static OpType getSingleOpOfType(Block &block) { 45 OpType res; 46 block.walk([&](OpType op) { 47 if (res) { 48 res = nullptr; 49 return WalkResult::interrupt(); 50 } 51 res = op; 52 return WalkResult::advance(); 53 }); 54 return res; 55 } 56 57 /// Helper data structure to represent the result of vectorization. 58 /// In certain specific cases, like terminators, we do not want to propagate/ 59 enum VectorizationStatus { 60 /// Op failed to vectorize. 61 Failure = 0, 62 /// Op vectorized and custom function took care of replacement logic 63 NoReplace, 64 /// Op vectorized into a new Op whose results will replace original Op's 65 /// results. 66 NewOp 67 // TODO: support values if Op vectorized to Many-Ops whose results we need to 68 // aggregate for replacement. 69 }; 70 struct VectorizationResult { 71 /// Return status from vectorizing the current op. 72 enum VectorizationStatus status = VectorizationStatus::Failure; 73 /// New vectorized operation to replace the current op. 74 /// Replacement behavior is specified by `status`. 75 Operation *newOp; 76 }; 77 78 /// Return a vector type of the same shape and element type as the (assumed) 79 /// ShapedType of `v`. 80 static VectorType extractVectorTypeFromShapedValue(Value v) { 81 auto st = v.getType().cast<ShapedType>(); 82 if (st.isa<MemRefType>() && st.getShape().empty()) 83 return VectorType(); 84 return VectorType::get(st.getShape(), st.getElementType()); 85 } 86 87 /// Build a vector.transfer_read from `source` at indices set to all `0`. 88 /// If source has rank zero, build an std.load. 89 /// Return the produced value. 90 static Value buildVectorRead(OpBuilder &builder, Value source) { 91 edsc::ScopedContext scope(builder); 92 auto shapedType = source.getType().cast<ShapedType>(); 93 if (VectorType vectorType = extractVectorTypeFromShapedValue(source)) { 94 SmallVector<Value> indices(shapedType.getRank(), std_constant_index(0)); 95 return vector_transfer_read(vectorType, source, indices); 96 } 97 return std_load(source); 98 } 99 100 /// Build a vector.transfer_write of `value` into `dest` at indices set to all 101 /// `0`. If `dest` has null rank, build an std.store. 102 /// Return the produced value or null if no value is produced. 103 static Value buildVectorWrite(OpBuilder &builder, Value value, Value dest) { 104 edsc::ScopedContext scope(builder); 105 Operation *write; 106 auto shapedType = dest.getType().cast<ShapedType>(); 107 if (VectorType vectorType = extractVectorTypeFromShapedValue(dest)) { 108 SmallVector<Value> indices(shapedType.getRank(), std_constant_index(0)); 109 if (vectorType != value.getType()) 110 value = vector_broadcast(vectorType, value); 111 write = vector_transfer_write(value, dest, indices); 112 } else { 113 write = std_store(value, dest); 114 } 115 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: vectorized op: " << *write); 116 if (!write->getResults().empty()) 117 return write->getResult(0); 118 return Value(); 119 } 120 121 /// If value of assumed VectorType has a shape different than `shape`, buil and 122 /// return a new vector.broadcast to `shape`. 123 /// Otherwise, just return value. 124 static Value broadcastIfNeeded(OpBuilder &builder, Value value, 125 ArrayRef<int64_t> shape) { 126 auto vecType = value.getType().dyn_cast<VectorType>(); 127 if (shape.empty() || (vecType != nullptr && vecType.getShape() == shape)) 128 return value; 129 auto newVecType = VectorType::get(shape, vecType ? vecType.getElementType() 130 : value.getType()); 131 return builder.create<vector::BroadcastOp>( 132 builder.getInsertionPoint()->getLoc(), newVecType, value); 133 } 134 135 // Custom vectorization function type. Produce a vector form of Operation* 136 // assuming all its vectorized operands are already in the BlockAndValueMapping. 137 // Return nullptr if the Operation cannot be vectorized. 138 using CustomVectorizationHook = std::function<VectorizationResult( 139 Operation *, const BlockAndValueMapping &)>; 140 141 /// Helper function to vectorize the terminator of a `linalgOp`. New result 142 /// vector values are appended to `newResults`. Return 143 /// VectorizationStatus::NoReplace to signal the vectorization algorithm that it 144 /// should not try to map produced operations and instead return the results 145 /// using the `newResults` vector making them available to the 146 /// vectorization algorithm for RAUW. This function is meant to be used as a 147 /// CustomVectorizationHook. 148 static VectorizationResult 149 vectorizeLinalgYield(OpBuilder &builder, Operation *op, 150 const BlockAndValueMapping &bvm, LinalgOp linalgOp, 151 SmallVectorImpl<Value> &newResults) { 152 auto yieldOp = dyn_cast<linalg::YieldOp>(op); 153 if (!yieldOp) 154 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 155 for (auto outputs : llvm::enumerate(yieldOp.values())) { 156 // TODO: Scan for an opportunity for reuse. 157 // TODO: use a map. 158 Value vectorValue = bvm.lookup(outputs.value()); 159 Value newResult = buildVectorWrite(builder, vectorValue, 160 linalgOp.getOutput(outputs.index())); 161 if (newResult) 162 newResults.push_back(newResult); 163 } 164 return VectorizationResult{VectorizationStatus::NoReplace, nullptr}; 165 } 166 167 /// Generic vectorization for a single operation `op`, given already vectorized 168 /// operands carried by `bvm`. Vectorization occurs as follows: 169 /// 1. Try to apply any of the `customVectorizationHooks` and return its 170 /// result on success. 171 /// 2. Clone any constant in the current scope without vectorization: each 172 /// consumer of the constant will later determine the shape to which the 173 /// constant needs to be broadcast to. 174 /// 3. Fail on any remaining non `ElementwiseMappable` op. It is the purpose 175 /// of the `customVectorizationHooks` to cover such cases. 176 /// 4. Clone `op` in vector form to a vector of shape prescribed by the first 177 /// operand of maximal rank. Other operands have smaller rank and are 178 /// broadcast accordingly. It is assumed this broadcast is always legal, 179 /// otherwise, it means one of the `customVectorizationHooks` is incorrect. 180 /// 181 /// This function assumes all operands of `op` have been vectorized and are in 182 /// the `bvm` mapping. As a consequence, this function is meant to be called on 183 /// a topologically-sorted list of ops. 184 /// This function does not update `bvm` but returns a VectorizationStatus that 185 /// instructs the caller what `bvm` update needs to occur. 186 static VectorizationResult 187 vectorizeOneOp(OpBuilder &builder, Operation *op, 188 const BlockAndValueMapping &bvm, 189 ArrayRef<CustomVectorizationHook> customVectorizationHooks) { 190 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: vectorize op " << *op); 191 192 // 1. Try to apply any CustomVectorizationHook. 193 if (!customVectorizationHooks.empty()) { 194 for (auto &customFunc : customVectorizationHooks) { 195 VectorizationResult result = customFunc(op, bvm); 196 if (result.status == VectorizationStatus::Failure) 197 continue; 198 return result; 199 } 200 } 201 202 // 2. Constant ops don't get vectorized but rather broadcasted at their users. 203 // Clone so that the constant is not confined to the linalgOp block . 204 if (isa<ConstantOp>(op)) 205 return VectorizationResult{VectorizationStatus::NewOp, builder.clone(*op)}; 206 207 // 3. Only ElementwiseMappable are allowed in the generic vectorization. 208 if (!OpTrait::hasElementwiseMappableTraits(op)) 209 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 210 211 // 4. Generic vectorization path for ElementwiseMappable ops. 212 // a. first get the first max ranked shape. 213 SmallVector<int64_t, 4> firstMaxRankedShape; 214 for (Value operand : op->getOperands()) { 215 auto vt = bvm.lookup(operand).getType().dyn_cast<VectorType>(); 216 if (vt && firstMaxRankedShape.size() < vt.getShape().size()) 217 firstMaxRankedShape.assign(vt.getShape().begin(), vt.getShape().end()); 218 } 219 // b. broadcast each op if needed. 220 auto vectorizedOperands = llvm::map_range(op->getOperands(), [&](Value v) { 221 return firstMaxRankedShape.empty() 222 ? bvm.lookup(v) 223 : broadcastIfNeeded(builder, bvm.lookup(v), firstMaxRankedShape); 224 }); 225 // c. for elementwise, the result is the vector with the firstMaxRankedShape 226 auto returnTypes = llvm::map_range(op->getResultTypes(), [&](Type t) { 227 return firstMaxRankedShape.empty() 228 ? t 229 : VectorType::get(firstMaxRankedShape, t); 230 }); 231 232 // Build and return the new op. 233 OperationState state(op->getLoc(), op->getName()); 234 state.addAttributes(op->getAttrs()); 235 state.addOperands(llvm::to_vector<4>(vectorizedOperands)); 236 state.addTypes(llvm::to_vector<4>(returnTypes)); 237 return VectorizationResult{VectorizationStatus::NewOp, 238 builder.createOperation(state)}; 239 } 240 241 /// Generic vectorization function that rewrites the body of a `linalgOp` into 242 /// vector form. Generic vectorization proceeds as follows: 243 /// 1. The region for the linalg op is created if necessary. 244 /// 2. Values defined above the region are mapped to themselves and will be 245 /// broadcasted on a per-need basis by their consumers. 246 /// 3. Each region argument is vectorized into a vector.transfer_read (or 0-d 247 /// load). 248 /// TODO: Reuse opportunities for RAR dependencies. 249 /// 4. Register CustomVectorizationHook for YieldOp to capture the results. 250 /// 5. Iteratively call vectorizeOneOp on the region operations. 251 LogicalResult vectorizeAsLinalgGeneric( 252 OpBuilder &builder, LinalgOp linalgOp, SmallVectorImpl<Value> &newResults, 253 ArrayRef<CustomVectorizationHook> customVectorizationHooks = {}) { 254 // 1. Certain Linalg ops do not have a region but only a region builder. 255 // If so, build the region so we can vectorize. 256 std::unique_ptr<Region> owningRegion; 257 Region *region; 258 if (linalgOp->getNumRegions() > 0) { 259 region = &linalgOp->getRegion(0); 260 } else { 261 // RAII avoid remaining in block. 262 OpBuilder::InsertionGuard g(builder); 263 owningRegion = std::make_unique<Region>(); 264 region = owningRegion.get(); 265 Block *block = builder.createBlock(region); 266 auto elementTypes = llvm::to_vector<4>( 267 llvm::map_range(linalgOp.getShapedOperandTypes(), 268 [](ShapedType t) { return t.getElementType(); })); 269 block->addArguments(elementTypes); 270 linalgOp.getRegionBuilder()(*block, /*captures=*/{}); 271 } 272 Block *block = ®ion->front(); 273 274 BlockAndValueMapping bvm; 275 // 2. Values defined above the region can only be broadcast for now. Make them 276 // map to themselves. 277 llvm::SetVector<Value> valuesSet; 278 mlir::getUsedValuesDefinedAbove(*region, valuesSet); 279 bvm.map(valuesSet.getArrayRef(), valuesSet.getArrayRef()); 280 281 // 3. Turn all BBArgs into vector.transfer_read / load. 282 SmallVector<AffineMap> indexings; 283 for (auto bbarg : block->getArguments()) { 284 Value vectorArg = linalgOp.getShapedOperand(bbarg.getArgNumber()); 285 Value vectorRead = buildVectorRead(builder, vectorArg); 286 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: new vectorized bbarg(" 287 << bbarg.getArgNumber() << "): " << vectorRead); 288 bvm.map(bbarg, vectorRead); 289 bvm.map(vectorArg, vectorRead); 290 } 291 292 // 4. Register CustomVectorizationHook for yieldOp. 293 CustomVectorizationHook vectorizeYield = 294 [&](Operation *op, 295 const BlockAndValueMapping &bvm) -> VectorizationResult { 296 return vectorizeLinalgYield(builder, op, bvm, linalgOp, newResults); 297 }; 298 // Append the vectorizeYield hook. 299 auto hooks = llvm::to_vector<4>(customVectorizationHooks); 300 hooks.push_back(vectorizeYield); 301 302 // 5. Iteratively call `vectorizeOneOp` to each op in the slice. 303 for (Operation &op : block->getOperations()) { 304 VectorizationResult result = vectorizeOneOp(builder, &op, bvm, hooks); 305 if (result.status == VectorizationStatus::Failure) { 306 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: failed to vectorize: " << op); 307 return failure(); 308 } 309 if (result.status == VectorizationStatus::NewOp) { 310 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: new vector op: " 311 << *result.newOp;); 312 bvm.map(op.getResults(), result.newOp->getResults()); 313 } 314 } 315 316 return success(); 317 } 318 319 /// Detect whether `r` has only ConstantOp, ElementwiseMappable and YieldOp. 320 static bool hasOnlyScalarElementwiseOp(Region &r) { 321 if (!llvm::hasSingleElement(r)) 322 return false; 323 for (Operation &op : r.front()) { 324 if (!(isa<ConstantOp, linalg::YieldOp>(op) || 325 OpTrait::hasElementwiseMappableTraits(&op)) || 326 llvm::any_of(op.getResultTypes(), 327 [](Type type) { return !type.isIntOrIndexOrFloat(); })) 328 return false; 329 } 330 return true; 331 } 332 333 // Return true if the op is an element-wise linalg op. 334 static bool isElementwise(Operation *op) { 335 auto linalgOp = dyn_cast<linalg::LinalgOp>(op); 336 if (!linalgOp) 337 return false; 338 if (linalgOp.getNumLoops() != linalgOp.getNumParallelLoops()) 339 return false; 340 // TODO: relax the restrictions on indexing map. 341 for (unsigned i = 0, e = linalgOp.getNumOutputs(); i < e; i++) { 342 if (!linalgOp.getOutputIndexingMap(i).isIdentity()) 343 return false; 344 } 345 // Currently bound the input indexing map to minor identity as other 346 // permutations might require adding transpose ops to convert the vector read 347 // to the right shape. 348 for (unsigned i = 0, e = linalgOp.getNumInputs(); i < e; i++) { 349 if (!linalgOp.getInputIndexingMap(i).isMinorIdentity()) 350 return false; 351 } 352 if (linalgOp->getNumRegions() != 1) 353 return false; 354 return hasOnlyScalarElementwiseOp(linalgOp->getRegion(0)); 355 } 356 357 static LogicalResult vectorizeContraction(OpBuilder &builder, LinalgOp linalgOp, 358 SmallVectorImpl<Value> &newResults) { 359 assert(isaContractionOpInterface(linalgOp) && 360 "expected vectorizeContraction preconditions to be met"); 361 Location loc = linalgOp.getLoc(); 362 // Vectorize other ops as vector contraction. 363 // TODO: interface. 364 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: " 365 << "Rewrite linalg op as vector.contract: "; 366 linalgOp.dump()); 367 // Special function that describes how to vectorize the multiplication op in a 368 // linalg contraction. 369 CustomVectorizationHook vectorizeContraction = 370 [&](Operation *op, 371 const BlockAndValueMapping &bvm) -> VectorizationResult { 372 if (!isa<MulIOp, MulFOp>(op)) 373 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 374 auto outShape = linalgOp.getOutputShapedType(0).getShape(); 375 auto vType = outShape.empty() 376 ? op->getResult(0).getType() 377 : VectorType::get(outShape, op->getResult(0).getType()); 378 auto zero = 379 builder.create<ConstantOp>(loc, vType, builder.getZeroAttr(vType)); 380 Operation *contract = builder.create<vector::ContractionOp>( 381 loc, bvm.lookup(op->getOperand(0)), bvm.lookup(op->getOperand(1)), zero, 382 linalgOp.indexing_maps(), linalgOp.iterator_types()); 383 return VectorizationResult{VectorizationStatus::NewOp, contract}; 384 }; 385 return vectorizeAsLinalgGeneric(builder, linalgOp, newResults, 386 {vectorizeContraction}); 387 } 388 389 LogicalResult mlir::linalg::vectorizeLinalgOpPrecondition(Operation *op) { 390 auto linalgOp = cast<linalg::LinalgOp>(op); 391 // All types must be static shape to go to vector. 392 for (Value operand : linalgOp.getShapedOperands()) 393 if (!operand.getType().cast<ShapedType>().hasStaticShape()) 394 return failure(); 395 for (Type outputTensorType : linalgOp.getOutputTensorTypes()) 396 if (!outputTensorType.cast<ShapedType>().hasStaticShape()) 397 return failure(); 398 if (isElementwise(op)) 399 return success(); 400 return success(isaContractionOpInterface(linalgOp)); 401 } 402 403 LogicalResult 404 mlir::linalg::vectorizeLinalgOp(OpBuilder &builder, Operation *op, 405 SmallVectorImpl<Value> &newResults) { 406 if (failed(vectorizeLinalgOpPrecondition(op))) 407 return failure(); 408 409 edsc::ScopedContext scope(builder, op->getLoc()); 410 if (isElementwise(op)) { 411 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: " 412 << "Vectorize linalg op as a generic: " << *op); 413 return vectorizeAsLinalgGeneric(builder, cast<LinalgOp>(op), newResults); 414 } 415 416 return vectorizeContraction(builder, cast<LinalgOp>(op), newResults); 417 } 418 419 //----------------------------------------------------------------------------// 420 // Misc. vectorization patterns. 421 //----------------------------------------------------------------------------// 422 423 /// Rewrite a PadTensorOp into a sequence of InitTensorOp, TransferReadOp and 424 /// TransferWriteOp. For now, this only applies when all low and high paddings 425 /// are determined to be zero. 426 LogicalResult PadTensorOpVectorizationPattern::matchAndRewrite( 427 linalg::PadTensorOp padOp, PatternRewriter &rewriter) const { 428 // Helper function to determine whether an OpFoldResult is not a zero Index. 429 auto isNotZeroIndex = [](OpFoldResult ofr) { 430 if (Attribute attr = ofr.dyn_cast<Attribute>()) 431 return attr.cast<IntegerAttr>().getInt() != 0; 432 Value v = ofr.get<Value>(); 433 if (auto constOp = v.getDefiningOp<ConstantOp>()) 434 if (auto intAttr = constOp.getValue().dyn_cast<IntegerAttr>()) 435 return intAttr.getValue().getSExtValue() != 0; 436 return true; 437 }; 438 439 auto resultShapedType = padOp.result().getType().cast<ShapedType>(); 440 // Bail on non-static shapes. 441 if (!resultShapedType.hasStaticShape()) 442 return failure(); 443 444 // If any pad_low is not a static 0, needs a mask. Bail for now. 445 if (llvm::any_of(padOp.getMixedLowPad(), isNotZeroIndex)) 446 return failure(); 447 VectorType vectorType = extractVectorTypeFromShapedValue(padOp.result()); 448 if (!vectorType) 449 return failure(); 450 451 // Only support padding with a constant for now, i.e. either: 452 // 1. A BBarg from a different block. 453 // 2. A value defined outside of the current block. 454 Block &block = padOp.region().front(); 455 auto yieldOp = cast<YieldOp>(block.getTerminator()); 456 assert(yieldOp.getNumOperands() == 1 && "expected single operand yield"); 457 Value padValue = yieldOp.values().front(); 458 Operation *definingOp = padValue.getDefiningOp(); 459 if (definingOp && definingOp->getBlock() == &block) 460 return failure(); 461 if (!definingOp && padValue.cast<BlockArgument>().getOwner() == &block) 462 return failure(); 463 464 // TODO: if any pad_high is not a static 0, needs a mask. For now, just bail. 465 if (llvm::any_of(padOp.getMixedHighPad(), 466 [&](OpFoldResult ofr) { return isNotZeroIndex(ofr); })) 467 return failure(); 468 469 // Now we can rewrite as InitTensorOp + TransferReadOp@[0..0] + 470 // TransferWriteOp@[0..0]. 471 SmallVector<Value> indices( 472 resultShapedType.getRank(), 473 rewriter.create<ConstantIndexOp>(padOp.getLoc(), 0)); 474 Value read = rewriter.create<vector::TransferReadOp>( 475 padOp.getLoc(), vectorType, padOp.source(), indices, padValue); 476 Value init = 477 rewriter.create<InitTensorOp>(padOp.getLoc(), resultShapedType.getShape(), 478 resultShapedType.getElementType()); 479 rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(padOp, read, init, 480 indices); 481 482 return success(); 483 } 484 485 // TODO: cleanup all the convolution vectorization patterns. 486 template <class ConvOp, int N> 487 LogicalResult ConvOpVectorization<ConvOp, N>::matchAndRewrite( 488 ConvOp op, PatternRewriter &rewriter) const { 489 Location loc = op.getLoc(); 490 MLIRContext *context = op.getContext(); 491 edsc::ScopedContext scope(rewriter, loc); 492 493 ShapedType inShapeType = op.getInputShapedType(0); 494 ShapedType kShapeType = op.getInputShapedType(1); 495 496 ArrayRef<int64_t> inShape = inShapeType.getShape(); 497 ArrayRef<int64_t> kShape = kShapeType.getShape(); 498 499 if (!inShapeType.hasStaticShape() || !kShapeType.hasStaticShape()) 500 return failure(); 501 502 SmallVector<AffineExpr, 4> mapping; 503 SmallVector<int64_t, 4> vectorDims; 504 // Fail to apply when the size of not vectorized dimension is not 1. 505 for (unsigned i = 0; i < N; i++) { 506 if (!mask[i] && (inShape[i] != 1 || kShape[i] != 1)) 507 return failure(); 508 509 if (mask[i] && inShape[i] != kShape[i]) 510 return failure(); 511 512 if (mask[i]) { 513 mapping.push_back(getAffineDimExpr(i, context)); 514 vectorDims.push_back(inShape[i]); 515 } 516 } 517 518 Value input = op.getInput(0); 519 Value kernel = op.getInput(1); 520 Value output = op.getOutputBuffer(0); 521 522 unsigned rank = inShapeType.getRank(); 523 unsigned numDims = mapping.size(); 524 Type elemType = inShapeType.getElementType(); 525 526 auto map = AffineMap::get(rank, 0, mapping, context); 527 SmallVector<Value, 4> zeros(rank, std_constant_index(0)); 528 auto vecType = VectorType::get(vectorDims, elemType); 529 530 auto inputVec = vector_transfer_read(vecType, input, zeros, map); 531 auto kernelVec = vector_transfer_read(vecType, kernel, zeros, map); 532 533 auto acc = std_constant(elemType, rewriter.getZeroAttr(elemType)); 534 535 std::array<AffineMap, 3> indexingMaps{ 536 AffineMap::getMultiDimIdentityMap(numDims, context), 537 AffineMap::getMultiDimIdentityMap(numDims, context), 538 AffineMap::get(numDims, 0, {}, context)}; 539 540 std::vector<StringRef> iteratorTypes(numDims, "reduction"); 541 542 auto result = rewriter.create<vector::ContractionOp>( 543 loc, inputVec, kernelVec, acc, 544 rewriter.getAffineMapArrayAttr(indexingMaps), 545 rewriter.getStrArrayAttr(iteratorTypes)); 546 547 rewriter.create<StoreOp>(loc, result, output, ValueRange(zeros)); 548 rewriter.eraseOp(op); 549 return success(); 550 } 551 552 using ConvOpConst = ConvOpVectorization<ConvWOp, 1>; 553 554 /// Inserts tiling, promotion and vectorization pattern for ConvOp 555 /// conversion into corresponding pattern lists. 556 template <typename ConvOp, unsigned N> 557 static void 558 populateVectorizationPatterns(OwningRewritePatternList &tilingPatterns, 559 OwningRewritePatternList &promotionPatterns, 560 OwningRewritePatternList &vectorizationPatterns, 561 ArrayRef<int64_t> tileSizes, 562 MLIRContext *context) { 563 if (tileSizes.size() < N) 564 return; 565 566 constexpr static StringRef kTiledMarker = "TILED"; 567 constexpr static StringRef kPromotedMarker = "PROMOTED"; 568 tilingPatterns.insert<LinalgTilingPattern<ConvOp>>( 569 context, LinalgTilingOptions().setTileSizes(tileSizes), 570 LinalgTransformationFilter(ArrayRef<Identifier>{}, 571 Identifier::get(kTiledMarker, context))); 572 573 promotionPatterns.insert<LinalgPromotionPattern<ConvOp>>( 574 context, LinalgPromotionOptions().setUseFullTileBuffersByDefault(true), 575 LinalgTransformationFilter(Identifier::get(kTiledMarker, context), 576 Identifier::get(kPromotedMarker, context))); 577 578 SmallVector<bool, 4> mask(N); 579 int offset = tileSizes.size() - N; 580 std::transform(tileSizes.begin() + offset, tileSizes.end(), mask.begin(), 581 [](int64_t i) -> bool { return i > 1; }); 582 583 vectorizationPatterns.insert<ConvOpVectorization<ConvOp, N>>(context, mask); 584 } 585 586 void mlir::linalg::populateConvVectorizationPatterns( 587 MLIRContext *context, SmallVectorImpl<OwningRewritePatternList> &patterns, 588 ArrayRef<int64_t> tileSizes) { 589 OwningRewritePatternList tiling, promotion, vectorization; 590 populateVectorizationPatterns<ConvWOp, 1>(tiling, promotion, vectorization, 591 tileSizes, context); 592 593 populateVectorizationPatterns<ConvNWCOp, 3>(tiling, promotion, vectorization, 594 tileSizes, context); 595 populateVectorizationPatterns<ConvInputNWCFilterWCFOp, 3>( 596 tiling, promotion, vectorization, tileSizes, context); 597 598 populateVectorizationPatterns<ConvNCWOp, 3>(tiling, promotion, vectorization, 599 tileSizes, context); 600 populateVectorizationPatterns<ConvInputNCWFilterWCFOp, 3>( 601 tiling, promotion, vectorization, tileSizes, context); 602 603 populateVectorizationPatterns<ConvHWOp, 2>(tiling, promotion, vectorization, 604 tileSizes, context); 605 606 populateVectorizationPatterns<ConvNHWCOp, 4>(tiling, promotion, vectorization, 607 tileSizes, context); 608 populateVectorizationPatterns<ConvInputNHWCFilterHWCFOp, 4>( 609 tiling, promotion, vectorization, tileSizes, context); 610 611 populateVectorizationPatterns<ConvNCHWOp, 4>(tiling, promotion, vectorization, 612 tileSizes, context); 613 populateVectorizationPatterns<ConvInputNCHWFilterHWCFOp, 4>( 614 tiling, promotion, vectorization, tileSizes, context); 615 616 populateVectorizationPatterns<ConvDHWOp, 3>(tiling, promotion, vectorization, 617 tileSizes, context); 618 619 populateVectorizationPatterns<ConvNDHWCOp, 5>( 620 tiling, promotion, vectorization, tileSizes, context); 621 populateVectorizationPatterns<ConvInputNDHWCFilterDHWCFOp, 5>( 622 tiling, promotion, vectorization, tileSizes, context); 623 624 populateVectorizationPatterns<ConvNCDHWOp, 5>( 625 tiling, promotion, vectorization, tileSizes, context); 626 populateVectorizationPatterns<ConvInputNCDHWFilterDHWCFOp, 5>( 627 tiling, promotion, vectorization, tileSizes, context); 628 629 patterns.push_back(std::move(tiling)); 630 patterns.push_back(std::move(promotion)); 631 patterns.push_back(std::move(vectorization)); 632 } 633 634 //----------------------------------------------------------------------------// 635 // Forwarding patterns 636 //----------------------------------------------------------------------------// 637 638 /// Check whether there is any interleaved use of any `values` between `firstOp` 639 /// and `secondOp`. Conservatively return `true` if any op or value is in a 640 /// different block. 641 static bool mayExistInterleavedUses(Operation *firstOp, Operation *secondOp, 642 ValueRange values) { 643 if (firstOp->getBlock() != secondOp->getBlock() || 644 !firstOp->isBeforeInBlock(secondOp)) { 645 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " 646 << "interleavedUses precondition failed, firstOp: " 647 << *firstOp << ", second op: " << *secondOp); 648 return true; 649 } 650 for (auto v : values) { 651 for (auto &u : v.getUses()) { 652 Operation *owner = u.getOwner(); 653 if (owner == firstOp || owner == secondOp) 654 continue; 655 // TODO: this is too conservative, use dominance info in the future. 656 if (owner->getBlock() == firstOp->getBlock() && 657 (owner->isBeforeInBlock(firstOp) || secondOp->isBeforeInBlock(owner))) 658 continue; 659 LLVM_DEBUG(llvm::dbgs() 660 << "\n[" DEBUG_TYPE "]: " 661 << " found interleaved op " << *owner 662 << ", firstOp: " << *firstOp << ", second op: " << *secondOp); 663 return true; 664 } 665 } 666 return false; 667 } 668 669 /// Return the unique subview use of `v` if it is indeed unique, null otherwise. 670 static SubViewOp getSubViewUseIfUnique(Value v) { 671 SubViewOp subViewOp; 672 for (auto &u : v.getUses()) { 673 if (auto newSubViewOp = dyn_cast<SubViewOp>(u.getOwner())) { 674 if (subViewOp) 675 return SubViewOp(); 676 subViewOp = newSubViewOp; 677 } 678 } 679 return subViewOp; 680 } 681 682 /// TODO: use interfaces, side-effects and aliasing analysis as appropriate, 683 /// when available. 684 LogicalResult LinalgCopyVTRForwardingPattern::matchAndRewrite( 685 vector::TransferReadOp xferOp, PatternRewriter &rewriter) const { 686 687 // Transfer into `view`. 688 Value viewOrAlloc = xferOp.source(); 689 if (!viewOrAlloc.getDefiningOp<ViewOp>() && 690 !viewOrAlloc.getDefiningOp<AllocOp>()) 691 return failure(); 692 693 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " << viewOrAlloc); 694 695 // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`. 696 SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc); 697 if (!subViewOp) 698 return failure(); 699 Value subView = subViewOp.getResult(); 700 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " 701 << "with subView " << subView); 702 703 // Find the copy into `subView` without interleaved uses. 704 CopyOp copyOp; 705 for (auto &u : subView.getUses()) { 706 if (auto newCopyOp = dyn_cast<CopyOp>(u.getOwner())) { 707 if (newCopyOp.getOutputBuffer(0) != subView) 708 continue; 709 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " 710 << "copy candidate " << *newCopyOp); 711 if (mayExistInterleavedUses(newCopyOp, xferOp, {viewOrAlloc, subView})) 712 continue; 713 copyOp = newCopyOp; 714 break; 715 } 716 } 717 if (!copyOp) 718 return failure(); 719 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " 720 << "with copy " << *copyOp); 721 722 // Find the fill into `viewOrAlloc` without interleaved uses before the copy. 723 FillOp maybeFillOp; 724 for (auto &u : viewOrAlloc.getUses()) { 725 if (auto newFillOp = dyn_cast<FillOp>(u.getOwner())) { 726 if (newFillOp.getOutputBuffer(0) != viewOrAlloc) 727 continue; 728 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " 729 << "fill candidate " << *newFillOp); 730 if (mayExistInterleavedUses(newFillOp, copyOp, {viewOrAlloc, subView})) 731 continue; 732 maybeFillOp = newFillOp; 733 break; 734 } 735 } 736 // Ensure padding matches. 737 if (maybeFillOp && xferOp.padding() != maybeFillOp.value()) 738 return failure(); 739 if (maybeFillOp) 740 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " 741 << "with maybeFillOp " << *maybeFillOp); 742 743 // `in` is the subview that linalg.copy reads. Replace it. 744 Value in = copyOp.getInput(0); 745 746 // linalg.copy + linalg.fill can be used to create a padded local buffer. 747 // The `masked` attribute is only valid on this padded buffer. 748 // When forwarding to vector.transfer_read, the attribute must be reset 749 // conservatively. 750 Value res = rewriter.create<vector::TransferReadOp>( 751 xferOp.getLoc(), xferOp.getVectorType(), in, xferOp.indices(), 752 xferOp.permutation_map(), xferOp.padding(), ArrayAttr()); 753 754 if (maybeFillOp) 755 rewriter.eraseOp(maybeFillOp); 756 rewriter.eraseOp(copyOp); 757 rewriter.replaceOp(xferOp, res); 758 759 return success(); 760 } 761 762 /// TODO: use interfaces, side-effects and aliasing analysis as appropriate, 763 /// when available. 764 LogicalResult LinalgCopyVTWForwardingPattern::matchAndRewrite( 765 vector::TransferWriteOp xferOp, PatternRewriter &rewriter) const { 766 // Transfer into `viewOrAlloc`. 767 Value viewOrAlloc = xferOp.source(); 768 if (!viewOrAlloc.getDefiningOp<ViewOp>() && 769 !viewOrAlloc.getDefiningOp<AllocOp>()) 770 return failure(); 771 772 // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`. 773 SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc); 774 if (!subViewOp) 775 return failure(); 776 Value subView = subViewOp.getResult(); 777 778 // Find the copy from `subView` without interleaved uses. 779 CopyOp copyOp; 780 for (auto &u : subViewOp.getResult().getUses()) { 781 if (auto newCopyOp = dyn_cast<CopyOp>(u.getOwner())) { 782 if (newCopyOp.getInput(0) != subView) 783 continue; 784 if (mayExistInterleavedUses(xferOp, newCopyOp, {viewOrAlloc, subView})) 785 continue; 786 copyOp = newCopyOp; 787 break; 788 } 789 } 790 if (!copyOp) 791 return failure(); 792 793 // `out` is the subview copied into that we replace. 794 Value out = copyOp.getOutputBuffer(0); 795 796 // Forward vector.transfer into copy. 797 // linalg.copy + linalg.fill can be used to create a padded local buffer. 798 // The `masked` attribute is only valid on this padded buffer. 799 // When forwarding to vector.transfer_write, the attribute must be reset 800 // conservatively. 801 rewriter.create<vector::TransferWriteOp>( 802 xferOp.getLoc(), xferOp.vector(), out, xferOp.indices(), 803 xferOp.permutation_map(), ArrayAttr()); 804 805 rewriter.eraseOp(copyOp); 806 rewriter.eraseOp(xferOp); 807 808 return success(); 809 } 810