1 //===- Vectorization.cpp - Implementation of linalg Vectorization ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the linalg dialect Vectorization transformations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "mlir/Analysis/LoopAnalysis.h" 14 #include "mlir/Analysis/SliceAnalysis.h" 15 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 16 #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h" 17 #include "mlir/Dialect/Linalg/IR/LinalgOps.h" 18 #include "mlir/Dialect/Linalg/Transforms/Transforms.h" 19 #include "mlir/Dialect/Linalg/Utils/Utils.h" 20 #include "mlir/Dialect/Tensor/IR/Tensor.h" 21 #include "mlir/Dialect/Utils/StructuredOpsUtils.h" 22 #include "mlir/Dialect/Vector/VectorOps.h" 23 #include "mlir/IR/AffineExpr.h" 24 #include "mlir/IR/Matchers.h" 25 #include "mlir/IR/PatternMatch.h" 26 #include "mlir/Pass/Pass.h" 27 #include "mlir/Support/LLVM.h" 28 #include "mlir/Transforms/RegionUtils.h" 29 #include "llvm/ADT/ScopeExit.h" 30 #include "llvm/ADT/Sequence.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/TypeSwitch.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include <type_traits> 36 37 using namespace mlir; 38 using namespace mlir::linalg; 39 40 using llvm::dbgs; 41 42 #define DEBUG_TYPE "linalg-vectorization" 43 44 #define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ") 45 #define LDBG(X) LLVM_DEBUG(DBGS() << X) 46 47 /// Return the unique instance of OpType in `block` if it is indeed unique. 48 /// Return null if none or more than 1 instances exist. 49 template <typename OpType> 50 static OpType getSingleOpOfType(Block &block) { 51 OpType res; 52 block.walk([&](OpType op) { 53 if (res) { 54 res = nullptr; 55 return WalkResult::interrupt(); 56 } 57 res = op; 58 return WalkResult::advance(); 59 }); 60 return res; 61 } 62 63 /// Given an indexing `map` coming from a LinalgOp indexing, restricted to a 64 /// projectedPermutation, compress the unused dimensions to serve as a 65 /// permutation_map for a vector transfer operation. 66 /// For example, given a linalg op such as: 67 /// 68 /// ``` 69 /// %0 = linalg.generic { 70 /// indexing_maps = affine_map<(d0, d1, d2, d3, d4) -> (d4, d0, d2)>, 71 /// indexing_maps = affine_map<(d0, d1, d2, d3, d4) -> (d1, d3)> 72 /// } 73 /// ins(%0 : tensor<2x3x4xf32>) 74 /// outs(%1 : tensor<5x6xf32>) 75 /// ``` 76 /// 77 /// the iteration domain size of the linalg op is 3x5x4x6x2. The first affine 78 /// map is reindexed to `affine_map<(d0, d1, d2) -> (d2, d0, d1)>`, the second 79 /// affine map is reindexed to `affine_map<(d0, d1) -> (d0, d1)>`. 80 static AffineMap reindexIndexingMap(AffineMap map) { 81 assert(map.isProjectedPermutation(/*allowZerosInResults=*/true) && 82 "expected projected permutation"); 83 auto res = compressUnusedDims(map); 84 assert(res.getNumDims() == res.getNumResults() && 85 "expected reindexed map with same number of dims and results"); 86 return res; 87 } 88 89 /// Helper data structure to represent the result of vectorization. 90 /// In certain specific cases, like terminators, we do not want to propagate/ 91 enum VectorizationStatus { 92 /// Op failed to vectorize. 93 Failure = 0, 94 /// Op vectorized and custom function took care of replacement logic 95 NoReplace, 96 /// Op vectorized into a new Op whose results will replace original Op's 97 /// results. 98 NewOp 99 // TODO: support values if Op vectorized to Many-Ops whose results we need to 100 // aggregate for replacement. 101 }; 102 struct VectorizationResult { 103 /// Return status from vectorizing the current op. 104 enum VectorizationStatus status = VectorizationStatus::Failure; 105 /// New vectorized operation to replace the current op. 106 /// Replacement behavior is specified by `status`. 107 Operation *newOp; 108 }; 109 110 /// Return a vector type of the same shape and element type as the (assumed) 111 /// ShapedType of `v`. 112 static VectorType extractVectorTypeFromShapedValue(Value v) { 113 auto st = v.getType().cast<ShapedType>(); 114 if (st.getShape().empty()) 115 return VectorType(); 116 return VectorType::get(st.getShape(), st.getElementType()); 117 } 118 119 static llvm::Optional<vector::CombiningKind> 120 getKindForOp(Operation *reductionOp) { 121 if (!reductionOp) 122 return llvm::None; 123 return llvm::TypeSwitch<Operation *, llvm::Optional<vector::CombiningKind>>( 124 reductionOp) 125 .Case<arith::AddIOp, arith::AddFOp>( 126 [&](auto op) { return vector::CombiningKind::ADD; }) 127 .Case<arith::AndIOp>([&](auto op) { return vector::CombiningKind::AND; }) 128 .Case<MaxSIOp>([&](auto op) { return vector::CombiningKind::MAXSI; }) 129 .Case<MaxFOp>([&](auto op) { return vector::CombiningKind::MAXF; }) 130 .Case<MinSIOp>([&](auto op) { return vector::CombiningKind::MINSI; }) 131 .Case<MinFOp>([&](auto op) { return vector::CombiningKind::MINF; }) 132 .Case<arith::MulIOp, arith::MulFOp>( 133 [&](auto op) { return vector::CombiningKind::MUL; }) 134 .Case<arith::OrIOp>([&](auto op) { return vector::CombiningKind::OR; }) 135 .Case<arith::XOrIOp>([&](auto op) { return vector::CombiningKind::XOR; }) 136 .Default([&](auto op) { return llvm::None; }); 137 } 138 139 /// Check whether `outputOperand` is a reduction with a single combiner 140 /// operation. Return the combiner operation of the reduction. Return 141 /// nullptr otherwise. Multiple reduction operations would impose an 142 /// ordering between reduction dimensions and is currently unsupported in 143 /// Linalg. This limitation is motivated by the fact that e.g. min(max(X)) != 144 /// max(min(X)) 145 // TODO: use in LinalgOp verification, there is a circular dependency atm. 146 static Operation *matchLinalgReduction(OpOperand *outputOperand) { 147 auto linalgOp = cast<LinalgOp>(outputOperand->getOwner()); 148 unsigned outputPos = 149 outputOperand->getOperandNumber() - linalgOp.getNumInputs(); 150 // Only single combiner operatios are supported for now. 151 SmallVector<Operation *, 4> combinerOps; 152 if (!matchReduction(linalgOp.getRegionOutputArgs(), outputPos, combinerOps) || 153 combinerOps.size() != 1) 154 return nullptr; 155 156 // Return the combiner operation. 157 return combinerOps[0]; 158 } 159 160 /// Broadcast `value` to a vector of `shape` if possible. Return value 161 /// otherwise. 162 static Value broadcastIfNeeded(OpBuilder &b, Value value, 163 ArrayRef<int64_t> shape) { 164 // If no shape to broadcast to, just return `value`. 165 if (shape.empty()) 166 return value; 167 VectorType targetVectorType = 168 VectorType::get(shape, getElementTypeOrSelf(value)); 169 if (vector::isBroadcastableTo(value.getType(), targetVectorType) != 170 vector::BroadcastableToResult::Success) 171 return value; 172 Location loc = b.getInsertionPoint()->getLoc(); 173 return b.createOrFold<vector::BroadcastOp>(loc, targetVectorType, value); 174 } 175 176 /// Build a vector.transfer_read from `source` at indices set to all `0`. 177 /// If source has rank zero, build a `vector<1xt> transfer_read + extract`. 178 /// Return the produced value. 179 static Value buildVectorRead(OpBuilder &b, Value source, Type readType, 180 AffineMap map) { 181 Location loc = source.getLoc(); 182 auto shapedType = source.getType().cast<ShapedType>(); 183 SmallVector<Value> indices(shapedType.getRank(), 184 b.create<arith::ConstantIndexOp>(loc, 0)); 185 if (auto vectorType = readType.dyn_cast<VectorType>()) 186 return b.create<vector::TransferReadOp>(loc, vectorType, source, indices, 187 map); 188 return vector::TransferReadOp::createScalarOp(b, loc, source, indices); 189 } 190 191 /// Create MultiDimReductionOp to compute the reduction for `reductionOp`. This 192 /// assumes that `reductionOp` has tow operands and one of them is the reduction 193 /// initial value. 194 static Value buildMultiDimReduce(OpBuilder &b, Operation *reduceOp, 195 Value outputArg, 196 const SmallVector<bool> &reductionMask, 197 const BlockAndValueMapping &bvm) { 198 auto maybeKind = getKindForOp(reduceOp); 199 assert(maybeKind && "Failed precondition: could not get reduction kind"); 200 Value operandToReduce = reduceOp->getOperand(0) == outputArg 201 ? reduceOp->getOperand(1) 202 : reduceOp->getOperand(0); 203 Value vec = bvm.lookup(operandToReduce); 204 return b.create<vector::MultiDimReductionOp>(reduceOp->getLoc(), vec, 205 reductionMask, *maybeKind); 206 } 207 208 /// Read the initial value associated to the given `outputOperand`. 209 static Value readInitialValue(OpBuilder &b, LinalgOp linalgOp, 210 OpOperand *outputOperand) { 211 AffineMap map = inversePermutation( 212 reindexIndexingMap(linalgOp.getTiedIndexingMap(outputOperand))); 213 Type readType; 214 if (linalgOp.getShape(outputOperand).empty()) { 215 readType = getElementTypeOrSelf(outputOperand->get()); 216 } else { 217 readType = VectorType::get(map.compose(linalgOp.getShape(outputOperand)), 218 getElementTypeOrSelf(outputOperand->get())); 219 } 220 Value vectorRead = buildVectorRead(b, outputOperand->get(), readType, map); 221 return vectorRead; 222 } 223 224 /// Assuming `outputOperand` is an output operand of a LinalgOp, determine 225 /// whether a reduction is needed to produce a `targetType` and create that 226 /// reduction if it is the case. 227 static Value reduceIfNeeded(OpBuilder &b, Type targetType, Value value, 228 OpOperand *outputOperand, 229 const BlockAndValueMapping &bvm) { 230 LDBG("Reduce " << value << " to type " << targetType); 231 LDBG("In LinalgOp operand #" << outputOperand->getOperandNumber() << "\n" 232 << *(outputOperand->getOwner())); 233 auto linalgOp = cast<LinalgOp>(outputOperand->getOwner()); 234 auto vecType = value.getType().dyn_cast<VectorType>(); 235 VectorType targetVectorType = targetType.dyn_cast<VectorType>(); 236 if (!vecType) 237 return value; 238 if (targetVectorType && vecType.getShape() == targetVectorType.getShape()) 239 return value; 240 241 // At this point, we know we need to reduce. Detect the reduction operator. 242 unsigned pos = 0; 243 MLIRContext *ctx = b.getContext(); 244 SmallVector<AffineExpr> exprs; 245 for (auto s : linalgOp.iterator_types()) 246 if (isParallelIterator(s)) 247 exprs.push_back(getAffineDimExpr(pos++, ctx)); 248 249 Operation *reduceOp = matchLinalgReduction(outputOperand); 250 assert(reduceOp && "Failed precondition: could not math a reduction"); 251 unsigned idx = 0; 252 SmallVector<bool> reductionMask(linalgOp.iterator_types().size(), false); 253 for (auto attr : linalgOp.iterator_types()) { 254 if (isReductionIterator(attr)) 255 reductionMask[idx] = true; 256 ++idx; 257 } 258 assert(reduceOp->getNumOperands() == 2 && 259 "Only support binary reduce op right now"); 260 unsigned outputPos = 261 outputOperand->getOperandNumber() - linalgOp.getNumInputs(); 262 Value outputArg = linalgOp.getRegionOutputArgs()[outputPos]; 263 // Reduce across the iteration space. 264 Value reduce = 265 buildMultiDimReduce(b, reduceOp, outputArg, reductionMask, bvm); 266 267 // Read the original output value. 268 Value initialValue = readInitialValue(b, linalgOp, outputOperand); 269 270 // Combine the output argument with the reduced value. 271 OperationState state(reduceOp->getLoc(), reduceOp->getName()); 272 state.addAttributes(reduceOp->getAttrs()); 273 state.addOperands({reduce, initialValue}); 274 state.addTypes(initialValue.getType()); 275 return b.createOperation(state)->getResult(0); 276 } 277 278 /// Build a vector.transfer_write of `value` into `outputOperand` at indices set 279 /// to all `0`; where `outputOperand` is an output operand of the LinalgOp 280 /// currently being vectorized. If `dest` has null rank, build an memref.store. 281 /// Return the produced value or null if no value is produced. 282 static Value buildVectorWrite(OpBuilder &b, Value value, 283 OpOperand *outputOperand, 284 const BlockAndValueMapping &bvm) { 285 Operation *write; 286 Location loc = value.getLoc(); 287 auto linalgOp = cast<LinalgOp>(outputOperand->getOwner()); 288 if (VectorType vectorType = 289 extractVectorTypeFromShapedValue(outputOperand->get())) { 290 AffineMap map = 291 reindexIndexingMap(linalgOp.getTiedIndexingMap(outputOperand)); 292 SmallVector<int64_t> transposeShape = 293 applyPermutationMap(inversePermutation(map), vectorType.getShape()); 294 assert(!transposeShape.empty() && "unexpected empty transpose shape"); 295 vectorType = VectorType::get(transposeShape, vectorType.getElementType()); 296 SmallVector<Value> indices(linalgOp.getRank(outputOperand), 297 b.create<arith::ConstantIndexOp>(loc, 0)); 298 value = broadcastIfNeeded(b, value, vectorType.getShape()); 299 value = reduceIfNeeded(b, vectorType, value, outputOperand, bvm); 300 write = b.create<vector::TransferWriteOp>(loc, value, outputOperand->get(), 301 indices, map); 302 } else { 303 value = reduceIfNeeded(b, getElementTypeOrSelf(value), value, outputOperand, 304 bvm); 305 write = vector::TransferWriteOp::createScalarOp( 306 b, loc, value, outputOperand->get(), ValueRange{}); 307 } 308 LDBG("vectorized op: " << *write); 309 if (!write->getResults().empty()) 310 return write->getResult(0); 311 return Value(); 312 } 313 314 // Custom vectorization function type. Produce a vector form of Operation* 315 // assuming all its vectorized operands are already in the BlockAndValueMapping. 316 // Return nullptr if the Operation cannot be vectorized. 317 using CustomVectorizationHook = std::function<VectorizationResult( 318 Operation *, const BlockAndValueMapping &)>; 319 320 /// Helper function to vectorize the terminator of a `linalgOp`. New result 321 /// vector values are appended to `newResults`. Return 322 /// VectorizationStatus::NoReplace to signal the vectorization algorithm that it 323 /// should not try to map produced operations and instead return the results 324 /// using the `newResults` vector making them available to the 325 /// vectorization algorithm for RAUW. This function is meant to be used as a 326 /// CustomVectorizationHook. 327 static VectorizationResult 328 vectorizeLinalgYield(OpBuilder &b, Operation *op, 329 const BlockAndValueMapping &bvm, LinalgOp linalgOp, 330 SmallVectorImpl<Value> &newResults) { 331 auto yieldOp = dyn_cast<linalg::YieldOp>(op); 332 if (!yieldOp) 333 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 334 for (auto outputs : llvm::enumerate(yieldOp.values())) { 335 // TODO: Scan for an opportunity for reuse. 336 // TODO: use a map. 337 Value vectorValue = bvm.lookup(outputs.value()); 338 Value newResult = buildVectorWrite( 339 b, vectorValue, linalgOp.getOutputOperand(outputs.index()), bvm); 340 if (newResult) 341 newResults.push_back(newResult); 342 } 343 return VectorizationResult{VectorizationStatus::NoReplace, nullptr}; 344 } 345 346 /// Helper function to vectorize the index operations of a `linalgOp`. Return 347 /// VectorizationStatus::NewOp to signal the vectorization algorithm that it 348 /// should map the produced operations. This function is meant to be used as a 349 /// CustomVectorizationHook. 350 static VectorizationResult vectorizeLinalgIndex(OpBuilder &b, Operation *op, 351 LinalgOp linalgOp) { 352 IndexOp indexOp = dyn_cast<linalg::IndexOp>(op); 353 if (!indexOp) 354 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 355 auto loc = indexOp.getLoc(); 356 // Compute the static loop sizes of the index op. 357 auto targetShape = linalgOp.computeStaticLoopSizes(); 358 // Compute a one-dimensional index vector for the index op dimension. 359 SmallVector<int64_t> constantSeq = 360 llvm::to_vector<16>(llvm::seq<int64_t>(0, targetShape[indexOp.dim()])); 361 auto constantOp = 362 b.create<arith::ConstantOp>(loc, b.getIndexVectorAttr(constantSeq)); 363 // Return the one-dimensional index vector if it lives in the trailing 364 // dimension of the iteration space since the vectorization algorithm in this 365 // case can handle the broadcast. 366 if (indexOp.dim() == targetShape.size() - 1) 367 return VectorizationResult{VectorizationStatus::NewOp, constantOp}; 368 // Otherwise permute the targetShape to move the index dimension last, 369 // broadcast the one-dimensional index vector to the permuted shape, and 370 // finally transpose the broadcasted index vector to undo the permutation. 371 std::swap(targetShape[indexOp.dim()], targetShape.back()); 372 auto broadCastOp = b.create<vector::BroadcastOp>( 373 loc, VectorType::get(targetShape, b.getIndexType()), constantOp); 374 SmallVector<int64_t> transposition = 375 llvm::to_vector<16>(llvm::seq<int64_t>(0, linalgOp.getNumLoops())); 376 std::swap(transposition.back(), transposition[indexOp.dim()]); 377 auto transposeOp = 378 b.create<vector::TransposeOp>(loc, broadCastOp, transposition); 379 return VectorizationResult{VectorizationStatus::NewOp, transposeOp}; 380 } 381 382 /// Generic vectorization for a single operation `op`, given already vectorized 383 /// operands carried by `bvm`. Vectorization occurs as follows: 384 /// 1. Try to apply any of the `customVectorizationHooks` and return its 385 /// result on success. 386 /// 2. Clone any constant in the current scope without vectorization: each 387 /// consumer of the constant will later determine the shape to which the 388 /// constant needs to be broadcast to. 389 /// 3. Fail on any remaining non `ElementwiseMappable` op. It is the purpose 390 /// of the `customVectorizationHooks` to cover such cases. 391 /// 4. Clone `op` in vector form to a vector of shape prescribed by the first 392 /// operand of maximal rank. Other operands have smaller rank and are 393 /// broadcast accordingly. It is assumed this broadcast is always legal, 394 /// otherwise, it means one of the `customVectorizationHooks` is incorrect. 395 /// 396 /// This function assumes all operands of `op` have been vectorized and are in 397 /// the `bvm` mapping. As a consequence, this function is meant to be called on 398 /// a topologically-sorted list of ops. 399 /// This function does not update `bvm` but returns a VectorizationStatus that 400 /// instructs the caller what `bvm` update needs to occur. 401 static VectorizationResult 402 vectorizeOneOp(OpBuilder &b, Operation *op, const BlockAndValueMapping &bvm, 403 ArrayRef<CustomVectorizationHook> customVectorizationHooks) { 404 LDBG("vectorize op " << *op); 405 406 // 1. Try to apply any CustomVectorizationHook. 407 if (!customVectorizationHooks.empty()) { 408 for (auto &customFunc : customVectorizationHooks) { 409 VectorizationResult result = customFunc(op, bvm); 410 if (result.status == VectorizationStatus::Failure) 411 continue; 412 return result; 413 } 414 } 415 416 // 2. Constant ops don't get vectorized but rather broadcasted at their users. 417 // Clone so that the constant is not confined to the linalgOp block . 418 if (isa<arith::ConstantOp, ConstantOp>(op)) 419 return VectorizationResult{VectorizationStatus::NewOp, b.clone(*op)}; 420 421 // 3. Only ElementwiseMappable are allowed in the generic vectorization. 422 if (!OpTrait::hasElementwiseMappableTraits(op)) 423 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 424 425 // 4. Generic vectorization path for ElementwiseMappable ops. 426 // a. first get the first max ranked shape. 427 SmallVector<int64_t, 4> firstMaxRankedShape; 428 for (Value operand : op->getOperands()) { 429 auto vt = bvm.lookup(operand).getType().dyn_cast<VectorType>(); 430 if (vt && firstMaxRankedShape.size() < vt.getShape().size()) 431 firstMaxRankedShape.assign(vt.getShape().begin(), vt.getShape().end()); 432 } 433 // b. broadcast each op if needed. 434 auto vectorizedOperands = llvm::map_range(op->getOperands(), [&](Value v) { 435 return firstMaxRankedShape.empty() 436 ? bvm.lookup(v) 437 : broadcastIfNeeded(b, bvm.lookup(v), firstMaxRankedShape); 438 }); 439 // c. for elementwise, the result is the vector with the firstMaxRankedShape 440 auto returnTypes = llvm::map_range(op->getResultTypes(), [&](Type t) { 441 return firstMaxRankedShape.empty() 442 ? t 443 : VectorType::get(firstMaxRankedShape, t); 444 }); 445 446 // Build and return the new op. 447 OperationState state(op->getLoc(), op->getName()); 448 state.addAttributes(op->getAttrs()); 449 state.addOperands(llvm::to_vector<4>(vectorizedOperands)); 450 state.addTypes(llvm::to_vector<4>(returnTypes)); 451 return VectorizationResult{VectorizationStatus::NewOp, 452 b.createOperation(state)}; 453 } 454 455 /// Detect whether `r` has only ConstantOp, ElementwiseMappable and YieldOp. 456 static bool hasOnlyScalarElementwiseOp(Region &r) { 457 if (!llvm::hasSingleElement(r)) 458 return false; 459 for (Operation &op : r.front()) { 460 if (!(isa<arith::ConstantOp, ConstantOp, linalg::YieldOp, linalg::IndexOp>( 461 op) || 462 OpTrait::hasElementwiseMappableTraits(&op)) || 463 llvm::any_of(op.getResultTypes(), 464 [](Type type) { return !type.isIntOrIndexOrFloat(); })) 465 return false; 466 } 467 return true; 468 } 469 470 // Return true if the op is an element-wise linalg op. 471 static bool isElementwise(Operation *op) { 472 auto linalgOp = dyn_cast<linalg::LinalgOp>(op); 473 if (!linalgOp) 474 return false; 475 if (linalgOp.getNumLoops() != linalgOp.getNumParallelLoops()) 476 return false; 477 // TODO: relax the restrictions on indexing map. 478 for (OpOperand *opOperand : linalgOp.getOutputOperands()) { 479 if (!linalgOp.getTiedIndexingMap(opOperand).isIdentity()) 480 return false; 481 } 482 if (linalgOp->getNumRegions() != 1) 483 return false; 484 return hasOnlyScalarElementwiseOp(linalgOp->getRegion(0)); 485 } 486 487 /// Generic vectorization function that rewrites the body of a `linalgOp` into 488 /// vector form. Generic vectorization proceeds as follows: 489 /// 1. Verify the `linalgOp` has one non-empty region. 490 /// 2. Values defined above the region are mapped to themselves and will be 491 /// broadcasted on a per-need basis by their consumers. 492 /// 3. Each region argument is vectorized into a vector.transfer_read (or 0-d 493 /// load). 494 /// TODO: Reuse opportunities for RAR dependencies. 495 /// 4a. Register CustomVectorizationHook for YieldOp to capture the results. 496 /// 4b. Register CustomVectorizationHook for IndexOp to access the iteration 497 /// indices. 498 /// 5. Iteratively call vectorizeOneOp on the region operations. 499 /// 500 /// When `broadcastToMaximalCommonShape` is set to true, eager broadcasting is 501 /// performed to the maximal common vector size implied by the `linalgOp` 502 /// iteration space. This eager broadcasting is introduced in the 503 /// permutation_map of the vector.transfer_read operations. The eager 504 /// broadcasting makes it trivial to detrmine where broadcast, transposes and 505 /// reductions should occur, without any bookkeeping. The tradeoff is that, in 506 /// the absence of good canonicalizations, the amount of work increases. 507 /// This is not deemed a problem as we expect canonicalizations and foldings to 508 /// aggressively clean up the useless work. 509 LogicalResult vectorizeAsLinalgGeneric( 510 OpBuilder &b, LinalgOp linalgOp, SmallVectorImpl<Value> &newResults, 511 bool broadcastToMaximalCommonShape = false, 512 ArrayRef<CustomVectorizationHook> customVectorizationHooks = {}) { 513 // 1. Fail to vectorize if the operation does not have one non-empty region. 514 if (linalgOp->getNumRegions() != 1 || linalgOp->getRegion(0).empty()) 515 return failure(); 516 auto &block = linalgOp->getRegion(0).front(); 517 518 // 2. Values defined above the region can only be broadcast for now. Make them 519 // map to themselves. 520 BlockAndValueMapping bvm; 521 SetVector<Value> valuesSet; 522 mlir::getUsedValuesDefinedAbove(linalgOp->getRegion(0), valuesSet); 523 bvm.map(valuesSet.getArrayRef(), valuesSet.getArrayRef()); 524 525 if (linalgOp.getNumOutputs() == 0) 526 return failure(); 527 528 // TODO: the common vector shape is equal to the static loop sizes only when 529 // all indexing maps are projected permutations. For convs and stencils the 530 // logic will need to evolve. 531 SmallVector<int64_t> commonVectorShape = linalgOp.computeStaticLoopSizes(); 532 533 // 3. Turn all BBArgs into vector.transfer_read / load. 534 SmallVector<AffineMap> indexings; 535 for (OpOperand *opOperand : linalgOp.getInputAndOutputOperands()) { 536 BlockArgument bbarg = block.getArgument(opOperand->getOperandNumber()); 537 if (linalgOp.isScalar(opOperand)) { 538 bvm.map(bbarg, opOperand->get()); 539 continue; 540 } 541 // TODO: 0-d vectors. 542 Type readType; 543 AffineMap map; 544 if (linalgOp.getShape(opOperand).empty()) { 545 readType = bbarg.getType(); 546 } else { 547 if (broadcastToMaximalCommonShape) { 548 map = inverseAndBroadcastProjectedPermuation( 549 linalgOp.getTiedIndexingMap(opOperand)); 550 readType = VectorType::get(commonVectorShape, 551 getElementTypeOrSelf(opOperand->get())); 552 } else { 553 map = inversePermutation( 554 reindexIndexingMap(linalgOp.getTiedIndexingMap(opOperand))); 555 readType = VectorType::get(map.compose(linalgOp.getShape(opOperand)), 556 getElementTypeOrSelf(opOperand->get())); 557 } 558 } 559 Value readValue = buildVectorRead(b, opOperand->get(), readType, map); 560 LDBG("new vectorized bbarg(" << bbarg.getArgNumber() << "): " << readValue); 561 bvm.map(bbarg, readValue); 562 bvm.map(opOperand->get(), readValue); 563 } 564 565 auto hooks = llvm::to_vector<4>(customVectorizationHooks); 566 // 4a. Register CustomVectorizationHook for yieldOp. 567 CustomVectorizationHook vectorizeYield = 568 [&](Operation *op, 569 const BlockAndValueMapping &bvm) -> VectorizationResult { 570 return vectorizeLinalgYield(b, op, bvm, linalgOp, newResults); 571 }; 572 hooks.push_back(vectorizeYield); 573 574 // 4b. Register CustomVectorizationHook for indexOp. 575 CustomVectorizationHook vectorizeIndex = 576 [&](Operation *op, 577 const BlockAndValueMapping &bvm) -> VectorizationResult { 578 return vectorizeLinalgIndex(b, op, linalgOp); 579 }; 580 hooks.push_back(vectorizeIndex); 581 582 // 5. Iteratively call `vectorizeOneOp` to each op in the slice. 583 for (Operation &op : block.getOperations()) { 584 VectorizationResult result = vectorizeOneOp(b, &op, bvm, hooks); 585 if (result.status == VectorizationStatus::Failure) { 586 LDBG("failed to vectorize: " << op); 587 return failure(); 588 } 589 if (result.status == VectorizationStatus::NewOp) { 590 LDBG("new vector op: " << *result.newOp;); 591 bvm.map(op.getResults(), result.newOp->getResults()); 592 } 593 } 594 595 return success(); 596 } 597 598 static LogicalResult vectorizeContraction(OpBuilder &b, LinalgOp linalgOp, 599 SmallVectorImpl<Value> &newResults) { 600 assert(isaContractionOpInterface(linalgOp) && 601 "expected vectorizeContraction preconditions to be met"); 602 Location loc = linalgOp.getLoc(); 603 // Vectorize other ops as vector contraction. 604 // TODO: interface. 605 LDBG("" 606 << "Rewrite linalg op as vector.contract: "; 607 linalgOp.dump()); 608 // Special function that describes how to vectorize the multiplication op in a 609 // linalg contraction. 610 CustomVectorizationHook vectorizeContraction = 611 [&](Operation *op, 612 const BlockAndValueMapping &bvm) -> VectorizationResult { 613 if (!isa<arith::MulIOp, arith::MulFOp>(op)) 614 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 615 ArrayRef<int64_t> outShape = 616 linalgOp.getShape(linalgOp.getOutputOperand(0)); 617 Type vType; 618 if (outShape.empty()) { 619 vType = op->getResult(0).getType(); 620 } else { 621 SmallVector<int64_t> resultShape = applyPermutationMap( 622 inversePermutation(reindexIndexingMap( 623 linalgOp.getTiedIndexingMap(linalgOp.getOutputOperand(0)))), 624 outShape); 625 vType = VectorType::get(resultShape, op->getResult(0).getType()); 626 } 627 auto zero = b.create<arith::ConstantOp>(loc, vType, b.getZeroAttr(vType)); 628 // Indexing maps at the time of vector.transfer_read are adjusted to order 629 // vector dimensions in the same order as the canonical linalg op iteration 630 // space order. 631 // The indexings for the contraction therefore need to be adjusted. 632 // TODO: consider dropping contraction special casing altogether, this will 633 // require more advanced canonicalizations involving vector.multi_reduction 634 // that are not yet available. 635 SmallVector<AffineMap> indexingMaps; 636 indexingMaps.reserve(linalgOp.getNumInputsAndOutputs()); 637 llvm::transform(linalgOp.getIndexingMaps(), 638 std::back_inserter(indexingMaps), 639 [](AffineMap indexingMap) { 640 return inversePermutation(reindexIndexingMap(indexingMap)) 641 .compose(indexingMap); 642 }); 643 Operation *contract = b.create<vector::ContractionOp>( 644 loc, bvm.lookup(op->getOperand(0)), bvm.lookup(op->getOperand(1)), zero, 645 b.getAffineMapArrayAttr(indexingMaps), linalgOp.iterator_types()); 646 return VectorizationResult{VectorizationStatus::NewOp, contract}; 647 }; 648 return vectorizeAsLinalgGeneric(b, linalgOp, newResults, 649 /*broadcastToMaximalCommonShape=*/false, 650 {vectorizeContraction}); 651 } 652 653 static bool allIndexingsAreProjectedPermutation(LinalgOp op) { 654 return llvm::all_of(op.getIndexingMaps(), [](AffineMap m) { 655 return m.isProjectedPermutation(/*allowZerosInResults=*/true); 656 }); 657 } 658 659 // TODO: probably need some extra checks for reduction followed by consumer 660 // ops that may not commute (e.g. linear reduction + non-linear instructions). 661 static LogicalResult reductionPreconditions(LinalgOp op) { 662 if (llvm::none_of(op.iterator_types(), isReductionIterator)) { 663 LDBG("reduction precondition failed: no reduction iterator"); 664 return failure(); 665 } 666 for (OpOperand *opOperand : op.getOutputOperands()) { 667 Operation *reduceOp = matchLinalgReduction(opOperand); 668 if (!reduceOp || !getKindForOp(reduceOp)) { 669 LDBG("reduction precondition failed: reduction detection failed"); 670 return failure(); 671 } 672 } 673 return success(); 674 } 675 676 LogicalResult mlir::linalg::vectorizeLinalgOpPrecondition(Operation *op) { 677 auto linalgOp = cast<linalg::LinalgOp>(op); 678 // All types must be static shape to go to vector. 679 if (linalgOp.hasDynamicShape()) { 680 LDBG("precondition failed: dynamic shape"); 681 return failure(); 682 } 683 if (isElementwise(op)) 684 return success(); 685 if (isaContractionOpInterface(linalgOp)) 686 return success(); 687 // TODO: the common vector shape is equal to the static loop sizes only when 688 // all indexing maps are projected permutations. For convs and stencils the 689 // logic will need to evolve. 690 if (!allIndexingsAreProjectedPermutation(linalgOp)) { 691 LDBG("precondition failed: not projected permutations"); 692 return failure(); 693 } 694 if (failed(reductionPreconditions(linalgOp))) { 695 LDBG("precondition failed: reduction preconditions"); 696 return failure(); 697 } 698 return success(); 699 } 700 701 LogicalResult 702 mlir::linalg::vectorizeLinalgOp(OpBuilder &b, Operation *op, 703 SmallVectorImpl<Value> &newResults) { 704 if (failed(vectorizeLinalgOpPrecondition(op))) 705 return failure(); 706 707 auto linalgOp = cast<LinalgOp>(op); 708 if (isaContractionOpInterface(linalgOp)) 709 return vectorizeContraction(b, linalgOp, newResults); 710 711 LDBG("" 712 << "Vectorize linalg op as a generic by broadcasting to " 713 "maximal common shape: " 714 << *op); 715 return vectorizeAsLinalgGeneric(b, linalgOp, newResults, 716 /*broadcastToMaximalCommonShape=*/true); 717 } 718 719 //----------------------------------------------------------------------------// 720 // Misc. vectorization patterns. 721 //----------------------------------------------------------------------------// 722 723 /// Helper function that retrieves the value of an IntegerAttr. 724 static int64_t getIntFromAttr(Attribute attr) { 725 return attr.cast<IntegerAttr>().getInt(); 726 } 727 728 /// Given an ArrayRef of OpFoldResults, return a vector of Values. IntegerAttrs 729 /// are converted to ConstantIndexOps. Other attribute types are not supported. 730 static SmallVector<Value> ofrToIndexValues(OpBuilder &builder, Location loc, 731 ArrayRef<OpFoldResult> ofrs) { 732 SmallVector<Value> result; 733 llvm::for_each(ofrs, [&](auto o) { 734 if (auto val = o.template dyn_cast<Value>()) { 735 result.push_back(val); 736 } else { 737 result.push_back(builder.create<arith::ConstantIndexOp>( 738 loc, getIntFromAttr(o.template get<Attribute>()))); 739 } 740 }); 741 return result; 742 } 743 744 /// Rewrite a PadTensorOp into a sequence of InitTensorOp, FillOp and 745 /// InsertSliceOp. For now, only constant padding values are supported. 746 /// If there is enough static type information, TransferReadOps and 747 /// TransferWriteOps may be generated instead of InsertSliceOps. 748 struct GenericPadTensorOpVectorizationPattern 749 : public GeneralizePadTensorOpPattern { 750 GenericPadTensorOpVectorizationPattern(MLIRContext *context, 751 PatternBenefit benefit = 1) 752 : GeneralizePadTensorOpPattern(context, tryVectorizeCopy, benefit) {} 753 /// Vectorize the copying of a PadTensorOp's source. This is possible if each 754 /// dimension size is statically know in the source type or the result type 755 /// (or both). 756 static LogicalResult tryVectorizeCopy(PatternRewriter &rewriter, 757 PadTensorOp padOp, Value dest) { 758 auto sourceType = padOp.getSourceType(); 759 auto resultType = padOp.getResultType(); 760 761 // Copy cannot be vectorized if pad value is non-constant and source shape 762 // is dynamic. In case of a dynamic source shape, padding must be appended 763 // by TransferReadOp, but TransferReadOp supports only constant padding. 764 auto padValue = padOp.getConstantPaddingValue(); 765 if (!padValue) { 766 if (!sourceType.hasStaticShape()) 767 return failure(); 768 // Create dummy padding value. 769 auto elemType = sourceType.getElementType(); 770 padValue = rewriter.create<arith::ConstantOp>( 771 padOp.getLoc(), elemType, rewriter.getZeroAttr(elemType)); 772 } 773 774 SmallVector<int64_t> vecShape; 775 SmallVector<bool> readInBounds; 776 SmallVector<bool> writeInBounds; 777 for (unsigned i = 0; i < sourceType.getRank(); ++i) { 778 if (!sourceType.isDynamicDim(i)) { 779 vecShape.push_back(sourceType.getDimSize(i)); 780 // Source shape is statically known: Neither read nor write are out-of- 781 // bounds. 782 readInBounds.push_back(true); 783 writeInBounds.push_back(true); 784 } else if (!resultType.isDynamicDim(i)) { 785 // Source shape is not statically known, but result shape is. Vectorize 786 // with size of result shape. This may be larger than the source size. 787 vecShape.push_back(resultType.getDimSize(i)); 788 // Read may be out-of-bounds because the result size could be larger 789 // than the source size. 790 readInBounds.push_back(false); 791 // Write is out-of-bounds if low padding > 0. 792 writeInBounds.push_back( 793 getConstantIntValue(padOp.getMixedLowPad()[i]) == 794 static_cast<int64_t>(0)); 795 } else { 796 // Neither source nor result dim of padOp is static. Cannot vectorize 797 // the copy. 798 return failure(); 799 } 800 } 801 auto vecType = VectorType::get(vecShape, sourceType.getElementType()); 802 803 // Generate TransferReadOp. 804 SmallVector<Value> readIndices( 805 vecType.getRank(), 806 rewriter.create<arith::ConstantIndexOp>(padOp.getLoc(), 0)); 807 auto read = rewriter.create<vector::TransferReadOp>( 808 padOp.getLoc(), vecType, padOp.source(), readIndices, padValue, 809 readInBounds); 810 811 // If `dest` is a FillOp and the TransferWriteOp would overwrite the entire 812 // tensor, write directly to the FillOp's operand. 813 if (llvm::equal(vecShape, resultType.getShape()) && 814 llvm::all_of(writeInBounds, [](bool b) { return b; })) 815 if (auto fill = dest.getDefiningOp<FillOp>()) 816 dest = fill.output(); 817 818 // Generate TransferWriteOp. 819 auto writeIndices = 820 ofrToIndexValues(rewriter, padOp.getLoc(), padOp.getMixedLowPad()); 821 rewriter.replaceOpWithNewOp<vector::TransferWriteOp>( 822 padOp, read, dest, writeIndices, writeInBounds); 823 824 return success(); 825 } 826 }; 827 828 /// Base pattern for rewriting PadTensorOps whose result is consumed by a given 829 /// operation type OpTy. 830 template <typename OpTy> 831 struct VectorizePadTensorOpUserPattern : public OpRewritePattern<PadTensorOp> { 832 using OpRewritePattern<PadTensorOp>::OpRewritePattern; 833 834 LogicalResult matchAndRewrite(PadTensorOp padOp, 835 PatternRewriter &rewriter) const final { 836 bool changed = false; 837 // Insert users in vector, because some users may be replaced/removed. 838 for (auto *user : llvm::to_vector<4>(padOp->getUsers())) 839 if (auto op = dyn_cast<OpTy>(user)) 840 changed |= rewriteUser(rewriter, padOp, op).succeeded(); 841 return success(changed); 842 } 843 844 protected: 845 virtual LogicalResult rewriteUser(PatternRewriter &rewriter, 846 PadTensorOp padOp, OpTy op) const = 0; 847 }; 848 849 /// Rewrite use of PadTensorOp result in TransferReadOp. E.g.: 850 /// ``` 851 /// %0 = linalg.pad_tensor %src ... : tensor<?x?xf32> to tensor<17x5xf32> 852 /// %r = vector.transfer_read %0[%c0, %c0], %cst 853 /// {in_bounds = [true, true]} : tensor<17x5xf32>, vector<17x5xf32> 854 /// ``` 855 /// is rewritten to: 856 /// ``` 857 /// %r = vector.transfer_read %src[%c0, %c0], %padding 858 /// {in_bounds = [true, true]} 859 /// : tensor<?x?xf32>, vector<17x5xf32> 860 /// ``` 861 /// Note: By restricting this pattern to in-bounds TransferReadOps, we can be 862 /// sure that the original padding value %cst was never used. 863 /// 864 /// This rewrite is possible if: 865 /// - `xferOp` has no out-of-bounds dims or mask. 866 /// - Low padding is static 0. 867 /// - Single, scalar padding value. 868 struct PadTensorOpVectorizationWithTransferReadPattern 869 : public VectorizePadTensorOpUserPattern<vector::TransferReadOp> { 870 using VectorizePadTensorOpUserPattern< 871 vector::TransferReadOp>::VectorizePadTensorOpUserPattern; 872 873 LogicalResult rewriteUser(PatternRewriter &rewriter, PadTensorOp padOp, 874 vector::TransferReadOp xferOp) const override { 875 // Low padding must be static 0. 876 if (!padOp.hasZeroLowPad()) 877 return failure(); 878 // Pad value must be a constant. 879 auto padValue = padOp.getConstantPaddingValue(); 880 if (!padValue) 881 return failure(); 882 // Padding value of existing `xferOp` is unused. 883 if (xferOp.hasOutOfBoundsDim() || xferOp.mask()) 884 return failure(); 885 886 rewriter.updateRootInPlace(xferOp, [&]() { 887 SmallVector<bool> inBounds(xferOp.getVectorType().getRank(), false); 888 xferOp->setAttr(xferOp.getInBoundsAttrName(), 889 rewriter.getBoolArrayAttr(inBounds)); 890 xferOp.sourceMutable().assign(padOp.source()); 891 xferOp.paddingMutable().assign(padValue); 892 }); 893 894 return success(); 895 } 896 }; 897 898 /// Rewrite use of PadTensorOp result in TransferWriteOp. 899 /// This pattern rewrites TransferWriteOps that write to a padded tensor value, 900 /// where the same amount of padding is immediately removed again after the 901 /// write. In such cases, the TransferWriteOp can write to the non-padded tensor 902 /// value and apply out-of-bounds masking. E.g.: 903 /// ``` 904 /// %0 = tensor.extract_slice ...[...] [%s0, %s1] [1, 1] 905 /// : tensor<...> to tensor<?x?xf32> 906 /// %1 = linalg.pad_tensor %0 ... : tensor<?x?xf32> to tensor<17x5xf32> 907 /// %2 = vector.transfer_write %vec, %1[...] 908 /// : vector<17x5xf32>, tensor<17x5xf32> 909 /// %r = tensor.extract_slice %2[0, 0] [%s0, %s1] [1, 1] 910 /// : tensor<17x5xf32> to tensor<?x?xf32> 911 /// ``` 912 /// is rewritten to: 913 /// ``` 914 /// %0 = tensor.extract_slice ...[...] [%s0, %s1] [1, 1] 915 /// : tensor<...> to tensor<?x?xf32> 916 /// %r = vector.transfer_write %vec, %0[...] : vector<17x5xf32>, tensor<?x?xf32> 917 /// ``` 918 /// Note: It is important that the ExtractSliceOp %r resizes the result of the 919 /// TransferWriteOp to the same size as the input of the TensorPadOp (or an even 920 /// smaller size). Otherwise, %r's new (dynamic) dimensions would differ from 921 /// %r's old dimensions. 922 /// 923 /// This rewrite is possible if: 924 /// - Low padding is static 0. 925 /// - `xferOp` has exactly one use, which is an ExtractSliceOp. This 926 /// ExtractSliceOp trims the same amount of padding that was added beforehand. 927 /// - Single, scalar padding value. 928 struct PadTensorOpVectorizationWithTransferWritePattern 929 : public VectorizePadTensorOpUserPattern<vector::TransferWriteOp> { 930 using VectorizePadTensorOpUserPattern< 931 vector::TransferWriteOp>::VectorizePadTensorOpUserPattern; 932 933 LogicalResult rewriteUser(PatternRewriter &rewriter, PadTensorOp padOp, 934 vector::TransferWriteOp xferOp) const override { 935 // Low padding must be static 0. 936 if (!padOp.hasZeroLowPad()) 937 return failure(); 938 // Pad value must be a constant. 939 auto padValue = padOp.getConstantPaddingValue(); 940 if (!padValue) 941 return failure(); 942 // TransferWriteOp result must be directly consumed by an ExtractSliceOp. 943 if (!xferOp->hasOneUse()) 944 return failure(); 945 auto trimPadding = dyn_cast<tensor::ExtractSliceOp>(*xferOp->user_begin()); 946 if (!trimPadding) 947 return failure(); 948 // Only static zero offsets supported when trimming padding. 949 if (!trimPadding.hasZeroOffset()) 950 return failure(); 951 // trimPadding must remove the amount of padding that was added earlier. 952 if (!hasSameTensorSize(padOp.source(), trimPadding)) 953 return failure(); 954 955 // Insert the new TransferWriteOp at position of the old TransferWriteOp. 956 rewriter.setInsertionPoint(xferOp); 957 958 SmallVector<bool> inBounds(xferOp.getVectorType().getRank(), false); 959 auto newXferOp = rewriter.replaceOpWithNewOp<vector::TransferWriteOp>( 960 xferOp, padOp.source().getType(), xferOp.vector(), padOp.source(), 961 xferOp.indices(), xferOp.permutation_mapAttr(), xferOp.mask(), 962 rewriter.getBoolArrayAttr(inBounds)); 963 rewriter.replaceOp(trimPadding, newXferOp->getResult(0)); 964 965 return success(); 966 } 967 968 /// Check if `beforePadding` and `afterTrimming` have the same tensor size, 969 /// i.e., same dimensions. 970 /// 971 /// Dimensions may be static, dynamic or mix of both. In case of dynamic 972 /// dimensions, this function tries to infer the (static) tensor size by 973 /// looking at the defining op and utilizing op-specific knowledge. 974 /// 975 /// This is a conservative analysis. In case equal tensor sizes cannot be 976 /// proven statically, this analysis returns `false` even though the tensor 977 /// sizes may turn out to be equal at runtime. 978 bool hasSameTensorSize(Value beforePadding, 979 tensor::ExtractSliceOp afterTrimming) const { 980 // If the input to PadTensorOp is a CastOp, try with with both CastOp result 981 // and CastOp operand. 982 if (auto castOp = beforePadding.getDefiningOp<tensor::CastOp>()) 983 if (hasSameTensorSize(castOp.source(), afterTrimming)) 984 return true; 985 986 auto t1 = beforePadding.getType().dyn_cast<RankedTensorType>(); 987 auto t2 = afterTrimming.getType().dyn_cast<RankedTensorType>(); 988 // Only RankedTensorType supported. 989 if (!t1 || !t2) 990 return false; 991 // Rank of both values must be the same. 992 if (t1.getRank() != t2.getRank()) 993 return false; 994 995 // All static dimensions must be the same. Mixed cases (e.g., dimension 996 // static in `t1` but dynamic in `t2`) are not supported. 997 for (unsigned i = 0; i < t1.getRank(); ++i) { 998 if (t1.isDynamicDim(i) != t2.isDynamicDim(i)) 999 return false; 1000 if (!t1.isDynamicDim(i) && t1.getDimSize(i) != t2.getDimSize(i)) 1001 return false; 1002 } 1003 1004 // Nothing more to check if all dimensions are static. 1005 if (t1.getNumDynamicDims() == 0) 1006 return true; 1007 1008 // All dynamic sizes must be the same. The only supported case at the moment 1009 // is when `beforePadding` is an ExtractSliceOp (or a cast thereof). 1010 1011 // Apart from CastOp, only ExtractSliceOp is supported. 1012 auto beforeSlice = beforePadding.getDefiningOp<tensor::ExtractSliceOp>(); 1013 if (!beforeSlice) 1014 return false; 1015 1016 assert(static_cast<size_t>(t1.getRank()) == 1017 beforeSlice.getMixedSizes().size()); 1018 assert(static_cast<size_t>(t2.getRank()) == 1019 afterTrimming.getMixedSizes().size()); 1020 1021 for (unsigned i = 0; i < t1.getRank(); ++i) { 1022 // Skip static dimensions. 1023 if (!t1.isDynamicDim(i)) 1024 continue; 1025 auto size1 = beforeSlice.getMixedSizes()[i]; 1026 auto size2 = afterTrimming.getMixedSizes()[i]; 1027 1028 // Case 1: Same value or same constant int. 1029 if (isEqualConstantIntOrValue(size1, size2)) 1030 continue; 1031 1032 // Other cases: Take a deeper look at defining ops of values. 1033 auto v1 = size1.dyn_cast<Value>(); 1034 auto v2 = size2.dyn_cast<Value>(); 1035 if (!v1 || !v2) 1036 return false; 1037 1038 // Case 2: Both values are identical AffineMinOps. (Should not happen if 1039 // CSE is run.) 1040 auto minOp1 = v1.getDefiningOp<AffineMinOp>(); 1041 auto minOp2 = v2.getDefiningOp<AffineMinOp>(); 1042 if (minOp1 && minOp2 && minOp1.getAffineMap() == minOp2.getAffineMap() && 1043 minOp1.operands() == minOp2.operands()) 1044 continue; 1045 1046 // Add additional cases as needed. 1047 } 1048 1049 // All tests passed. 1050 return true; 1051 } 1052 }; 1053 1054 /// Rewrite use of PadTensorOp result in InsertSliceOp. E.g.: 1055 /// ``` 1056 /// %0 = linalg.pad_tensor %src ... : tensor<?x?xf32> to tensor<17x5xf32> 1057 /// %r = tensor.insert_slice %0 1058 /// into %dest[%a, %b, 0, 0] [1, 1, 17, 5] [1, 1, 1, 1] 1059 /// : tensor<17x5xf32> into tensor<?x?x17x5xf32> 1060 /// ``` 1061 /// is rewritten to: 1062 /// ``` 1063 /// %0 = vector.transfer_read %src[%c0, %c0], %padding 1064 /// : tensor<?x?xf32>, vector<17x5xf32> 1065 /// %r = vector.transfer_write %0, %dest[%a, %b, %c0, %c0] 1066 /// {in_bounds = [true, true]} : vector<17x5xf32>, tensor<?x?x17x5xf32> 1067 /// ``` 1068 /// 1069 /// This rewrite is possible if: 1070 /// - Low padding is static 0. 1071 /// - `padOp` result shape is static. 1072 /// - The entire padded tensor is inserted. 1073 /// (Implies that sizes of `insertOp` are all static.) 1074 /// - Only unit strides in `insertOp`. 1075 /// - Single, scalar padding value. 1076 struct PadTensorOpVectorizationWithInsertSlicePattern 1077 : public VectorizePadTensorOpUserPattern<tensor::InsertSliceOp> { 1078 using VectorizePadTensorOpUserPattern< 1079 tensor::InsertSliceOp>::VectorizePadTensorOpUserPattern; 1080 1081 LogicalResult rewriteUser(PatternRewriter &rewriter, PadTensorOp padOp, 1082 tensor::InsertSliceOp insertOp) const override { 1083 // Low padding must be static 0. 1084 if (!padOp.hasZeroLowPad()) 1085 return failure(); 1086 // Only unit stride supported. 1087 if (!insertOp.hasUnitStride()) 1088 return failure(); 1089 // Pad value must be a constant. 1090 auto padValue = padOp.getConstantPaddingValue(); 1091 if (!padValue) 1092 return failure(); 1093 // Dynamic shapes not supported. 1094 if (!padOp.result().getType().cast<ShapedType>().hasStaticShape()) 1095 return failure(); 1096 1097 auto vecType = VectorType::get(padOp.getType().getShape(), 1098 padOp.getType().getElementType()); 1099 unsigned vecRank = vecType.getRank(); 1100 unsigned tensorRank = insertOp.getType().getRank(); 1101 1102 // Check if sizes match: Insert the entire tensor into most minor dims. 1103 // (No permutations allowed.) 1104 SmallVector<int64_t> expectedSizes(tensorRank - vecRank, 1); 1105 expectedSizes.append(vecType.getShape().begin(), vecType.getShape().end()); 1106 if (!llvm::all_of( 1107 llvm::zip(insertOp.getMixedSizes(), expectedSizes), [](auto it) { 1108 return getConstantIntValue(std::get<0>(it)) == std::get<1>(it); 1109 })) 1110 return failure(); 1111 1112 // Insert the TransferReadOp and TransferWriteOp at the position of the 1113 // InsertSliceOp. 1114 rewriter.setInsertionPoint(insertOp); 1115 1116 // Generate TransferReadOp: Read entire source tensor and add high padding. 1117 SmallVector<Value> readIndices( 1118 vecRank, rewriter.create<arith::ConstantIndexOp>(padOp.getLoc(), 0)); 1119 auto read = rewriter.create<vector::TransferReadOp>( 1120 padOp.getLoc(), vecType, padOp.source(), readIndices, padValue); 1121 1122 // Generate TransferWriteOp: Write to InsertSliceOp's dest tensor at 1123 // specified offsets. Write is fully in-bounds because a InsertSliceOp's 1124 // source must fit into the destination at the specified offsets. 1125 auto writeIndices = 1126 ofrToIndexValues(rewriter, padOp.getLoc(), insertOp.getMixedOffsets()); 1127 SmallVector<bool> inBounds(vecRank, true); 1128 rewriter.replaceOpWithNewOp<vector::TransferWriteOp>( 1129 insertOp, read, insertOp.dest(), writeIndices, inBounds); 1130 1131 return success(); 1132 } 1133 }; 1134 1135 void mlir::linalg::populatePadTensorOpVectorizationPatterns( 1136 RewritePatternSet &patterns, PatternBenefit baseBenefit) { 1137 patterns.add<GenericPadTensorOpVectorizationPattern>(patterns.getContext(), 1138 baseBenefit); 1139 // Try these specialized patterns first before resorting to the generic one. 1140 patterns.add<PadTensorOpVectorizationWithTransferReadPattern, 1141 PadTensorOpVectorizationWithTransferWritePattern, 1142 PadTensorOpVectorizationWithInsertSlicePattern>( 1143 patterns.getContext(), baseBenefit.getBenefit() + 1); 1144 } 1145 1146 // TODO: cleanup all the convolution vectorization patterns. 1147 template <class ConvOp, int N> 1148 LogicalResult ConvOpVectorization<ConvOp, N>::matchAndRewrite( 1149 ConvOp op, PatternRewriter &rewriter) const { 1150 Location loc = op.getLoc(); 1151 MLIRContext *context = op.getContext(); 1152 1153 OpOperand *input = op.getInputOperand(0); 1154 OpOperand *kernel = op.getInputOperand(1); 1155 OpOperand *output = op.getOutputOperand(0); 1156 ArrayRef<int64_t> inShape = op.getShape(input); 1157 ArrayRef<int64_t> kShape = op.getShape(kernel); 1158 1159 if (llvm::any_of(inShape, ShapedType::isDynamic) || 1160 llvm::any_of(kShape, ShapedType::isDynamic)) 1161 return failure(); 1162 1163 SmallVector<AffineExpr, 4> mapping; 1164 SmallVector<int64_t, 4> vectorDims; 1165 // Fail to apply when the size of not vectorized dimension is not 1. 1166 for (unsigned i = 0; i < N; i++) { 1167 if (!mask[i] && (inShape[i] != 1 || kShape[i] != 1)) 1168 return failure(); 1169 1170 if (mask[i] && inShape[i] != kShape[i]) 1171 return failure(); 1172 1173 if (mask[i]) { 1174 mapping.push_back(getAffineDimExpr(i, context)); 1175 vectorDims.push_back(inShape[i]); 1176 } 1177 } 1178 1179 int64_t rank = op.getRank(input); 1180 int64_t numDims = mapping.size(); 1181 Type elemType = getElementTypeOrSelf(input->get()); 1182 1183 auto map = AffineMap::get(rank, 0, mapping, context); 1184 SmallVector<Value, 4> zeros(rank, 1185 rewriter.create<arith::ConstantIndexOp>(loc, 0)); 1186 auto vecType = VectorType::get(vectorDims, elemType); 1187 1188 auto inputVec = rewriter.create<vector::TransferReadOp>( 1189 loc, vecType, input->get(), zeros, map); 1190 auto kernelVec = rewriter.create<vector::TransferReadOp>( 1191 loc, vecType, kernel->get(), zeros, map); 1192 1193 auto acc = rewriter.create<arith::ConstantOp>(loc, elemType, 1194 rewriter.getZeroAttr(elemType)); 1195 1196 std::array<AffineMap, 3> indexingMaps{ 1197 AffineMap::getMultiDimIdentityMap(numDims, context), 1198 AffineMap::getMultiDimIdentityMap(numDims, context), 1199 AffineMap::get(numDims, 0, {}, context)}; 1200 1201 std::vector<StringRef> iteratorTypes(numDims, "reduction"); 1202 1203 auto result = rewriter.create<vector::ContractionOp>( 1204 loc, inputVec, kernelVec, acc, 1205 rewriter.getAffineMapArrayAttr(indexingMaps), 1206 rewriter.getStrArrayAttr(iteratorTypes)); 1207 1208 rewriter.create<memref::StoreOp>(loc, result, output->get(), 1209 ValueRange(zeros)); 1210 rewriter.eraseOp(op); 1211 return success(); 1212 } 1213 1214 /// Inserts tiling, promotion and vectorization pattern for ConvOp 1215 /// conversion into corresponding pattern lists. 1216 template <typename ConvOp, unsigned N> 1217 static void populateVectorizationPatterns( 1218 RewritePatternSet &tilingPatterns, RewritePatternSet &promotionPatterns, 1219 RewritePatternSet &vectorizationPatterns, ArrayRef<int64_t> tileSizes) { 1220 auto *context = tilingPatterns.getContext(); 1221 if (tileSizes.size() < N) 1222 return; 1223 1224 constexpr static StringRef kTiledMarker = "TILED"; 1225 constexpr static StringRef kPromotedMarker = "PROMOTED"; 1226 tilingPatterns.add<LinalgTilingPattern<ConvOp>>( 1227 context, LinalgTilingOptions().setTileSizes(tileSizes), 1228 LinalgTransformationFilter(ArrayRef<Identifier>{}, 1229 Identifier::get(kTiledMarker, context))); 1230 1231 promotionPatterns.add<LinalgPromotionPattern<ConvOp>>( 1232 context, LinalgPromotionOptions().setUseFullTileBuffersByDefault(true), 1233 LinalgTransformationFilter(Identifier::get(kTiledMarker, context), 1234 Identifier::get(kPromotedMarker, context))); 1235 1236 SmallVector<bool, 4> mask(N); 1237 int offset = tileSizes.size() - N; 1238 std::transform(tileSizes.begin() + offset, tileSizes.end(), mask.begin(), 1239 [](int64_t i) -> bool { return i > 1; }); 1240 1241 vectorizationPatterns.add<ConvOpVectorization<ConvOp, N>>(context, mask); 1242 } 1243 1244 void mlir::linalg::populateConvVectorizationPatterns( 1245 MLIRContext *context, SmallVectorImpl<RewritePatternSet> &patterns, 1246 ArrayRef<int64_t> tileSizes) { 1247 RewritePatternSet tiling(context); 1248 RewritePatternSet promotion(context); 1249 RewritePatternSet vectorization(context); 1250 populateVectorizationPatterns<Conv1DOp, 1>(tiling, promotion, vectorization, 1251 tileSizes); 1252 1253 populateVectorizationPatterns<Conv2DOp, 2>(tiling, promotion, vectorization, 1254 tileSizes); 1255 1256 populateVectorizationPatterns<Conv3DOp, 3>(tiling, promotion, vectorization, 1257 tileSizes); 1258 1259 populateVectorizationPatterns<Conv1DNwcWcfOp, 3>(tiling, promotion, 1260 vectorization, tileSizes); 1261 1262 populateVectorizationPatterns<Conv2DNhwcHwcfOp, 4>(tiling, promotion, 1263 vectorization, tileSizes); 1264 1265 populateVectorizationPatterns<Conv3DNdhwcDhwcfOp, 5>( 1266 tiling, promotion, vectorization, tileSizes); 1267 1268 patterns.push_back(std::move(tiling)); 1269 patterns.push_back(std::move(promotion)); 1270 patterns.push_back(std::move(vectorization)); 1271 } 1272 1273 //----------------------------------------------------------------------------// 1274 // Forwarding patterns 1275 //----------------------------------------------------------------------------// 1276 1277 /// Check whether there is any interleaved use of any `values` between `firstOp` 1278 /// and `secondOp`. Conservatively return `true` if any op or value is in a 1279 /// different block. 1280 static bool mayExistInterleavedUses(Operation *firstOp, Operation *secondOp, 1281 ValueRange values) { 1282 if (firstOp->getBlock() != secondOp->getBlock() || 1283 !firstOp->isBeforeInBlock(secondOp)) { 1284 LDBG("interleavedUses precondition failed, firstOp: " 1285 << *firstOp << ", second op: " << *secondOp); 1286 return true; 1287 } 1288 for (auto v : values) { 1289 for (auto &u : v.getUses()) { 1290 Operation *owner = u.getOwner(); 1291 if (owner == firstOp || owner == secondOp) 1292 continue; 1293 // TODO: this is too conservative, use dominance info in the future. 1294 if (owner->getBlock() == firstOp->getBlock() && 1295 (owner->isBeforeInBlock(firstOp) || secondOp->isBeforeInBlock(owner))) 1296 continue; 1297 LDBG(" found interleaved op " << *owner << ", firstOp: " << *firstOp 1298 << ", second op: " << *secondOp); 1299 return true; 1300 } 1301 } 1302 return false; 1303 } 1304 1305 /// Return the unique subview use of `v` if it is indeed unique, null otherwise. 1306 static memref::SubViewOp getSubViewUseIfUnique(Value v) { 1307 memref::SubViewOp subViewOp; 1308 for (auto &u : v.getUses()) { 1309 if (auto newSubViewOp = dyn_cast<memref::SubViewOp>(u.getOwner())) { 1310 if (subViewOp) 1311 return memref::SubViewOp(); 1312 subViewOp = newSubViewOp; 1313 } 1314 } 1315 return subViewOp; 1316 } 1317 1318 /// TODO: use interfaces, side-effects and aliasing analysis as appropriate, 1319 /// when available. 1320 LogicalResult LinalgCopyVTRForwardingPattern::matchAndRewrite( 1321 vector::TransferReadOp xferOp, PatternRewriter &rewriter) const { 1322 1323 // Transfer into `view`. 1324 Value viewOrAlloc = xferOp.source(); 1325 if (!viewOrAlloc.getDefiningOp<memref::ViewOp>() && 1326 !viewOrAlloc.getDefiningOp<memref::AllocOp>()) 1327 return failure(); 1328 1329 LDBG(viewOrAlloc); 1330 1331 // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`. 1332 memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc); 1333 if (!subViewOp) 1334 return failure(); 1335 Value subView = subViewOp.getResult(); 1336 LDBG("with subView " << subView); 1337 1338 // Find the copy into `subView` without interleaved uses. 1339 CopyOp copyOp; 1340 for (auto &u : subView.getUses()) { 1341 if (auto newCopyOp = dyn_cast<CopyOp>(u.getOwner())) { 1342 assert(newCopyOp.output().getType().isa<MemRefType>()); 1343 if (newCopyOp.output() != subView) 1344 continue; 1345 LDBG("copy candidate " << *newCopyOp); 1346 if (mayExistInterleavedUses(newCopyOp, xferOp, {viewOrAlloc, subView})) 1347 continue; 1348 copyOp = newCopyOp; 1349 break; 1350 } 1351 } 1352 if (!copyOp) 1353 return failure(); 1354 LDBG("with copy " << *copyOp); 1355 1356 // Find the fill into `viewOrAlloc` without interleaved uses before the copy. 1357 FillOp maybeFillOp; 1358 for (auto &u : viewOrAlloc.getUses()) { 1359 if (auto newFillOp = dyn_cast<FillOp>(u.getOwner())) { 1360 assert(newFillOp.output().getType().isa<MemRefType>()); 1361 if (newFillOp.output() != viewOrAlloc) 1362 continue; 1363 LDBG("fill candidate " << *newFillOp); 1364 if (mayExistInterleavedUses(newFillOp, copyOp, {viewOrAlloc, subView})) 1365 continue; 1366 maybeFillOp = newFillOp; 1367 break; 1368 } 1369 } 1370 // Ensure padding matches. 1371 if (maybeFillOp && xferOp.padding() != maybeFillOp.value()) 1372 return failure(); 1373 if (maybeFillOp) 1374 LDBG("with maybeFillOp " << *maybeFillOp); 1375 1376 // `in` is the subview that linalg.copy reads. Replace it. 1377 Value in = copyOp.input(); 1378 1379 // linalg.copy + linalg.fill can be used to create a padded local buffer. 1380 // The `masked` attribute is only valid on this padded buffer. 1381 // When forwarding to vector.transfer_read, the attribute must be reset 1382 // conservatively. 1383 Value res = rewriter.create<vector::TransferReadOp>( 1384 xferOp.getLoc(), xferOp.getVectorType(), in, xferOp.indices(), 1385 xferOp.permutation_map(), xferOp.padding(), ArrayAttr()); 1386 1387 if (maybeFillOp) 1388 rewriter.eraseOp(maybeFillOp); 1389 rewriter.eraseOp(copyOp); 1390 rewriter.replaceOp(xferOp, res); 1391 1392 return success(); 1393 } 1394 1395 /// TODO: use interfaces, side-effects and aliasing analysis as appropriate, 1396 /// when available. 1397 LogicalResult LinalgCopyVTWForwardingPattern::matchAndRewrite( 1398 vector::TransferWriteOp xferOp, PatternRewriter &rewriter) const { 1399 // Transfer into `viewOrAlloc`. 1400 Value viewOrAlloc = xferOp.source(); 1401 if (!viewOrAlloc.getDefiningOp<memref::ViewOp>() && 1402 !viewOrAlloc.getDefiningOp<memref::AllocOp>()) 1403 return failure(); 1404 1405 // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`. 1406 memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc); 1407 if (!subViewOp) 1408 return failure(); 1409 Value subView = subViewOp.getResult(); 1410 1411 // Find the copy from `subView` without interleaved uses. 1412 CopyOp copyOp; 1413 for (auto &u : subViewOp.getResult().getUses()) { 1414 if (auto newCopyOp = dyn_cast<CopyOp>(u.getOwner())) { 1415 if (newCopyOp.getInputOperand(0)->get() != subView) 1416 continue; 1417 if (mayExistInterleavedUses(xferOp, newCopyOp, {viewOrAlloc, subView})) 1418 continue; 1419 copyOp = newCopyOp; 1420 break; 1421 } 1422 } 1423 if (!copyOp) 1424 return failure(); 1425 1426 // `out` is the subview copied into that we replace. 1427 assert(copyOp.output().getType().isa<MemRefType>()); 1428 Value out = copyOp.output(); 1429 1430 // Forward vector.transfer into copy. 1431 // linalg.copy + linalg.fill can be used to create a padded local buffer. 1432 // The `masked` attribute is only valid on this padded buffer. 1433 // When forwarding to vector.transfer_write, the attribute must be reset 1434 // conservatively. 1435 rewriter.create<vector::TransferWriteOp>( 1436 xferOp.getLoc(), xferOp.vector(), out, xferOp.indices(), 1437 xferOp.permutation_map(), ArrayAttr()); 1438 1439 rewriter.eraseOp(copyOp); 1440 rewriter.eraseOp(xferOp); 1441 1442 return success(); 1443 } 1444