1 //===- Vectorization.cpp - Implementation of linalg Vectorization ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the linalg dialect Vectorization transformations.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "mlir/Analysis/LoopAnalysis.h"
14 #include "mlir/Analysis/SliceAnalysis.h"
15 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
16 #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h"
17 #include "mlir/Dialect/Linalg/IR/LinalgOps.h"
18 #include "mlir/Dialect/Linalg/Transforms/Transforms.h"
19 #include "mlir/Dialect/Linalg/Utils/Utils.h"
20 #include "mlir/Dialect/Tensor/IR/Tensor.h"
21 #include "mlir/Dialect/Utils/StructuredOpsUtils.h"
22 #include "mlir/Dialect/Vector/VectorOps.h"
23 #include "mlir/IR/AffineExpr.h"
24 #include "mlir/IR/Matchers.h"
25 #include "mlir/IR/PatternMatch.h"
26 #include "mlir/Pass/Pass.h"
27 #include "mlir/Support/LLVM.h"
28 #include "mlir/Transforms/RegionUtils.h"
29 #include "llvm/ADT/ScopeExit.h"
30 #include "llvm/ADT/Sequence.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/TypeSwitch.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include <type_traits>
36 
37 using namespace mlir;
38 using namespace mlir::linalg;
39 
40 using llvm::dbgs;
41 
42 #define DEBUG_TYPE "linalg-vectorization"
43 
44 #define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ")
45 #define LDBG(X) LLVM_DEBUG(DBGS() << X)
46 
47 /// Return the unique instance of OpType in `block` if it is indeed unique.
48 /// Return null if none or more than 1 instances exist.
49 template <typename OpType>
50 static OpType getSingleOpOfType(Block &block) {
51   OpType res;
52   block.walk([&](OpType op) {
53     if (res) {
54       res = nullptr;
55       return WalkResult::interrupt();
56     }
57     res = op;
58     return WalkResult::advance();
59   });
60   return res;
61 }
62 
63 /// Given an indexing `map` coming from a LinalgOp indexing, restricted to a
64 /// projectedPermutation, compress the unused dimensions to serve as a
65 /// permutation_map for a vector transfer operation.
66 /// For example, given a linalg op such as:
67 ///
68 /// ```
69 ///   %0 = linalg.generic {
70 ///        indexing_maps = affine_map<(d0, d1, d2, d3, d4) -> (d4, d0, d2)>,
71 ///        indexing_maps = affine_map<(d0, d1, d2, d3, d4) -> (d1, d3)>
72 ///      }
73 ///     ins(%0 : tensor<2x3x4xf32>)
74 ///    outs(%1 : tensor<5x6xf32>)
75 /// ```
76 ///
77 /// the iteration domain size of the linalg op is 3x5x4x6x2. The first affine
78 /// map is reindexed to `affine_map<(d0, d1, d2) -> (d2, d0, d1)>`, the second
79 /// affine map is reindexed to `affine_map<(d0, d1) -> (d0, d1)>`.
80 static AffineMap reindexIndexingMap(AffineMap map) {
81   assert(map.isProjectedPermutation(/*allowZerosInResults=*/true) &&
82          "expected projected permutation");
83   auto res = compressUnusedDims(map);
84   assert(res.getNumDims() == res.getNumResults() &&
85          "expected reindexed map with same number of dims and results");
86   return res;
87 }
88 
89 /// Helper data structure to represent the result of vectorization.
90 /// In certain specific cases, like terminators, we do not want to propagate/
91 enum VectorizationStatus {
92   /// Op failed to vectorize.
93   Failure = 0,
94   /// Op vectorized and custom function took care of replacement logic
95   NoReplace,
96   /// Op vectorized into a new Op whose results will replace original Op's
97   /// results.
98   NewOp
99   // TODO: support values if Op vectorized to Many-Ops whose results we need to
100   // aggregate for replacement.
101 };
102 struct VectorizationResult {
103   /// Return status from vectorizing the current op.
104   enum VectorizationStatus status = VectorizationStatus::Failure;
105   /// New vectorized operation to replace the current op.
106   /// Replacement behavior is specified by `status`.
107   Operation *newOp;
108 };
109 
110 /// Return a vector type of the same shape and element type as the (assumed)
111 /// ShapedType of `v`.
112 static VectorType extractVectorTypeFromShapedValue(Value v) {
113   auto st = v.getType().cast<ShapedType>();
114   if (st.getShape().empty())
115     return VectorType();
116   return VectorType::get(st.getShape(), st.getElementType());
117 }
118 
119 static llvm::Optional<vector::CombiningKind>
120 getKindForOp(Operation *reductionOp) {
121   if (!reductionOp)
122     return llvm::None;
123   return llvm::TypeSwitch<Operation *, llvm::Optional<vector::CombiningKind>>(
124              reductionOp)
125       .Case<arith::AddIOp, arith::AddFOp>(
126           [&](auto op) { return vector::CombiningKind::ADD; })
127       .Case<arith::AndIOp>([&](auto op) { return vector::CombiningKind::AND; })
128       .Case<MaxSIOp>([&](auto op) { return vector::CombiningKind::MAXSI; })
129       .Case<MaxFOp>([&](auto op) { return vector::CombiningKind::MAXF; })
130       .Case<MinSIOp>([&](auto op) { return vector::CombiningKind::MINSI; })
131       .Case<MinFOp>([&](auto op) { return vector::CombiningKind::MINF; })
132       .Case<arith::MulIOp, arith::MulFOp>(
133           [&](auto op) { return vector::CombiningKind::MUL; })
134       .Case<arith::OrIOp>([&](auto op) { return vector::CombiningKind::OR; })
135       .Case<arith::XOrIOp>([&](auto op) { return vector::CombiningKind::XOR; })
136       .Default([&](auto op) { return llvm::None; });
137 }
138 
139 /// Check whether `outputOperand` is a reduction with a single combiner
140 /// operation. Return the combiner operation of the reduction. Return
141 /// nullptr otherwise. Multiple reduction operations would impose an
142 /// ordering between reduction dimensions and is currently unsupported in
143 /// Linalg. This limitation is motivated by the fact that e.g. min(max(X)) !=
144 /// max(min(X))
145 // TODO: use in LinalgOp verification, there is a circular dependency atm.
146 static Operation *matchLinalgReduction(OpOperand *outputOperand) {
147   auto linalgOp = cast<LinalgOp>(outputOperand->getOwner());
148   unsigned outputPos =
149       outputOperand->getOperandNumber() - linalgOp.getNumInputs();
150   // Only single combiner operatios are supported for now.
151   SmallVector<Operation *, 4> combinerOps;
152   if (!matchReduction(linalgOp.getRegionOutputArgs(), outputPos, combinerOps) ||
153       combinerOps.size() != 1)
154     return nullptr;
155 
156   // Return the combiner operation.
157   return combinerOps[0];
158 }
159 
160 /// Broadcast `value` to a vector of `shape` if possible. Return value
161 /// otherwise.
162 static Value broadcastIfNeeded(OpBuilder &b, Value value,
163                                ArrayRef<int64_t> shape) {
164   // If no shape to broadcast to, just return `value`.
165   if (shape.empty())
166     return value;
167   VectorType targetVectorType =
168       VectorType::get(shape, getElementTypeOrSelf(value));
169   if (vector::isBroadcastableTo(value.getType(), targetVectorType) !=
170       vector::BroadcastableToResult::Success)
171     return value;
172   Location loc = b.getInsertionPoint()->getLoc();
173   return b.createOrFold<vector::BroadcastOp>(loc, targetVectorType, value);
174 }
175 
176 /// Build a vector.transfer_read from `source` at indices set to all `0`.
177 /// If source has rank zero, build a `vector<1xt> transfer_read + extract`.
178 /// Return the produced value.
179 static Value buildVectorRead(OpBuilder &b, Value source, Type readType,
180                              AffineMap map) {
181   Location loc = source.getLoc();
182   auto shapedType = source.getType().cast<ShapedType>();
183   SmallVector<Value> indices(shapedType.getRank(),
184                              b.create<arith::ConstantIndexOp>(loc, 0));
185   if (auto vectorType = readType.dyn_cast<VectorType>())
186     return b.create<vector::TransferReadOp>(loc, vectorType, source, indices,
187                                             map);
188   return vector::TransferReadOp::createScalarOp(b, loc, source, indices);
189 }
190 
191 /// Create MultiDimReductionOp to compute the reduction for `reductionOp`. This
192 /// assumes that `reductionOp` has two operands and one of them is the reduction
193 /// initial value.
194 static Value buildMultiDimReduce(OpBuilder &b, Operation *reduceOp,
195                                  Value valueToReduce,
196                                  const SmallVector<bool> &reductionMask) {
197   auto maybeKind = getKindForOp(reduceOp);
198   assert(maybeKind && "Failed precondition: could not get reduction kind");
199   return b.create<vector::MultiDimReductionOp>(
200       reduceOp->getLoc(), valueToReduce, reductionMask, *maybeKind);
201 }
202 
203 static SmallVector<bool> getReductionMask(LinalgOp linalgOp) {
204   unsigned idx = 0;
205   SmallVector<bool> reductionMask(linalgOp.iterator_types().size(), false);
206   for (auto attr : linalgOp.iterator_types()) {
207     if (isReductionIterator(attr))
208       reductionMask[idx] = true;
209     ++idx;
210   }
211   return reductionMask;
212 }
213 
214 /// Build a vector.transfer_write of `value` into `outputOperand` at indices set
215 /// to all `0`; where `outputOperand` is an output operand of the LinalgOp
216 /// currently being vectorized. If `dest` has null rank, build an memref.store.
217 /// Return the produced value or null if no value is produced.
218 static Value buildVectorWrite(OpBuilder &b, Value value,
219                               OpOperand *outputOperand) {
220   Operation *write;
221   Location loc = value.getLoc();
222   auto linalgOp = cast<LinalgOp>(outputOperand->getOwner());
223   if (VectorType vectorType =
224           extractVectorTypeFromShapedValue(outputOperand->get())) {
225     AffineMap map =
226         reindexIndexingMap(linalgOp.getTiedIndexingMap(outputOperand));
227     SmallVector<int64_t> transposeShape =
228         applyPermutationMap(inversePermutation(map), vectorType.getShape());
229     assert(!transposeShape.empty() && "unexpected empty transpose shape");
230     vectorType = VectorType::get(transposeShape, vectorType.getElementType());
231     SmallVector<Value> indices(linalgOp.getRank(outputOperand),
232                                b.create<arith::ConstantIndexOp>(loc, 0));
233     value = broadcastIfNeeded(b, value, vectorType.getShape());
234     write = b.create<vector::TransferWriteOp>(loc, value, outputOperand->get(),
235                                               indices, map);
236   } else {
237     write = vector::TransferWriteOp::createScalarOp(
238         b, loc, value, outputOperand->get(), ValueRange{});
239   }
240   LDBG("vectorized op: " << *write);
241   if (!write->getResults().empty())
242     return write->getResult(0);
243   return Value();
244 }
245 
246 // Custom vectorization function type. Produce a vector form of Operation*
247 // assuming all its vectorized operands are already in the BlockAndValueMapping.
248 // Return nullptr if the Operation cannot be vectorized.
249 using CustomVectorizationHook = std::function<VectorizationResult(
250     Operation *, const BlockAndValueMapping &)>;
251 
252 /// Helper function to vectorize the terminator of a `linalgOp`. New result
253 /// vector values are appended to `newResults`. Return
254 /// VectorizationStatus::NoReplace to signal the vectorization algorithm that it
255 /// should not try to map produced operations and instead return the results
256 /// using the `newResults` vector making them available to the
257 /// vectorization algorithm for RAUW. This function is meant to be used as a
258 /// CustomVectorizationHook.
259 static VectorizationResult
260 vectorizeLinalgYield(OpBuilder &b, Operation *op,
261                      const BlockAndValueMapping &bvm, LinalgOp linalgOp,
262                      SmallVectorImpl<Value> &newResults) {
263   auto yieldOp = dyn_cast<linalg::YieldOp>(op);
264   if (!yieldOp)
265     return VectorizationResult{VectorizationStatus::Failure, nullptr};
266   for (auto outputs : llvm::enumerate(yieldOp.values())) {
267     // TODO: Scan for an opportunity for reuse.
268     // TODO: use a map.
269     Value vectorValue = bvm.lookup(outputs.value());
270     Value newResult = buildVectorWrite(
271         b, vectorValue, linalgOp.getOutputOperand(outputs.index()));
272     if (newResult)
273       newResults.push_back(newResult);
274   }
275   return VectorizationResult{VectorizationStatus::NoReplace, nullptr};
276 }
277 
278 /// Helper function to vectorize the index operations of a `linalgOp`. Return
279 /// VectorizationStatus::NewOp to signal the vectorization algorithm that it
280 /// should map the produced operations. This function is meant to be used as a
281 /// CustomVectorizationHook.
282 static VectorizationResult vectorizeLinalgIndex(OpBuilder &b, Operation *op,
283                                                 LinalgOp linalgOp) {
284   IndexOp indexOp = dyn_cast<linalg::IndexOp>(op);
285   if (!indexOp)
286     return VectorizationResult{VectorizationStatus::Failure, nullptr};
287   auto loc = indexOp.getLoc();
288   // Compute the static loop sizes of the index op.
289   auto targetShape = linalgOp.computeStaticLoopSizes();
290   // Compute a one-dimensional index vector for the index op dimension.
291   SmallVector<int64_t> constantSeq =
292       llvm::to_vector<16>(llvm::seq<int64_t>(0, targetShape[indexOp.dim()]));
293   auto constantOp =
294       b.create<arith::ConstantOp>(loc, b.getIndexVectorAttr(constantSeq));
295   // Return the one-dimensional index vector if it lives in the trailing
296   // dimension of the iteration space since the vectorization algorithm in this
297   // case can handle the broadcast.
298   if (indexOp.dim() == targetShape.size() - 1)
299     return VectorizationResult{VectorizationStatus::NewOp, constantOp};
300   // Otherwise permute the targetShape to move the index dimension last,
301   // broadcast the one-dimensional index vector to the permuted shape, and
302   // finally transpose the broadcasted index vector to undo the permutation.
303   std::swap(targetShape[indexOp.dim()], targetShape.back());
304   auto broadCastOp = b.create<vector::BroadcastOp>(
305       loc, VectorType::get(targetShape, b.getIndexType()), constantOp);
306   SmallVector<int64_t> transposition =
307       llvm::to_vector<16>(llvm::seq<int64_t>(0, linalgOp.getNumLoops()));
308   std::swap(transposition.back(), transposition[indexOp.dim()]);
309   auto transposeOp =
310       b.create<vector::TransposeOp>(loc, broadCastOp, transposition);
311   return VectorizationResult{VectorizationStatus::NewOp, transposeOp};
312 }
313 
314 /// Create a new vectorized verstion of `op` with the given operands and types.
315 static Operation *createVectorizedOp(OpBuilder &b, Operation *op,
316                                      ValueRange newOperands,
317                                      ArrayRef<Type> types) {
318   OperationState state(op->getLoc(), op->getName());
319   state.addAttributes(op->getAttrs());
320   state.addOperands(newOperands);
321   state.addTypes(types);
322   return b.createOperation(state);
323 }
324 
325 /// Emit reduction operations if the shapes of the value to reduce is different
326 /// that the result shape.
327 static Operation *reduceIfNeeded(OpBuilder &b, LinalgOp linalgOp, Operation *op,
328                                  Value reduceValue, Value initialValue,
329                                  const BlockAndValueMapping &bvm) {
330   Value reduceVec = bvm.lookup(reduceValue);
331   Value outputVec = bvm.lookup(initialValue);
332   auto reduceType = reduceVec.getType().dyn_cast<VectorType>();
333   auto outputType = outputVec.getType().dyn_cast<VectorType>();
334   // Reduce only if needed as the value may already have been reduce for
335   // contraction vectorization.
336   if (!reduceType ||
337       (outputType && reduceType.getShape() == outputType.getShape()))
338     return nullptr;
339   SmallVector<bool> reductionMask = getReductionMask(linalgOp);
340   Value reduce = buildMultiDimReduce(b, op, reduceVec, reductionMask);
341   return createVectorizedOp(b, op, {reduce, outputVec}, reduce.getType());
342 }
343 
344 /// Generic vectorization for a single operation `op`, given already vectorized
345 /// operands carried by `bvm`. Vectorization occurs as follows:
346 ///   1. Try to apply any of the `customVectorizationHooks` and return its
347 ///   result on success.
348 ///   2. Clone any constant in the current scope without vectorization: each
349 ///   consumer of the constant will later determine the shape to which the
350 ///   constant needs to be broadcast to.
351 ///   3. Fail on any remaining non `ElementwiseMappable` op. It is the purpose
352 ///   of the `customVectorizationHooks` to cover such cases.
353 ///   4. Clone `op` in vector form to a vector of shape prescribed by the first
354 ///   operand of maximal rank. Other operands have smaller rank and are
355 ///   broadcast accordingly. It is assumed this broadcast is always legal,
356 ///   otherwise, it means one of the `customVectorizationHooks` is incorrect.
357 ///
358 /// This function assumes all operands of `op` have been vectorized and are in
359 /// the `bvm` mapping. As a consequence, this function is meant to be called on
360 /// a topologically-sorted list of ops.
361 /// This function does not update `bvm` but returns a VectorizationStatus that
362 /// instructs the caller what `bvm` update needs to occur.
363 static VectorizationResult
364 vectorizeOneOp(OpBuilder &b, LinalgOp linalgOp, Operation *op,
365                const BlockAndValueMapping &bvm,
366                ArrayRef<CustomVectorizationHook> customVectorizationHooks) {
367   LDBG("vectorize op " << *op);
368 
369   // 1. Try to apply any CustomVectorizationHook.
370   if (!customVectorizationHooks.empty()) {
371     for (auto &customFunc : customVectorizationHooks) {
372       VectorizationResult result = customFunc(op, bvm);
373       if (result.status == VectorizationStatus::Failure)
374         continue;
375       return result;
376     }
377   }
378 
379   // 2. Constant ops don't get vectorized but rather broadcasted at their users.
380   // Clone so that the constant is not confined to the linalgOp block .
381   if (isa<arith::ConstantOp, ConstantOp>(op))
382     return VectorizationResult{VectorizationStatus::NewOp, b.clone(*op)};
383 
384   // 3. Only ElementwiseMappable are allowed in the generic vectorization.
385   if (!OpTrait::hasElementwiseMappableTraits(op))
386     return VectorizationResult{VectorizationStatus::Failure, nullptr};
387 
388   // 4 . Check if the operation is a reduction.
389   SmallVector<std::pair<Value, Value>> reductionOperands;
390   for (Value operand : op->getOperands()) {
391     auto arg = operand.dyn_cast<BlockArgument>();
392     if (!arg || arg.getArgNumber() < linalgOp.getNumInputs())
393       continue;
394     SmallVector<Operation *> reductionOps;
395     Value reduceValue = matchReduction(
396         linalgOp.getRegionOutputArgs(),
397         arg.getArgNumber() - linalgOp.getNumInputs(), reductionOps);
398     if (!reduceValue)
399       continue;
400     reductionOperands.push_back(std::make_pair(reduceValue, operand));
401   }
402   if (!reductionOperands.empty()) {
403     assert(reductionOperands.size() == 1);
404     Operation *reduceOp =
405         reduceIfNeeded(b, linalgOp, op, reductionOperands[0].first,
406                        reductionOperands[0].second, bvm);
407     if (reduceOp)
408       return VectorizationResult{VectorizationStatus::NewOp, reduceOp};
409   }
410 
411   // 5. Generic vectorization path for ElementwiseMappable ops.
412   //   a. first get the first max ranked shape.
413   SmallVector<int64_t, 4> firstMaxRankedShape;
414   for (Value operand : op->getOperands()) {
415     auto vt = bvm.lookup(operand).getType().dyn_cast<VectorType>();
416     if (vt && firstMaxRankedShape.size() < vt.getShape().size())
417       firstMaxRankedShape.assign(vt.getShape().begin(), vt.getShape().end());
418   }
419   //   b. broadcast each op if needed.
420   auto vectorizedOperands = llvm::map_range(op->getOperands(), [&](Value v) {
421     return firstMaxRankedShape.empty()
422                ? bvm.lookup(v)
423                : broadcastIfNeeded(b, bvm.lookup(v), firstMaxRankedShape);
424   });
425   //   c. for elementwise, the result is the vector with the firstMaxRankedShape
426   auto returnTypes = llvm::map_range(op->getResultTypes(), [&](Type t) {
427     return firstMaxRankedShape.empty()
428                ? t
429                : VectorType::get(firstMaxRankedShape, t);
430   });
431 
432   // Build and return the new op.
433   return VectorizationResult{
434       VectorizationStatus::NewOp,
435       createVectorizedOp(b, op, llvm::to_vector<4>(vectorizedOperands),
436                          llvm::to_vector<4>(returnTypes))};
437 }
438 
439 /// Detect whether `r` has only ConstantOp, ElementwiseMappable and YieldOp.
440 static bool hasOnlyScalarElementwiseOp(Region &r) {
441   if (!llvm::hasSingleElement(r))
442     return false;
443   for (Operation &op : r.front()) {
444     if (!(isa<arith::ConstantOp, ConstantOp, linalg::YieldOp, linalg::IndexOp>(
445               op) ||
446           OpTrait::hasElementwiseMappableTraits(&op)) ||
447         llvm::any_of(op.getResultTypes(),
448                      [](Type type) { return !type.isIntOrIndexOrFloat(); }))
449       return false;
450   }
451   return true;
452 }
453 
454 // Return true if the op is an element-wise linalg op.
455 static bool isElementwise(Operation *op) {
456   auto linalgOp = dyn_cast<linalg::LinalgOp>(op);
457   if (!linalgOp)
458     return false;
459   if (linalgOp.getNumLoops() != linalgOp.getNumParallelLoops())
460     return false;
461   // TODO: relax the restrictions on indexing map.
462   for (OpOperand *opOperand : linalgOp.getOutputOperands()) {
463     if (!linalgOp.getTiedIndexingMap(opOperand).isIdentity())
464       return false;
465   }
466   return hasOnlyScalarElementwiseOp(linalgOp->getRegion(0));
467 }
468 
469 /// Generic vectorization function that rewrites the body of a `linalgOp` into
470 /// vector form. Generic vectorization proceeds as follows:
471 ///   1. Verify the `linalgOp` has one non-empty region.
472 ///   2. Values defined above the region are mapped to themselves and will be
473 ///   broadcasted on a per-need basis by their consumers.
474 ///   3. Each region argument is vectorized into a vector.transfer_read (or 0-d
475 ///   load).
476 ///   TODO: Reuse opportunities for RAR dependencies.
477 ///   4a. Register CustomVectorizationHook for YieldOp to capture the results.
478 ///   4b. Register CustomVectorizationHook for IndexOp to access the iteration
479 ///   indices.
480 ///   5. Iteratively call vectorizeOneOp on the region operations.
481 ///
482 /// When `broadcastToMaximalCommonShape` is set to true, eager broadcasting is
483 /// performed to the maximal common vector size implied by the `linalgOp`
484 /// iteration space. This eager broadcasting is introduced in the
485 /// permutation_map of the vector.transfer_read operations. The eager
486 /// broadcasting makes it trivial to detrmine where broadcast, transposes and
487 /// reductions should occur, without any bookkeeping. The tradeoff is that, in
488 /// the absence of good canonicalizations, the amount of work increases.
489 /// This is not deemed a problem as we expect canonicalizations and foldings to
490 /// aggressively clean up the useless work.
491 LogicalResult vectorizeAsLinalgGeneric(
492     OpBuilder &b, LinalgOp linalgOp, SmallVectorImpl<Value> &newResults,
493     bool broadcastToMaximalCommonShape = false,
494     ArrayRef<CustomVectorizationHook> customVectorizationHooks = {}) {
495   Block *block = linalgOp.getBlock();
496 
497   // 2. Values defined above the region can only be broadcast for now. Make them
498   // map to themselves.
499   BlockAndValueMapping bvm;
500   SetVector<Value> valuesSet;
501   mlir::getUsedValuesDefinedAbove(linalgOp->getRegion(0), valuesSet);
502   bvm.map(valuesSet.getArrayRef(), valuesSet.getArrayRef());
503 
504   if (linalgOp.getNumOutputs() == 0)
505     return failure();
506 
507   // TODO: the common vector shape is equal to the static loop sizes only when
508   // all indexing maps are projected permutations. For convs and stencils the
509   // logic will need to evolve.
510   SmallVector<int64_t> commonVectorShape = linalgOp.computeStaticLoopSizes();
511 
512   // 3. Turn all BBArgs into vector.transfer_read / load.
513   SmallVector<AffineMap> indexings;
514   for (OpOperand *opOperand : linalgOp.getInputAndOutputOperands()) {
515     BlockArgument bbarg = block->getArgument(opOperand->getOperandNumber());
516     if (linalgOp.isScalar(opOperand)) {
517       bvm.map(bbarg, opOperand->get());
518       continue;
519     }
520     // TODO: 0-d vectors.
521     Type readType;
522     AffineMap map;
523     if (linalgOp.getShape(opOperand).empty()) {
524       readType = bbarg.getType();
525     } else {
526       if (broadcastToMaximalCommonShape &&
527           opOperand->getOperandNumber() < linalgOp.getNumInputs()) {
528         map = inverseAndBroadcastProjectedPermuation(
529             linalgOp.getTiedIndexingMap(opOperand));
530         readType = VectorType::get(commonVectorShape,
531                                    getElementTypeOrSelf(opOperand->get()));
532       } else {
533         map = inversePermutation(
534             reindexIndexingMap(linalgOp.getTiedIndexingMap(opOperand)));
535         readType = VectorType::get(map.compose(linalgOp.getShape(opOperand)),
536                                    getElementTypeOrSelf(opOperand->get()));
537       }
538     }
539     Value readValue = buildVectorRead(b, opOperand->get(), readType, map);
540     LDBG("new vectorized bbarg(" << bbarg.getArgNumber() << "): " << readValue);
541     bvm.map(bbarg, readValue);
542     bvm.map(opOperand->get(), readValue);
543   }
544 
545   auto hooks = llvm::to_vector<4>(customVectorizationHooks);
546   // 4a. Register CustomVectorizationHook for yieldOp.
547   CustomVectorizationHook vectorizeYield =
548       [&](Operation *op,
549           const BlockAndValueMapping &bvm) -> VectorizationResult {
550     return vectorizeLinalgYield(b, op, bvm, linalgOp, newResults);
551   };
552   hooks.push_back(vectorizeYield);
553 
554   // 4b. Register CustomVectorizationHook for indexOp.
555   CustomVectorizationHook vectorizeIndex =
556       [&](Operation *op,
557           const BlockAndValueMapping &bvm) -> VectorizationResult {
558     return vectorizeLinalgIndex(b, op, linalgOp);
559   };
560   hooks.push_back(vectorizeIndex);
561 
562   // 5. Iteratively call `vectorizeOneOp` to each op in the slice.
563   for (Operation &op : block->getOperations()) {
564     VectorizationResult result = vectorizeOneOp(b, linalgOp, &op, bvm, hooks);
565     if (result.status == VectorizationStatus::Failure) {
566       LDBG("failed to vectorize: " << op);
567       return failure();
568     }
569     if (result.status == VectorizationStatus::NewOp) {
570       LDBG("new vector op: " << *result.newOp;);
571       bvm.map(op.getResults(), result.newOp->getResults());
572     }
573   }
574 
575   return success();
576 }
577 
578 static LogicalResult vectorizeContraction(OpBuilder &b, LinalgOp linalgOp,
579                                           SmallVectorImpl<Value> &newResults) {
580   assert(isaContractionOpInterface(linalgOp) &&
581          "expected vectorizeContraction preconditions to be met");
582   Location loc = linalgOp.getLoc();
583   // Vectorize other ops as vector contraction.
584   // TODO: interface.
585   LDBG(""
586            << "Rewrite linalg op as vector.contract: ";
587        linalgOp.dump());
588   // Special function that describes how to vectorize the multiplication op in a
589   // linalg contraction.
590   CustomVectorizationHook vectorizeContraction =
591       [&](Operation *op,
592           const BlockAndValueMapping &bvm) -> VectorizationResult {
593     if (!isa<arith::MulIOp, arith::MulFOp>(op))
594       return VectorizationResult{VectorizationStatus::Failure, nullptr};
595     ArrayRef<int64_t> outShape =
596         linalgOp.getShape(linalgOp.getOutputOperand(0));
597     Type vType;
598     if (outShape.empty()) {
599       vType = op->getResult(0).getType();
600     } else {
601       SmallVector<int64_t> resultShape = applyPermutationMap(
602           inversePermutation(reindexIndexingMap(
603               linalgOp.getTiedIndexingMap(linalgOp.getOutputOperand(0)))),
604           outShape);
605       vType = VectorType::get(resultShape, op->getResult(0).getType());
606     }
607     auto zero = b.create<arith::ConstantOp>(loc, vType, b.getZeroAttr(vType));
608     // Indexing maps at the time of vector.transfer_read are adjusted to order
609     // vector dimensions in the same order as the canonical linalg op iteration
610     // space order.
611     // The indexings for the contraction therefore need to be adjusted.
612     // TODO: consider dropping contraction special casing altogether, this will
613     // require more advanced canonicalizations involving vector.multi_reduction
614     // that are not yet available.
615     SmallVector<AffineMap> indexingMaps;
616     indexingMaps.reserve(linalgOp.getNumInputsAndOutputs());
617     llvm::transform(linalgOp.getIndexingMaps(),
618                     std::back_inserter(indexingMaps),
619                     [](AffineMap indexingMap) {
620                       return inversePermutation(reindexIndexingMap(indexingMap))
621                           .compose(indexingMap);
622                     });
623     Operation *contract = b.create<vector::ContractionOp>(
624         loc, bvm.lookup(op->getOperand(0)), bvm.lookup(op->getOperand(1)), zero,
625         b.getAffineMapArrayAttr(indexingMaps), linalgOp.iterator_types());
626     return VectorizationResult{VectorizationStatus::NewOp, contract};
627   };
628   return vectorizeAsLinalgGeneric(b, linalgOp, newResults,
629                                   /*broadcastToMaximalCommonShape=*/false,
630                                   {vectorizeContraction});
631 }
632 
633 static bool allIndexingsAreProjectedPermutation(LinalgOp op) {
634   return llvm::all_of(op.getIndexingMaps(), [](AffineMap m) {
635     return m.isProjectedPermutation(/*allowZerosInResults=*/true);
636   });
637 }
638 
639 // TODO: probably need some extra checks for reduction followed by consumer
640 // ops that may not commute (e.g. linear reduction + non-linear instructions).
641 static LogicalResult reductionPreconditions(LinalgOp op) {
642   if (llvm::none_of(op.iterator_types(), isReductionIterator)) {
643     LDBG("reduction precondition failed: no reduction iterator");
644     return failure();
645   }
646   for (OpOperand *opOperand : op.getOutputOperands()) {
647     Operation *reduceOp = matchLinalgReduction(opOperand);
648     if (!reduceOp || !getKindForOp(reduceOp)) {
649       LDBG("reduction precondition failed: reduction detection failed");
650       return failure();
651     }
652   }
653   return success();
654 }
655 
656 LogicalResult mlir::linalg::vectorizeLinalgOpPrecondition(Operation *op) {
657   auto linalgOp = cast<linalg::LinalgOp>(op);
658   // All types must be static shape to go to vector.
659   if (linalgOp.hasDynamicShape()) {
660     LDBG("precondition failed: dynamic shape");
661     return failure();
662   }
663   if (isElementwise(op))
664     return success();
665   if (isaContractionOpInterface(linalgOp))
666     return success();
667   // TODO: the common vector shape is equal to the static loop sizes only when
668   // all indexing maps are projected permutations. For convs and stencils the
669   // logic will need to evolve.
670   if (!allIndexingsAreProjectedPermutation(linalgOp)) {
671     LDBG("precondition failed: not projected permutations");
672     return failure();
673   }
674   if (failed(reductionPreconditions(linalgOp))) {
675     LDBG("precondition failed: reduction preconditions");
676     return failure();
677   }
678   return success();
679 }
680 
681 LogicalResult
682 mlir::linalg::vectorizeLinalgOp(OpBuilder &b, Operation *op,
683                                 SmallVectorImpl<Value> &newResults) {
684   if (failed(vectorizeLinalgOpPrecondition(op)))
685     return failure();
686 
687   auto linalgOp = cast<LinalgOp>(op);
688   if (isaContractionOpInterface(linalgOp))
689     return vectorizeContraction(b, linalgOp, newResults);
690 
691   LDBG(""
692        << "Vectorize linalg op as a generic by broadcasting to "
693           "maximal common shape: "
694        << *op);
695   return vectorizeAsLinalgGeneric(b, linalgOp, newResults,
696                                   /*broadcastToMaximalCommonShape=*/true);
697 }
698 
699 //----------------------------------------------------------------------------//
700 // Misc. vectorization patterns.
701 //----------------------------------------------------------------------------//
702 
703 /// Helper function that retrieves the value of an IntegerAttr.
704 static int64_t getIntFromAttr(Attribute attr) {
705   return attr.cast<IntegerAttr>().getInt();
706 }
707 
708 /// Given an ArrayRef of OpFoldResults, return a vector of Values. IntegerAttrs
709 /// are converted to ConstantIndexOps. Other attribute types are not supported.
710 static SmallVector<Value> ofrToIndexValues(OpBuilder &builder, Location loc,
711                                            ArrayRef<OpFoldResult> ofrs) {
712   SmallVector<Value> result;
713   llvm::for_each(ofrs, [&](auto o) {
714     if (auto val = o.template dyn_cast<Value>()) {
715       result.push_back(val);
716     } else {
717       result.push_back(builder.create<arith::ConstantIndexOp>(
718           loc, getIntFromAttr(o.template get<Attribute>())));
719     }
720   });
721   return result;
722 }
723 
724 /// Rewrite a PadTensorOp into a sequence of InitTensorOp, FillOp and
725 /// InsertSliceOp. For now, only constant padding values are supported.
726 /// If there is enough static type information, TransferReadOps and
727 /// TransferWriteOps may be generated instead of InsertSliceOps.
728 struct GenericPadTensorOpVectorizationPattern
729     : public GeneralizePadTensorOpPattern {
730   GenericPadTensorOpVectorizationPattern(MLIRContext *context,
731                                          PatternBenefit benefit = 1)
732       : GeneralizePadTensorOpPattern(context, tryVectorizeCopy, benefit) {}
733   /// Vectorize the copying of a PadTensorOp's source. This is possible if each
734   /// dimension size is statically know in the source type or the result type
735   /// (or both).
736   static LogicalResult tryVectorizeCopy(PatternRewriter &rewriter,
737                                         PadTensorOp padOp, Value dest) {
738     auto sourceType = padOp.getSourceType();
739     auto resultType = padOp.getResultType();
740 
741     // Copy cannot be vectorized if pad value is non-constant and source shape
742     // is dynamic. In case of a dynamic source shape, padding must be appended
743     // by TransferReadOp, but TransferReadOp supports only constant padding.
744     auto padValue = padOp.getConstantPaddingValue();
745     if (!padValue) {
746       if (!sourceType.hasStaticShape())
747         return failure();
748       // Create dummy padding value.
749       auto elemType = sourceType.getElementType();
750       padValue = rewriter.create<arith::ConstantOp>(
751           padOp.getLoc(), elemType, rewriter.getZeroAttr(elemType));
752     }
753 
754     SmallVector<int64_t> vecShape;
755     SmallVector<bool> readInBounds;
756     SmallVector<bool> writeInBounds;
757     for (unsigned i = 0; i < sourceType.getRank(); ++i) {
758       if (!sourceType.isDynamicDim(i)) {
759         vecShape.push_back(sourceType.getDimSize(i));
760         // Source shape is statically known: Neither read nor write are out-of-
761         // bounds.
762         readInBounds.push_back(true);
763         writeInBounds.push_back(true);
764       } else if (!resultType.isDynamicDim(i)) {
765         // Source shape is not statically known, but result shape is. Vectorize
766         // with size of result shape. This may be larger than the source size.
767         vecShape.push_back(resultType.getDimSize(i));
768         // Read may be out-of-bounds because the result size could be larger
769         // than the source size.
770         readInBounds.push_back(false);
771         // Write is out-of-bounds if low padding > 0.
772         writeInBounds.push_back(
773             getConstantIntValue(padOp.getMixedLowPad()[i]) ==
774             static_cast<int64_t>(0));
775       } else {
776         // Neither source nor result dim of padOp is static. Cannot vectorize
777         // the copy.
778         return failure();
779       }
780     }
781     auto vecType = VectorType::get(vecShape, sourceType.getElementType());
782 
783     // Generate TransferReadOp.
784     SmallVector<Value> readIndices(
785         vecType.getRank(),
786         rewriter.create<arith::ConstantIndexOp>(padOp.getLoc(), 0));
787     auto read = rewriter.create<vector::TransferReadOp>(
788         padOp.getLoc(), vecType, padOp.source(), readIndices, padValue,
789         readInBounds);
790 
791     // If `dest` is a FillOp and the TransferWriteOp would overwrite the entire
792     // tensor, write directly to the FillOp's operand.
793     if (llvm::equal(vecShape, resultType.getShape()) &&
794         llvm::all_of(writeInBounds, [](bool b) { return b; }))
795       if (auto fill = dest.getDefiningOp<FillOp>())
796         dest = fill.output();
797 
798     // Generate TransferWriteOp.
799     auto writeIndices =
800         ofrToIndexValues(rewriter, padOp.getLoc(), padOp.getMixedLowPad());
801     rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(
802         padOp, read, dest, writeIndices, writeInBounds);
803 
804     return success();
805   }
806 };
807 
808 /// Base pattern for rewriting PadTensorOps whose result is consumed by a given
809 /// operation type OpTy.
810 template <typename OpTy>
811 struct VectorizePadTensorOpUserPattern : public OpRewritePattern<PadTensorOp> {
812   using OpRewritePattern<PadTensorOp>::OpRewritePattern;
813 
814   LogicalResult matchAndRewrite(PadTensorOp padOp,
815                                 PatternRewriter &rewriter) const final {
816     bool changed = false;
817     // Insert users in vector, because some users may be replaced/removed.
818     for (auto *user : llvm::to_vector<4>(padOp->getUsers()))
819       if (auto op = dyn_cast<OpTy>(user))
820         changed |= rewriteUser(rewriter, padOp, op).succeeded();
821     return success(changed);
822   }
823 
824 protected:
825   virtual LogicalResult rewriteUser(PatternRewriter &rewriter,
826                                     PadTensorOp padOp, OpTy op) const = 0;
827 };
828 
829 /// Rewrite use of PadTensorOp result in TransferReadOp. E.g.:
830 /// ```
831 /// %0 = linalg.pad_tensor %src ... : tensor<?x?xf32> to tensor<17x5xf32>
832 /// %r = vector.transfer_read %0[%c0, %c0], %cst
833 ///     {in_bounds = [true, true]} : tensor<17x5xf32>, vector<17x5xf32>
834 /// ```
835 /// is rewritten to:
836 /// ```
837 /// %r = vector.transfer_read %src[%c0, %c0], %padding
838 ///     {in_bounds = [true, true]}
839 ///     : tensor<?x?xf32>, vector<17x5xf32>
840 /// ```
841 /// Note: By restricting this pattern to in-bounds TransferReadOps, we can be
842 /// sure that the original padding value %cst was never used.
843 ///
844 /// This rewrite is possible if:
845 /// - `xferOp` has no out-of-bounds dims or mask.
846 /// - Low padding is static 0.
847 /// - Single, scalar padding value.
848 struct PadTensorOpVectorizationWithTransferReadPattern
849     : public VectorizePadTensorOpUserPattern<vector::TransferReadOp> {
850   using VectorizePadTensorOpUserPattern<
851       vector::TransferReadOp>::VectorizePadTensorOpUserPattern;
852 
853   LogicalResult rewriteUser(PatternRewriter &rewriter, PadTensorOp padOp,
854                             vector::TransferReadOp xferOp) const override {
855     // Low padding must be static 0.
856     if (!padOp.hasZeroLowPad())
857       return failure();
858     // Pad value must be a constant.
859     auto padValue = padOp.getConstantPaddingValue();
860     if (!padValue)
861       return failure();
862     // Padding value of existing `xferOp` is unused.
863     if (xferOp.hasOutOfBoundsDim() || xferOp.mask())
864       return failure();
865 
866     rewriter.updateRootInPlace(xferOp, [&]() {
867       SmallVector<bool> inBounds(xferOp.getVectorType().getRank(), false);
868       xferOp->setAttr(xferOp.getInBoundsAttrName(),
869                       rewriter.getBoolArrayAttr(inBounds));
870       xferOp.sourceMutable().assign(padOp.source());
871       xferOp.paddingMutable().assign(padValue);
872     });
873 
874     return success();
875   }
876 };
877 
878 /// Rewrite use of PadTensorOp result in TransferWriteOp.
879 /// This pattern rewrites TransferWriteOps that write to a padded tensor value,
880 /// where the same amount of padding is immediately removed again after the
881 /// write. In such cases, the TransferWriteOp can write to the non-padded tensor
882 /// value and apply out-of-bounds masking. E.g.:
883 /// ```
884 /// %0 = tensor.extract_slice ...[...] [%s0, %s1] [1, 1]
885 ///     : tensor<...> to tensor<?x?xf32>
886 /// %1 = linalg.pad_tensor %0 ... : tensor<?x?xf32> to tensor<17x5xf32>
887 /// %2 = vector.transfer_write %vec, %1[...]
888 ///     : vector<17x5xf32>, tensor<17x5xf32>
889 /// %r = tensor.extract_slice %2[0, 0] [%s0, %s1] [1, 1]
890 ///     : tensor<17x5xf32> to tensor<?x?xf32>
891 /// ```
892 /// is rewritten to:
893 /// ```
894 /// %0 = tensor.extract_slice ...[...] [%s0, %s1] [1, 1]
895 ///     : tensor<...> to tensor<?x?xf32>
896 /// %r = vector.transfer_write %vec, %0[...] : vector<17x5xf32>, tensor<?x?xf32>
897 /// ```
898 /// Note: It is important that the ExtractSliceOp %r resizes the result of the
899 /// TransferWriteOp to the same size as the input of the TensorPadOp (or an even
900 /// smaller size). Otherwise, %r's new (dynamic) dimensions would differ from
901 /// %r's old dimensions.
902 ///
903 /// This rewrite is possible if:
904 /// - Low padding is static 0.
905 /// - `xferOp` has exactly one use, which is an ExtractSliceOp. This
906 ///   ExtractSliceOp trims the same amount of padding that was added beforehand.
907 /// - Single, scalar padding value.
908 struct PadTensorOpVectorizationWithTransferWritePattern
909     : public VectorizePadTensorOpUserPattern<vector::TransferWriteOp> {
910   using VectorizePadTensorOpUserPattern<
911       vector::TransferWriteOp>::VectorizePadTensorOpUserPattern;
912 
913   LogicalResult rewriteUser(PatternRewriter &rewriter, PadTensorOp padOp,
914                             vector::TransferWriteOp xferOp) const override {
915     // Low padding must be static 0.
916     if (!padOp.hasZeroLowPad())
917       return failure();
918     // Pad value must be a constant.
919     auto padValue = padOp.getConstantPaddingValue();
920     if (!padValue)
921       return failure();
922     // TransferWriteOp result must be directly consumed by an ExtractSliceOp.
923     if (!xferOp->hasOneUse())
924       return failure();
925     auto trimPadding = dyn_cast<tensor::ExtractSliceOp>(*xferOp->user_begin());
926     if (!trimPadding)
927       return failure();
928     // Only static zero offsets supported when trimming padding.
929     if (!trimPadding.hasZeroOffset())
930       return failure();
931     // trimPadding must remove the amount of padding that was added earlier.
932     if (!hasSameTensorSize(padOp.source(), trimPadding))
933       return failure();
934 
935     // Insert the new TransferWriteOp at position of the old TransferWriteOp.
936     rewriter.setInsertionPoint(xferOp);
937 
938     SmallVector<bool> inBounds(xferOp.getVectorType().getRank(), false);
939     auto newXferOp = rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(
940         xferOp, padOp.source().getType(), xferOp.vector(), padOp.source(),
941         xferOp.indices(), xferOp.permutation_mapAttr(), xferOp.mask(),
942         rewriter.getBoolArrayAttr(inBounds));
943     rewriter.replaceOp(trimPadding, newXferOp->getResult(0));
944 
945     return success();
946   }
947 
948   /// Check if `beforePadding` and `afterTrimming` have the same tensor size,
949   /// i.e., same dimensions.
950   ///
951   /// Dimensions may be static, dynamic or mix of both. In case of dynamic
952   /// dimensions, this function tries to infer the (static) tensor size by
953   /// looking at the defining op and utilizing op-specific knowledge.
954   ///
955   /// This is a conservative analysis. In case equal tensor sizes cannot be
956   /// proven statically, this analysis returns `false` even though the tensor
957   /// sizes may turn out to be equal at runtime.
958   bool hasSameTensorSize(Value beforePadding,
959                          tensor::ExtractSliceOp afterTrimming) const {
960     // If the input to PadTensorOp is a CastOp, try with with both CastOp result
961     // and CastOp operand.
962     if (auto castOp = beforePadding.getDefiningOp<tensor::CastOp>())
963       if (hasSameTensorSize(castOp.source(), afterTrimming))
964         return true;
965 
966     auto t1 = beforePadding.getType().dyn_cast<RankedTensorType>();
967     auto t2 = afterTrimming.getType().dyn_cast<RankedTensorType>();
968     // Only RankedTensorType supported.
969     if (!t1 || !t2)
970       return false;
971     // Rank of both values must be the same.
972     if (t1.getRank() != t2.getRank())
973       return false;
974 
975     // All static dimensions must be the same. Mixed cases (e.g., dimension
976     // static in `t1` but dynamic in `t2`) are not supported.
977     for (unsigned i = 0; i < t1.getRank(); ++i) {
978       if (t1.isDynamicDim(i) != t2.isDynamicDim(i))
979         return false;
980       if (!t1.isDynamicDim(i) && t1.getDimSize(i) != t2.getDimSize(i))
981         return false;
982     }
983 
984     // Nothing more to check if all dimensions are static.
985     if (t1.getNumDynamicDims() == 0)
986       return true;
987 
988     // All dynamic sizes must be the same. The only supported case at the moment
989     // is when `beforePadding` is an ExtractSliceOp (or a cast thereof).
990 
991     // Apart from CastOp, only ExtractSliceOp is supported.
992     auto beforeSlice = beforePadding.getDefiningOp<tensor::ExtractSliceOp>();
993     if (!beforeSlice)
994       return false;
995 
996     assert(static_cast<size_t>(t1.getRank()) ==
997            beforeSlice.getMixedSizes().size());
998     assert(static_cast<size_t>(t2.getRank()) ==
999            afterTrimming.getMixedSizes().size());
1000 
1001     for (unsigned i = 0; i < t1.getRank(); ++i) {
1002       // Skip static dimensions.
1003       if (!t1.isDynamicDim(i))
1004         continue;
1005       auto size1 = beforeSlice.getMixedSizes()[i];
1006       auto size2 = afterTrimming.getMixedSizes()[i];
1007 
1008       // Case 1: Same value or same constant int.
1009       if (isEqualConstantIntOrValue(size1, size2))
1010         continue;
1011 
1012       // Other cases: Take a deeper look at defining ops of values.
1013       auto v1 = size1.dyn_cast<Value>();
1014       auto v2 = size2.dyn_cast<Value>();
1015       if (!v1 || !v2)
1016         return false;
1017 
1018       // Case 2: Both values are identical AffineMinOps. (Should not happen if
1019       // CSE is run.)
1020       auto minOp1 = v1.getDefiningOp<AffineMinOp>();
1021       auto minOp2 = v2.getDefiningOp<AffineMinOp>();
1022       if (minOp1 && minOp2 && minOp1.getAffineMap() == minOp2.getAffineMap() &&
1023           minOp1.operands() == minOp2.operands())
1024         continue;
1025 
1026       // Add additional cases as needed.
1027     }
1028 
1029     // All tests passed.
1030     return true;
1031   }
1032 };
1033 
1034 /// Rewrite use of PadTensorOp result in InsertSliceOp. E.g.:
1035 /// ```
1036 /// %0 = linalg.pad_tensor %src ... : tensor<?x?xf32> to tensor<17x5xf32>
1037 /// %r = tensor.insert_slice %0
1038 ///     into %dest[%a, %b, 0, 0] [1, 1, 17, 5] [1, 1, 1, 1]
1039 ///     : tensor<17x5xf32> into tensor<?x?x17x5xf32>
1040 /// ```
1041 /// is rewritten to:
1042 /// ```
1043 /// %0 = vector.transfer_read %src[%c0, %c0], %padding
1044 ///     : tensor<?x?xf32>, vector<17x5xf32>
1045 /// %r = vector.transfer_write %0, %dest[%a, %b, %c0, %c0]
1046 ///     {in_bounds = [true, true]} : vector<17x5xf32>, tensor<?x?x17x5xf32>
1047 /// ```
1048 ///
1049 /// This rewrite is possible if:
1050 /// - Low padding is static 0.
1051 /// - `padOp` result shape is static.
1052 /// - The entire padded tensor is inserted.
1053 ///   (Implies that sizes of `insertOp` are all static.)
1054 /// - Only unit strides in `insertOp`.
1055 /// - Single, scalar padding value.
1056 struct PadTensorOpVectorizationWithInsertSlicePattern
1057     : public VectorizePadTensorOpUserPattern<tensor::InsertSliceOp> {
1058   using VectorizePadTensorOpUserPattern<
1059       tensor::InsertSliceOp>::VectorizePadTensorOpUserPattern;
1060 
1061   LogicalResult rewriteUser(PatternRewriter &rewriter, PadTensorOp padOp,
1062                             tensor::InsertSliceOp insertOp) const override {
1063     // Low padding must be static 0.
1064     if (!padOp.hasZeroLowPad())
1065       return failure();
1066     // Only unit stride supported.
1067     if (!insertOp.hasUnitStride())
1068       return failure();
1069     // Pad value must be a constant.
1070     auto padValue = padOp.getConstantPaddingValue();
1071     if (!padValue)
1072       return failure();
1073     // Dynamic shapes not supported.
1074     if (!padOp.result().getType().cast<ShapedType>().hasStaticShape())
1075       return failure();
1076 
1077     auto vecType = VectorType::get(padOp.getType().getShape(),
1078                                    padOp.getType().getElementType());
1079     unsigned vecRank = vecType.getRank();
1080     unsigned tensorRank = insertOp.getType().getRank();
1081 
1082     // Check if sizes match: Insert the entire tensor into most minor dims.
1083     // (No permutations allowed.)
1084     SmallVector<int64_t> expectedSizes(tensorRank - vecRank, 1);
1085     expectedSizes.append(vecType.getShape().begin(), vecType.getShape().end());
1086     if (!llvm::all_of(
1087             llvm::zip(insertOp.getMixedSizes(), expectedSizes), [](auto it) {
1088               return getConstantIntValue(std::get<0>(it)) == std::get<1>(it);
1089             }))
1090       return failure();
1091 
1092     // Insert the TransferReadOp and TransferWriteOp at the position of the
1093     // InsertSliceOp.
1094     rewriter.setInsertionPoint(insertOp);
1095 
1096     // Generate TransferReadOp: Read entire source tensor and add high padding.
1097     SmallVector<Value> readIndices(
1098         vecRank, rewriter.create<arith::ConstantIndexOp>(padOp.getLoc(), 0));
1099     auto read = rewriter.create<vector::TransferReadOp>(
1100         padOp.getLoc(), vecType, padOp.source(), readIndices, padValue);
1101 
1102     // Generate TransferWriteOp: Write to InsertSliceOp's dest tensor at
1103     // specified offsets. Write is fully in-bounds because a InsertSliceOp's
1104     // source must fit into the destination at the specified offsets.
1105     auto writeIndices =
1106         ofrToIndexValues(rewriter, padOp.getLoc(), insertOp.getMixedOffsets());
1107     SmallVector<bool> inBounds(vecRank, true);
1108     rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(
1109         insertOp, read, insertOp.dest(), writeIndices, inBounds);
1110 
1111     return success();
1112   }
1113 };
1114 
1115 void mlir::linalg::populatePadTensorOpVectorizationPatterns(
1116     RewritePatternSet &patterns, PatternBenefit baseBenefit) {
1117   patterns.add<GenericPadTensorOpVectorizationPattern>(patterns.getContext(),
1118                                                        baseBenefit);
1119   // Try these specialized patterns first before resorting to the generic one.
1120   patterns.add<PadTensorOpVectorizationWithTransferReadPattern,
1121                PadTensorOpVectorizationWithTransferWritePattern,
1122                PadTensorOpVectorizationWithInsertSlicePattern>(
1123       patterns.getContext(), baseBenefit.getBenefit() + 1);
1124 }
1125 
1126 // TODO: cleanup all the convolution vectorization patterns.
1127 template <class ConvOp, int N>
1128 LogicalResult ConvOpVectorization<ConvOp, N>::matchAndRewrite(
1129     ConvOp op, PatternRewriter &rewriter) const {
1130   Location loc = op.getLoc();
1131   MLIRContext *context = op.getContext();
1132 
1133   OpOperand *input = op.getInputOperand(0);
1134   OpOperand *kernel = op.getInputOperand(1);
1135   OpOperand *output = op.getOutputOperand(0);
1136   ArrayRef<int64_t> inShape = op.getShape(input);
1137   ArrayRef<int64_t> kShape = op.getShape(kernel);
1138 
1139   if (llvm::any_of(inShape, ShapedType::isDynamic) ||
1140       llvm::any_of(kShape, ShapedType::isDynamic))
1141     return failure();
1142 
1143   SmallVector<AffineExpr, 4> mapping;
1144   SmallVector<int64_t, 4> vectorDims;
1145   // Fail to apply when the size of not vectorized dimension is not 1.
1146   for (unsigned i = 0; i < N; i++) {
1147     if (!mask[i] && (inShape[i] != 1 || kShape[i] != 1))
1148       return failure();
1149 
1150     if (mask[i] && inShape[i] != kShape[i])
1151       return failure();
1152 
1153     if (mask[i]) {
1154       mapping.push_back(getAffineDimExpr(i, context));
1155       vectorDims.push_back(inShape[i]);
1156     }
1157   }
1158 
1159   int64_t rank = op.getRank(input);
1160   int64_t numDims = mapping.size();
1161   Type elemType = getElementTypeOrSelf(input->get());
1162 
1163   auto map = AffineMap::get(rank, 0, mapping, context);
1164   SmallVector<Value, 4> zeros(rank,
1165                               rewriter.create<arith::ConstantIndexOp>(loc, 0));
1166   auto vecType = VectorType::get(vectorDims, elemType);
1167 
1168   auto inputVec = rewriter.create<vector::TransferReadOp>(
1169       loc, vecType, input->get(), zeros, map);
1170   auto kernelVec = rewriter.create<vector::TransferReadOp>(
1171       loc, vecType, kernel->get(), zeros, map);
1172 
1173   auto acc = rewriter.create<arith::ConstantOp>(loc, elemType,
1174                                                 rewriter.getZeroAttr(elemType));
1175 
1176   std::array<AffineMap, 3> indexingMaps{
1177       AffineMap::getMultiDimIdentityMap(numDims, context),
1178       AffineMap::getMultiDimIdentityMap(numDims, context),
1179       AffineMap::get(numDims, 0, {}, context)};
1180 
1181   std::vector<StringRef> iteratorTypes(numDims, "reduction");
1182 
1183   auto result = rewriter.create<vector::ContractionOp>(
1184       loc, inputVec, kernelVec, acc,
1185       rewriter.getAffineMapArrayAttr(indexingMaps),
1186       rewriter.getStrArrayAttr(iteratorTypes));
1187 
1188   rewriter.create<memref::StoreOp>(loc, result, output->get(),
1189                                    ValueRange(zeros));
1190   rewriter.eraseOp(op);
1191   return success();
1192 }
1193 
1194 /// Inserts tiling, promotion and vectorization pattern for ConvOp
1195 /// conversion into corresponding pattern lists.
1196 template <typename ConvOp, unsigned N>
1197 static void populateVectorizationPatterns(
1198     RewritePatternSet &tilingPatterns, RewritePatternSet &promotionPatterns,
1199     RewritePatternSet &vectorizationPatterns, ArrayRef<int64_t> tileSizes) {
1200   auto *context = tilingPatterns.getContext();
1201   if (tileSizes.size() < N)
1202     return;
1203 
1204   constexpr static StringRef kTiledMarker = "TILED";
1205   constexpr static StringRef kPromotedMarker = "PROMOTED";
1206   tilingPatterns.add<LinalgTilingPattern<ConvOp>>(
1207       context, LinalgTilingOptions().setTileSizes(tileSizes),
1208       LinalgTransformationFilter(ArrayRef<Identifier>{},
1209                                  Identifier::get(kTiledMarker, context)));
1210 
1211   promotionPatterns.add<LinalgPromotionPattern<ConvOp>>(
1212       context, LinalgPromotionOptions().setUseFullTileBuffersByDefault(true),
1213       LinalgTransformationFilter(Identifier::get(kTiledMarker, context),
1214                                  Identifier::get(kPromotedMarker, context)));
1215 
1216   SmallVector<bool, 4> mask(N);
1217   int offset = tileSizes.size() - N;
1218   std::transform(tileSizes.begin() + offset, tileSizes.end(), mask.begin(),
1219                  [](int64_t i) -> bool { return i > 1; });
1220 
1221   vectorizationPatterns.add<ConvOpVectorization<ConvOp, N>>(context, mask);
1222 }
1223 
1224 void mlir::linalg::populateConvVectorizationPatterns(
1225     MLIRContext *context, SmallVectorImpl<RewritePatternSet> &patterns,
1226     ArrayRef<int64_t> tileSizes) {
1227   RewritePatternSet tiling(context);
1228   RewritePatternSet promotion(context);
1229   RewritePatternSet vectorization(context);
1230   populateVectorizationPatterns<Conv1DOp, 1>(tiling, promotion, vectorization,
1231                                              tileSizes);
1232 
1233   populateVectorizationPatterns<Conv2DOp, 2>(tiling, promotion, vectorization,
1234                                              tileSizes);
1235 
1236   populateVectorizationPatterns<Conv3DOp, 3>(tiling, promotion, vectorization,
1237                                              tileSizes);
1238 
1239   populateVectorizationPatterns<Conv1DNwcWcfOp, 3>(tiling, promotion,
1240                                                    vectorization, tileSizes);
1241 
1242   populateVectorizationPatterns<Conv2DNhwcHwcfOp, 4>(tiling, promotion,
1243                                                      vectorization, tileSizes);
1244 
1245   populateVectorizationPatterns<Conv3DNdhwcDhwcfOp, 5>(
1246       tiling, promotion, vectorization, tileSizes);
1247 
1248   patterns.push_back(std::move(tiling));
1249   patterns.push_back(std::move(promotion));
1250   patterns.push_back(std::move(vectorization));
1251 }
1252 
1253 //----------------------------------------------------------------------------//
1254 // Forwarding patterns
1255 //----------------------------------------------------------------------------//
1256 
1257 /// Check whether there is any interleaved use of any `values` between `firstOp`
1258 /// and `secondOp`. Conservatively return `true` if any op or value is in a
1259 /// different block.
1260 static bool mayExistInterleavedUses(Operation *firstOp, Operation *secondOp,
1261                                     ValueRange values) {
1262   if (firstOp->getBlock() != secondOp->getBlock() ||
1263       !firstOp->isBeforeInBlock(secondOp)) {
1264     LDBG("interleavedUses precondition failed, firstOp: "
1265          << *firstOp << ", second op: " << *secondOp);
1266     return true;
1267   }
1268   for (auto v : values) {
1269     for (auto &u : v.getUses()) {
1270       Operation *owner = u.getOwner();
1271       if (owner == firstOp || owner == secondOp)
1272         continue;
1273       // TODO: this is too conservative, use dominance info in the future.
1274       if (owner->getBlock() == firstOp->getBlock() &&
1275           (owner->isBeforeInBlock(firstOp) || secondOp->isBeforeInBlock(owner)))
1276         continue;
1277       LDBG(" found interleaved op " << *owner << ", firstOp: " << *firstOp
1278                                     << ", second op: " << *secondOp);
1279       return true;
1280     }
1281   }
1282   return false;
1283 }
1284 
1285 /// Return the unique subview use of `v` if it is indeed unique, null otherwise.
1286 static memref::SubViewOp getSubViewUseIfUnique(Value v) {
1287   memref::SubViewOp subViewOp;
1288   for (auto &u : v.getUses()) {
1289     if (auto newSubViewOp = dyn_cast<memref::SubViewOp>(u.getOwner())) {
1290       if (subViewOp)
1291         return memref::SubViewOp();
1292       subViewOp = newSubViewOp;
1293     }
1294   }
1295   return subViewOp;
1296 }
1297 
1298 /// TODO: use interfaces, side-effects and aliasing analysis as appropriate,
1299 /// when available.
1300 LogicalResult LinalgCopyVTRForwardingPattern::matchAndRewrite(
1301     vector::TransferReadOp xferOp, PatternRewriter &rewriter) const {
1302 
1303   // Transfer into `view`.
1304   Value viewOrAlloc = xferOp.source();
1305   if (!viewOrAlloc.getDefiningOp<memref::ViewOp>() &&
1306       !viewOrAlloc.getDefiningOp<memref::AllocOp>())
1307     return failure();
1308 
1309   LDBG(viewOrAlloc);
1310 
1311   // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`.
1312   memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc);
1313   if (!subViewOp)
1314     return failure();
1315   Value subView = subViewOp.getResult();
1316   LDBG("with subView " << subView);
1317 
1318   // Find the copy into `subView` without interleaved uses.
1319   CopyOp copyOp;
1320   for (auto &u : subView.getUses()) {
1321     if (auto newCopyOp = dyn_cast<CopyOp>(u.getOwner())) {
1322       assert(newCopyOp.output().getType().isa<MemRefType>());
1323       if (newCopyOp.output() != subView)
1324         continue;
1325       LDBG("copy candidate " << *newCopyOp);
1326       if (mayExistInterleavedUses(newCopyOp, xferOp, {viewOrAlloc, subView}))
1327         continue;
1328       copyOp = newCopyOp;
1329       break;
1330     }
1331   }
1332   if (!copyOp)
1333     return failure();
1334   LDBG("with copy " << *copyOp);
1335 
1336   // Find the fill into `viewOrAlloc` without interleaved uses before the copy.
1337   FillOp maybeFillOp;
1338   for (auto &u : viewOrAlloc.getUses()) {
1339     if (auto newFillOp = dyn_cast<FillOp>(u.getOwner())) {
1340       assert(newFillOp.output().getType().isa<MemRefType>());
1341       if (newFillOp.output() != viewOrAlloc)
1342         continue;
1343       LDBG("fill candidate " << *newFillOp);
1344       if (mayExistInterleavedUses(newFillOp, copyOp, {viewOrAlloc, subView}))
1345         continue;
1346       maybeFillOp = newFillOp;
1347       break;
1348     }
1349   }
1350   // Ensure padding matches.
1351   if (maybeFillOp && xferOp.padding() != maybeFillOp.value())
1352     return failure();
1353   if (maybeFillOp)
1354     LDBG("with maybeFillOp " << *maybeFillOp);
1355 
1356   // `in` is the subview that linalg.copy reads. Replace it.
1357   Value in = copyOp.input();
1358 
1359   // linalg.copy + linalg.fill can be used to create a padded local buffer.
1360   // The `masked` attribute is only valid on this padded buffer.
1361   // When forwarding to vector.transfer_read, the attribute must be reset
1362   // conservatively.
1363   Value res = rewriter.create<vector::TransferReadOp>(
1364       xferOp.getLoc(), xferOp.getVectorType(), in, xferOp.indices(),
1365       xferOp.permutation_map(), xferOp.padding(), ArrayAttr());
1366 
1367   if (maybeFillOp)
1368     rewriter.eraseOp(maybeFillOp);
1369   rewriter.eraseOp(copyOp);
1370   rewriter.replaceOp(xferOp, res);
1371 
1372   return success();
1373 }
1374 
1375 /// TODO: use interfaces, side-effects and aliasing analysis as appropriate,
1376 /// when available.
1377 LogicalResult LinalgCopyVTWForwardingPattern::matchAndRewrite(
1378     vector::TransferWriteOp xferOp, PatternRewriter &rewriter) const {
1379   // Transfer into `viewOrAlloc`.
1380   Value viewOrAlloc = xferOp.source();
1381   if (!viewOrAlloc.getDefiningOp<memref::ViewOp>() &&
1382       !viewOrAlloc.getDefiningOp<memref::AllocOp>())
1383     return failure();
1384 
1385   // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`.
1386   memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc);
1387   if (!subViewOp)
1388     return failure();
1389   Value subView = subViewOp.getResult();
1390 
1391   // Find the copy from `subView` without interleaved uses.
1392   CopyOp copyOp;
1393   for (auto &u : subViewOp.getResult().getUses()) {
1394     if (auto newCopyOp = dyn_cast<CopyOp>(u.getOwner())) {
1395       if (newCopyOp.getInputOperand(0)->get() != subView)
1396         continue;
1397       if (mayExistInterleavedUses(xferOp, newCopyOp, {viewOrAlloc, subView}))
1398         continue;
1399       copyOp = newCopyOp;
1400       break;
1401     }
1402   }
1403   if (!copyOp)
1404     return failure();
1405 
1406   // `out` is the subview copied into that we replace.
1407   assert(copyOp.output().getType().isa<MemRefType>());
1408   Value out = copyOp.output();
1409 
1410   // Forward vector.transfer into copy.
1411   // linalg.copy + linalg.fill can be used to create a padded local buffer.
1412   // The `masked` attribute is only valid on this padded buffer.
1413   // When forwarding to vector.transfer_write, the attribute must be reset
1414   // conservatively.
1415   rewriter.create<vector::TransferWriteOp>(
1416       xferOp.getLoc(), xferOp.vector(), out, xferOp.indices(),
1417       xferOp.permutation_map(), ArrayAttr());
1418 
1419   rewriter.eraseOp(copyOp);
1420   rewriter.eraseOp(xferOp);
1421 
1422   return success();
1423 }
1424